1 /* 2 * linux/drivers/cpufreq/cpufreq.c 3 * 4 * Copyright (C) 2001 Russell King 5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 6 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org> 7 * 8 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 9 * Added handling for CPU hotplug 10 * Feb 2006 - Jacob Shin <jacob.shin@amd.com> 11 * Fix handling for CPU hotplug -- affected CPUs 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License version 2 as 15 * published by the Free Software Foundation. 16 */ 17 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <asm/cputime.h> 21 #include <linux/kernel.h> 22 #include <linux/kernel_stat.h> 23 #include <linux/module.h> 24 #include <linux/init.h> 25 #include <linux/notifier.h> 26 #include <linux/cpufreq.h> 27 #include <linux/delay.h> 28 #include <linux/interrupt.h> 29 #include <linux/spinlock.h> 30 #include <linux/tick.h> 31 #include <linux/device.h> 32 #include <linux/slab.h> 33 #include <linux/cpu.h> 34 #include <linux/completion.h> 35 #include <linux/mutex.h> 36 #include <linux/syscore_ops.h> 37 38 #include <trace/events/power.h> 39 40 /** 41 * The "cpufreq driver" - the arch- or hardware-dependent low 42 * level driver of CPUFreq support, and its spinlock. This lock 43 * also protects the cpufreq_cpu_data array. 44 */ 45 static struct cpufreq_driver *cpufreq_driver; 46 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data); 47 static DEFINE_RWLOCK(cpufreq_driver_lock); 48 static DEFINE_MUTEX(cpufreq_governor_lock); 49 50 #ifdef CONFIG_HOTPLUG_CPU 51 /* This one keeps track of the previously set governor of a removed CPU */ 52 static DEFINE_PER_CPU(char[CPUFREQ_NAME_LEN], cpufreq_cpu_governor); 53 #endif 54 55 /* 56 * cpu_policy_rwsem is a per CPU reader-writer semaphore designed to cure 57 * all cpufreq/hotplug/workqueue/etc related lock issues. 58 * 59 * The rules for this semaphore: 60 * - Any routine that wants to read from the policy structure will 61 * do a down_read on this semaphore. 62 * - Any routine that will write to the policy structure and/or may take away 63 * the policy altogether (eg. CPU hotplug), will hold this lock in write 64 * mode before doing so. 65 * 66 * Additional rules: 67 * - Governor routines that can be called in cpufreq hotplug path should not 68 * take this sem as top level hotplug notifier handler takes this. 69 * - Lock should not be held across 70 * __cpufreq_governor(data, CPUFREQ_GOV_STOP); 71 */ 72 static DEFINE_PER_CPU(int, cpufreq_policy_cpu); 73 static DEFINE_PER_CPU(struct rw_semaphore, cpu_policy_rwsem); 74 75 #define lock_policy_rwsem(mode, cpu) \ 76 static int lock_policy_rwsem_##mode(int cpu) \ 77 { \ 78 int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu); \ 79 BUG_ON(policy_cpu == -1); \ 80 down_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu)); \ 81 \ 82 return 0; \ 83 } 84 85 lock_policy_rwsem(read, cpu); 86 lock_policy_rwsem(write, cpu); 87 88 #define unlock_policy_rwsem(mode, cpu) \ 89 static void unlock_policy_rwsem_##mode(int cpu) \ 90 { \ 91 int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu); \ 92 BUG_ON(policy_cpu == -1); \ 93 up_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu)); \ 94 } 95 96 unlock_policy_rwsem(read, cpu); 97 unlock_policy_rwsem(write, cpu); 98 99 /* internal prototypes */ 100 static int __cpufreq_governor(struct cpufreq_policy *policy, 101 unsigned int event); 102 static unsigned int __cpufreq_get(unsigned int cpu); 103 static void handle_update(struct work_struct *work); 104 105 /** 106 * Two notifier lists: the "policy" list is involved in the 107 * validation process for a new CPU frequency policy; the 108 * "transition" list for kernel code that needs to handle 109 * changes to devices when the CPU clock speed changes. 110 * The mutex locks both lists. 111 */ 112 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list); 113 static struct srcu_notifier_head cpufreq_transition_notifier_list; 114 115 static bool init_cpufreq_transition_notifier_list_called; 116 static int __init init_cpufreq_transition_notifier_list(void) 117 { 118 srcu_init_notifier_head(&cpufreq_transition_notifier_list); 119 init_cpufreq_transition_notifier_list_called = true; 120 return 0; 121 } 122 pure_initcall(init_cpufreq_transition_notifier_list); 123 124 static int off __read_mostly; 125 static int cpufreq_disabled(void) 126 { 127 return off; 128 } 129 void disable_cpufreq(void) 130 { 131 off = 1; 132 } 133 static LIST_HEAD(cpufreq_governor_list); 134 static DEFINE_MUTEX(cpufreq_governor_mutex); 135 136 bool have_governor_per_policy(void) 137 { 138 return cpufreq_driver->have_governor_per_policy; 139 } 140 EXPORT_SYMBOL_GPL(have_governor_per_policy); 141 142 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy) 143 { 144 if (have_governor_per_policy()) 145 return &policy->kobj; 146 else 147 return cpufreq_global_kobject; 148 } 149 EXPORT_SYMBOL_GPL(get_governor_parent_kobj); 150 151 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) 152 { 153 u64 idle_time; 154 u64 cur_wall_time; 155 u64 busy_time; 156 157 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64()); 158 159 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER]; 160 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM]; 161 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ]; 162 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ]; 163 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL]; 164 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE]; 165 166 idle_time = cur_wall_time - busy_time; 167 if (wall) 168 *wall = cputime_to_usecs(cur_wall_time); 169 170 return cputime_to_usecs(idle_time); 171 } 172 173 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy) 174 { 175 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL); 176 177 if (idle_time == -1ULL) 178 return get_cpu_idle_time_jiffy(cpu, wall); 179 else if (!io_busy) 180 idle_time += get_cpu_iowait_time_us(cpu, wall); 181 182 return idle_time; 183 } 184 EXPORT_SYMBOL_GPL(get_cpu_idle_time); 185 186 static struct cpufreq_policy *__cpufreq_cpu_get(unsigned int cpu, bool sysfs) 187 { 188 struct cpufreq_policy *data; 189 unsigned long flags; 190 191 if (cpu >= nr_cpu_ids) 192 goto err_out; 193 194 /* get the cpufreq driver */ 195 read_lock_irqsave(&cpufreq_driver_lock, flags); 196 197 if (!cpufreq_driver) 198 goto err_out_unlock; 199 200 if (!try_module_get(cpufreq_driver->owner)) 201 goto err_out_unlock; 202 203 /* get the CPU */ 204 data = per_cpu(cpufreq_cpu_data, cpu); 205 206 if (!data) 207 goto err_out_put_module; 208 209 if (!sysfs && !kobject_get(&data->kobj)) 210 goto err_out_put_module; 211 212 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 213 return data; 214 215 err_out_put_module: 216 module_put(cpufreq_driver->owner); 217 err_out_unlock: 218 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 219 err_out: 220 return NULL; 221 } 222 223 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) 224 { 225 if (cpufreq_disabled()) 226 return NULL; 227 228 return __cpufreq_cpu_get(cpu, false); 229 } 230 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 231 232 static struct cpufreq_policy *cpufreq_cpu_get_sysfs(unsigned int cpu) 233 { 234 return __cpufreq_cpu_get(cpu, true); 235 } 236 237 static void __cpufreq_cpu_put(struct cpufreq_policy *data, bool sysfs) 238 { 239 if (!sysfs) 240 kobject_put(&data->kobj); 241 module_put(cpufreq_driver->owner); 242 } 243 244 void cpufreq_cpu_put(struct cpufreq_policy *data) 245 { 246 if (cpufreq_disabled()) 247 return; 248 249 __cpufreq_cpu_put(data, false); 250 } 251 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 252 253 static void cpufreq_cpu_put_sysfs(struct cpufreq_policy *data) 254 { 255 __cpufreq_cpu_put(data, true); 256 } 257 258 /********************************************************************* 259 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 260 *********************************************************************/ 261 262 /** 263 * adjust_jiffies - adjust the system "loops_per_jiffy" 264 * 265 * This function alters the system "loops_per_jiffy" for the clock 266 * speed change. Note that loops_per_jiffy cannot be updated on SMP 267 * systems as each CPU might be scaled differently. So, use the arch 268 * per-CPU loops_per_jiffy value wherever possible. 