xref: /linux/drivers/cpufreq/cpufreq_conservative.c (revision 08ec212c0f92cbf30e3ecc7349f18151714041d6)
1 /*
2  *  drivers/cpufreq/cpufreq_conservative.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *            (C)  2009 Alexander Clouter <alex@digriz.org.uk>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/cpufreq.h>
18 #include <linux/cpu.h>
19 #include <linux/jiffies.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/mutex.h>
22 #include <linux/hrtimer.h>
23 #include <linux/tick.h>
24 #include <linux/ktime.h>
25 #include <linux/sched.h>
26 
27 /*
28  * dbs is used in this file as a shortform for demandbased switching
29  * It helps to keep variable names smaller, simpler
30  */
31 
32 #define DEF_FREQUENCY_UP_THRESHOLD		(80)
33 #define DEF_FREQUENCY_DOWN_THRESHOLD		(20)
34 
35 /*
36  * The polling frequency of this governor depends on the capability of
37  * the processor. Default polling frequency is 1000 times the transition
38  * latency of the processor. The governor will work on any processor with
39  * transition latency <= 10mS, using appropriate sampling
40  * rate.
41  * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
42  * this governor will not work.
43  * All times here are in uS.
44  */
45 #define MIN_SAMPLING_RATE_RATIO			(2)
46 
47 static unsigned int min_sampling_rate;
48 
49 #define LATENCY_MULTIPLIER			(1000)
50 #define MIN_LATENCY_MULTIPLIER			(100)
51 #define DEF_SAMPLING_DOWN_FACTOR		(1)
52 #define MAX_SAMPLING_DOWN_FACTOR		(10)
53 #define TRANSITION_LATENCY_LIMIT		(10 * 1000 * 1000)
54 
55 static void do_dbs_timer(struct work_struct *work);
56 
57 struct cpu_dbs_info_s {
58 	cputime64_t prev_cpu_idle;
59 	cputime64_t prev_cpu_wall;
60 	cputime64_t prev_cpu_nice;
61 	struct cpufreq_policy *cur_policy;
62 	struct delayed_work work;
63 	unsigned int down_skip;
64 	unsigned int requested_freq;
65 	int cpu;
66 	unsigned int enable:1;
67 	/*
68 	 * percpu mutex that serializes governor limit change with
69 	 * do_dbs_timer invocation. We do not want do_dbs_timer to run
70 	 * when user is changing the governor or limits.
71 	 */
72 	struct mutex timer_mutex;
73 };
74 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cs_cpu_dbs_info);
75 
76 static unsigned int dbs_enable;	/* number of CPUs using this policy */
77 
78 /*
79  * dbs_mutex protects dbs_enable in governor start/stop.
80  */
81 static DEFINE_MUTEX(dbs_mutex);
82 
83 static struct dbs_tuners {
84 	unsigned int sampling_rate;
85 	unsigned int sampling_down_factor;
86 	unsigned int up_threshold;
87 	unsigned int down_threshold;
88 	unsigned int ignore_nice;
89 	unsigned int freq_step;
90 } dbs_tuners_ins = {
91 	.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
92 	.down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
93 	.sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
94 	.ignore_nice = 0,
95 	.freq_step = 5,
96 };
97 
98 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
99 {
100 	u64 idle_time;
101 	u64 cur_wall_time;
102 	u64 busy_time;
103 
104 	cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
105 
106 	busy_time  = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
107 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
108 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
109 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
110 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
111 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
112 
113 	idle_time = cur_wall_time - busy_time;
114 	if (wall)
115 		*wall = jiffies_to_usecs(cur_wall_time);
116 
117 	return jiffies_to_usecs(idle_time);
118 }
119 
120 static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
121 {
122 	u64 idle_time = get_cpu_idle_time_us(cpu, NULL);
123 
124 	if (idle_time == -1ULL)
125 		return get_cpu_idle_time_jiffy(cpu, wall);
126 	else
127 		idle_time += get_cpu_iowait_time_us(cpu, wall);
128 
129 	return idle_time;
130 }
131 
132 /* keep track of frequency transitions */
133 static int
134 dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
135 		     void *data)
136 {
137 	struct cpufreq_freqs *freq = data;
138 	struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cs_cpu_dbs_info,
139 							freq->cpu);
