xref: /linux/drivers/cpufreq/cpufreq_conservative.c (revision 27258e448eb301cf89e351df87aa8cb916653bf2)
1 /*
2  *  drivers/cpufreq/cpufreq_conservative.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *            (C)  2009 Alexander Clouter <alex@digriz.org.uk>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/cpufreq.h>
18 #include <linux/cpu.h>
19 #include <linux/jiffies.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/mutex.h>
22 #include <linux/hrtimer.h>
23 #include <linux/tick.h>
24 #include <linux/ktime.h>
25 #include <linux/sched.h>
26 
27 /*
28  * dbs is used in this file as a shortform for demandbased switching
29  * It helps to keep variable names smaller, simpler
30  */
31 
32 #define DEF_FREQUENCY_UP_THRESHOLD		(80)
33 #define DEF_FREQUENCY_DOWN_THRESHOLD		(20)
34 
35 /*
36  * The polling frequency of this governor depends on the capability of
37  * the processor. Default polling frequency is 1000 times the transition
38  * latency of the processor. The governor will work on any processor with
39  * transition latency <= 10mS, using appropriate sampling
40  * rate.
41  * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
42  * this governor will not work.
43  * All times here are in uS.
44  */
45 #define MIN_SAMPLING_RATE_RATIO			(2)
46 
47 static unsigned int min_sampling_rate;
48 
49 #define LATENCY_MULTIPLIER			(1000)
50 #define MIN_LATENCY_MULTIPLIER			(100)
51 #define DEF_SAMPLING_DOWN_FACTOR		(1)
52 #define MAX_SAMPLING_DOWN_FACTOR		(10)
53 #define TRANSITION_LATENCY_LIMIT		(10 * 1000 * 1000)
54 
55 static void do_dbs_timer(struct work_struct *work);
56 
57 struct cpu_dbs_info_s {
58 	cputime64_t prev_cpu_idle;
59 	cputime64_t prev_cpu_wall;
60 	cputime64_t prev_cpu_nice;
61 	struct cpufreq_policy *cur_policy;
62 	struct delayed_work work;
63 	unsigned int down_skip;
64 	unsigned int requested_freq;
65 	int cpu;
66 	unsigned int enable:1;
67 	/*
68 	 * percpu mutex that serializes governor limit change with
69 	 * do_dbs_timer invocation. We do not want do_dbs_timer to run
70 	 * when user is changing the governor or limits.
71 	 */
72 	struct mutex timer_mutex;
73 };
74 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cs_cpu_dbs_info);
75 
76 static unsigned int dbs_enable;	/* number of CPUs using this policy */
77 
78 /*
79  * dbs_mutex protects data in dbs_tuners_ins from concurrent changes on
80  * different CPUs. It protects dbs_enable in governor start/stop.
81  */
82 static DEFINE_MUTEX(dbs_mutex);
83 
84 static struct workqueue_struct	*kconservative_wq;
85 
86 static struct dbs_tuners {
87 	unsigned int sampling_rate;
88 	unsigned int sampling_down_factor;
89 	unsigned int up_threshold;
90 	unsigned int down_threshold;
91 	unsigned int ignore_nice;
92 	unsigned int freq_step;
93 } dbs_tuners_ins = {
94 	.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
95 	.down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
96 	.sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
97 	.ignore_nice = 0,
98 	.freq_step = 5,
99 };
100 
101 static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
102 							cputime64_t *wall)
103 {
104 	cputime64_t idle_time;
105 	cputime64_t cur_wall_time;
106 	cputime64_t busy_time;
107 
108 	cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
109 	busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
110 			kstat_cpu(cpu).cpustat.system);
111 
112 	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
113 	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
114 	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
115 	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
116 