269 */ 270 #ifndef CONFIG_SMP 271 static unsigned long l_p_j_ref; 272 static unsigned int l_p_j_ref_freq; 273 274 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 275 { 276 if (ci->flags & CPUFREQ_CONST_LOOPS) 277 return; 278 279 if (!l_p_j_ref_freq) { 280 l_p_j_ref = loops_per_jiffy; 281 l_p_j_ref_freq = ci->old; 282 pr_debug("saving %lu as reference value for loops_per_jiffy; " 283 "freq is %u kHz\n", l_p_j_ref, l_p_j_ref_freq); 284 } 285 if ((val == CPUFREQ_POSTCHANGE && ci->old != ci->new) || 286 (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) { 287 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, 288 ci->new); 289 pr_debug("scaling loops_per_jiffy to %lu " 290 "for frequency %u kHz\n", loops_per_jiffy, ci->new); 291 } 292 } 293 #else 294 static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 295 { 296 return; 297 } 298 #endif 299 300 static void __cpufreq_notify_transition(struct cpufreq_policy *policy, 301 struct cpufreq_freqs *freqs, unsigned int state) 302 { 303 BUG_ON(irqs_disabled()); 304 305 if (cpufreq_disabled()) 306 return; 307 308 freqs->flags = cpufreq_driver->flags; 309 pr_debug("notification %u of frequency transition to %u kHz\n", 310 state, freqs->new); 311 312 switch (state) { 313 314 case CPUFREQ_PRECHANGE: 315 if (WARN(policy->transition_ongoing, 316 "In middle of another frequency transition\n")) 317 return; 318 319 policy->transition_ongoing = true; 320 321 /* detect if the driver reported a value as "old frequency" 322 * which is not equal to what the cpufreq core thinks is 323 * "old frequency". 324 */ 325 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 326 if ((policy) && (policy->cpu == freqs->cpu) && 327 (policy->cur) && (policy->cur != freqs->old)) { 328 pr_debug("Warning: CPU frequency is" 329 " %u, cpufreq assumed %u kHz.\n", 330 freqs->old, policy->cur); 331 freqs->old = policy->cur; 332 } 333 } 334 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 335 CPUFREQ_PRECHANGE, freqs); 336 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 337 break; 338 339 case CPUFREQ_POSTCHANGE: 340 if (WARN(!policy->transition_ongoing, 341 "No frequency transition in progress\n")) 342 return; 343 344 policy->transition_ongoing = false; 345 346 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 347 pr_debug("FREQ: %lu - CPU: %lu", (unsigned long)freqs->new, 348 (unsigned long)freqs->cpu); 349 trace_cpu_frequency(freqs->new, freqs->cpu); 350 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 351 CPUFREQ_POSTCHANGE, freqs); 352 if (likely(policy) && likely(policy->cpu == freqs->cpu)) 353 policy->cur = freqs->new; 354 break; 355 } 356 } 357 358 /** 359 * cpufreq_notify_transition - call notifier chain and adjust_jiffies 360 * on frequency transition. 361 * 362 * This function calls the transition notifiers and the "adjust_jiffies" 363 * function. It is called twice on all CPU frequency changes that have 364 * external effects. 365 */ 366 void cpufreq_notify_transition(struct cpufreq_policy *policy, 367 struct cpufreq_freqs *freqs, unsigned int state) 368 { 369 for_each_cpu(freqs->cpu, policy->cpus) 370 __cpufreq_notify_transition(policy, freqs, state); 371 } 372 EXPORT_SYMBOL_GPL(cpufreq_notify_transition); 373 374 375 /********************************************************************* 376 * SYSFS INTERFACE * 377 *********************************************************************/ 378 379 static struct cpufreq_governor *__find_governor(const char *str_governor) 380 { 381 struct cpufreq_governor *t; 382 383 list_for_each_entry(t, &cpufreq_governor_list, governor_list) 384 if (!strnicmp(str_governor, t->name, CPUFREQ_NAME_LEN)) 385 return t; 386 387 return NULL; 388 } 389 390 /** 391 * cpufreq_parse_governor - parse a governor string 392 */ 393 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy, 394 struct cpufreq_governor **governor) 395 { 396 int err = -EINVAL; 397 398 if (!cpufreq_driver) 399 goto out; 400 401 if (cpufreq_driver->setpolicy) { 402 if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) { 403 *policy = CPUFREQ_POLICY_PERFORMANCE; 404 err = 0; 405 } else if (!strnicmp(str_governor, "powersave", 406 CPUFREQ_NAME_LEN)) { 407 *policy = CPUFREQ_POLICY_POWERSAVE; 408 err = 0; 409 } 410 } else if (cpufreq_driver->target) { 411 struct cpufreq_governor *t; 412 413 mutex_lock(&cpufreq_governor_mutex); 414 415 t = __find_governor(str_governor); 416 417 if (t == NULL) { 418 int ret; 419 420 mutex_unlock(&cpufreq_governor_mutex); 421 ret = request_module("cpufreq_%s", str_governor); 422 mutex_lock(&cpufreq_governor_mutex); 423 424 if (ret == 0) 425 t = __find_governor(str_governor); 426 } 427 428 if (t != NULL) { 429 *governor = t; 430 err = 0; 431 } 432 433 mutex_unlock(&cpufreq_governor_mutex); 434 } 435 out: 436 return err; 437 } 438 439 /** 440 * cpufreq_per_cpu_attr_read() / show_##file_name() - 441 * print out cpufreq information 442 * 443 * Write out information from cpufreq_driver->policy[cpu]; object must be 444 * "unsigned int". 445 */ 446 447 #define show_one(file_name, object) \ 448 static ssize_t show_##file_name \ 449 (struct cpufreq_policy *policy, char *buf) \ 450 { \ 451 return sprintf(buf, "%u\n", policy->object); \ 452 } 453 454 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 455 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 456 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency); 457 show_one(scaling_min_freq, min); 458 show_one(scaling_max_freq, max); 459 show_one(scaling_cur_freq, cur); 460 461 static int __cpufreq_set_policy(struct cpufreq_policy *data, 462 struct cpufreq_policy *policy); 463 464 /** 465 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 466 */ 467 #define store_one(file_name, object) \ 468 static ssize_t store_##file_name \ 469 (struct cpufreq_policy *policy, const char *buf, size_t count) \ 470 { \ 471 unsigned int ret; \ 472 struct cpufreq_policy new_policy; \ 473 \ 474 ret = cpufreq_get_policy(&new_policy, policy->cpu); \ 475 if (ret) \ 476 return -EINVAL; \ 477 \ 478 ret = sscanf(buf, "%u", &new_policy.object); \ 479 if (ret != 1) \ 480 return -EINVAL; \ 481 \ 482 ret = __cpufreq_set_policy(policy, &new_policy); \ 483 policy->user_policy.object = policy->object; \ 484 \ 485 return ret ? ret : count; \ 486 } 487 488 store_one(scaling_min_freq, min); 489 store_one(scaling_max_freq, max); 490 491 /** 492 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 493 */ 494 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy, 495 char *buf) 496 { 497 unsigned int cur_freq = __cpufreq_get(policy->cpu); 498 if (!cur_freq) 499 return sprintf(buf, "<unknown>"); 500 return sprintf(buf, "%u\n", cur_freq); 501 } 502 503 /** 504 * show_scaling_governor - show the current policy for the specified CPU 505 */ 506 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf) 507 { 508 if (policy->policy == CPUFREQ_POLICY_POWERSAVE) 509 return sprintf(buf, "powersave\n"); 510 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 511 return sprintf(buf, "performance\n"); 512 else if (policy->governor) 513 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", 514 policy->governor->name); 515 return -EINVAL; 516 } 517 518 /** 519 * store_scaling_governor - store policy for the specified CPU 520 */ 521 static ssize_t store_scaling_governor(struct cpufreq_policy *policy, 522 const char *buf, size_t count) 523 { 524 unsigned int ret; 525 char str_governor[16]; 526 struct cpufreq_policy new_policy; 527 528 ret = cpufreq_get_policy(&new_policy, policy->cpu); 529 if (ret) 530 return ret; 531 532 ret = sscanf(buf, "%15s", str_governor); 533 if (ret != 1) 534 return -EINVAL; 535 536 if (cpufreq_parse_governor(str_governor, &new_policy.policy, 537 &new_policy.governor)) 538 return -EINVAL; 539 540 /* 541 * Do not use cpufreq_set_policy here or the user_policy.max 542 * will be wrongly overridden 543 */ 544 ret = __cpufreq_set_policy(policy, &new_policy); 545 546 policy->user_policy.policy = policy->policy; 547 policy->user_policy.governor = policy->governor; 548 549 if (ret) 550 return ret; 551 else 552 return count; 553 } 554 555 /** 556 * show_scaling_driver - show the cpufreq driver currently loaded 557 */ 558 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf) 559 { 560 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name); 561 } 562 563 /** 564 * show_scaling_available_governors - show the available CPUfreq governors 565 */ 566 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy, 567 char *buf) 568 { 569 ssize_t i = 0; 570 struct cpufreq_governor *t; 571 572 if (!cpufreq_driver->target) { 573 i += sprintf(buf, "performance powersave"); 574 goto out; 575 } 576 577 list_for_each_entry(t, &cpufreq_governor_list, governor_list) { 578 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) 579 - (CPUFREQ_NAME_LEN + 2))) 580 goto out; 581 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name); 582 } 583 out: 584 i += sprintf(&buf[i], "\n"); 585 return i; 586 } 587 588 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf) 589 { 590 ssize_t i = 0; 591 unsigned int cpu; 592 593 for_each_cpu(cpu, mask) { 594 if (i) 595 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " "); 596 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu); 597 if (i >= (PAGE_SIZE - 5)) 598 break; 599 } 600 i += sprintf(&buf[i], "\n"); 601 return i; 602 } 603 EXPORT_SYMBOL_GPL(cpufreq_show_cpus); 604 605 /** 606 * show_related_cpus - show the CPUs affected by each transition even if 607 * hw coordination is in use 608 */ 609 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf) 610 { 611 return cpufreq_show_cpus(policy->related_cpus, buf); 612 } 613 614 /** 615 * show_affected_cpus - show the CPUs affected by each transition 616 */ 617 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf) 618 { 619 return cpufreq_show_cpus(policy->cpus, buf); 620 } 621 622 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy, 623 const char *buf, size_t count) 624 { 625 unsigned int freq = 0; 626 unsigned int ret; 627 628 if (!policy->governor || !policy->governor->store_setspeed) 629 return -EINVAL; 630 631 ret = sscanf(buf, "%u", &freq); 632 if (ret != 1) 633 return -EINVAL; 634 635 policy->governor->store_setspeed(policy, freq); 636 637 return count; 638 } 639 640 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf) 641 { 642 if (!policy->governor || !policy->governor->show_setspeed) 643 return sprintf(buf, "<unsupported>\n"); 644 645 return policy->governor->show_setspeed(policy, buf); 646 } 647 648 /** 649 * show_bios_limit - show the current cpufreq HW/BIOS limitation 650 */ 651 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf) 652 { 653 unsigned int limit; 654 int ret; 655 if (cpufreq_driver->bios_limit) { 656 ret = cpufreq_driver->bios_limit(policy->cpu, &limit); 657 if (!ret) 658 return sprintf(buf, "%u\n", limit); 659 } 660 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq); 661 } 662 663 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400); 664 cpufreq_freq_attr_ro(cpuinfo_min_freq); 665 cpufreq_freq_attr_ro(cpuinfo_max_freq); 666 cpufreq_freq_attr_ro(cpuinfo_transition_latency); 667 cpufreq_freq_attr_ro(scaling_available_governors); 668 cpufreq_freq_attr_ro(scaling_driver); 669 cpufreq_freq_attr_ro(scaling_cur_freq); 670 cpufreq_freq_attr_ro(bios_limit); 671 cpufreq_freq_attr_ro(related_cpus); 672 cpufreq_freq_attr_ro(affected_cpus); 673 cpufreq_freq_attr_rw(scaling_min_freq); 674 cpufreq_freq_attr_rw(scaling_max_freq); 675 cpufreq_freq_attr_rw(scaling_governor); 676 cpufreq_freq_attr_rw(scaling_setspeed); 677 678 static struct attribute *default_attrs[] = { 679 &cpuinfo_min_freq.attr, 680 &cpuinfo_max_freq.attr, 681 &cpuinfo_transition_latency.attr, 682 &scaling_min_freq.attr, 683 &scaling_max_freq.attr, 684 &affected_cpus.attr, 685 &related_cpus.attr, 686 &scaling_governor.attr, 687 &scaling_driver.attr, 688 &scaling_available_governors.attr, 689 &scaling_setspeed.attr, 690 NULL 691 }; 692 693 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj) 694 #define to_attr(a) container_of(a, struct freq_attr, attr) 695 696 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) 697 { 698 struct cpufreq_policy *policy = to_policy(kobj); 699 struct freq_attr *fattr = to_attr(attr); 700 ssize_t ret = -EINVAL; 701 policy = cpufreq_cpu_get_sysfs(policy->cpu); 702 if (!policy) 703 goto no_policy; 704 705 if (lock_policy_rwsem_read(policy->cpu) < 0) 706 goto fail; 707 708 if (fattr->show) 709 ret = fattr->show(policy, buf); 710 else 711 ret = -EIO; 712 713 unlock_policy_rwsem_read(policy->cpu); 714 fail: 715 cpufreq_cpu_put_sysfs(policy); 716 no_policy: 717 return ret; 718 } 719 720 static ssize_t store(struct kobject *kobj, struct attribute *attr, 721 const char *buf, size_t count) 722 { 723 struct cpufreq_policy *policy = to_policy(kobj); 724 struct freq_attr *fattr = to_attr(attr); 725 ssize_t ret = -EINVAL; 726 policy = cpufreq_cpu_get_sysfs(policy->cpu); 727 if (!policy) 728 goto no_policy; 729 730 if (lock_policy_rwsem_write(policy->cpu) < 0) 731 goto fail; 732 733 if (fattr->store) 734 ret = fattr->store(policy, buf, count); 735 else 736 ret = -EIO; 737 738 unlock_policy_rwsem_write(policy->cpu); 739 fail: 740 cpufreq_cpu_put_sysfs(policy); 741 no_policy: 742 return ret; 743 } 744 745 static void cpufreq_sysfs_release(struct kobject *kobj) 746 { 747 struct cpufreq_policy *policy = to_policy(kobj); 748 pr_debug("last reference is dropped\n"); 749 complete(&policy->kobj_unregister); 750 } 751 752 static const struct sysfs_ops sysfs_ops = { 753 .show = show, 754 .store = store, 755 }; 756 757 static struct kobj_type ktype_cpufreq = { 758 .sysfs_ops = &sysfs_ops, 759 .default_attrs = default_attrs, 760 .release = cpufreq_sysfs_release, 761 }; 762 763 struct kobject *cpufreq_global_kobject; 764 EXPORT_SYMBOL(cpufreq_global_kobject); 765 766 static int cpufreq_global_kobject_usage; 767 768 int cpufreq_get_global_kobject(void) 769 { 770 if (!cpufreq_global_kobject_usage++) 771 return kobject_add(cpufreq_global_kobject, 772 &cpu_subsys.dev_root->kobj, "%s", "cpufreq"); 773 774 return 0; 775 } 776 EXPORT_SYMBOL(cpufreq_get_global_kobject); 777 778 void cpufreq_put_global_kobject(void) 779 { 780 if (!