xref: /linux/drivers/cpufreq/cpufreq_conservative.c (revision 7b12b9137930eb821b68e1bfa11e9de692208620)
1 /*
2  *  drivers/cpufreq/cpufreq_conservative.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *            (C)  2004 Alexander Clouter <alex-kernel@digriz.org.uk>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/smp.h>
17 #include <linux/init.h>
18 #include <linux/interrupt.h>
19 #include <linux/ctype.h>
20 #include <linux/cpufreq.h>
21 #include <linux/sysctl.h>
22 #include <linux/types.h>
23 #include <linux/fs.h>
24 #include <linux/sysfs.h>
25 #include <linux/sched.h>
26 #include <linux/kmod.h>
27 #include <linux/workqueue.h>
28 #include <linux/jiffies.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/percpu.h>
31 #include <linux/mutex.h>
32 /*
33  * dbs is used in this file as a shortform for demandbased switching
34  * It helps to keep variable names smaller, simpler
35  */
36 
37 #define DEF_FREQUENCY_UP_THRESHOLD		(80)
38 #define DEF_FREQUENCY_DOWN_THRESHOLD		(20)
39 
40 /*
41  * The polling frequency of this governor depends on the capability of
42  * the processor. Default polling frequency is 1000 times the transition
43  * latency of the processor. The governor will work on any processor with
44  * transition latency <= 10mS, using appropriate sampling
45  * rate.
46  * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
47  * this governor will not work.
48  * All times here are in uS.
49  */
50 static unsigned int 				def_sampling_rate;
51 #define MIN_SAMPLING_RATE_RATIO			(2)
52 /* for correct statistics, we need at least 10 ticks between each measure */
53 #define MIN_STAT_SAMPLING_RATE			(MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
54 #define MIN_SAMPLING_RATE			(def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
55 #define MAX_SAMPLING_RATE			(500 * def_sampling_rate)
56 #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER	(1000)
57 #define DEF_SAMPLING_DOWN_FACTOR		(1)
58 #define MAX_SAMPLING_DOWN_FACTOR		(10)
59 #define TRANSITION_LATENCY_LIMIT		(10 * 1000)
60 
61 static void do_dbs_timer(void *data);
62 
63 struct cpu_dbs_info_s {
64 	struct cpufreq_policy 	*cur_policy;
65 	unsigned int 		prev_cpu_idle_up;
66 	unsigned int 		prev_cpu_idle_down;
67 	unsigned int 		enable;
68 	unsigned int		down_skip;
69 	unsigned int		requested_freq;
70 };
71 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
72 
73 static unsigned int dbs_enable;	/* number of CPUs using this policy */
74 
75 static DEFINE_MUTEX 	(dbs_mutex);
76 static DECLARE_WORK	(dbs_work, do_dbs_timer, NULL);
77 
78 struct dbs_tuners {
79 	unsigned int 		sampling_rate;
80 	unsigned int		sampling_down_factor;
81 	unsigned int		up_threshold;
82 	unsigned int		down_threshold;
83 	unsigned int		ignore_nice;
84 	unsigned int		freq_step;
85 };
86 
87 static struct dbs_tuners dbs_tuners_ins = {
88 	.up_threshold 		= DEF_FREQUENCY_UP_THRESHOLD,
89 	.down_threshold 	= DEF_FREQUENCY_DOWN_THRESHOLD,
90 	.sampling_down_factor 	= DEF_SAMPLING_DOWN_FACTOR,
91 	.ignore_nice		= 0,
92 	.freq_step		= 5,
93 };
94 
95 static inline unsigned int get_cpu_idle_time(unsigned int cpu)
96 {
97 	return	kstat_cpu(cpu).cpustat.idle +
98 		kstat_cpu(cpu).cpustat.iowait +
99 		( dbs_tuners_ins.ignore_nice ?