140 
141 	struct cpufreq_policy *policy;
142 
143 	if (!this_dbs_info->enable)
144 		return 0;
145 
146 	policy = this_dbs_info->cur_policy;
147 
148 	/*
149 	 * we only care if our internally tracked freq moves outside
150 	 * the 'valid' ranges of freqency available to us otherwise
151 	 * we do not change it
152 	*/
153 	if (this_dbs_info->requested_freq > policy->max
154 			|| this_dbs_info->requested_freq < policy->min)
155 		this_dbs_info->requested_freq = freq->new;
156 
157 	return 0;
158 }
159 
160 static struct notifier_block dbs_cpufreq_notifier_block = {
161 	.notifier_call = dbs_cpufreq_notifier
162 };
163 
164 /************************** sysfs interface ************************/
165 static ssize_t show_sampling_rate_min(struct kobject *kobj,
166 				      struct attribute *attr, char *buf)
167 {
168 	return sprintf(buf, "%u\n", min_sampling_rate);
169 }
170 
171 define_one_global_ro(sampling_rate_min);
172 
173 /* cpufreq_conservative Governor Tunables */
174 #define show_one(file_name, object)					\
175 static ssize_t show_##file_name						\
176 (struct kobject *kobj, struct attribute *attr, char *buf)		\
177 {									\
178 	return sprintf(buf, "%u\n", dbs_tuners_ins.object);		\
179 }
180 show_one(sampling_rate, sampling_rate);
181 show_one(sampling_down_factor, sampling_down_factor);
182 show_one(up_threshold, up_threshold);
183 show_one(down_threshold, down_threshold);
184 show_one(ignore_nice_load, ignore_nice);
185 show_one(freq_step, freq_step);
186 
187 static ssize_t store_sampling_down_factor(struct kobject *a,
188 					  struct attribute *b,
189 					  const char *buf, size_t count)
190 {
191 	unsigned int input;
192 	int ret;
193 	ret = sscanf(buf, "%u", &input);
194 
195 	if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
196 		return -EINVAL;
197 
198 	dbs_tuners_ins.sampling_down_factor = input;
199 	return count;
200 }
201 
202 static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
203 				   const char *buf, size_t count)
204 {
205 	unsigned int input;
206 	int ret;
207 	ret = sscanf(buf, "%u", &input);
208 
209 	if (ret != 1)
210 		return -EINVAL;
211 
212 	dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
213 	return count;
214 }
215 
216 static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
217 				  const char *buf, size_t count)
218 {
219 	unsigned int input;
220 	int ret;
221 	ret = sscanf(buf, "%u", &input);
222 
223 	if (ret != 1 || input > 100 ||
224 			input <= dbs_tuners_ins.down_threshold)
225 		return -EINVAL;
226 
227 	dbs_tuners_ins.up_threshold = input;
228 	return count;
229 }
230 
231 static ssize_t store_down_threshold(struct kobject *a, struct attribute *b,
232 				    const char *buf, size_t count)
233 {
234 	unsigned int input;
235 	int ret;
236 	ret = sscanf(buf, "%u", &input);
237 
238 	/* cannot be lower than 11 otherwise freq will not fall */
239 	if (ret != 1 || input < 11 || input > 100 ||
240 			input >= dbs_tuners_ins.up_threshold)
241 		return -EINVAL;
242 
243 	dbs_tuners_ins.down_threshold = input;
244 	return count;
245 }
246 
247 static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
248 				      const char *buf, size_t count)
249 {
250 	unsigned int input;
251 	int ret;
252 
253 	unsigned int j;
254 
255 	ret = sscanf(buf, "%u", &input);
256 	if (ret != 1)
257 		return -EINVAL;
258 
259 	if (input > 1)
260 		input = 1;
261 
262 	if (input == dbs_tuners_ins.ignore_nice) /* nothing to do */
263 		return count;
264 
265 	dbs_tuners_ins.ignore_nice = input;
266 
267 	/* we need to re-evaluate prev_cpu_idle */
268 	for_each_online_cpu(j) {
269 		struct cpu_dbs_info_s *dbs_info;
270 		dbs_info = &per_cpu(cs_cpu_dbs_info, j);
271 		dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
272 						&dbs_info->prev_cpu_wall);
273 		if (dbs_tuners_ins.ignore_nice)
274 			dbs_info->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
275 	}
276 	return count;
277 }
278 
279 static ssize_t store_freq_step(struct kobject *a, struct attribute *b,
280 			       const char *buf, size_t count)
281 {
282 	unsigned int input;
283 	int ret;
284 	ret = sscanf(buf, "%u", &input);
285 
286 	if (ret != 1)
287 		return -EINVAL;
288 
289 	if (input > 100)
