xref: /linux/drivers/cpufreq/cpufreq_conservative.c (revision 2277ab4a1df50e05bc732fe9488d4e902bb8399a)
1 /*
2  *  drivers/cpufreq/cpufreq_conservative.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *            (C)  2009 Alexander Clouter <alex@digriz.org.uk>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/cpufreq.h>
18 #include <linux/cpu.h>
19 #include <linux/jiffies.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/mutex.h>
22 #include <linux/hrtimer.h>
23 #include <linux/tick.h>
24 #include <linux/ktime.h>
25 #include <linux/sched.h>
26 
27 /*
28  * dbs is used in this file as a shortform for demandbased switching
29  * It helps to keep variable names smaller, simpler
30  */
31 
32 #define DEF_FREQUENCY_UP_THRESHOLD		(80)
33 #define DEF_FREQUENCY_DOWN_THRESHOLD		(20)
34 
35 /*
36  * The polling frequency of this governor depends on the capability of
37  * the processor. Default polling frequency is 1000 times the transition
38  * latency of the processor. The governor will work on any processor with
39  * transition latency <= 10mS, using appropriate sampling
40  * rate.
41  * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
42  * this governor will not work.
43  * All times here are in uS.
44  */
45 #define MIN_SAMPLING_RATE_RATIO			(2)
46 
47 static unsigned int min_sampling_rate;
48 
49 #define LATENCY_MULTIPLIER			(1000)
50 #define MIN_LATENCY_MULTIPLIER			(100)
51 #define DEF_SAMPLING_DOWN_FACTOR		(1)
52 #define MAX_SAMPLING_DOWN_FACTOR		(10)
53 #define TRANSITION_LATENCY_LIMIT		(10 * 1000 * 1000)
54 
55 static void do_dbs_timer(struct work_struct *work);
56 
57 struct cpu_dbs_info_s {
58 	cputime64_t prev_cpu_idle;
59 	cputime64_t prev_cpu_wall;
60 	cputime64_t prev_cpu_nice;
61 	struct cpufreq_policy *cur_policy;
62 	struct delayed_work work;
63 	unsigned int down_skip;
64 	unsigned int requested_freq;
65 	int cpu;
66 	/*
67 	 * percpu mutex that serializes governor limit change with
68 	 * do_dbs_timer invocation. We do not want do_dbs_timer to run
69 	 * when user is changing the governor or limits.
70 	 */
71 	struct mutex timer_mutex;
72 };
73 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
74 
75 static unsigned int dbs_enable;	/* number of CPUs using this policy */
76 
77 /*
78  * dbs_mutex protects data in dbs_tuners_ins from concurrent changes on
79  * different CPUs. It protects dbs_enable in governor start/stop.
80  */
81 static DEFINE_MUTEX(dbs_mutex);
82 
83 static struct workqueue_struct	*kconservative_wq;
84 
85 static struct dbs_tuners {
86 	unsigned int sampling_rate;
87 	unsigned int sampling_down_factor;
88 	unsigned int up_threshold;
89 	unsigned int down_threshold;
90 	unsigned int ignore_nice;
91 	unsigned int freq_step;
92 } dbs_tuners_ins = {
93 	.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
94 	.down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
95 	.sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
96 	.ignore_nice = 0,
97 	.freq_step = 5,
98 };
99 
100 static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
101 							cputime64_t *wall)
102 {
103 	cputime64_t idle_time;
104 	cputime64_t cur_wall_time;
105 	cputime64_t busy_time;
106 
107 	cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
108 	busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
109 			kstat_cpu(cpu).cpustat.system);
110 
111 	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
112 	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
113 	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
114 	busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
115 
116 	idle_time = cputime64_sub(cur_wall_time, busy_time);
117 	if (wall)
118 		*wall = cur_wall_time;
119 
120 	return idle_time;
121 }
122 
123 static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
124 {
125 	u64 idle_time = get_cpu_idle_time_us(cpu, wall);
126 
127 	if (idle_time == -1ULL)
128 		return get_cpu_idle_time_jiffy(cpu, wall);