100 		  kstat_cpu(cpu).cpustat.nice :
101 		  0);
102 }
103 
104 /************************** sysfs interface ************************/
105 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
106 {
107 	return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
108 }
109 
110 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
111 {
112 	return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
113 }
114 
115 #define define_one_ro(_name) 					\
116 static struct freq_attr _name =  				\
117 __ATTR(_name, 0444, show_##_name, NULL)
118 
119 define_one_ro(sampling_rate_max);
120 define_one_ro(sampling_rate_min);
121 
122 /* cpufreq_conservative Governor Tunables */
123 #define show_one(file_name, object)					\
124 static ssize_t show_##file_name						\
125 (struct cpufreq_policy *unused, char *buf)				\
126 {									\
127 	return sprintf(buf, "%u\n", dbs_tuners_ins.object);		\
128 }
129 show_one(sampling_rate, sampling_rate);
130 show_one(sampling_down_factor, sampling_down_factor);
131 show_one(up_threshold, up_threshold);
132 show_one(down_threshold, down_threshold);
133 show_one(ignore_nice_load, ignore_nice);
134 show_one(freq_step, freq_step);
135 
136 static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused,
137 		const char *buf, size_t count)
138 {
139 	unsigned int input;
140 	int ret;
141 	ret = sscanf (buf, "%u", &input);
142 	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
143 		return -EINVAL;
144 
145 	mutex_lock(&dbs_mutex);
146 	dbs_tuners_ins.sampling_down_factor = input;
147 	mutex_unlock(&dbs_mutex);
148 
149 	return count;
150 }
151 
152 static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
153 		const char *buf, size_t count)
154 {
155 	unsigned int input;
156 	int ret;
157 	ret = sscanf (buf, "%u", &input);
158 
159 	mutex_lock(&dbs_mutex);
160 	if (ret != 1 || input > MAX_SAMPLING_RATE || input < MIN_SAMPLING_RATE) {
161 		mutex_unlock(&dbs_mutex);
162 		return -EINVAL;
163 	}
164 
165 	dbs_tuners_ins.sampling_rate = input;
166 	mutex_unlock(&dbs_mutex);
167 
168 	return count;
169 }
170 
171 static ssize_t store_up_threshold(struct cpufreq_policy *unused,
172 		const char *buf, size_t count)
173 {
174 	unsigned int input;
175 	int ret;
176 	ret = sscanf (buf, "%u", &input);
177 
178 	mutex_lock(&dbs_mutex);
179 	if (ret != 1 || input > 100 || input <= dbs_tuners_ins.down_threshold) {
180 		mutex_unlock(&dbs_mutex);
181 		return -EINVAL;
182 	}
183 
184 	dbs_tuners_ins.up_threshold = input;
185 	mutex_unlock(&dbs_mutex);
186 
187 	return count;
188 }
189 
190 static ssize_t store_down_threshold(struct cpufreq_policy *unused,
191 		const char *buf, size_t count)
192 {
193 	unsigned int input;
194 	int ret;
195 	ret = sscanf (buf, "%u", &input);
196 
197 	mutex_lock(&dbs_mutex);
198 	if (ret != 1 || input > 100 || input >= dbs_tuners_ins.up_threshold) {
199 		mutex_unlock(&dbs_mutex);
200 		return -EINVAL;
201 	}
202 
203 	dbs_tuners_ins.down_threshold = input;
204 	mutex_unlock(&dbs_mutex);
205 
206 	return count;
207 }
208 
209 static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