290 		input = 100;
291 
292 	/* no need to test here if freq_step is zero as the user might actually
293 	 * want this, they would be crazy though :) */
294 	dbs_tuners_ins.freq_step = input;
295 	return count;
296 }
297 
298 define_one_global_rw(sampling_rate);
299 define_one_global_rw(sampling_down_factor);
300 define_one_global_rw(up_threshold);
301 define_one_global_rw(down_threshold);
302 define_one_global_rw(ignore_nice_load);
303 define_one_global_rw(freq_step);
304 
305 static struct attribute *dbs_attributes[] = {
306 	&sampling_rate_min.attr,
307 	&sampling_rate.attr,
308 	&sampling_down_factor.attr,
309 	&up_threshold.attr,
310 	&down_threshold.attr,
311 	&ignore_nice_load.attr,
312 	&freq_step.attr,
313 	NULL
314 };
315 
316 static struct attribute_group dbs_attr_group = {
317 	.attrs = dbs_attributes,
318 	.name = "conservative",
319 };
320 
321 /************************** sysfs end ************************/
322 
323 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
324 {
325 	unsigned int load = 0;
326 	unsigned int max_load = 0;
327 	unsigned int freq_target;
328 
329 	struct cpufreq_policy *policy;
330 	unsigned int j;
331 
332 	policy = this_dbs_info->cur_policy;
333 
334 	/*
335 	 * Every sampling_rate, we check, if current idle time is less
336 	 * than 20% (default), then we try to increase frequency
337 	 * Every sampling_rate*sampling_down_factor, we check, if current
338 	 * idle time is more than 80%, then we try to decrease frequency
339 	 *
340 	 * Any frequency increase takes it to the maximum frequency.
341 	 * Frequency reduction happens at minimum steps of
342 	 * 5% (default) of maximum frequency
343 	 */
344 
345 	/* Get Absolute Load */
346 	for_each_cpu(j, policy->cpus) {
347 		struct cpu_dbs_info_s *j_dbs_info;
348 		cputime64_t cur_wall_time, cur_idle_time;
349 		unsigned int idle_time, wall_time;
350 
351 		j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
352 
353 		cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
354 
355 		wall_time = (unsigned int)
356 			(cur_wall_time - j_dbs_info->prev_cpu_wall);
357 		j_dbs_info->prev_cpu_wall = cur_wall_time;
358 
359 		idle_time = (unsigned int)
360 			(cur_idle_time - j_dbs_info->prev_cpu_idle);
361 		j_dbs_info->prev_cpu_idle = cur_idle_time;
362 
363 		if (dbs_tuners_ins.ignore_nice) {
364 			u64 cur_nice;
365 			unsigned long cur_nice_jiffies;
366 
367 			cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] -
368 					 j_dbs_info->prev_cpu_nice;
369 			/*
370 			 * Assumption: nice time between sampling periods will
371 			 * be less than 2^32 jiffies for 32 bit sys
372 			 */
373 			cur_nice_jiffies = (unsigned long)
374 					cputime64_to_jiffies64(cur_nice);
375 
376 			j_dbs_info->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
377 			idle_time += jiffies_to_usecs(cur_nice_jiffies);
378 		}
379 
380 		if (unlikely(!wall_time || wall_time < idle_time))
381 			continue;
382 
383 		load = 100 * (wall_time - idle_time) / wall_time;
384 
385 		if (load > max_load)
386 			max_load = load;
387 	}
388 
389 	/*
390 	 * break out if we 'cannot' reduce the speed as the user might
391 	 * want freq_step to be zero
392 	 */
393 	if (dbs_tuners_ins.freq_step == 0)
394 		return;
395 
396 	/* Check for frequency increase */
397 	if (max_load > dbs_tuners_ins.up_threshold) {
398 		this_dbs_info->down_skip = 0;
399 
400 		/* if we are already at full speed then break out early */
401 		if (this_dbs_info->requested_freq == policy->max)
402 			return;
403 
404 		freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
405 
406 		/* max freq cannot be less than 100. But who knows.... */
407 		if (unlikely(freq_target == 0))
408 			freq_target = 5;
409 
410 		this_dbs_info->requested_freq += freq_target;
411 		if (this_dbs_info->requested_freq > policy->max)
412 			this_dbs_info->requested_freq = policy->max;
413 
414 		__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
415 			CPUFREQ_RELATION_H);
416 		return;
417 	}
418 
419 	/*
420 	 * The optimal frequency is the frequency that is the lowest that
421 	 * can support the current CPU usage without triggering the up
422 	 * policy. To be safe, we focus 10 points under the threshold.