--cpufreq_global_kobject_usage) 781 kobject_del(cpufreq_global_kobject); 782 } 783 EXPORT_SYMBOL(cpufreq_put_global_kobject); 784 785 int cpufreq_sysfs_create_file(const struct attribute *attr) 786 { 787 int ret = cpufreq_get_global_kobject(); 788 789 if (!ret) { 790 ret = sysfs_create_file(cpufreq_global_kobject, attr); 791 if (ret) 792 cpufreq_put_global_kobject(); 793 } 794 795 return ret; 796 } 797 EXPORT_SYMBOL(cpufreq_sysfs_create_file); 798 799 void cpufreq_sysfs_remove_file(const struct attribute *attr) 800 { 801 sysfs_remove_file(cpufreq_global_kobject, attr); 802 cpufreq_put_global_kobject(); 803 } 804 EXPORT_SYMBOL(cpufreq_sysfs_remove_file); 805 806 /* symlink affected CPUs */ 807 static int cpufreq_add_dev_symlink(unsigned int cpu, 808 struct cpufreq_policy *policy) 809 { 810 unsigned int j; 811 int ret = 0; 812 813 for_each_cpu(j, policy->cpus) { 814 struct cpufreq_policy *managed_policy; 815 struct device *cpu_dev; 816 817 if (j == cpu) 818 continue; 819 820 pr_debug("CPU %u already managed, adding link\n", j); 821 managed_policy = cpufreq_cpu_get(cpu); 822 cpu_dev = get_cpu_device(j); 823 ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj, 824 "cpufreq"); 825 if (ret) { 826 cpufreq_cpu_put(managed_policy); 827 return ret; 828 } 829 } 830 return ret; 831 } 832 833 static int cpufreq_add_dev_interface(unsigned int cpu, 834 struct cpufreq_policy *policy, 835 struct device *dev) 836 { 837 struct cpufreq_policy new_policy; 838 struct freq_attr **drv_attr; 839 unsigned long flags; 840 int ret = 0; 841 unsigned int j; 842 843 /* prepare interface data */ 844 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, 845 &dev->kobj, "cpufreq"); 846 if (ret) 847 return ret; 848 849 /* set up files for this cpu device */ 850 drv_attr = cpufreq_driver->attr; 851 while ((drv_attr) && (*drv_attr)) { 852 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 853 if (ret) 854 goto err_out_kobj_put; 855 drv_attr++; 856 } 857 if (cpufreq_driver->get) { 858 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 859 if (ret) 860 goto err_out_kobj_put; 861 } 862 if (cpufreq_driver->target) { 863 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 864 if (ret) 865 goto err_out_kobj_put; 866 } 867 if (cpufreq_driver->bios_limit) { 868 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr); 869 if (ret) 870 goto err_out_kobj_put; 871 } 872 873 write_lock_irqsave(&cpufreq_driver_lock, flags); 874 for_each_cpu(j, policy->cpus) { 875 per_cpu(cpufreq_cpu_data, j) = policy; 876 per_cpu(cpufreq_policy_cpu, j) = policy->cpu; 877 } 878 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 879 880 ret = cpufreq_add_dev_symlink(cpu, policy); 881 if (ret) 882 goto err_out_kobj_put; 883 884 memcpy(&new_policy, policy, sizeof(struct cpufreq_policy)); 885 /* assure that the starting sequence is run in __cpufreq_set_policy */ 886 policy->governor = NULL; 887 888 /* set default policy */ 889 ret = __cpufreq_set_policy(policy, &new_policy); 890 policy->user_policy.policy = policy->policy; 891 policy->user_policy.governor = policy->governor; 892 893 if (ret) { 894 pr_debug("setting policy failed\n"); 895 if (cpufreq_driver->exit) 896 cpufreq_driver->exit(policy); 897 } 898 return ret; 899 900 err_out_kobj_put: 901 kobject_put(&policy->kobj); 902 wait_for_completion(&policy->kobj_unregister); 903 return ret; 904 } 905 906 #ifdef CONFIG_HOTPLUG_CPU 907 static int cpufreq_add_policy_cpu(unsigned int cpu, unsigned int sibling, 908 struct device *dev) 909 { 910 struct cpufreq_policy *policy; 911 int ret = 0, has_target = !!cpufreq_driver->target; 912 unsigned long flags; 913 914 policy = cpufreq_cpu_get(sibling); 915 WARN_ON(!policy); 916 917 if (has_target) 918 __cpufreq_governor(policy, CPUFREQ_GOV_STOP); 919 920 lock_policy_rwsem_write(sibling); 921 922 write_lock_irqsave(&cpufreq_driver_lock, flags); 923 924 cpumask_set_cpu(cpu, policy->cpus); 925 per_cpu(cpufreq_policy_cpu, cpu) = policy->cpu; 926 per_cpu(cpufreq_cpu_data, cpu) = policy; 927 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 928 929 unlock_policy_rwsem_write(sibling); 930 931 if (has_target) { 932 __cpufreq_governor(policy, CPUFREQ_GOV_START); 933 __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); 934 } 935 936 ret = sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"); 937 if (ret) { 938 cpufreq_cpu_put(policy); 939 return ret; 940 } 941 942 return 0; 943 } 944 #endif 945 946 /** 947 * cpufreq_add_dev - add a CPU device 948 * 949 * Adds the cpufreq interface for a CPU device. 950 * 951 * The Oracle says: try running cpufreq registration/unregistration concurrently 952 * with with cpu hotplugging and all hell will break loose. Tried to clean this 953 * mess up, but more thorough testing is needed. - Mathieu 954 */ 955 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 956 { 957 unsigned int j, cpu = dev->id; 958 int ret = -ENOMEM; 959 struct cpufreq_policy *policy; 960 unsigned long flags; 961 #ifdef CONFIG_HOTPLUG_CPU 962 struct cpufreq_governor *gov; 963 int sibling; 964 #endif 965 966 if (cpu_is_offline(cpu)) 967 return 0; 968 969 pr_debug("adding CPU %u\n", cpu); 970 971 #ifdef CONFIG_SMP 972 /* check whether a different CPU already registered this 973 * CPU because it is in the same boat. */ 974 policy = cpufreq_cpu_get(cpu); 975 if (unlikely(policy)) { 976 cpufreq_cpu_put(policy); 977 return 0; 978 } 979 980 #ifdef CONFIG_HOTPLUG_CPU 981 /* Check if this cpu was hot-unplugged earlier and has siblings */ 982 read_lock_irqsave(&cpufreq_driver_lock, flags); 983 for_each_online_cpu(sibling) { 984 struct cpufreq_policy *cp = per_cpu(cpufreq_cpu_data, sibling); 985 if (cp && cpumask_test_cpu(cpu, cp->related_cpus)) { 986 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 987 return cpufreq_add_policy_cpu(cpu, sibling, dev); 988 } 989 } 990 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 991 #endif 992 #endif 993 994 if (!try_module_get(cpufreq_driver->owner)) { 995 ret = -EINVAL; 996 goto module_out; 997 } 998 999 policy = kzalloc(sizeof(struct cpufreq_policy), GFP_KERNEL); 1000 if (!policy) 1001 goto nomem_out; 1002 1003 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) 1004 goto err_free_policy; 1005 1006 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) 1007 goto err_free_cpumask; 1008 1009 policy->cpu = cpu; 1010 policy->governor = CPUFREQ_DEFAULT_GOVERNOR; 1011 cpumask_copy(policy->cpus, cpumask_of(cpu)); 1012 1013 /* Initially set CPU itself as the policy_cpu */ 1014 per_cpu(cpufreq_policy_cpu, cpu) = cpu; 1015 1016 init_completion(&policy->kobj_unregister); 1017 INIT_WORK(&policy->update, handle_update); 1018 1019 /* call driver. From then on the cpufreq must be able 1020 * to accept all calls to ->verify and ->setpolicy for this CPU 1021 */ 1022 ret = cpufreq_driver->init(policy); 1023 if (ret) { 1024 pr_debug("initialization failed\n"); 1025 goto err_set_policy_cpu; 1026 } 1027 1028 /* related cpus should atleast have policy->cpus */ 1029 cpumask_or(policy->related_cpus, policy->related_cpus, policy->cpus); 1030 1031 /* 1032 * affected cpus must always be the one, which are online. We aren't 1033 * managing offline cpus here. 1034 */ 1035 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask); 1036 1037 policy->user_policy.min = policy->min; 1038 policy->user_policy.max = policy->max; 1039 1040 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1041 CPUFREQ_START, policy); 1042 1043 #ifdef CONFIG_HOTPLUG_CPU 1044 gov = __find_governor(per_cpu(cpufreq_cpu_governor, cpu)); 1045 if (gov) { 1046 policy->governor = gov; 1047 pr_debug("Restoring governor %s for cpu %d\n", 1048 policy->governor->name, cpu); 1049 } 1050 #endif 1051 1052 ret = cpufreq_add_dev_interface(cpu, policy, dev); 1053 if (ret) 1054 goto err_out_unregister; 1055 1056 kobject_uevent(&policy->kobj, KOBJ_ADD); 1057 module_put(cpufreq_driver->owner); 1058 pr_debug("initialization complete\n"); 1059 1060 return 0; 1061 1062 err_out_unregister: 1063 write_lock_irqsave(&cpufreq_driver_lock, flags); 1064 for_each_cpu(j, policy->cpus) 1065 per_cpu(cpufreq_cpu_data, j) = NULL; 1066 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1067 1068 kobject_put(&policy->kobj); 1069 wait_for_completion(&policy->kobj_unregister); 1070 1071 err_set_policy_cpu: 1072 per_cpu(cpufreq_policy_cpu, cpu) = -1; 1073 free_cpumask_var(policy->related_cpus); 1074 err_free_cpumask: 1075 free_cpumask_var(policy->cpus); 1076 err_free_policy: 1077 kfree(policy); 1078 nomem_out: 1079 module_put(cpufreq_driver->owner); 1080 module_out: 1081 return ret; 1082 } 1083 1084 static void update_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu) 1085 { 1086 int j; 1087 1088 policy->last_cpu = policy->cpu; 1089 policy->cpu = cpu; 1090 1091 for_each_cpu(j, policy->cpus) 1092 per_cpu(cpufreq_policy_cpu, j) = cpu; 1093 1094 #ifdef CONFIG_CPU_FREQ_TABLE 1095 cpufreq_frequency_table_update_policy_cpu(policy); 1096 #endif 1097 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1098 CPUFREQ_UPDATE_POLICY_CPU, policy); 1099 } 1100 1101 /** 1102 * __cpufreq_remove_dev - remove a CPU device 1103 * 1104 * Removes the cpufreq interface for a CPU device. 1105 * Caller should already have policy_rwsem in write mode for this CPU. 1106 * This routine frees the rwsem before returning. 1107 */ 1108 static int __cpufreq_remove_dev(struct device *dev, 1109 struct subsys_interface *sif) 1110 { 1111 unsigned int cpu = dev->id, ret, cpus; 1112 unsigned long flags; 1113 struct cpufreq_policy *data; 1114 struct kobject *kobj; 1115 struct completion *cmp; 1116 struct device *cpu_dev; 1117 1118 pr_debug("%s: unregistering CPU %u\n", __func__, cpu); 1119 1120 write_lock_irqsave(&cpufreq_driver_lock, flags); 1121 1122 data = per_cpu(cpufreq_cpu_data, cpu); 1123 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1124 1125 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1126 1127 if (!data) { 1128 pr_debug("%s: No cpu_data found\n", __func__); 1129 return -EINVAL; 1130 } 1131 1132 if (cpufreq_driver->target) 1133 __cpufreq_governor(data, CPUFREQ_GOV_STOP); 1134 1135 #ifdef CONFIG_HOTPLUG_CPU 1136 if (!cpufreq_driver->setpolicy) 1137 strncpy(per_cpu(cpufreq_cpu_governor, cpu), 1138 data->governor->name, CPUFREQ_NAME_LEN); 1139 #endif 1140 1141 WARN_ON(lock_policy_rwsem_write(cpu)); 1142 cpus = cpumask_weight(data->cpus); 1143 1144 if (cpus > 1) 1145 cpumask_clear_cpu(cpu, data->cpus); 1146 unlock_policy_rwsem_write(cpu); 1147 1148 if (cpu != data->cpu) { 1149 sysfs_remove_link(&dev->kobj, "cpufreq"); 1150 } else if (cpus > 1) { 1151 /* first sibling now owns the new sysfs dir */ 1152 cpu_dev = get_cpu_device(cpumask_first(data->cpus)); 1153 sysfs_remove_link(&cpu_dev->kobj, "cpufreq"); 1154 ret = kobject_move(&data->kobj, &cpu_dev->kobj); 1155 if (ret) { 1156 pr_err("%s: Failed to move kobj: %d", __func__, ret); 1157 1158 WARN_ON(lock_policy_rwsem_write(cpu)); 1159 cpumask_set_cpu(cpu, data->cpus); 1160 1161 write_lock_irqsave(&cpufreq_driver_lock, flags); 1162 per_cpu(cpufreq_cpu_data, cpu) = data; 1163 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1164 1165 unlock_policy_rwsem_write(cpu); 1166 1167 ret = sysfs_create_link(&cpu_dev->kobj, &data->kobj, 1168 "cpufreq"); 1169 return -EINVAL; 1170 } 1171 1172 WARN_ON(lock_policy_rwsem_write(cpu)); 1173 update_policy_cpu(data, cpu_dev->id); 1174 unlock_policy_rwsem_write(cpu); 1175 pr_debug("%s: policy Kobject moved to cpu: %d from: %d\n", 1176 __func__, cpu_dev->id, cpu); 1177 } 1178 1179 if ((cpus == 1) && (cpufreq_driver->target)) 1180 __cpufreq_governor(data, CPUFREQ_GOV_POLICY_EXIT); 1181 1182 pr_debug("%s: removing link, cpu: %d\n", __func__, cpu); 1183 cpufreq_cpu_put(data); 1184 1185 /* If cpu is last user of policy, free policy */ 1186 if (cpus == 1) { 1187 lock_policy_rwsem_read(cpu); 1188 kobj = &data->kobj; 1189 cmp = &data->kobj_unregister; 1190 unlock_policy_rwsem_read(cpu); 1191 kobject_put(kobj); 1192 1193 /* we need to make sure that the underlying kobj is actually 1194 * not referenced anymore by anybody before we proceed with 1195 * unloading. 1196 */ 1197 pr_debug("waiting for dropping of refcount\n"); 1198 wait_for_completion(cmp); 1199 pr_debug("wait complete\n"); 1200 1201 if (cpufreq_driver->exit) 1202 cpufreq_driver->exit(data); 1203 1204 free_cpumask_var(data->related_cpus); 1205 free_cpumask_var(data->cpus); 1206 kfree(data); 1207 } else if (cpufreq_driver->target) { 1208 __cpufreq_governor(data, CPUFREQ_GOV_START); 1209 __cpufreq_governor(data, CPUFREQ_GOV_LIMITS); 1210 } 1211 1212 per_cpu(cpufreq_policy_cpu, cpu) = -1; 1213 return 0; 1214 } 1215 1216 static int cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif) 1217 { 1218 unsigned int cpu = dev->id; 1219 int retval; 1220 1221 if (cpu_is_offline(cpu)) 1222 return 0; 1223 1224 retval = __cpufreq_remove_dev(dev, sif); 1225 return retval; 1226 } 1227 1228 static void handle_update(struct work_struct *work) 1229 { 1230 struct cpufreq_policy *policy = 1231 container_of(work, struct cpufreq_policy, update); 1232 unsigned int cpu = policy->cpu; 1233 pr_debug("handle_update for cpu %u called\n", cpu); 1234 cpufreq_update_policy(cpu); 1235 } 1236 1237 /** 1238 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're 1239 * in deep trouble. 1240 * @cpu: cpu number 1241 * @old_freq: CPU frequency the kernel thinks the CPU runs at 1242 * @new_freq: CPU frequency the CPU actually runs at 1243 * 1244 * We adjust to current frequency first, and need to clean up later. 1245 * So either call to cpufreq_update_policy() or schedule handle_update()). 1246 */ 1247 static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq, 1248 unsigned int new_freq) 1249 { 1250 struct cpufreq_policy *policy; 1251 struct cpufreq_freqs freqs; 1252 unsigned long flags; 1253 1254 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing " 1255 "core thinks of %u, is %u kHz.\n", old_freq, new_freq); 1256 1257 freqs.old = old_freq; 1258 freqs.new = new_freq; 1259 1260 read_lock_irqsave(&cpufreq_driver_lock, flags); 1261 policy = per_cpu(cpufreq_cpu_data, cpu); 1262 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1263 1264 cpufreq_notify_transition(policy, &freqs, CPUFREQ_PRECHANGE); 1265 cpufreq_notify_transition(policy, &freqs, CPUFREQ_POSTCHANGE); 1266 } 1267 1268 /** 1269 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur 1270 * @cpu: CPU number 1271 * 1272 * This is the last known freq, without actually getting it from the driver. 1273 * Return value will be same as what is shown in scaling_cur_freq in sysfs. 