210 		const char *buf, size_t count)
211 {
212 	unsigned int input;
213 	int ret;
214 
215 	unsigned int j;
216 
217 	ret = sscanf (buf, "%u", &input);
218 	if ( ret != 1 )
219 		return -EINVAL;
220 
221 	if ( input > 1 )
222 		input = 1;
223 
224 	mutex_lock(&dbs_mutex);
225 	if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
226 		mutex_unlock(&dbs_mutex);
227 		return count;
228 	}
229 	dbs_tuners_ins.ignore_nice = input;
230 
231 	/* we need to re-evaluate prev_cpu_idle_up and prev_cpu_idle_down */
232 	for_each_online_cpu(j) {
233 		struct cpu_dbs_info_s *j_dbs_info;
234 		j_dbs_info = &per_cpu(cpu_dbs_info, j);
235 		j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
236 		j_dbs_info->prev_cpu_idle_down = j_dbs_info->prev_cpu_idle_up;
237 	}
238 	mutex_unlock(&dbs_mutex);
239 
240 	return count;
241 }
242 
243 static ssize_t store_freq_step(struct cpufreq_policy *policy,
244 		const char *buf, size_t count)
245 {
246 	unsigned int input;
247 	int ret;
248 
249 	ret = sscanf (buf, "%u", &input);
250 
251 	if ( ret != 1 )
252 		return -EINVAL;
253 
254 	if ( input > 100 )
255 		input = 100;
256 
257 	/* no need to test here if freq_step is zero as the user might actually
258 	 * want this, they would be crazy though :) */
259 	mutex_lock(&dbs_mutex);
260 	dbs_tuners_ins.freq_step = input;
261 	mutex_unlock(&dbs_mutex);
262 
263 	return count;
264 }
265 
266 #define define_one_rw(_name) \
267 static struct freq_attr _name = \
268 __ATTR(_name, 0644, show_##_name, store_##_name)
269 
270 define_one_rw(sampling_rate);
271 define_one_rw(sampling_down_factor);
272 define_one_rw(up_threshold);
273 define_one_rw(down_threshold);
274 define_one_rw(ignore_nice_load);
275 define_one_rw(freq_step);
276 
277 static struct attribute * dbs_attributes[] = {
278 	&sampling_rate_max.attr,
279 	&sampling_rate_min.attr,
280 	&sampling_rate.attr,
281 	&sampling_down_factor.attr,
282 	&up_threshold.attr,
283 	&down_threshold.attr,
284 	&ignore_nice_load.attr,
285 	&freq_step.attr,
286 	NULL
287 };
288 
289 static struct attribute_group dbs_attr_group = {
290 	.attrs = dbs_attributes,
291 	.name = "conservative",
292 };
293 
294 /************************** sysfs end ************************/
295 
296 static void dbs_check_cpu(int cpu)
297 {
298 	unsigned int idle_ticks, up_idle_ticks, down_idle_ticks;
299 	unsigned int tmp_idle_ticks, total_idle_ticks;
300 	unsigned int freq_step;
301 	unsigned int freq_down_sampling_rate;
302 	struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
303 	struct cpufreq_policy *policy;
304 
305 	if (!this_dbs_info->enable)
306 		return;
307 
308 	policy = this_dbs_info->cur_policy;
309 
310 	/*
311 	 * The default safe range is 20% to 80%
312 	 * Every sampling_rate, we check
313 	 * 	- If current idle time is less than 20%, then we try to
314 	 * 	  increase frequency
315 	 * Every sampling_rate*sampling_down_factor, we check
316 	 * 	- If current idle time is more than 80%, then we try to
317 	 * 	  decrease frequency
318 	 *
319 	 * Any frequency increase takes it to the maximum frequency.