117 	idle_time = cputime64_sub(cur_wall_time, busy_time);
118 	if (wall)
119 		*wall = cur_wall_time;
120 
121 	return idle_time;
122 }
123 
124 static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
125 {
126 	u64 idle_time = get_cpu_idle_time_us(cpu, wall);
127 
128 	if (idle_time == -1ULL)
129 		return get_cpu_idle_time_jiffy(cpu, wall);
130 
131 	return idle_time;
132 }
133 
134 /* keep track of frequency transitions */
135 static int
136 dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
137 		     void *data)
138 {
139 	struct cpufreq_freqs *freq = data;
140 	struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cs_cpu_dbs_info,
141 							freq->cpu);
142 
143 	struct cpufreq_policy *policy;
144 
145 	if (!this_dbs_info->enable)
146 		return 0;
147 
148 	policy = this_dbs_info->cur_policy;
149 
150 	/*
151 	 * we only care if our internally tracked freq moves outside
152 	 * the 'valid' ranges of freqency available to us otherwise
153 	 * we do not change it
154 	*/
155 	if (this_dbs_info->requested_freq > policy->max
156 			|| this_dbs_info->requested_freq < policy->min)
157 		this_dbs_info->requested_freq = freq->new;
158 
159 	return 0;
160 }
161 
162 static struct notifier_block dbs_cpufreq_notifier_block = {
163 	.notifier_call = dbs_cpufreq_notifier
164 };
165 
166 /************************** sysfs interface ************************/
167 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
168 {
169 	printk_once(KERN_INFO "CPUFREQ: conservative sampling_rate_max "
170 		    "sysfs file is deprecated - used by: %s\n", current->comm);
171 	return sprintf(buf, "%u\n", -1U);
172 }
173 
174 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
175 {
176 	return sprintf(buf, "%u\n", min_sampling_rate);
177 }
178 
179 #define define_one_ro(_name)		\
180 static struct freq_attr _name =		\
181 __ATTR(_name, 0444, show_##_name, NULL)
182 
183 define_one_ro(sampling_rate_max);
184 define_one_ro(sampling_rate_min);
185 
186 /* cpufreq_conservative Governor Tunables */
187 #define show_one(file_name, object)					\
188 static ssize_t show_##file_name						\
189 (struct cpufreq_policy *unused, char *buf)				\
190 {									\
191 	return sprintf(buf, "%u\n", dbs_tuners_ins.object);		\
192 }
193 show_one(sampling_rate, sampling_rate);
194 show_one(sampling_down_factor, sampling_down_factor);
195 show_one(up_threshold, up_threshold);
196 show_one(down_threshold, down_threshold);
197 show_one(ignore_nice_load, ignore_nice);
198 show_one(freq_step, freq_step);
199 
200 static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused,
201 		const char *buf, size_t count)
202 {
203 	unsigned int input;
204 	int ret;
205 	ret = sscanf(buf, "%u", &input);
206 
207 	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
208 		return -EINVAL;
209 
210 	mutex_lock(&dbs_mutex);
211 	dbs_tuners_ins.sampling_down_factor = input;
212 	mutex_unlock(&dbs_mutex);
213 
214 	return count;
215 }
216 
217 static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
218 		const char *buf, size_t count)
219 {
220 	unsigned int input;
221 	int ret;
222 	ret = sscanf(buf, "%u", &input);
223 
224 	if (ret != 1)
225 		return -EINVAL;
226 
227 	mutex_lock(&dbs_mutex);
228 	dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
229 	mutex_unlock(&dbs_mutex);
230 
231 	return count;
232 }
233 
234 static ssize_t store_up_threshold(struct cpufreq_policy *unused,
235 		const char *buf, size_t count)
236 {
237 	unsigned int input;
238 	int ret;
239 	ret = sscanf(buf, "%u", &input);
240 
241 	mutex_lock(&dbs_mutex);
242 	if (ret != 1 || input > 100 ||
243 			input <= dbs_tuners_ins.down_threshold) {