1274 */ 1275 unsigned int cpufreq_quick_get(unsigned int cpu) 1276 { 1277 struct cpufreq_policy *policy; 1278 unsigned int ret_freq = 0; 1279 1280 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) 1281 return cpufreq_driver->get(cpu); 1282 1283 policy = cpufreq_cpu_get(cpu); 1284 if (policy) { 1285 ret_freq = policy->cur; 1286 cpufreq_cpu_put(policy); 1287 } 1288 1289 return ret_freq; 1290 } 1291 EXPORT_SYMBOL(cpufreq_quick_get); 1292 1293 /** 1294 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU 1295 * @cpu: CPU number 1296 * 1297 * Just return the max possible frequency for a given CPU. 1298 */ 1299 unsigned int cpufreq_quick_get_max(unsigned int cpu) 1300 { 1301 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1302 unsigned int ret_freq = 0; 1303 1304 if (policy) { 1305 ret_freq = policy->max; 1306 cpufreq_cpu_put(policy); 1307 } 1308 1309 return ret_freq; 1310 } 1311 EXPORT_SYMBOL(cpufreq_quick_get_max); 1312 1313 static unsigned int __cpufreq_get(unsigned int cpu) 1314 { 1315 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1316 unsigned int ret_freq = 0; 1317 1318 if (!cpufreq_driver->get) 1319 return ret_freq; 1320 1321 ret_freq = cpufreq_driver->get(cpu); 1322 1323 if (ret_freq && policy->cur && 1324 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 1325 /* verify no discrepancy between actual and 1326 saved value exists */ 1327 if (unlikely(ret_freq != policy->cur)) { 1328 cpufreq_out_of_sync(cpu, policy->cur, ret_freq); 1329 schedule_work(&policy->update); 1330 } 1331 } 1332 1333 return ret_freq; 1334 } 1335 1336 /** 1337 * cpufreq_get - get the current CPU frequency (in kHz) 1338 * @cpu: CPU number 1339 * 1340 * Get the CPU current (static) CPU frequency 1341 */ 1342 unsigned int cpufreq_get(unsigned int cpu) 1343 { 1344 unsigned int ret_freq = 0; 1345 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1346 1347 if (!policy) 1348 goto out; 1349 1350 if (unlikely(lock_policy_rwsem_read(cpu))) 1351 goto out_policy; 1352 1353 ret_freq = __cpufreq_get(cpu); 1354 1355 unlock_policy_rwsem_read(cpu); 1356 1357 out_policy: 1358 cpufreq_cpu_put(policy); 1359 out: 1360 return ret_freq; 1361 } 1362 EXPORT_SYMBOL(cpufreq_get); 1363 1364 static struct subsys_interface cpufreq_interface = { 1365 .name = "cpufreq", 1366 .subsys = &cpu_subsys, 1367 .add_dev = cpufreq_add_dev, 1368 .remove_dev = cpufreq_remove_dev, 1369 }; 1370 1371 /** 1372 * cpufreq_bp_suspend - Prepare the boot CPU for system suspend. 1373 * 1374 * This function is only executed for the boot processor. The other CPUs 1375 * have been put offline by means of CPU hotplug. 1376 */ 1377 static int cpufreq_bp_suspend(void) 1378 { 1379 int ret = 0; 1380 1381 int cpu = smp_processor_id(); 1382 struct cpufreq_policy *cpu_policy; 1383 1384 pr_debug("suspending cpu %u\n", cpu); 1385 1386 /* If there's no policy for the boot CPU, we have nothing to do. */ 1387 cpu_policy = cpufreq_cpu_get(cpu); 1388 if (!cpu_policy) 1389 return 0; 1390 1391 if (cpufreq_driver->suspend) { 1392 ret = cpufreq_driver->suspend(cpu_policy); 1393 if (ret) 1394 printk(KERN_ERR "cpufreq: suspend failed in ->suspend " 1395 "step on CPU %u\n", cpu_policy->cpu); 1396 } 1397 1398 cpufreq_cpu_put(cpu_policy); 1399 return ret; 1400 } 1401 1402 /** 1403 * cpufreq_bp_resume - Restore proper frequency handling of the boot CPU. 1404 * 1405 * 1.) resume CPUfreq hardware support (cpufreq_driver->resume()) 1406 * 2.) schedule call cpufreq_update_policy() ASAP as interrupts are 1407 * restored. It will verify that the current freq is in sync with 1408 * what we believe it to be. This is a bit later than when it 1409 * should be, but nonethteless it's better than calling 1410 * cpufreq_driver->get() here which might re-enable interrupts... 1411 * 1412 * This function is only executed for the boot CPU. The other CPUs have not 1413 * been turned on yet. 1414 */ 1415 static void cpufreq_bp_resume(void) 1416 { 1417 int ret = 0; 1418 1419 int cpu = smp_processor_id(); 1420 struct cpufreq_policy *cpu_policy; 1421 1422 pr_debug("resuming cpu %u\n", cpu); 1423 1424 /* If there's no policy for the boot CPU, we have nothing to do. */ 1425 cpu_policy = cpufreq_cpu_get(cpu); 1426 if (!cpu_policy) 1427 return; 1428 1429 if (cpufreq_driver->resume) { 1430 ret = cpufreq_driver->resume(cpu_policy); 1431 if (ret) { 1432 printk(KERN_ERR "cpufreq: resume failed in ->resume " 1433 "step on CPU %u\n", cpu_policy->cpu); 1434 goto fail; 1435 } 1436 } 1437 1438 schedule_work(&cpu_policy->update); 1439 1440 fail: 1441 cpufreq_cpu_put(cpu_policy); 1442 } 1443 1444 static struct syscore_ops cpufreq_syscore_ops = { 1445 .suspend = cpufreq_bp_suspend, 1446 .resume = cpufreq_bp_resume, 1447 }; 1448 1449 /** 1450 * cpufreq_get_current_driver - return current driver's name 1451 * 1452 * Return the name string of the currently loaded cpufreq driver 1453 * or NULL, if none. 1454 */ 1455 const char *cpufreq_get_current_driver(void) 1456 { 1457 if (cpufreq_driver) 1458 return cpufreq_driver->name; 1459 1460 return NULL; 1461 } 1462 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver); 1463 1464 /********************************************************************* 1465 * NOTIFIER LISTS INTERFACE * 1466 *********************************************************************/ 1467 1468 /** 1469 * cpufreq_register_notifier - register a driver with cpufreq 1470 * @nb: notifier function to register 1471 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1472 * 1473 * Add a driver to one of two lists: either a list of drivers that 1474 * are notified about clock rate changes (once before and once after 1475 * the transition), or a list of drivers that are notified about 1476 * changes in cpufreq policy. 1477 * 1478 * This function may sleep, and has the same return conditions as 1479 * blocking_notifier_chain_register. 1480 */ 1481 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 1482 { 1483 int ret; 1484 1485 if (cpufreq_disabled()) 1486 return -EINVAL; 1487 1488 WARN_ON(!init_cpufreq_transition_notifier_list_called); 1489 1490 switch (list) { 1491 case CPUFREQ_TRANSITION_NOTIFIER: 1492 ret = srcu_notifier_chain_register( 1493 &cpufreq_transition_notifier_list, nb); 1494 break; 1495 case CPUFREQ_POLICY_NOTIFIER: 1496 ret = blocking_notifier_chain_register( 1497 &cpufreq_policy_notifier_list, nb); 1498 break; 1499 default: 1500 ret = -EINVAL; 1501 } 1502 1503 return ret; 1504 } 1505 EXPORT_SYMBOL(cpufreq_register_notifier); 1506 1507 /** 1508 * cpufreq_unregister_notifier - unregister a driver with cpufreq 1509 * @nb: notifier block to be unregistered 1510 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1511 * 1512 * Remove a driver from the CPU frequency notifier list. 1513 * 1514 * This function may sleep, and has the same return conditions as 1515 * blocking_notifier_chain_unregister. 