1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/cpufreq/cpufreq.c 4 * 5 * Copyright (C) 2001 Russell King 6 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 7 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org> 8 * 9 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 10 * Added handling for CPU hotplug 11 * Feb 2006 - Jacob Shin <jacob.shin@amd.com> 12 * Fix handling for CPU hotplug -- affected CPUs 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/cpu.h> 18 #include <linux/cpufreq.h> 19 #include <linux/cpu_cooling.h> 20 #include <linux/delay.h> 21 #include <linux/device.h> 22 #include <linux/init.h> 23 #include <linux/kernel_stat.h> 24 #include <linux/module.h> 25 #include <linux/mutex.h> 26 #include <linux/pm_qos.h> 27 #include <linux/slab.h> 28 #include <linux/string_choices.h> 29 #include <linux/suspend.h> 30 #include <linux/syscore_ops.h> 31 #include <linux/tick.h> 32 #include <linux/units.h> 33 #include <trace/events/power.h> 34 35 static LIST_HEAD(cpufreq_policy_list); 36 37 /* Macros to iterate over CPU policies */ 38 #define for_each_suitable_policy(__policy, __active) \ 39 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \ 40 if ((__active) == !policy_is_inactive(__policy)) 41 42 #define for_each_active_policy(__policy) \ 43 for_each_suitable_policy(__policy, true) 44 #define for_each_inactive_policy(__policy) \ 45 for_each_suitable_policy(__policy, false) 46 47 /* Iterate over governors */ 48 static LIST_HEAD(cpufreq_governor_list); 49 #define for_each_governor(__governor) \ 50 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list) 51 52 static char default_governor[CPUFREQ_NAME_LEN]; 53 54 /* 55 * The "cpufreq driver" - the arch- or hardware-dependent low 56 * level driver of CPUFreq support, and its spinlock. This lock 57 * also protects the cpufreq_cpu_data array. 58 */ 59 static struct cpufreq_driver *cpufreq_driver; 60 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data); 61 static DEFINE_RWLOCK(cpufreq_driver_lock); 62 63 static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance); 64 bool cpufreq_supports_freq_invariance(void) 65 { 66 return static_branch_likely(&cpufreq_freq_invariance); 67 } 68 69 /* Flag to suspend/resume CPUFreq governors */ 70 static bool cpufreq_suspended; 71 72 static inline bool has_target(void) 73 { 74 return cpufreq_driver->target_index || cpufreq_driver->target; 75 } 76 77 bool has_target_index(void) 78 { 79 return !!cpufreq_driver->target_index; 80 } 81 82 /* internal prototypes */ 83 static unsigned int __cpufreq_get(struct cpufreq_policy *policy); 84 static int cpufreq_init_governor(struct cpufreq_policy *policy); 85 static void cpufreq_exit_governor(struct cpufreq_policy *policy); 86 static void cpufreq_governor_limits(struct cpufreq_policy *policy); 87 static int cpufreq_set_policy(struct cpufreq_policy *policy, 88 struct cpufreq_governor *new_gov, 89 unsigned int new_pol); 90 static bool cpufreq_boost_supported(void); 91 static int cpufreq_boost_trigger_state(int state); 92 93 /* 94 * Two notifier lists: the "policy" list is involved in the 95 * validation process for a new CPU frequency policy; the 96 * "transition" list for kernel code that needs to handle 97 * changes to devices when the CPU clock speed changes. 98 * The mutex locks both lists. 99 */ 100 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list); 101 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list); 102 103 static int off __read_mostly; 104 static int cpufreq_disabled(void) 105 { 106 return off; 107 } 108 void disable_cpufreq(void) 109 { 110 off = 1; 111 } 112 static DEFINE_MUTEX(cpufreq_governor_mutex); 113 114 bool have_governor_per_policy(void) 115 { 116 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY); 117 } 118 EXPORT_SYMBOL_GPL(have_governor_per_policy); 119 120 static struct kobject *cpufreq_global_kobject; 121 122 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy) 123 { 124 if (have_governor_per_policy()) 125 return &policy->kobj; 126 else 127 return cpufreq_global_kobject; 128 } 129 EXPORT_SYMBOL_GPL(get_governor_parent_kobj); 130 131 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) 132 { 133 struct kernel_cpustat kcpustat; 134 u64 cur_wall_time; 135 u64 idle_time; 136 u64 busy_time; 137 138 cur_wall_time = jiffies64_to_nsecs(get_jiffies_64()); 139 140 kcpustat_cpu_fetch(&kcpustat, cpu); 141 142 busy_time = kcpustat.cpustat[CPUTIME_USER]; 143 busy_time += kcpustat.cpustat[CPUTIME_SYSTEM]; 144 busy_time += kcpustat.cpustat[CPUTIME_IRQ]; 145 busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ]; 146 busy_time += kcpustat.cpustat[CPUTIME_STEAL]; 147 busy_time += kcpustat.cpustat[CPUTIME_NICE]; 148 149 idle_time = cur_wall_time - busy_time; 150 if (wall) 151 *wall = div_u64(cur_wall_time, NSEC_PER_USEC); 152 153 return div_u64(idle_time, NSEC_PER_USEC); 154 } 155 156 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy) 157 { 158 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL); 159 160 if (idle_time == -1ULL) 161 return get_cpu_idle_time_jiffy(cpu, wall); 162 else if (!io_busy) 163 idle_time += get_cpu_iowait_time_us(cpu, wall); 164 165 return idle_time; 166 } 167 EXPORT_SYMBOL_GPL(get_cpu_idle_time); 168 169 /* 170 * This is a generic cpufreq init() routine which can be used by cpufreq 171 * drivers of SMP systems. It will do following: 172 * - validate & show freq table passed 173 * - set policies transition latency 174 * - policy->cpus with all possible CPUs 175 */ 176 void cpufreq_generic_init(struct cpufreq_policy *policy, 177 struct cpufreq_frequency_table *table, 178 unsigned int transition_latency) 179 { 180 policy->freq_table = table; 181 policy->cpuinfo.transition_latency = transition_latency; 182 183 /* 184 * The driver only supports the SMP configuration where all processors 185 * share the clock and voltage and clock. 