244 		mutex_unlock(&dbs_mutex);
245 		return -EINVAL;
246 	}
247 
248 	dbs_tuners_ins.up_threshold = input;
249 	mutex_unlock(&dbs_mutex);
250 
251 	return count;
252 }
253 
254 static ssize_t store_down_threshold(struct cpufreq_policy *unused,
255 		const char *buf, size_t count)
256 {
257 	unsigned int input;
258 	int ret;
259 	ret = sscanf(buf, "%u", &input);
260 
261 	mutex_lock(&dbs_mutex);
262 	/* cannot be lower than 11 otherwise freq will not fall */
263 	if (ret != 1 || input < 11 || input > 100 ||
264 			input >= dbs_tuners_ins.up_threshold) {
265 		mutex_unlock(&dbs_mutex);
266 		return -EINVAL;
267 	}
268 
269 	dbs_tuners_ins.down_threshold = input;
270 	mutex_unlock(&dbs_mutex);
271 
272 	return count;
273 }
274 
275 static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
276 		const char *buf, size_t count)
277 {
278 	unsigned int input;
279 	int ret;
280 
281 	unsigned int j;
282 
283 	ret = sscanf(buf, "%u", &input);
284 	if (ret != 1)
285 		return -EINVAL;
286 
287 	if (input > 1)
288 		input = 1;
289 
290 	mutex_lock(&dbs_mutex);
291 	if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
292 		mutex_unlock(&dbs_mutex);
293 		return count;
294 	}
295 	dbs_tuners_ins.ignore_nice = input;
296 
297 	/* we need to re-evaluate prev_cpu_idle */
298 	for_each_online_cpu(j) {
299 		struct cpu_dbs_info_s *dbs_info;
300 		dbs_info = &per_cpu(cs_cpu_dbs_info, j);
301 		dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
302 						&dbs_info->prev_cpu_wall);
303 		if (dbs_tuners_ins.ignore_nice)
304 			dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
305 	}
306 	mutex_unlock(&dbs_mutex);
307 
308 	return count;
309 }
310 
311 static ssize_t store_freq_step(struct cpufreq_policy *policy,
312 		const char *buf, size_t count)
313 {
314 	unsigned int input;
315 	int ret;
316 	ret = sscanf(buf, "%u", &input);
317 
318 	if (ret != 1)
319 		return -EINVAL;
320 
321 	if (input > 100)
322 		input = 100;
323 
324 	/* no need to test here if freq_step is zero as the user might actually
325 	 * want this, they would be crazy though :) */
326 	mutex_lock(&dbs_mutex);
327 	dbs_tuners_ins.freq_step = input;
328 	mutex_unlock(&dbs_mutex);
329 
330 	return count;
331 }
332 
333 #define define_one_rw(_name) \
334 static struct freq_attr _name = \
335 __ATTR(_name, 0644, show_##_name, store_##_name)
336 
337 define_one_rw(sampling_rate);
338 define_one_rw(sampling_down_factor);
339 define_one_rw(up_threshold);
340 define_one_rw(down_threshold);
341 define_one_rw(ignore_nice_load);
342 define_one_rw(freq_step);
343 
344 static struct attribute *dbs_attributes[] = {
345 	&sampling_rate_max.attr,
346 	&sampling_rate_min.attr,
347 	&sampling_rate.attr,
348 	&sampling_down_factor.attr,
349 	&up_threshold.attr,
350 	&down_threshold.attr,
351 	&ignore_nice_load.attr,
352 	&freq_step.attr,
353 	NULL
354 };
355 
356 static struct attribute_group dbs_attr_group = {
357 	.attrs = dbs_attributes,
358 	.name = "conservative",
359 };
360 
361 /************************** sysfs end ************************/
362 
363 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
364 {
365 	unsigned int load = 0;
366 	unsigned int freq_target;
367 
368 	struct cpufreq_policy *policy;
369 	unsigned int j;
370 
371 	policy = this_dbs_info->cur_policy;
372 
373 	/*
374 	 * Every sampling_rate, we check, if current idle time is less
375 	 * than 20% (default), then we try to increase frequency
376 	 * Every sampling_rate*sampling_down_factor, we check, if current
377 	 * idle time is more than 80%, then we try to decrease frequency
378 	 *
379 	 * Any frequency increase takes it to the maximum frequency.