1516 */ 1517 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 1518 { 1519 int ret; 1520 1521 if (cpufreq_disabled()) 1522 return -EINVAL; 1523 1524 switch (list) { 1525 case CPUFREQ_TRANSITION_NOTIFIER: 1526 ret = srcu_notifier_chain_unregister( 1527 &cpufreq_transition_notifier_list, nb); 1528 break; 1529 case CPUFREQ_POLICY_NOTIFIER: 1530 ret = blocking_notifier_chain_unregister( 1531 &cpufreq_policy_notifier_list, nb); 1532 break; 1533 default: 1534 ret = -EINVAL; 1535 } 1536 1537 return ret; 1538 } 1539 EXPORT_SYMBOL(cpufreq_unregister_notifier); 1540 1541 1542 /********************************************************************* 1543 * GOVERNORS * 1544 *********************************************************************/ 1545 1546 int __cpufreq_driver_target(struct cpufreq_policy *policy, 1547 unsigned int target_freq, 1548 unsigned int relation) 1549 { 1550 int retval = -EINVAL; 1551 unsigned int old_target_freq = target_freq; 1552 1553 if (cpufreq_disabled()) 1554 return -ENODEV; 1555 if (policy->transition_ongoing) 1556 return -EBUSY; 1557 1558 /* Make sure that target_freq is within supported range */ 1559 if (target_freq > policy->max) 1560 target_freq = policy->max; 1561 if (target_freq < policy->min) 1562 target_freq = policy->min; 1563 1564 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n", 1565 policy->cpu, target_freq, relation, old_target_freq); 1566 1567 if (target_freq == policy->cur) 1568 return 0; 1569 1570 if (cpufreq_driver->target) 1571 retval = cpufreq_driver->target(policy, target_freq, relation); 1572 1573 return retval; 1574 } 1575 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 1576 1577 int cpufreq_driver_target(struct cpufreq_policy *policy, 1578 unsigned int target_freq, 1579 unsigned int relation) 1580 { 1581 int ret = -EINVAL; 1582 1583 if (unlikely(lock_policy_rwsem_write(policy->cpu))) 1584 goto fail; 1585 1586 ret = __cpufreq_driver_target(policy, target_freq, relation); 1587 1588 unlock_policy_rwsem_write(policy->cpu); 1589 1590 fail: 1591 return ret; 1592 } 1593 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 1594 1595 int __cpufreq_driver_getavg(struct cpufreq_policy *policy, unsigned int cpu) 1596 { 1597 if (cpufreq_disabled()) 1598 return 0; 1599 1600 if (!cpufreq_driver->getavg) 1601 return 0; 1602 1603 return cpufreq_driver->getavg(policy, cpu); 1604 } 1605 EXPORT_SYMBOL_GPL(__cpufreq_driver_getavg); 1606 1607 /* 1608 * when "event" is CPUFREQ_GOV_LIMITS 1609 */ 1610 1611 static int __cpufreq_governor(struct cpufreq_policy *policy, 1612 unsigned int event) 1613 { 1614 int ret; 1615 1616 /* Only must be defined when default governor is known to have latency 1617 restrictions, like e.g. conservative or ondemand. 1618 That this is the case is already ensured in Kconfig 1619 */ 1620 #ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE 1621 struct cpufreq_governor *gov = &cpufreq_gov_performance; 1622 #else 1623 struct cpufreq_governor *gov = NULL; 1624 #endif 1625 1626 if (policy->governor->max_transition_latency && 1627 policy->cpuinfo.transition_latency > 1628 policy->governor->max_transition_latency) { 1629 if (!gov) 1630 return -EINVAL; 1631 else { 1632 printk(KERN_WARNING "%s governor failed, too long" 1633 " transition latency of HW, fallback" 1634 " to %s governor\n", 1635 policy->governor->name, 1636 gov->name); 1637 policy->governor = gov; 1638 } 1639 } 1640 1641 if (!try_module_get(policy->governor->owner)) 1642 return -EINVAL; 1643 1644 pr_debug("__cpufreq_governor for CPU %u, event %u\n", 1645 policy->cpu, event); 1646 1647 mutex_lock(&cpufreq_governor_lock); 1648 if ((!policy->governor_enabled && (event == CPUFREQ_GOV_STOP)) || 1649 (policy->governor_enabled && (event == CPUFREQ_GOV_START))) { 1650 mutex_unlock(&cpufreq_governor_lock); 1651 return -EBUSY; 1652 } 1653 1654 if (event == CPUFREQ_GOV_STOP) 1655 policy->governor_enabled = false; 1656 else if (event == CPUFREQ_GOV_START) 1657 policy->governor_enabled = true; 1658 1659 mutex_unlock(&cpufreq_governor_lock); 1660 1661 ret = policy->governor->governor(policy, event); 1662 1663 if (!ret) { 1664 if (event == CPUFREQ_GOV_POLICY_INIT) 1665 policy->governor->initialized++; 1666 else if (event == CPUFREQ_GOV_POLICY_EXIT) 1667 policy->governor->initialized--; 1668 } else { 1669 /* Restore original values */ 1670 mutex_lock(&cpufreq_governor_lock); 1671 if (event == CPUFREQ_GOV_STOP) 1672 policy->governor_enabled = true; 1673 else if (event == CPUFREQ_GOV_START) 1674 policy->governor_enabled = false; 1675 mutex_unlock(&cpufreq_governor_lock); 1676 } 1677 1678 /* we keep one module reference alive for 1679 each CPU governed by this CPU */ 1680 if ((event != CPUFREQ_GOV_START) || ret) 1681 module_put(policy->governor->owner); 1682 if ((event == CPUFREQ_GOV_STOP) && !ret) 1683 module_put(policy->governor->owner); 1684 1685 return ret; 1686 } 1687 1688 int cpufreq_register_governor(struct cpufreq_governor *governor) 1689 { 1690 int err; 1691 1692 if (!governor) 1693 return -EINVAL; 1694 1695 if (cpufreq_disabled()) 1696 return -ENODEV; 1697 1698 mutex_lock(&cpufreq_governor_mutex); 1699 1700 governor->initialized = 0; 1701 err = -EBUSY; 1702 if (__find_governor(governor->name) == NULL) { 1703 err = 0; 1704 list_add(&governor->governor_list, &cpufreq_governor_list); 1705 } 1706 1707 mutex_unlock(&cpufreq_governor_mutex); 1708 return err; 1709 } 1710 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 1711 1712 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 1713 { 1714 #ifdef CONFIG_HOTPLUG_CPU 1715 int cpu; 1716 #endif 1717 1718 if (!governor) 1719 return; 1720 1721 if (cpufreq_disabled()) 1722 return; 1723 1724 #ifdef CONFIG_HOTPLUG_CPU 1725 for_each_present_cpu(cpu) { 1726 if (cpu_online(cpu)) 1727 continue; 1728 if (!strcmp(per_cpu(cpufreq_cpu_governor, cpu), governor->name)) 1729 strcpy(per_cpu(cpufreq_cpu_governor, cpu), "\0"); 1730 } 1731 #endif 1732 1733 mutex_lock(&cpufreq_governor_mutex); 1734 list_del(&governor->governor_list); 1735 mutex_unlock(&cpufreq_governor_mutex); 1736 return; 1737 } 1738 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 1739 1740 1741 /********************************************************************* 1742 * POLICY INTERFACE * 1743 *********************************************************************/ 1744 1745 /** 1746 * cpufreq_get_policy - get the current cpufreq_policy 1747 * @policy: struct cpufreq_policy into which the current cpufreq_policy 1748 * is written 1749 * 1750 * Reads the current cpufreq policy. 1751 */ 1752 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 1753 { 1754 struct cpufreq_policy *cpu_policy; 1755 if (!policy) 1756 return -EINVAL; 1757 1758 cpu_policy = cpufreq_cpu_get(cpu); 1759 if (!cpu_policy) 1760 return -EINVAL; 1761 1762 memcpy(policy, cpu_policy, sizeof(struct cpufreq_policy)); 1763 1764 cpufreq_cpu_put(cpu_policy); 1765 return 0; 1766 } 1767 EXPORT_SYMBOL(cpufreq_get_policy); 1768 1769 /* 1770 * data : current policy. 1771 * policy : policy to be set. 1772 */ 1773 static int __cpufreq_set_policy(struct cpufreq_policy *data, 1774 struct cpufreq_policy *policy) 1775 { 1776 int ret = 0, failed = 1; 1777 1778 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", policy->cpu, 1779 policy->min, policy->max); 1780 1781 memcpy(&policy->cpuinfo, &data->cpuinfo, 1782 sizeof(struct cpufreq_cpuinfo)); 1783 1784 if (policy->min > data->max || policy->max < data->min) { 1785 ret = -EINVAL; 1786 goto error_out; 1787 } 1788 1789 /* verify the cpu speed can be set within this limit */ 1790 ret = cpufreq_driver->verify(policy); 1791 if (ret) 1792 goto error_out; 1793 1794 /* adjust if necessary - all reasons */ 1795 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1796 CPUFREQ_ADJUST, policy); 1797 1798 /* adjust if necessary - hardware incompatibility*/ 1799 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1800 CPUFREQ_INCOMPATIBLE, policy); 1801 1802 /* 1803 * verify the cpu speed can be set within this limit, which might be 1804 * different to the first one 1805 */ 1806 ret = cpufreq_driver->verify(policy); 1807 if (ret) 1808 goto error_out; 1809 1810 /* notification of the new policy */ 1811 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1812 CPUFREQ_NOTIFY, policy); 1813 1814 data->min = policy->min; 1815 data->max = policy->max; 1816 1817 pr_debug("new min and max freqs are %u - %u kHz\n", 1818 data->min, data->max); 1819 1820 if (cpufreq_driver->setpolicy) { 1821 data->policy = policy->policy; 1822 pr_debug("setting range\n"); 1823 ret = cpufreq_driver->setpolicy(policy); 1824 } else { 1825 if (policy->governor != data->governor) { 1826 /* save old, working values */ 1827 struct cpufreq_governor *old_gov = data->governor; 1828 1829 pr_debug("governor switch\n"); 1830 1831 /* end old governor */ 1832 if (data->governor) { 1833 __cpufreq_governor(data, CPUFREQ_GOV_STOP); 1834 unlock_policy_rwsem_write(policy->cpu); 1835 __cpufreq_governor(data, 1836 CPUFREQ_GOV_POLICY_EXIT); 1837 lock_policy_rwsem_write(policy->cpu); 1838 } 1839 1840 /* start new governor */ 1841 data->governor = policy->governor; 1842 if (!