186 */ 187 cpumask_setall(policy->cpus); 188 } 189 EXPORT_SYMBOL_GPL(cpufreq_generic_init); 190 191 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu) 192 { 193 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 194 195 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL; 196 } 197 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw); 198 199 unsigned int cpufreq_generic_get(unsigned int cpu) 200 { 201 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu); 202 203 if (!policy || IS_ERR(policy->clk)) { 204 pr_err("%s: No %s associated to cpu: %d\n", 205 __func__, policy ? "clk" : "policy", cpu); 206 return 0; 207 } 208 209 return clk_get_rate(policy->clk) / 1000; 210 } 211 EXPORT_SYMBOL_GPL(cpufreq_generic_get); 212 213 /** 214 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy. 215 * @cpu: CPU to find the policy for. 216 * 217 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment 218 * the kobject reference counter of that policy. Return a valid policy on 219 * success or NULL on failure. 220 * 221 * The policy returned by this function has to be released with the help of 222 * cpufreq_cpu_put() to balance its kobject reference counter properly. 223 */ 224 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) 225 { 226 struct cpufreq_policy *policy = NULL; 227 unsigned long flags; 228 229 if (WARN_ON(cpu >= nr_cpu_ids)) 230 return NULL; 231 232 /* get the cpufreq driver */ 233 read_lock_irqsave(&cpufreq_driver_lock, flags); 234 235 if (cpufreq_driver) { 236 /* get the CPU */ 237 policy = cpufreq_cpu_get_raw(cpu); 238 if (policy) 239 kobject_get(&policy->kobj); 240 } 241 242 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 243 244 return policy; 245 } 246 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 247 248 /** 249 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy. 250 * @policy: cpufreq policy returned by cpufreq_cpu_get(). 251 */ 252 void cpufreq_cpu_put(struct cpufreq_policy *policy) 253 { 254 kobject_put(&policy->kobj); 255 } 256 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 257 258 /** 259 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter. 260 * @policy: cpufreq policy returned by cpufreq_cpu_acquire(). 261 */ 262 void cpufreq_cpu_release(struct cpufreq_policy *policy) 263 { 264 if (WARN_ON(!policy)) 265 return; 266 267 lockdep_assert_held(&policy->rwsem); 268 269 up_write(&policy->rwsem); 270 271 cpufreq_cpu_put(policy); 272 } 273 274 /** 275 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it. 276 * @cpu: CPU to find the policy for. 277 * 278 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and 279 * if the policy returned by it is not NULL, acquire its rwsem for writing. 280 * Return the policy if it is active or release it and return NULL otherwise. 281 * 282 * The policy returned by this function has to be released with the help of 283 * cpufreq_cpu_release() in order to release its rwsem and balance its usage 284 * counter properly. 285 */ 286 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu) 287 { 288 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 289 290 if (!policy) 291 return NULL; 292 293 down_write(&policy->rwsem); 294 295 if (policy_is_inactive(policy)) { 296 cpufreq_cpu_release(policy); 297 return NULL; 298 } 299 300 return policy; 301 } 302 303 /********************************************************************* 304 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 305 *********************************************************************/ 306 307 /** 308 * adjust_jiffies - Adjust the system "loops_per_jiffy". 309 * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE. 310 * @ci: Frequency change information. 311 * 312 * This function alters the system "loops_per_jiffy" for the clock 313 * speed change. Note that loops_per_jiffy cannot be updated on SMP 314 * systems as each CPU might be scaled differently. So, use the arch 315 * per-CPU loops_per_jiffy value wherever possible. 316 */ 317 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 318 { 319 #ifndef CONFIG_SMP 320 static unsigned long l_p_j_ref; 321 static unsigned int l_p_j_ref_freq; 322 323 if (ci->flags & CPUFREQ_CONST_LOOPS) 324 return; 325 326 if (!l_p_j_ref_freq) { 327 l_p_j_ref = loops_per_jiffy; 328 l_p_j_ref_freq = ci->old; 329 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n", 330 l_p_j_ref, l_p_j_ref_freq); 331 } 332 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) { 333 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, 334 ci->new); 335 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n", 336 loops_per_jiffy, ci->new); 337 } 338 #endif 339 } 340 341 /** 342 * cpufreq_notify_transition - Notify frequency transition and adjust jiffies. 