320 	 * Frequency reduction happens at minimum steps of
321 	 * 5% (default) of max_frequency
322 	 */
323 
324 	/* Check for frequency increase */
325 	idle_ticks = UINT_MAX;
326 
327 	/* Check for frequency increase */
328 	total_idle_ticks = get_cpu_idle_time(cpu);
329 	tmp_idle_ticks = total_idle_ticks -
330 		this_dbs_info->prev_cpu_idle_up;
331 	this_dbs_info->prev_cpu_idle_up = total_idle_ticks;
332 
333 	if (tmp_idle_ticks < idle_ticks)
334 		idle_ticks = tmp_idle_ticks;
335 
336 	/* Scale idle ticks by 100 and compare with up and down ticks */
337 	idle_ticks *= 100;
338 	up_idle_ticks = (100 - dbs_tuners_ins.up_threshold) *
339 			usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
340 
341 	if (idle_ticks < up_idle_ticks) {
342 		this_dbs_info->down_skip = 0;
343 		this_dbs_info->prev_cpu_idle_down =
344 			this_dbs_info->prev_cpu_idle_up;
345 
346 		/* if we are already at full speed then break out early */
347 		if (this_dbs_info->requested_freq == policy->max)
348 			return;
349 
350 		freq_step = (dbs_tuners_ins.freq_step * policy->max) / 100;
351 
352 		/* max freq cannot be less than 100. But who knows.... */
353 		if (unlikely(freq_step == 0))
354 			freq_step = 5;
355 
356 		this_dbs_info->requested_freq += freq_step;
357 		if (this_dbs_info->requested_freq > policy->max)
358 			this_dbs_info->requested_freq = policy->max;
359 
360 		__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
361 			CPUFREQ_RELATION_H);
362 		return;
363 	}
364 
365 	/* Check for frequency decrease */
366 	this_dbs_info->down_skip++;
367 	if (this_dbs_info->down_skip < dbs_tuners_ins.sampling_down_factor)
368 		return;
369 
370 	/* Check for frequency decrease */
371 	total_idle_ticks = this_dbs_info->prev_cpu_idle_up;
372 	tmp_idle_ticks = total_idle_ticks -
373 		this_dbs_info->prev_cpu_idle_down;
374 	this_dbs_info->prev_cpu_idle_down = total_idle_ticks;
375 
376 	if (tmp_idle_ticks < idle_ticks)
377 		idle_ticks = tmp_idle_ticks;
378 
379 	/* Scale idle ticks by 100 and compare with up and down ticks */
380 	idle_ticks *= 100;
381 	this_dbs_info->down_skip = 0;
382 
383 	freq_down_sampling_rate = dbs_tuners_ins.sampling_rate *
384 		dbs_tuners_ins.sampling_down_factor;
385 	down_idle_ticks = (100 - dbs_tuners_ins.down_threshold) *
386 		usecs_to_jiffies(freq_down_sampling_rate);
387 
388 	if (idle_ticks > down_idle_ticks) {
389 		/*
390 		 * if we are already at the lowest speed then break out early
391 		 * or if we 'cannot' reduce the speed as the user might want
392 		 * freq_step to be zero
393 		 */
394 		if (this_dbs_info->requested_freq == policy->min
395 				|| dbs_tuners_ins.freq_step == 0)
396 			return;
397 
398 		freq_step = (dbs_tuners_ins.freq_step * policy->max) / 100;
399 
400 		/* max freq cannot be less than 100. But who knows.... */
401 		if (unlikely(freq_step == 0))
402 			freq_step = 5;
403 
404 		this_dbs_info->requested_freq -= freq_step;
405 		if (this_dbs_info->requested_freq < policy->min)
406 			this_dbs_info->requested_freq = policy->min;
407 
408 		__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
409 				CPUFREQ_RELATION_H);
410 		return;
411 	}
412 }
413 
414 static void do_dbs_timer(void *data)
415 {
416 	int i;
417 	mutex_lock(&dbs_mutex);
418 	for_each_online_cpu(i)
419 		dbs_check_cpu(i);
420 	schedule_delayed_work(&dbs_work,
421 			usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
422 	mutex_unlock(&dbs_mutex);
423 }
424 
425 static inline void dbs_timer_init(void)
426 {
427 	INIT_WORK(&dbs_work, do_dbs_timer, NULL);
428 	schedule_delayed_work(&dbs_work,
429 			usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
430 	return;
431 }
432 
433 static inline void dbs_timer_exit(void)