129 
130 	return idle_time;
131 }
132 
133 /* keep track of frequency transitions */
134 static int
135 dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
136 		     void *data)
137 {
138 	struct cpufreq_freqs *freq = data;
139 	struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cpu_dbs_info,
140 							freq->cpu);
141 
142 	struct cpufreq_policy *policy;
143 
144 	policy = this_dbs_info->cur_policy;
145 
146 	/*
147 	 * we only care if our internally tracked freq moves outside
148 	 * the 'valid' ranges of freqency available to us otherwise
149 	 * we do not change it
150 	*/
151 	if (this_dbs_info->requested_freq > policy->max
152 			|| this_dbs_info->requested_freq < policy->min)
153 		this_dbs_info->requested_freq = freq->new;
154 
155 	return 0;
156 }
157 
158 static struct notifier_block dbs_cpufreq_notifier_block = {
159 	.notifier_call = dbs_cpufreq_notifier
160 };
161 
162 /************************** sysfs interface ************************/
163 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
164 {
165 	printk_once(KERN_INFO "CPUFREQ: conservative sampling_rate_max "
166 		    "sysfs file is deprecated - used by: %s\n", current->comm);
167 	return sprintf(buf, "%u\n", -1U);
168 }
169 
170 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
171 {
172 	return sprintf(buf, "%u\n", min_sampling_rate);
173 }
174 
175 #define define_one_ro(_name)		\
176 static struct freq_attr _name =		\
177 __ATTR(_name, 0444, show_##_name, NULL)
178 
179 define_one_ro(sampling_rate_max);
180 define_one_ro(sampling_rate_min);
181 
182 /* cpufreq_conservative Governor Tunables */
183 #define show_one(file_name, object)					\
184 static ssize_t show_##file_name						\
185 (struct cpufreq_policy *unused, char *buf)				\
186 {									\
187 	return sprintf(buf, "%u\n", dbs_tuners_ins.object);		\
188 }
189 show_one(sampling_rate, sampling_rate);
190 show_one(sampling_down_factor, sampling_down_factor);
191 show_one(up_threshold, up_threshold);
192 show_one(down_threshold, down_threshold);
193 show_one(ignore_nice_load, ignore_nice);
194 show_one(freq_step, freq_step);
195 
196 static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused,
197 		const char *buf, size_t count)
198 {
199 	unsigned int input;
200 	int ret;
201 	ret = sscanf(buf, "%u", &input);
202 
203 	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
204 		return -EINVAL;
205 
206 	mutex_lock(&dbs_mutex);
207 	dbs_tuners_ins.sampling_down_factor = input;
208 	mutex_unlock(&dbs_mutex);
209 
210 	return count;
211 }
212 
213 static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
214 		const char *buf, size_t count)
215 {
216 	unsigned int input;
217 	int ret;
218 	ret = sscanf(buf, "%u", &input);
219 
220 	if (ret != 1)
221 		return -EINVAL;
222 
223 	mutex_lock(&dbs_mutex);
224 	dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
225 	mutex_unlock(&dbs_mutex);
226 
227 	return count;
228 }
229 
230 static ssize_t store_up_threshold(struct cpufreq_policy *unused,
231 		const char *buf, size_t count)
232 {
233 	unsigned int input;
234 	int ret;
235 	ret = sscanf(buf, "%u", &input);
236 
237 	mutex_lock(&dbs_mutex);
238 	if (ret != 1 || input > 100 ||
239 			input <= dbs_tuners_ins.down_threshold) {
240 		mutex_unlock(&dbs_mutex);
241 		return -EINVAL;
242 	}
243 
244 	dbs_tuners_ins.up_threshold = input;
245 	mutex_unlock(&dbs_mutex);
246 
247 	return count;
248 }
249 
250 static ssize_t store_down_threshold(struct cpufreq_policy *unused,
251 		const char *buf, size_t count)
252 {
253 	unsigned int input;
254 	int ret;
255 	ret = sscanf(buf, "%u", &input);
256 
257 	mutex_lock(&dbs_mutex);
258 	/* cannot be lower than 11 otherwise freq will not fall */
259 	if (ret != 1 || input < 11 || input > 100 ||
260 			input >= dbs_tuners_ins.up_threshold) {
261 		mutex_unlock(&dbs_mutex);
262 		return -EINVAL;
263 	}
264 
265 	dbs_tuners_ins.down_threshold = input;
266 	mutex_unlock(&dbs_mutex);