343 * @policy: cpufreq policy to enable fast frequency switching for. 344 * @freqs: contain details of the frequency update. 345 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE. 346 * 347 * This function calls the transition notifiers and adjust_jiffies(). 348 * 349 * It is called twice on all CPU frequency changes that have external effects. 350 */ 351 static void cpufreq_notify_transition(struct cpufreq_policy *policy, 352 struct cpufreq_freqs *freqs, 353 unsigned int state) 354 { 355 int cpu; 356 357 BUG_ON(irqs_disabled()); 358 359 if (cpufreq_disabled()) 360 return; 361 362 freqs->policy = policy; 363 freqs->flags = cpufreq_driver->flags; 364 pr_debug("notification %u of frequency transition to %u kHz\n", 365 state, freqs->new); 366 367 switch (state) { 368 case CPUFREQ_PRECHANGE: 369 /* 370 * Detect if the driver reported a value as "old frequency" 371 * which is not equal to what the cpufreq core thinks is 372 * "old frequency". 373 */ 374 if (policy->cur && policy->cur != freqs->old) { 375 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n", 376 freqs->old, policy->cur); 377 freqs->old = policy->cur; 378 } 379 380 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 381 CPUFREQ_PRECHANGE, freqs); 382 383 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 384 break; 385 386 case CPUFREQ_POSTCHANGE: 387 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 388 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new, 389 cpumask_pr_args(policy->cpus)); 390 391 for_each_cpu(cpu, policy->cpus) 392 trace_cpu_frequency(freqs->new, cpu); 393 394 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 395 CPUFREQ_POSTCHANGE, freqs); 396 397 cpufreq_stats_record_transition(policy, freqs->new); 398 policy->cur = freqs->new; 399 } 400 } 401 402 /* Do post notifications when there are chances that transition has failed */ 403 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy, 404 struct cpufreq_freqs *freqs, int transition_failed) 405 { 406 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 407 if (!transition_failed) 408 return; 409 410 swap(freqs->old, freqs->new); 411 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 412 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 413 } 414 415 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy, 416 struct cpufreq_freqs *freqs) 417 { 418 419 /* 420 * Catch double invocations of _begin() which lead to self-deadlock. 421 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core 422 * doesn't invoke _begin() on their behalf, and hence the chances of 423 * double invocations are very low. Moreover, there are scenarios 424 * where these checks can emit false-positive warnings in these 425 * drivers; so we avoid that by skipping them altogether. 426 */ 427 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION) 428 && current == policy->transition_task); 429 430 wait: 431 wait_event(policy->transition_wait, !policy->transition_ongoing); 432 433 spin_lock(&policy->transition_lock); 434 435 if (unlikely(policy->transition_ongoing)) { 436 spin_unlock(&policy->transition_lock); 437 goto wait; 438 } 439 440 policy->transition_ongoing = true; 441 policy->transition_task = current; 442 443 spin_unlock(&policy->transition_lock); 444 445 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 446 } 447 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin); 448 449 void cpufreq_freq_transition_end(struct cpufreq_policy *policy, 450 struct cpufreq_freqs *freqs, int transition_failed) 451 { 452 if (WARN_ON(!policy->transition_ongoing)) 453 return; 454 455 cpufreq_notify_post_transition(policy, freqs, transition_failed); 456 457 arch_set_freq_scale(policy->related_cpus, 458 policy->cur, 459 arch_scale_freq_ref(policy->cpu)); 460 461 spin_lock(&policy->transition_lock); 462 policy->transition_ongoing = false; 463 policy->transition_task = NULL; 464 spin_unlock(&policy->transition_lock); 465 466 wake_up(&policy->transition_wait); 467 } 468 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end); 469 470 /* 471 * Fast frequency switching status count. Positive means "enabled", negative 472 * means "disabled" and 0 means "not decided yet". 473 */ 474 static int cpufreq_fast_switch_count; 475 static DEFINE_MUTEX(cpufreq_fast_switch_lock); 476 477 static void cpufreq_list_transition_notifiers(void) 478 { 479 struct notifier_block *nb; 480 481 pr_info("Registered transition notifiers:\n"); 482 483 mutex_lock(&cpufreq_transition_notifier_list.mutex); 484 485 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next) 486 pr_info("%pS\n", nb->notifier_call); 487 488 mutex_unlock(&cpufreq_transition_notifier_list.mutex); 489 } 490 491 /** 492 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy. 493 * @policy: cpufreq policy to enable fast frequency switching for. 494 * 495 * Try to enable fast frequency switching for @policy. 