434 {
435 	cancel_delayed_work(&dbs_work);
436 	return;
437 }
438 
439 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
440 				   unsigned int event)
441 {
442 	unsigned int cpu = policy->cpu;
443 	struct cpu_dbs_info_s *this_dbs_info;
444 	unsigned int j;
445 
446 	this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
447 
448 	switch (event) {
449 	case CPUFREQ_GOV_START:
450 		if ((!cpu_online(cpu)) ||
451 		    (!policy->cur))
452 			return -EINVAL;
453 
454 		if (policy->cpuinfo.transition_latency >
455 				(TRANSITION_LATENCY_LIMIT * 1000))
456 			return -EINVAL;
457 		if (this_dbs_info->enable) /* Already enabled */
458 			break;
459 
460 		mutex_lock(&dbs_mutex);
461 		for_each_cpu_mask(j, policy->cpus) {
462 			struct cpu_dbs_info_s *j_dbs_info;
463 			j_dbs_info = &per_cpu(cpu_dbs_info, j);
464 			j_dbs_info->cur_policy = policy;
465 
466 			j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(cpu);
467 			j_dbs_info->prev_cpu_idle_down
468 				= j_dbs_info->prev_cpu_idle_up;
469 		}
470 		this_dbs_info->enable = 1;
471 		this_dbs_info->down_skip = 0;
472 		this_dbs_info->requested_freq = policy->cur;
473 		sysfs_create_group(&policy->kobj, &dbs_attr_group);
474 		dbs_enable++;
475 		/*
476 		 * Start the timerschedule work, when this governor
477 		 * is used for first time
478 		 */
479 		if (dbs_enable == 1) {
480 			unsigned int latency;
481 			/* policy latency is in nS. Convert it to uS first */
482 			latency = policy->cpuinfo.transition_latency / 1000;
483 			if (latency == 0)
484 				latency = 1;
485 
486 			def_sampling_rate = 10 * latency *
487 					DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
488 
489 			if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
490 				def_sampling_rate = MIN_STAT_SAMPLING_RATE;
491 
492 			dbs_tuners_ins.sampling_rate = def_sampling_rate;
493 
494 			dbs_timer_init();
495 		}
496 
497 		mutex_unlock(&dbs_mutex);
498 		break;
499 
500 	case CPUFREQ_GOV_STOP:
501 		mutex_lock(&dbs_mutex);
502 		this_dbs_info->enable = 0;
503 		sysfs_remove_group(&policy->kobj, &dbs_attr_group);
504 		dbs_enable--;
505 		/*
506 		 * Stop the timerschedule work, when this governor
507 		 * is used for first time
508 		 */
509 		if (dbs_enable == 0)
510 			dbs_timer_exit();
511 
512 		mutex_unlock(&dbs_mutex);
513 
514 		break;
515 
516 	case CPUFREQ_GOV_LIMITS:
517 		mutex_lock(&dbs_mutex);
518 		if (policy->max < this_dbs_info->cur_policy->cur)
519 			__cpufreq_driver_target(
520 					this_dbs_info->cur_policy,
521 				       	policy->max, CPUFREQ_RELATION_H);
522 		else if (policy->min > this_dbs_info->cur_policy->cur)
523 			__cpufreq_driver_target(
524 					this_dbs_info->cur_policy,
525 				       	policy->min, CPUFREQ_RELATION_L);
526 		mutex_unlock(&dbs_mutex);
527 		break;
528 	}
529 	return 0;
530 }
531 
532 static struct cpufreq_governor cpufreq_gov_dbs = {
533 	.name		= "conservative",
534 	.governor	= cpufreq_governor_dbs,
535 	.owner		= THIS_MODULE,
536 };
537 
538 static int __init cpufreq_gov_dbs_init(void)
539 {
540 	return cpufreq_register_governor(&cpufreq_gov_dbs);
541 }
542 
543 static void __exit cpufreq_gov_dbs_exit(void)
544 {
545 	/* Make sure that the scheduled work is indeed not running */
546 	flush_scheduled_work();
547 
548 	cpufreq_unregister_governor(&cpufreq_gov_dbs);
549 }
550 
551 
552 MODULE_AUTHOR ("Alexander Clouter <alex-kernel@digriz.org.uk>");
553 MODULE_DESCRIPTION ("'cpufreq_conservative' - A dynamic cpufreq governor for "
554 		"Low Latency Frequency Transition capable processors "
555 		"optimised for use in a battery environment");
556 MODULE_LICENSE ("GPL");
557 
558 module_init(cpufreq_gov_dbs_init);
559 module_exit(cpufreq_gov_dbs_exit);
560