267 
268 	return count;
269 }
270 
271 static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
272 		const char *buf, size_t count)
273 {
274 	unsigned int input;
275 	int ret;
276 
277 	unsigned int j;
278 
279 	ret = sscanf(buf, "%u", &input);
280 	if (ret != 1)
281 		return -EINVAL;
282 
283 	if (input > 1)
284 		input = 1;
285 
286 	mutex_lock(&dbs_mutex);
287 	if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
288 		mutex_unlock(&dbs_mutex);
289 		return count;
290 	}
291 	dbs_tuners_ins.ignore_nice = input;
292 
293 	/* we need to re-evaluate prev_cpu_idle */
294 	for_each_online_cpu(j) {
295 		struct cpu_dbs_info_s *dbs_info;
296 		dbs_info = &per_cpu(cpu_dbs_info, j);
297 		dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
298 						&dbs_info->prev_cpu_wall);
299 		if (dbs_tuners_ins.ignore_nice)
300 			dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
301 	}
302 	mutex_unlock(&dbs_mutex);
303 
304 	return count;
305 }
306 
307 static ssize_t store_freq_step(struct cpufreq_policy *policy,
308 		const char *buf, size_t count)
309 {
310 	unsigned int input;
311 	int ret;
312 	ret = sscanf(buf, "%u", &input);
313 
314 	if (ret != 1)
315 		return -EINVAL;
316 
317 	if (input > 100)
318 		input = 100;
319 
320 	/* no need to test here if freq_step is zero as the user might actually
321 	 * want this, they would be crazy though :) */
322 	mutex_lock(&dbs_mutex);
323 	dbs_tuners_ins.freq_step = input;
324 	mutex_unlock(&dbs_mutex);
325 
326 	return count;
327 }
328 
329 #define define_one_rw(_name) \
330 static struct freq_attr _name = \
331 __ATTR(_name, 0644, show_##_name, store_##_name)
332 
333 define_one_rw(sampling_rate);
334 define_one_rw(sampling_down_factor);
335 define_one_rw(up_threshold);
336 define_one_rw(down_threshold);
337 define_one_rw(ignore_nice_load);
338 define_one_rw(freq_step);
339 
340 static struct attribute *dbs_attributes[] = {
341 	&sampling_rate_max.attr,
342 	&sampling_rate_min.attr,
343 	&sampling_rate.attr,
344 	&sampling_down_factor.attr,
345 	&up_threshold.attr,
346 	&down_threshold.attr,
347 	&ignore_nice_load.attr,
348 	&freq_step.attr,
349 	NULL
350 };
351 
352 static struct attribute_group dbs_attr_group = {
353 	.attrs = dbs_attributes,
354 	.name = "conservative",
355 };
356 
357 /************************** sysfs end ************************/
358 
359 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
360 {
361 	unsigned int load = 0;
362 	unsigned int freq_target;
363 
364 	struct cpufreq_policy *policy;
365 	unsigned int j;
366 
367 	policy = this_dbs_info->cur_policy;
368 
369 	/*
370 	 * Every sampling_rate, we check, if current idle time is less
371 	 * than 20% (default), then we try to increase frequency
372 	 * Every sampling_rate*sampling_down_factor, we check, if current
373 	 * idle time is more than 80%, then we try to decrease frequency
374 	 *
375 	 * Any frequency increase takes it to the maximum frequency.
376 	 * Frequency reduction happens at minimum steps of
377 	 * 5% (default) of maximum frequency
378 	 */
379 
380 	/* Get Absolute Load */
381 	for_each_cpu(j, policy->cpus) {
382 		struct cpu_dbs_info_s *j_dbs_info;
383 		cputime64_t cur_wall_time, cur_idle_time;
384 		unsigned int idle_time, wall_time;
385 
386 		j_dbs_info = &per_cpu(cpu_dbs_info, j);
387 
388 		cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
389 
390 		wall_time = (unsigned int) cputime64_sub(cur_wall_time,
391 				j_dbs_info->prev_cpu_wall);
392 		j_dbs_info->prev_cpu_wall = cur_wall_time;
393 
394 		idle_time = (unsigned int) cputime64_sub(cur_idle_time,
395 				j_dbs_info->prev_cpu_idle);
396 		j_dbs_info->prev_cpu_idle = cur_idle_time;
397 
398 		if (dbs_tuners_ins.ignore_nice) {
399 			cputime64_t cur_nice;
400 			unsigned long cur_nice_jiffies;
401 
402 			cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
403 					 j_dbs_info->prev_cpu_nice);
404 			/*
405 			 * Assumption: nice time between sampling periods will