496 * 497 * The attempt will fail if there is at least one transition notifier registered 498 * at this point, as fast frequency switching is quite fundamentally at odds 499 * with transition notifiers. Thus if successful, it will make registration of 500 * transition notifiers fail going forward. 501 */ 502 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy) 503 { 504 lockdep_assert_held(&policy->rwsem); 505 506 if (!policy->fast_switch_possible) 507 return; 508 509 mutex_lock(&cpufreq_fast_switch_lock); 510 if (cpufreq_fast_switch_count >= 0) { 511 cpufreq_fast_switch_count++; 512 policy->fast_switch_enabled = true; 513 } else { 514 pr_warn("CPU%u: Fast frequency switching not enabled\n", 515 policy->cpu); 516 cpufreq_list_transition_notifiers(); 517 } 518 mutex_unlock(&cpufreq_fast_switch_lock); 519 } 520 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch); 521 522 /** 523 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy. 524 * @policy: cpufreq policy to disable fast frequency switching for. 525 */ 526 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy) 527 { 528 mutex_lock(&cpufreq_fast_switch_lock); 529 if (policy->fast_switch_enabled) { 530 policy->fast_switch_enabled = false; 531 if (!WARN_ON(cpufreq_fast_switch_count <= 0)) 532 cpufreq_fast_switch_count--; 533 } 534 mutex_unlock(&cpufreq_fast_switch_lock); 535 } 536 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch); 537 538 static unsigned int __resolve_freq(struct cpufreq_policy *policy, 539 unsigned int target_freq, unsigned int relation) 540 { 541 unsigned int idx; 542 543 target_freq = clamp_val(target_freq, policy->min, policy->max); 544 545 if (!policy->freq_table) 546 return target_freq; 547 548 idx = cpufreq_frequency_table_target(policy, target_freq, relation); 549 policy->cached_resolved_idx = idx; 550 policy->cached_target_freq = target_freq; 551 return policy->freq_table[idx].frequency; 552 } 553 554 /** 555 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported 556 * one. 557 * @policy: associated policy to interrogate 558 * @target_freq: target frequency to resolve. 559 * 560 * The target to driver frequency mapping is cached in the policy. 561 * 562 * Return: Lowest driver-supported frequency greater than or equal to the 563 * given target_freq, subject to policy (min/max) and driver limitations. 564 */ 565 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy, 566 unsigned int target_freq) 567 { 568 return __resolve_freq(policy, target_freq, CPUFREQ_RELATION_LE); 569 } 570 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq); 571 572 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy) 573 { 574 unsigned int latency; 575 576 if (policy->transition_delay_us) 577 return policy->transition_delay_us; 578 579 latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC; 580 if (latency) 581 /* Give a 50% breathing room between updates */ 582 return latency + (latency >> 1); 583 584 return USEC_PER_MSEC; 585 } 586 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us); 587 588 /********************************************************************* 589 * SYSFS INTERFACE * 590 *********************************************************************/ 591 static ssize_t show_boost(struct kobject *kobj, 592 struct kobj_attribute *attr, char *buf) 593 { 594 return sysfs_emit(buf, "%d\n", cpufreq_driver->boost_enabled); 595 } 596 597 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr, 598 const char *buf, size_t count) 599 { 600 bool enable; 601 602 if (kstrtobool(buf, &enable)) 603 return -EINVAL; 604 605 if (cpufreq_boost_trigger_state(enable)) { 606 pr_err("%s: Cannot %s BOOST!\n", 607 __func__, str_enable_disable(enable)); 608 return -EINVAL; 609 } 610 611 pr_debug("%s: cpufreq BOOST %s\n", 612 __func__, str_enabled_disabled(enable)); 613 614 return count; 615 } 616 define_one_global_rw(boost); 617 618 static ssize_t show_local_boost(struct cpufreq_policy *policy, char *buf) 619 { 620 return sysfs_emit(buf, "%d\n", policy->boost_enabled); 621 } 622 623 static ssize_t store_local_boost(struct cpufreq_policy *policy, 624 const char *buf, size_t count) 625 { 626 int ret; 627 bool enable; 628 629 if (kstrtobool(buf, &enable)) 630 return -EINVAL; 631 632 if (!cpufreq_driver->boost_enabled) 633 return -EINVAL; 634 635 if (!policy->boost_supported) 636 return -EINVAL; 637 638 if (policy->boost_enabled == enable) 639 return count; 640 641 policy->boost_enabled = enable; 642 643 cpus_read_lock(); 644 ret = cpufreq_driver->set_boost(policy, enable); 645 cpus_read_unlock(); 646 647 if (ret) { 648 policy->boost_enabled = !policy->boost_enabled; 649 return ret; 650 } 651 652 return count; 653 } 654 655 static struct freq_attr local_boost = __ATTR(boost, 0644, show_local_boost, store_local_boost); 656 657 static struct cpufreq_governor *find_governor(const char *str_governor) 658 { 659 struct cpufreq_governor *t; 660 661 for_each_governor(t) 662 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN)) 663 return t; 664 665 return NULL; 666 } 667 668 static struct cpufreq_governor *get_governor(const