__cpufreq_governor(data, CPUFREQ_GOV_POLICY_INIT)) { 1843 if (!__cpufreq_governor(data, CPUFREQ_GOV_START)) { 1844 failed = 0; 1845 } else { 1846 unlock_policy_rwsem_write(policy->cpu); 1847 __cpufreq_governor(data, 1848 CPUFREQ_GOV_POLICY_EXIT); 1849 lock_policy_rwsem_write(policy->cpu); 1850 } 1851 } 1852 1853 if (failed) { 1854 /* new governor failed, so re-start old one */ 1855 pr_debug("starting governor %s failed\n", 1856 data->governor->name); 1857 if (old_gov) { 1858 data->governor = old_gov; 1859 __cpufreq_governor(data, 1860 CPUFREQ_GOV_POLICY_INIT); 1861 __cpufreq_governor(data, 1862 CPUFREQ_GOV_START); 1863 } 1864 ret = -EINVAL; 1865 goto error_out; 1866 } 1867 /* might be a policy change, too, so fall through */ 1868 } 1869 pr_debug("governor: change or update limits\n"); 1870 __cpufreq_governor(data, CPUFREQ_GOV_LIMITS); 1871 } 1872 1873 error_out: 1874 return ret; 1875 } 1876 1877 /** 1878 * cpufreq_update_policy - re-evaluate an existing cpufreq policy 1879 * @cpu: CPU which shall be re-evaluated 1880 * 1881 * Useful for policy notifiers which have different necessities 1882 * at different times. 1883 */ 1884 int cpufreq_update_policy(unsigned int cpu) 1885 { 1886 struct cpufreq_policy *data = cpufreq_cpu_get(cpu); 1887 struct cpufreq_policy policy; 1888 int ret; 1889 1890 if (!data) { 1891 ret = -ENODEV; 1892 goto no_policy; 1893 } 1894 1895 if (unlikely(lock_policy_rwsem_write(cpu))) { 1896 ret = -EINVAL; 1897 goto fail; 1898 } 1899 1900 pr_debug("updating policy for CPU %u\n", cpu); 1901 memcpy(&policy, data, sizeof(struct cpufreq_policy)); 1902 policy.min = data->user_policy.min; 1903 policy.max = data->user_policy.max; 1904 policy.policy = data->user_policy.policy; 1905 policy.governor = data->user_policy.governor; 1906 1907 /* 1908 * BIOS might change freq behind our back 1909 * -> ask driver for current freq and notify governors about a change 1910 */ 1911 if (cpufreq_driver->get) { 1912 policy.cur = cpufreq_driver->get(cpu); 1913 if (!data->cur) { 1914 pr_debug("Driver did not initialize current freq"); 1915 data->cur = policy.cur; 1916 } else { 1917 if (data->cur != policy.cur && cpufreq_driver->target) 1918 cpufreq_out_of_sync(cpu, data->cur, 1919 policy.cur); 1920 } 1921 } 1922 1923 ret = __cpufreq_set_policy(data, &policy); 1924 1925 unlock_policy_rwsem_write(cpu); 1926 1927 fail: 1928 cpufreq_cpu_put(data); 1929 no_policy: 1930 return ret; 1931 } 1932 EXPORT_SYMBOL(cpufreq_update_policy); 1933 1934 static int __cpuinit cpufreq_cpu_callback(struct notifier_block *nfb, 1935 unsigned long action, void *hcpu) 1936 { 1937 unsigned int cpu = (unsigned long)hcpu; 1938 struct device *dev; 1939 1940 dev = get_cpu_device(cpu); 1941 if (dev) { 1942 switch (action) { 1943 case CPU_ONLINE: 1944 cpufreq_add_dev(dev, NULL); 1945 break; 1946 case CPU_DOWN_PREPARE: 1947 case CPU_UP_CANCELED_FROZEN: 1948 __cpufreq_remove_dev(dev, NULL); 1949 break; 1950 case CPU_DOWN_FAILED: 1951 cpufreq_add_dev(dev, NULL); 1952 break; 1953 } 1954 } 1955 return NOTIFY_OK; 1956 } 1957 1958 static struct notifier_block __refdata cpufreq_cpu_notifier = { 1959 .notifier_call = cpufreq_cpu_callback, 1960 }; 1961 1962 /********************************************************************* 1963 * REGISTER / UNREGISTER CPUFREQ DRIVER * 1964 *********************************************************************/ 1965 1966 /** 1967 * cpufreq_register_driver - register a CPU Frequency driver 1968 * @driver_data: A struct cpufreq_driver containing the values# 1969 * submitted by the CPU Frequency driver. 1970 * 1971 * Registers a CPU Frequency driver to this core code. This code 1972 * returns zero on success, -EBUSY when another driver got here first 1973 * (and isn't unregistered in the meantime). 1974 * 1975 */ 1976 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 1977 { 1978 unsigned long flags; 1979 int ret; 1980 1981 if (cpufreq_disabled()) 1982 return -ENODEV; 1983 1984 if (!driver_data || !driver_data->verify || !driver_data->init || 1985 ((!driver_data->setpolicy) && (!driver_data->target))) 1986 return -EINVAL; 1987 1988 pr_debug("trying to register driver %s\n", driver_data->name); 1989 1990 if (driver_data->setpolicy) 1991 driver_data->flags |= CPUFREQ_CONST_LOOPS; 1992 1993 write_lock_irqsave(&cpufreq_driver_lock, flags); 1994 if (cpufreq_driver) { 1995 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1996 return -EBUSY; 1997 } 1998 cpufreq_driver = driver_data; 1999 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2000 2001 ret = subsys_interface_register(&cpufreq_interface); 2002 if (ret) 2003 goto err_null_driver; 2004 2005 if (!(cpufreq_driver->flags & CPUFREQ_STICKY)) { 2006 int i; 2007 ret = -ENODEV; 2008 2009 /* check for at least one working CPU */ 2010 for (i = 0; i < nr_cpu_ids; i++) 2011 if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) { 2012 ret = 0; 2013 break; 2014 } 2015 2016 /* if all ->init() calls failed, unregister */ 2017 if (ret) { 2018 pr_debug("no CPU initialized for driver %s\n", 2019 driver_data->name); 2020 goto err_if_unreg; 2021 } 2022 } 2023 2024 register_hotcpu_notifier(&cpufreq_cpu_notifier); 2025 pr_debug("driver %s up and running\n", driver_data->name); 2026 2027 return 0; 2028 err_if_unreg: 2029 subsys_interface_unregister(&cpufreq_interface); 2030 err_null_driver: 2031 write_lock_irqsave(&cpufreq_driver_lock, flags); 2032 cpufreq_driver = NULL; 2033 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2034 return ret; 2035 } 2036 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 2037 2038 /** 2039 * cpufreq_unregister_driver - unregister the current CPUFreq driver 2040 * 2041 * Unregister the current CPUFreq driver. Only call this if you have 2042 * the right to do so, i.e. if you have succeeded in initialising before! 2043 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 2044 * currently not initialised. 2045 */ 2046 int cpufreq_unregister_driver(struct cpufreq_driver *driver) 2047 { 2048 unsigned long flags; 2049 2050 if (!cpufreq_driver || (driver != cpufreq_driver)) 2051 return -EINVAL; 2052 2053 pr_debug("unregistering driver %s\n", driver->name); 2054 2055 subsys_interface_unregister(&cpufreq_interface); 2056 unregister_hotcpu_notifier(&cpufreq_cpu_notifier); 2057 2058 write_lock_irqsave(&cpufreq_driver_lock, flags); 2059 cpufreq_driver = NULL; 2060 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2061 2062 return 0; 2063 } 2064 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 2065 2066 static int __init cpufreq_core_init(void) 2067 { 2068 int cpu; 2069 2070 if (cpufreq_disabled()) 2071 return -ENODEV; 2072 2073 for_each_possible_cpu(cpu) { 2074 per_cpu(cpufreq_policy_cpu, cpu) = -1; 2075 init_rwsem(&per_cpu(cpu_policy_rwsem, cpu)); 2076 } 2077 2078 cpufreq_global_kobject = kobject_create(); 2079 BUG_ON(!cpufreq_global_kobject); 2080 register_syscore_ops(&cpufreq_syscore_ops); 2081 2082 return 0; 2083 } 2084 core_initcall(cpufreq_core_init); 2085