380 	 * Frequency reduction happens at minimum steps of
381 	 * 5% (default) of maximum frequency
382 	 */
383 
384 	/* Get Absolute Load */
385 	for_each_cpu(j, policy->cpus) {
386 		struct cpu_dbs_info_s *j_dbs_info;
387 		cputime64_t cur_wall_time, cur_idle_time;
388 		unsigned int idle_time, wall_time;
389 
390 		j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
391 
392 		cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
393 
394 		wall_time = (unsigned int) cputime64_sub(cur_wall_time,
395 				j_dbs_info->prev_cpu_wall);
396 		j_dbs_info->prev_cpu_wall = cur_wall_time;
397 
398 		idle_time = (unsigned int) cputime64_sub(cur_idle_time,
399 				j_dbs_info->prev_cpu_idle);
400 		j_dbs_info->prev_cpu_idle = cur_idle_time;
401 
402 		if (dbs_tuners_ins.ignore_nice) {
403 			cputime64_t cur_nice;
404 			unsigned long cur_nice_jiffies;
405 
406 			cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
407 					 j_dbs_info->prev_cpu_nice);
408 			/*
409 			 * Assumption: nice time between sampling periods will
410 			 * be less than 2^32 jiffies for 32 bit sys
411 			 */
412 			cur_nice_jiffies = (unsigned long)
413 					cputime64_to_jiffies64(cur_nice);
414 
415 			j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
416 			idle_time += jiffies_to_usecs(cur_nice_jiffies);
417 		}
418 
419 		if (unlikely(!wall_time || wall_time < idle_time))
420 			continue;
421 
422 		load = 100 * (wall_time - idle_time) / wall_time;
423 	}
424 
425 	/*
426 	 * break out if we 'cannot' reduce the speed as the user might
427 	 * want freq_step to be zero
428 	 */
429 	if (dbs_tuners_ins.freq_step == 0)
430 		return;
431 
432 	/* Check for frequency increase */
433 	if (load > dbs_tuners_ins.up_threshold) {
434 		this_dbs_info->down_skip = 0;
435 
436 		/* if we are already at full speed then break out early */
437 		if (this_dbs_info->requested_freq == policy->max)
438 			return;
439 
440 		freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
441 
442 		/* max freq cannot be less than 100. But who knows.... */
443 		if (unlikely(freq_target == 0))
444 			freq_target = 5;
445 
446 		this_dbs_info->requested_freq += freq_target;
447 		if (this_dbs_info->requested_freq > policy->max)
448 			this_dbs_info->requested_freq = policy->max;
449 
450 		__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
451 			CPUFREQ_RELATION_H);
452 		return;
453 	}
454 
455 	/*
456 	 * The optimal frequency is the frequency that is the lowest that
457 	 * can support the current CPU usage without triggering the up
458 	 * policy. To be safe, we focus 10 points under the threshold.
459 	 */
460 	if (load < (dbs_tuners_ins.down_threshold - 10)) {
461 		freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
462 
463 		this_dbs_info->requested_freq -= freq_target;
464 		if (this_dbs_info->requested_freq < policy->min)
465 			this_dbs_info->requested_freq = policy->min;
466 
467 		/*
468 		 * if we cannot reduce the frequency anymore, break out early
469 		 */
470 		if (policy->cur == policy->min)
471 			return;
472 
473 		__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
474 				CPUFREQ_RELATION_H);
475 		return;
476 	}
477 }
478 
479 static void do_dbs_timer(struct work_struct *work)
480 {
481 	struct cpu_dbs_info_s *dbs_info =
482 		container_of(work, struct cpu_dbs_info_s, work.work);
483 	unsigned int cpu = dbs_info->cpu;
484 
485 	/* We want all CPUs to do sampling nearly on same jiffy */
486 	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
487 
488 	delay -= jiffies % delay;
489 
490 	mutex_lock(&dbs_info->timer_mutex);
491 
492 	dbs_check_cpu(dbs_info);
493 
494 	queue_delayed_work_on(cpu, kconservative_wq, &dbs_info->work, delay);
495 	mutex_unlock(&dbs_info->timer_mutex);
496 }
497 
498 static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
499 {
500 	/* We want all CPUs to do sampling nearly on same jiffy */
501 	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
502 	delay -= jiffies % delay;
503 
504 	dbs_info->enable = 1;
505 	INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
506 	queue_delayed_work_on(dbs_info->cpu, kconservative_wq, &dbs_info->work,
507 				delay);
508 }
509 
510 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
511 {
512 	dbs_info->enable = 0;
513 	cancel_delayed_work_sync(&dbs_info->work);
514 }
515 
516 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
517 				   unsigned int event)
518 {
519 	unsigned int cpu = policy->cpu;