char *str_governor) 669 { 670 struct cpufreq_governor *t; 671 672 mutex_lock(&cpufreq_governor_mutex); 673 t = find_governor(str_governor); 674 if (!t) 675 goto unlock; 676 677 if (!try_module_get(t->owner)) 678 t = NULL; 679 680 unlock: 681 mutex_unlock(&cpufreq_governor_mutex); 682 683 return t; 684 } 685 686 static unsigned int cpufreq_parse_policy(char *str_governor) 687 { 688 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) 689 return CPUFREQ_POLICY_PERFORMANCE; 690 691 if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) 692 return CPUFREQ_POLICY_POWERSAVE; 693 694 return CPUFREQ_POLICY_UNKNOWN; 695 } 696 697 /** 698 * cpufreq_parse_governor - parse a governor string only for has_target() 699 * @str_governor: Governor name. 700 */ 701 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor) 702 { 703 struct cpufreq_governor *t; 704 705 t = get_governor(str_governor); 706 if (t) 707 return t; 708 709 if (request_module("cpufreq_%s", str_governor)) 710 return NULL; 711 712 return get_governor(str_governor); 713 } 714 715 /* 716 * cpufreq_per_cpu_attr_read() / show_##file_name() - 717 * print out cpufreq information 718 * 719 * Write out information from cpufreq_driver->policy[cpu]; object must be 720 * "unsigned int". 721 */ 722 723 #define show_one(file_name, object) \ 724 static ssize_t show_##file_name \ 725 (struct cpufreq_policy *policy, char *buf) \ 726 { \ 727 return sysfs_emit(buf, "%u\n", policy->object); \ 728 } 729 730 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 731 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 732 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency); 733 show_one(scaling_min_freq, min); 734 show_one(scaling_max_freq, max); 735 736 __weak int arch_freq_get_on_cpu(int cpu) 737 { 738 return -EOPNOTSUPP; 739 } 740 741 static inline bool cpufreq_avg_freq_supported(struct cpufreq_policy *policy) 742 { 743 return arch_freq_get_on_cpu(policy->cpu) != -EOPNOTSUPP; 744 } 745 746 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf) 747 { 748 ssize_t ret; 749 int freq; 750 751 freq = IS_ENABLED(CONFIG_CPUFREQ_ARCH_CUR_FREQ) 752 ? arch_freq_get_on_cpu(policy->cpu) 753 : 0; 754 755 if (freq > 0) 756 ret = sysfs_emit(buf, "%u\n", freq); 757 else if (cpufreq_driver->setpolicy && cpufreq_driver->get) 758 ret = sysfs_emit(buf, "%u\n", cpufreq_driver->get(policy->cpu)); 759 else 760 ret = sysfs_emit(buf, "%u\n", policy->cur); 761 return ret; 762 } 763 764 /* 765 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 766 */ 767 #define store_one(file_name, object) \ 768 static ssize_t store_##file_name \ 769 (struct cpufreq_policy *policy, const char *buf, size_t count) \ 770 { \ 771 unsigned long val; \ 772 int ret; \ 773 \ 774 ret = kstrtoul(buf, 0, &val); \ 775 if (ret) \ 776 return ret; \ 777 \ 778 ret = freq_qos_update_request(policy->object##_freq_req, val);\ 779 return ret >= 0 ? count : ret; \ 780 } 781 782 store_one(scaling_min_freq, min); 783 store_one(scaling_max_freq, max); 784 785 /* 786 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 787 */ 788 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy, 789 char *buf) 790 { 791 unsigned int cur_freq = __cpufreq_get(policy); 792 793 if (cur_freq) 794 return sysfs_emit(buf, "%u\n", cur_freq); 795 796 return sysfs_emit(buf, "<unknown>\n"); 797 } 798 799 /* 800 * show_cpuinfo_avg_freq - average CPU frequency as detected by hardware 801 */ 802 static ssize_t show_cpuinfo_avg_freq(struct cpufreq_policy *policy, 803 char *buf) 804 { 805 int avg_freq = arch_freq_get_on_cpu(policy->cpu); 806 807 if (avg_freq > 0) 808 return sysfs_emit(buf, "%u\n", avg_freq); 809 return avg_freq != 0 ? avg_freq : -EINVAL; 810 } 811 812 /* 813 * show_scaling_governor - show the current policy for the specified CPU 814 */ 815 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf) 816 { 817 if (policy->policy == CPUFREQ_POLICY_POWERSAVE) 818 return sysfs_emit(buf, "powersave\n"); 819 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 820 return sysfs_emit(buf, "performance\n"); 821 else if (policy->governor) 822 return sysfs_emit(buf, "%s\n", policy->governor->name); 823 return -EINVAL; 824 } 825 826 /* 827 * store_scaling_governor - store policy for the specified CPU 828 */ 829 static ssize_t store_scaling_governor(struct cpufreq_policy *policy, 830 const char *buf, size_t count) 831 { 832 char str_governor[16]; 833 int ret; 834 835 ret = sscanf(buf, "%15s", str_governor); 836 if (ret != 1) 837 return -EINVAL; 838 839 if (cpufreq_driver->setpolicy) { 840 unsigned int new_pol; 841 842 new_pol = cpufreq_parse_policy(str_governor); 843 if (!new_pol) 844 return -EINVAL; 845 846 ret = cpufreq_set_policy(policy, NULL, new_pol); 847 } else { 848 struct cpufreq_governor *new_gov; 849 850 new_gov = cpufreq_parse_governor(str_governor); 851 if (!new_gov) 852 return -EINVAL; 853 854 ret = cpufreq_set_policy(policy, new_gov, 855 CPUFREQ_POLICY_UNKNOWN); 856 857 module_put(new_gov->owner); 858 } 859 860 return ret ? ret : count; 861 } 862 863 /* 864 * show_scaling_driver - show the cpufreq driver currently loaded 865 */ 866 