423 	 */
424 	if (max_load < (dbs_tuners_ins.down_threshold - 10)) {
425 		freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
426 
427 		this_dbs_info->requested_freq -= freq_target;
428 		if (this_dbs_info->requested_freq < policy->min)
429 			this_dbs_info->requested_freq = policy->min;
430 
431 		/*
432 		 * if we cannot reduce the frequency anymore, break out early
433 		 */
434 		if (policy->cur == policy->min)
435 			return;
436 
437 		__cpufreq_driver_target(policy, this_dbs_info->requested_freq,
438 				CPUFREQ_RELATION_H);
439 		return;
440 	}
441 }
442 
443 static void do_dbs_timer(struct work_struct *work)
444 {
445 	struct cpu_dbs_info_s *dbs_info =
446 		container_of(work, struct cpu_dbs_info_s, work.work);
447 	unsigned int cpu = dbs_info->cpu;
448 
449 	/* We want all CPUs to do sampling nearly on same jiffy */
450 	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
451 
452 	delay -= jiffies % delay;
453 
454 	mutex_lock(&dbs_info->timer_mutex);
455 
456 	dbs_check_cpu(dbs_info);
457 
458 	schedule_delayed_work_on(cpu, &dbs_info->work, delay);
459 	mutex_unlock(&dbs_info->timer_mutex);
460 }
461 
462 static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
463 {
464 	/* We want all CPUs to do sampling nearly on same jiffy */
465 	int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
466 	delay -= jiffies % delay;
467 
468 	dbs_info->enable = 1;
469 	INIT_DEFERRABLE_WORK(&dbs_info->work, do_dbs_timer);
470 	schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work, delay);
471 }
472 
473 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
474 {
475 	dbs_info->enable = 0;
476 	cancel_delayed_work_sync(&dbs_info->work);
477 }
478 
479 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
480 				   unsigned int event)
481 {
482 	unsigned int cpu = policy->cpu;
483 	struct cpu_dbs_info_s *this_dbs_info;
484 	unsigned int j;
485 	int rc;
486 
487 	this_dbs_info = &per_cpu(cs_cpu_dbs_info, cpu);
488 
489 	switch (event) {
490 	case CPUFREQ_GOV_START:
491 		if ((!cpu_online(cpu)) || (!policy->cur))
492 			return -EINVAL;
493 
494 		mutex_lock(&dbs_mutex);
495 
496 		for_each_cpu(j, policy->cpus) {
497 			struct cpu_dbs_info_s *j_dbs_info;
498 			j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
499 			j_dbs_info->cur_policy = policy;
500 
501 			j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
502 						&j_dbs_info->prev_cpu_wall);
503 			if (dbs_tuners_ins.ignore_nice)
504 				j_dbs_info->prev_cpu_nice =
505 						kcpustat_cpu(j).cpustat[CPUTIME_NICE];
506 		}
507 		this_dbs_info->cpu = cpu;
508 		this_dbs_info->down_skip = 0;
509 		this_dbs_info->requested_freq = policy->cur;
510 
511 		mutex_init(&this_dbs_info->timer_mutex);
512 		dbs_enable++;
513 		/*
514 		 * Start the timerschedule work, when this governor
515 		 * is used for first time
516 		 */
517 		if (dbs_enable == 1) {
518 			unsigned int latency;
519 			/* policy latency is in nS. Convert it to uS first */
520 			latency = policy->cpuinfo.transition_latency / 1000;
521 			if (latency == 0)