520 	struct cpu_dbs_info_s *this_dbs_info;
521 	unsigned int j;
522 	int rc;
523 
524 	this_dbs_info = &per_cpu(cs_cpu_dbs_info, cpu);
525 
526 	switch (event) {
527 	case CPUFREQ_GOV_START:
528 		if ((!cpu_online(cpu)) || (!policy->cur))
529 			return -EINVAL;
530 
531 		mutex_lock(&dbs_mutex);
532 
533 		rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
534 		if (rc) {
535 			mutex_unlock(&dbs_mutex);
536 			return rc;
537 		}
538 
539 		for_each_cpu(j, policy->cpus) {
540 			struct cpu_dbs_info_s *j_dbs_info;
541 			j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
542 			j_dbs_info->cur_policy = policy;
543 
544 			j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
545 						&j_dbs_info->prev_cpu_wall);
546 			if (dbs_tuners_ins.ignore_nice) {
547 				j_dbs_info->prev_cpu_nice =
548 						kstat_cpu(j).cpustat.nice;
549 			}
550 		}
551 		this_dbs_info->down_skip = 0;
552 		this_dbs_info->requested_freq = policy->cur;
553 
554 		mutex_init(&this_dbs_info->timer_mutex);
555 		dbs_enable++;
556 		/*
557 		 * Start the timerschedule work, when this governor
558 		 * is used for first time
559 		 */
560 		if (dbs_enable == 1) {
561 			unsigned int latency;
562 			/* policy latency is in nS. Convert it to uS first */
563 			latency = policy->cpuinfo.transition_latency / 1000;
564 			if (latency == 0)
565 				latency = 1;
566 
567 			/*
568 			 * conservative does not implement micro like ondemand
569 			 * governor, thus we are bound to jiffes/HZ
570 			 */
571 			min_sampling_rate =
572 				MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
573 			/* Bring kernel and HW constraints together */
574 			min_sampling_rate = max(min_sampling_rate,
575 					MIN_LATENCY_MULTIPLIER * latency);
576 			dbs_tuners_ins.sampling_rate =
577 				max(min_sampling_rate,
578 				    latency * LATENCY_MULTIPLIER);
579 
580 			cpufreq_register_notifier(
581 					&dbs_cpufreq_notifier_block,
582 					CPUFREQ_TRANSITION_NOTIFIER);
583 		}
584 		mutex_unlock(&dbs_mutex);
585 
586 		dbs_timer_init(this_dbs_info);
587 
588 		break;
589 
590 	case CPUFREQ_GOV_STOP:
591 		dbs_timer_exit(this_dbs_info);
592 
593 		mutex_lock(&dbs_mutex);
594 		sysfs_remove_group(&policy->kobj, &dbs_attr_group);
595 		dbs_enable--;
596 		mutex_destroy(&this_dbs_info->timer_mutex);
597 
598 		/*
599 		 * Stop the timerschedule work, when this governor
600 		 * is used for first time
601 		 */
602 		if (dbs_enable == 0)
603 			cpufreq_unregister_notifier(
604 					&dbs_cpufreq_notifier_block,
605 					CPUFREQ_TRANSITION_NOTIFIER);
606 
607 		mutex_unlock(&dbs_mutex);
608 
609 		break;
610 
611 	case CPUFREQ_GOV_LIMITS:
612 		mutex_lock(&this_dbs_info->timer_mutex);
613 		if (policy->max < this_dbs_info->cur_policy->cur)
614 			__cpufreq_driver_target(
615 					this_dbs_info->cur_policy,
616 					policy->max, CPUFREQ_RELATION_H);
617 		else if (policy->min > this_dbs_info->cur_policy->cur)
618 			__cpufreq_driver_target(
619 					this_dbs_info->cur_policy,
620 					policy->min, CPUFREQ_RELATION_L);
621 		mutex_unlock(&this_dbs_info->timer_mutex);
622 
623 		break;
624 	}
625 	return 0;
626 }
627 
628 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
629 static
630 #endif
631 struct cpufreq_governor cpufreq_gov_conservative = {
632 	.name			= "conservative",
633 	.governor		= cpufreq_governor_dbs,
634 	.max_transition_latency	= TRANSITION_LATENCY_LIMIT,
635 	.owner			= THIS_MODULE,
636 };
637 
638 static int __init cpufreq_gov_dbs_init(void)
639 {
640 	int err;
641 
642 	kconservative_wq = create_workqueue("kconservative");
643 	if (!kconservative_wq) {
644 		printk(KERN_ERR "Creation of kconservative failed\n");
645 		return -EFAULT;
646 	}
647 
648 	err = cpufreq_register_governor(&cpufreq_gov_conservative);
649 	if (err)
650 		destroy_workqueue(kconservative_wq);
651 
652 	return err;
653 }
654 
655 static void __exit cpufreq_gov_dbs_exit(void)
656 {
657 	cpufreq_unregister_governor(&cpufreq_gov_conservative);
658 	destroy_workqueue(kconservative_wq);
659 }
660 
661 
662 MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
663 MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
664 		"Low Latency Frequency Transition capable processors "
665 		"optimised for use in a battery environment");
666 MODULE_LICENSE("GPL");
667 
668 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
669 fs_initcall(cpufreq_gov_dbs_init);
670 #else
671 module_init(cpufreq_gov_dbs_init);
672 #endif
673 module_exit(cpufreq_gov_dbs_exit);
674