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf) 867 { 868 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name); 869 } 870 871 /* 872 * show_scaling_available_governors - show the available CPUfreq governors 873 */ 874 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy, 875 char *buf) 876 { 877 ssize_t i = 0; 878 struct cpufreq_governor *t; 879 880 if (!has_target()) { 881 i += sysfs_emit(buf, "performance powersave"); 882 goto out; 883 } 884 885 mutex_lock(&cpufreq_governor_mutex); 886 for_each_governor(t) { 887 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) 888 - (CPUFREQ_NAME_LEN + 2))) 889 break; 890 i += sysfs_emit_at(buf, i, "%s ", t->name); 891 } 892 mutex_unlock(&cpufreq_governor_mutex); 893 out: 894 i += sysfs_emit_at(buf, i, "\n"); 895 return i; 896 } 897 898 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf) 899 { 900 ssize_t i = 0; 901 unsigned int cpu; 902 903 for_each_cpu(cpu, mask) { 904 i += sysfs_emit_at(buf, i, "%u ", cpu); 905 if (i >= (PAGE_SIZE - 5)) 906 break; 907 } 908 909 /* Remove the extra space at the end */ 910 i--; 911 912 i += sysfs_emit_at(buf, i, "\n"); 913 return i; 914 } 915 EXPORT_SYMBOL_GPL(cpufreq_show_cpus); 916 917 /* 918 * show_related_cpus - show the CPUs affected by each transition even if 919 * hw coordination is in use 920 */ 921 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf) 922 { 923 return cpufreq_show_cpus(policy->related_cpus, buf); 924 } 925 926 /* 927 * show_affected_cpus - show the CPUs affected by each transition 928 */ 929 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf) 930 { 931 return cpufreq_show_cpus(policy->cpus, buf); 932 } 933 934 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy, 935 const char *buf, size_t count) 936 { 937 unsigned int freq = 0; 938 unsigned int ret; 939 940 if (!policy->governor || !policy->governor->store_setspeed) 941 return -EINVAL; 942 943 ret = sscanf(buf, "%u", &freq); 944 if (ret != 1) 945 return -EINVAL; 946 947 policy->governor->store_setspeed(policy, freq); 948 949 return count; 950 } 951 952 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf) 953 { 954 if (!policy->governor || !policy->governor->show_setspeed) 955 return sysfs_emit(buf, "<unsupported>\n"); 956 957 return policy->governor->show_setspeed(policy, buf); 958 } 959 960 /* 961 * show_bios_limit - show the current cpufreq HW/BIOS limitation 962 */ 963 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf) 964 { 965 unsigned int limit; 966 int ret; 967 ret = cpufreq_driver->bios_limit(policy->cpu, &limit); 968 if (!ret) 969 return sysfs_emit(buf, "%u\n", limit); 970 return sysfs_emit(buf, "%u\n", policy->cpuinfo.max_freq); 971 } 972 973 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400); 974 cpufreq_freq_attr_ro(cpuinfo_avg_freq); 975 cpufreq_freq_attr_ro(cpuinfo_min_freq); 976 cpufreq_freq_attr_ro(cpuinfo_max_freq); 977 cpufreq_freq_attr_ro(cpuinfo_transition_latency); 978 cpufreq_freq_attr_ro(scaling_available_governors); 979 cpufreq_freq_attr_ro(scaling_driver); 980 cpufreq_freq_attr_ro(scaling_cur_freq); 981 cpufreq_freq_attr_ro(bios_limit); 982 cpufreq_freq_attr_ro(related_cpus); 983 cpufreq_freq_attr_ro(affected_cpus); 984 cpufreq_freq_attr_rw(scaling_min_freq); 985 cpufreq_freq_attr_rw(scaling_max_freq); 986 cpufreq_freq_attr_rw(scaling_governor); 987 cpufreq_freq_attr_rw(scaling_setspeed); 988 989 static struct attribute *cpufreq_attrs[] = { 990 &cpuinfo_min_freq.attr, 991 &cpuinfo_max_freq.attr, 992 &cpuinfo_transition_latency.attr, 993 &scaling_min_freq.attr, 994 &scaling_max_freq.attr, 995 &affected_cpus.attr, 996 &related_cpus.attr, 997 &scaling_governor.attr, 998 &scaling_driver.attr, 999 &scaling_available_governors.attr, 1000 &scaling_setspeed.attr, 1001 NULL 1002 }; 1003 ATTRIBUTE_GROUPS(cpufreq); 1004 1005 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj) 1006 #define to_attr(a) container_of(a, struct freq_attr, attr) 1007 1008 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) 1009 { 1010 struct cpufreq_policy *policy = to_policy(kobj); 1011 struct freq_attr *fattr = to_attr(attr); 1012 ssize_t ret = -EBUSY; 1013 1014 if (!fattr->show) 1015 return -EIO; 1016 1017 down_read(&policy->rwsem); 1018 if (likely(!policy_is_inactive(policy))) 1019 ret = fattr->show(policy, buf); 1020 up_read(&policy->rwsem); 1021 1022 return ret; 1023 } 1024 1025 static ssize_t store(struct kobject *kobj, struct attribute *attr, 1026 const char *buf, size_t count) 1027 { 1028 struct cpufreq_policy *policy = to_policy(kobj); 1029 struct freq_attr *fattr = to_attr(attr); 1030 ssize_t ret = -EBUSY; 1031 1032 if (!fattr->store) 1033 return -EIO; 1034 1035 down_write(&policy->rwsem); 1036 if (likely(!policy_is_inactive(policy))) 1037 ret = fattr->store(policy, buf, count); 1038 up_write(&policy->rwsem); 1039 1040 return ret; 1041 } 1042 1043 static void cpufreq_sysfs_release(struct kobject *kobj) 1044 { 1045 struct cpufreq_policy *policy = to_policy(kobj); 1046 pr_debug("last reference is dropped\n"); 1047 complete(&policy->kobj_unregister); 1048 } 1049 1050 static const struct sysfs_ops sysfs_ops = { 1051 .show = show, 1052 .store = store, 1053 }; 