406 			 * be less than 2^32 jiffies for 32 bit sys
407 			 */
408 			cur_nice_jiffies = (unsigned long)
409 					cputime64_to_jiffies64(cur_nice);
410 
411 			j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
412 			idle_time += jiffies_to_usecs(cur_nice_jiffies);
413 		}
414 
415 		if (unlikely(!wall_time || wall_time < idle_time))
416 			continue;
417 
418 		load = 100 * (wall_time - idle_time) / wall_time;
419 	}
420 
421 	/*
422 	 * break out if we 'cannot' reduce the speed as the user might
423 	 * want freq_step to be zero
424 	 */
425 	if (dbs_tuners_ins.freq_step == 0)
426 		return;
427 
428 	/* Check for frequency increase */
429 	if (load > dbs_tuners_ins.up_threshold) {
430 		this_dbs_info->down_skip = 0;
431 
432 		/* if we are already at full speed then break out early */
433 		if (this_dbs_info->requested_freq == policy->max)
434 			return;
435 
436 		freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
437 
438 		/* max freq cannot be less than 100. But who knows.... */
439 		if (unlikely(freq_target == 0))
440 			freq_target = 5;
441 
442 		this_dbs_info->requested_freq += freq_target;
443 		if (this_dbs_info->requested_freq > policy->max)
444 			this_dbs_info->requested_freq = policy->max;
445 
446 		__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
447 			CPUFREQ_RELATION_H);
448 		return;
449 	}
450 
451 	/*
452 	 * The optimal frequency is the frequency that is the lowest that
453 	 * can support the current CPU usage without triggering the up
454 	 * policy. To be safe, we focus 10 points under the threshold.
455 	 */
456 	if (load < (dbs_tuners_ins.down_threshold - 10)) {
457 		freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
458 
459 		this_dbs_info->requested_freq -= freq_target;
460 		if (this_dbs_info->requested_freq < policy->min)
461 			this_dbs_info->requested_freq = policy->min;
462 
463 		/*
464 		 * if we cannot reduce the frequency anymore, break out early
465 		 */
466 		if (policy->cur == policy->min)
467 			return;
468 
469 		__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
470 				CPUFREQ_RELATION_H);
471 		return;
472 	}
473 }
474 
475 static void do_dbs_timer(struct work_struct *work)
476 {
477 	struct cpu_dbs_info_s *dbs_info =
478 		container_of(work, struct cpu_dbs_info_s, work.work);
479 	unsigned int cpu = dbs_info->cpu;
480 
481 	/* We want all CPUs to do sampling nearly on same jiffy */
482 	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
483 
484 	delay -= jiffies % delay;
485 
486 	mutex_lock(&dbs_info->timer_mutex);
487 
488 	dbs_check_cpu(dbs_info);
489 
490 	queue_delayed_work_on(cpu, kconservative_wq, &dbs_info->work, delay);
491 	mutex_unlock(&dbs_info->timer_mutex);
492 }
493 
494 static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
495 {
496 	/* We want all CPUs to do sampling nearly on same jiffy */
497 	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
498 	delay -= jiffies % delay;
499 
500 	INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
501 	queue_delayed_work_on(dbs_info->cpu, kconservative_wq, &dbs_info->work,
502 				delay);
503 }
504 
505 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
506 {
507 	cancel_delayed_work_sync(&dbs_info->work);
508 }
509 
510 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
511 				   unsigned int event)
512 {
513 	unsigned int cpu = policy->cpu;
514 	struct cpu_dbs_info_s *this_dbs_info;
515 	unsigned int j;
516 	int rc;
517 
518 	this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
519 
520 	switch (event) {
521 	case CPUFREQ_GOV_START:
522 		if ((!cpu_online(cpu)) || (!policy->cur))
523 			return -EINVAL;
524 
525 		mutex_lock(&dbs_mutex);
526 
527 		rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
528 		if (rc) {
529 			mutex_unlock(&dbs_mutex);
530 			return rc;
531 		}
532 
533 		for_each_cpu(j, policy->cpus) {
534 			struct cpu_dbs_info_s *j_dbs_info;