522 				latency = 1;
523 
524 			rc = sysfs_create_group(cpufreq_global_kobject,
525 						&dbs_attr_group);
526 			if (rc) {
527 				mutex_unlock(&dbs_mutex);
528 				return rc;
529 			}
530 
531 			/*
532 			 * conservative does not implement micro like ondemand
533 			 * governor, thus we are bound to jiffes/HZ
534 			 */
535 			min_sampling_rate =
536 				MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
537 			/* Bring kernel and HW constraints together */
538 			min_sampling_rate = max(min_sampling_rate,
539 					MIN_LATENCY_MULTIPLIER * latency);
540 			dbs_tuners_ins.sampling_rate =
541 				max(min_sampling_rate,
542 				    latency * LATENCY_MULTIPLIER);
543 
544 			cpufreq_register_notifier(
545 					&dbs_cpufreq_notifier_block,
546 					CPUFREQ_TRANSITION_NOTIFIER);
547 		}
548 		mutex_unlock(&dbs_mutex);
549 
550 		dbs_timer_init(this_dbs_info);
551 
552 		break;
553 
554 	case CPUFREQ_GOV_STOP:
555 		dbs_timer_exit(this_dbs_info);
556 
557 		mutex_lock(&dbs_mutex);
558 		dbs_enable--;
559 		mutex_destroy(&this_dbs_info->timer_mutex);
560 
561 		/*
562 		 * Stop the timerschedule work, when this governor
563 		 * is used for first time
564 		 */
565 		if (dbs_enable == 0)
566 			cpufreq_unregister_notifier(
567 					&dbs_cpufreq_notifier_block,
568 					CPUFREQ_TRANSITION_NOTIFIER);
569 
570 		mutex_unlock(&dbs_mutex);
571 		if (!dbs_enable)
572 			sysfs_remove_group(cpufreq_global_kobject,
573 					   &dbs_attr_group);
574 
575 		break;
576 
577 	case CPUFREQ_GOV_LIMITS:
578 		mutex_lock(&this_dbs_info->timer_mutex);
579 		if (policy->max < this_dbs_info->cur_policy->cur)
580 			__cpufreq_driver_target(
581 					this_dbs_info->cur_policy,
582 					policy->max, CPUFREQ_RELATION_H);
583 		else if (policy->min > this_dbs_info->cur_policy->cur)
584 			__cpufreq_driver_target(
585 					this_dbs_info->cur_policy,
586 					policy->min, CPUFREQ_RELATION_L);
587 		dbs_check_cpu(this_dbs_info);
588 		mutex_unlock(&this_dbs_info->timer_mutex);
589 
590 		break;
591 	}
592 	return 0;
593 }
594 
595 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
596 static
597 #endif
598 struct cpufreq_governor cpufreq_gov_conservative = {
599 	.name			= "conservative",
600 	.governor		= cpufreq_governor_dbs,
601 	.max_transition_latency	= TRANSITION_LATENCY_LIMIT,
602 	.owner			= THIS_MODULE,
603 };
604 
605 static int __init cpufreq_gov_dbs_init(void)
606 {
607 	return cpufreq_register_governor(&cpufreq_gov_conservative);
608 }
609 
610 static void __exit cpufreq_gov_dbs_exit(void)
611 {
612 	cpufreq_unregister_governor(&cpufreq_gov_conservative);
613 }
614 
615 
616 MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
617 MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
618 		"Low Latency Frequency Transition capable processors "
619 		"optimised for use in a battery environment");
620 MODULE_LICENSE("GPL");
621 
622 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
623 fs_initcall(cpufreq_gov_dbs_init);
624 #else
625 module_init(cpufreq_gov_dbs_init);
626 #endif
627 module_exit(cpufreq_gov_dbs_exit);
628