1054 1055 static const struct kobj_type ktype_cpufreq = { 1056 .sysfs_ops = &sysfs_ops, 1057 .default_groups = cpufreq_groups, 1058 .release = cpufreq_sysfs_release, 1059 }; 1060 1061 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu, 1062 struct device *dev) 1063 { 1064 if (unlikely(!dev)) 1065 return; 1066 1067 if (cpumask_test_and_set_cpu(cpu, policy->real_cpus)) 1068 return; 1069 1070 dev_dbg(dev, "%s: Adding symlink\n", __func__); 1071 if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq")) 1072 dev_err(dev, "cpufreq symlink creation failed\n"); 1073 } 1074 1075 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu, 1076 struct device *dev) 1077 { 1078 dev_dbg(dev, "%s: Removing symlink\n", __func__); 1079 sysfs_remove_link(&dev->kobj, "cpufreq"); 1080 cpumask_clear_cpu(cpu, policy->real_cpus); 1081 } 1082 1083 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy) 1084 { 1085 struct freq_attr **drv_attr; 1086 int ret = 0; 1087 1088 /* Attributes that need freq_table */ 1089 if (policy->freq_table) { 1090 ret = sysfs_create_file(&policy->kobj, 1091 &cpufreq_freq_attr_scaling_available_freqs.attr); 1092 if (ret) 1093 return ret; 1094 1095 if (cpufreq_boost_supported()) { 1096 ret = sysfs_create_file(&policy->kobj, 1097 &cpufreq_freq_attr_scaling_boost_freqs.attr); 1098 if (ret) 1099 return ret; 1100 } 1101 } 1102 1103 /* set up files for this cpu device */ 1104 drv_attr = cpufreq_driver->attr; 1105 while (drv_attr && *drv_attr) { 1106 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 1107 if (ret) 1108 return ret; 1109 drv_attr++; 1110 } 1111 if (cpufreq_driver->get) { 1112 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 1113 if (ret) 1114 return ret; 1115 } 1116 1117 if (cpufreq_avg_freq_supported(policy)) { 1118 ret = sysfs_create_file(&policy->kobj, &cpuinfo_avg_freq.attr); 1119 if (ret) 1120 return ret; 1121 } 1122 1123 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 1124 if (ret) 1125 return ret; 1126 1127 if (cpufreq_driver->bios_limit) { 1128 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr); 1129 if (ret) 1130 return ret; 1131 } 1132 1133 if (cpufreq_boost_supported()) { 1134 ret = sysfs_create_file(&policy->kobj, &local_boost.attr); 1135 if (ret) 1136 return ret; 1137 } 1138 1139 return 0; 1140 } 1141 1142 static int cpufreq_init_policy(struct cpufreq_policy *policy) 1143 { 1144 struct cpufreq_governor *gov = NULL; 1145 unsigned int pol = CPUFREQ_POLICY_UNKNOWN; 1146 int ret; 1147 1148 if (has_target()) { 1149 /* Update policy governor to the one used before hotplug. */ 1150 gov = get_governor(policy->last_governor); 1151 if (gov) { 1152 pr_debug("Restoring governor %s for cpu %d\n", 1153 gov->name, policy->cpu); 1154 } else { 1155 gov = get_governor(default_governor); 1156 } 1157 1158 if (!gov) { 1159 gov = cpufreq_default_governor(); 1160 __module_get(gov->owner); 1161 } 1162 1163 } else { 1164 1165 /* Use the default policy if there is no last_policy. */ 1166 if (policy->last_policy) { 1167 pol = policy->last_policy; 1168 } else { 1169 pol = cpufreq_parse_policy(default_governor); 1170 /* 1171 * In case the default governor is neither "performance" 1172 * nor "powersave", fall back to the initial policy 1173 * value set by the driver. 1174 */ 1175 if (pol == CPUFREQ_POLICY_UNKNOWN) 1176 pol = policy->policy; 1177 } 1178 if (pol != CPUFREQ_POLICY_PERFORMANCE && 1179 pol != CPUFREQ_POLICY_POWERSAVE) 1180 return -ENODATA; 1181 } 1182 1183 ret = cpufreq_set_policy(policy, gov, pol); 1184 if (gov) 1185 module_put(gov->owner); 1186 1187 return ret; 1188 } 1189 1190 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu) 1191 { 1192 int ret = 0; 1193 1194 /* Has this CPU been taken care of already? */ 1195 if (cpumask_test_cpu(cpu, policy->cpus)) 1196 return 0; 1197 1198 down_write(&policy->rwsem); 1199 if (has_target()) 1200 cpufreq_stop_governor(policy); 1201 1202 cpumask_set_cpu(cpu, policy->cpus); 1203 1204 if (has_target()) { 1205 ret = cpufreq_start_governor(policy); 1206 if (ret) 1207 pr_err("%s: Failed to start governor\n", __func__); 1208 } 1209 up_write(&policy->rwsem); 1210 return ret; 1211 } 1212 1213 void refresh_frequency_limits(struct cpufreq_policy *policy) 1214 { 1215 if (!policy_is_inactive(policy)) { 1216 pr_debug("updating policy for CPU %u\n", policy->cpu); 1217 1218 cpufreq_set_policy(policy, policy->governor, policy->policy); 1219 } 1220 } 1221 EXPORT_SYMBOL(refresh_frequency_limits); 1222 1223 static void handle_update(struct work_struct *work) 1224 { 1225 struct cpufreq_policy *policy = 1226 container_of(work, struct cpufreq_policy, update); 1227 1228 pr_debug("handle_update for cpu %u called\n", policy->cpu); 1229 down_write(&policy->rwsem); 1230 refresh_frequency_limits(policy); 1231 up_write(&policy->rwsem); 1232 } 1233 1234 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq, 1235 void *data) 1236 { 1237 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min); 1238 1239 schedule_work(&policy->update); 1240 return 0; 1241 } 1242 1243 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq, 1244 void *data) 1245 { 1246 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max); 1247 1248 schedule_work(&policy->update); 1249 return 0; 1250 } 1251 1252 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy) 1253 { 1254 struct kobject *kobj; 1255 struct completion *cmp; 1256 1257 down_write(&policy->rwsem); 1258 cpufreq_stats_free_table(policy); 1259 kobj = &policy->kobj; 1260 cmp = &policy->kobj_unregister; 1261 up_write(&policy->rwsem); 1262 kobject_put(kobj); 1263 1264 /* 1265 * We need to make sure that the underlying kobj is 1266 * actually not referenced anymore by anybody before we 1267 * proceed with unloading. 