535 			j_dbs_info = &per_cpu(cpu_dbs_info, j);
536 			j_dbs_info->cur_policy = policy;
537 
538 			j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
539 						&j_dbs_info->prev_cpu_wall);
540 			if (dbs_tuners_ins.ignore_nice) {
541 				j_dbs_info->prev_cpu_nice =
542 						kstat_cpu(j).cpustat.nice;
543 			}
544 		}
545 		this_dbs_info->down_skip = 0;
546 		this_dbs_info->requested_freq = policy->cur;
547 
548 		mutex_init(&this_dbs_info->timer_mutex);
549 		dbs_enable++;
550 		/*
551 		 * Start the timerschedule work, when this governor
552 		 * is used for first time
553 		 */
554 		if (dbs_enable == 1) {
555 			unsigned int latency;
556 			/* policy latency is in nS. Convert it to uS first */
557 			latency = policy->cpuinfo.transition_latency / 1000;
558 			if (latency == 0)
559 				latency = 1;
560 
561 			/*
562 			 * conservative does not implement micro like ondemand
563 			 * governor, thus we are bound to jiffes/HZ
564 			 */
565 			min_sampling_rate =
566 				MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
567 			/* Bring kernel and HW constraints together */
568 			min_sampling_rate = max(min_sampling_rate,
569 					MIN_LATENCY_MULTIPLIER * latency);
570 			dbs_tuners_ins.sampling_rate =
571 				max(min_sampling_rate,
572 				    latency * LATENCY_MULTIPLIER);
573 
574 			cpufreq_register_notifier(
575 					&dbs_cpufreq_notifier_block,
576 					CPUFREQ_TRANSITION_NOTIFIER);
577 		}
578 		mutex_unlock(&dbs_mutex);
579 
580 		dbs_timer_init(this_dbs_info);
581 
582 		break;
583 
584 	case CPUFREQ_GOV_STOP:
585 		dbs_timer_exit(this_dbs_info);
586 
587 		mutex_lock(&dbs_mutex);
588 		sysfs_remove_group(&policy->kobj, &dbs_attr_group);
589 		dbs_enable--;
590 		mutex_destroy(&this_dbs_info->timer_mutex);
591 
592 		/*
593 		 * Stop the timerschedule work, when this governor
594 		 * is used for first time
595 		 */
596 		if (dbs_enable == 0)
597 			cpufreq_unregister_notifier(
598 					&dbs_cpufreq_notifier_block,
599 					CPUFREQ_TRANSITION_NOTIFIER);
600 
601 		mutex_unlock(&dbs_mutex);
602 
603 		break;
604 
605 	case CPUFREQ_GOV_LIMITS:
606 		mutex_lock(&this_dbs_info->timer_mutex);
607 		if (policy->max < this_dbs_info->cur_policy->cur)
608 			__cpufreq_driver_target(
609 					this_dbs_info->cur_policy,
610 					policy->max, CPUFREQ_RELATION_H);
611 		else if (policy->min > this_dbs_info->cur_policy->cur)
612 			__cpufreq_driver_target(
613 					this_dbs_info->cur_policy,
614 					policy->min, CPUFREQ_RELATION_L);
615 		mutex_unlock(&this_dbs_info->timer_mutex);
616 
617 		break;
618 	}
619 	return 0;
620 }
621 
622 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
623 static
624 #endif
625 struct cpufreq_governor cpufreq_gov_conservative = {
626 	.name			= "conservative",
627 	.governor		= cpufreq_governor_dbs,
628 	.max_transition_latency	= TRANSITION_LATENCY_LIMIT,
629 	.owner			= THIS_MODULE,
630 };
631 
632 static int __init cpufreq_gov_dbs_init(void)
633 {
634 	int err;
635 
636 	kconservative_wq = create_workqueue("kconservative");
637 	if (!kconservative_wq) {
638 		printk(KERN_ERR "Creation of kconservative failed\n");
639 		return -EFAULT;
640 	}
641 
642 	err = cpufreq_register_governor(&cpufreq_gov_conservative);
643 	if (err)
644 		destroy_workqueue(kconservative_wq);
645 
646 	return err;
647 }
648 
649 static void __exit cpufreq_gov_dbs_exit(void)
650 {
651 	cpufreq_unregister_governor(&cpufreq_gov_conservative);
652 	destroy_workqueue(kconservative_wq);
653 }
654 
655 
656 MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
657 MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
658 		"Low Latency Frequency Transition capable processors "
659 		"optimised for use in a battery environment");
660 MODULE_LICENSE("GPL");
661 
662 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
663 fs_initcall(cpufreq_gov_dbs_init);
664 #else
665 module_init(cpufreq_gov_dbs_init);
666 #endif
667 module_exit(cpufreq_gov_dbs_exit);
668