1268 */ 1269 pr_debug("waiting for dropping of refcount\n"); 1270 wait_for_completion(cmp); 1271 pr_debug("wait complete\n"); 1272 } 1273 1274 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu) 1275 { 1276 struct cpufreq_policy *policy; 1277 struct device *dev = get_cpu_device(cpu); 1278 int ret; 1279 1280 if (!dev) 1281 return NULL; 1282 1283 policy = kzalloc(sizeof(*policy), GFP_KERNEL); 1284 if (!policy) 1285 return NULL; 1286 1287 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) 1288 goto err_free_policy; 1289 1290 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) 1291 goto err_free_cpumask; 1292 1293 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL)) 1294 goto err_free_rcpumask; 1295 1296 init_completion(&policy->kobj_unregister); 1297 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, 1298 cpufreq_global_kobject, "policy%u", cpu); 1299 if (ret) { 1300 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret); 1301 /* 1302 * The entire policy object will be freed below, but the extra 1303 * memory allocated for the kobject name needs to be freed by 1304 * releasing the kobject. 1305 */ 1306 kobject_put(&policy->kobj); 1307 goto err_free_real_cpus; 1308 } 1309 1310 freq_constraints_init(&policy->constraints); 1311 1312 policy->nb_min.notifier_call = cpufreq_notifier_min; 1313 policy->nb_max.notifier_call = cpufreq_notifier_max; 1314 1315 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN, 1316 &policy->nb_min); 1317 if (ret) { 1318 dev_err(dev, "Failed to register MIN QoS notifier: %d (CPU%u)\n", 1319 ret, cpu); 1320 goto err_kobj_remove; 1321 } 1322 1323 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX, 1324 &policy->nb_max); 1325 if (ret) { 1326 dev_err(dev, "Failed to register MAX QoS notifier: %d (CPU%u)\n", 1327 ret, cpu); 1328 goto err_min_qos_notifier; 1329 } 1330 1331 INIT_LIST_HEAD(&policy->policy_list); 1332 init_rwsem(&policy->rwsem); 1333 spin_lock_init(&policy->transition_lock); 1334 init_waitqueue_head(&policy->transition_wait); 1335 INIT_WORK(&policy->update, handle_update); 1336 1337 policy->cpu = cpu; 1338 return policy; 1339 1340 err_min_qos_notifier: 1341 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN, 1342 &policy->nb_min); 1343 err_kobj_remove: 1344 cpufreq_policy_put_kobj(policy); 1345 err_free_real_cpus: 1346 free_cpumask_var(policy->real_cpus); 1347 err_free_rcpumask: 1348 free_cpumask_var(policy->related_cpus); 1349 err_free_cpumask: 1350 free_cpumask_var(policy->cpus); 1351 err_free_policy: 1352 kfree(policy); 1353 1354 return NULL; 1355 } 1356 1357 static void cpufreq_policy_free(struct cpufreq_policy *policy) 1358 { 1359 unsigned long flags; 1360 int cpu; 1361 1362 /* 1363 * The callers must ensure the policy is inactive by now, to avoid any 1364 * races with show()/store() callbacks. 1365 */ 1366 if (unlikely(!policy_is_inactive(policy))) 1367 pr_warn("%s: Freeing active policy\n", __func__); 1368 1369 /* Remove policy from list */ 1370 write_lock_irqsave(&cpufreq_driver_lock, flags); 1371 list_del(&policy->policy_list); 1372 1373 for_each_cpu(cpu, policy->related_cpus) 1374 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1375 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1376 1377 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX, 1378 &policy->nb_max); 1379 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN, 1380 &policy->nb_min); 1381 1382 /* Cancel any pending policy->update work before freeing the policy. */ 1383 cancel_work_sync(&policy->update); 1384 1385 if (policy->max_freq_req) { 1386 /* 1387 * Remove max_freq_req after sending CPUFREQ_REMOVE_POLICY 1388 * notification, since CPUFREQ_CREATE_POLICY notification was 1389 * sent after adding max_freq_req earlier. 1390 */ 1391 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1392 CPUFREQ_REMOVE_POLICY, policy); 1393 freq_qos_remove_request(policy->max_freq_req); 1394 } 1395 1396 freq_qos_remove_request(policy->min_freq_req); 1397 kfree(policy->min_freq_req); 1398 1399 cpufreq_policy_put_kobj(policy); 1400 free_cpumask_var(policy->real_cpus); 1401 free_cpumask_var(policy->related_cpus); 1402 free_cpumask_var(policy->cpus); 1403 kfree(policy); 1404 } 1405 1406 static int cpufreq_online(unsigned int cpu) 1407 { 1408 struct cpufreq_policy *policy; 1409 bool new_policy; 1410 unsigned long flags; 1411 unsigned int j; 1412 int ret; 1413 1414 pr_debug("%s: bringing CPU%u online\n", __func__, cpu); 1415 1416 /* Check if this CPU already has a policy to manage it */ 1417 policy = per_cpu(cpufreq_cpu_data, cpu); 1418 if (policy) { 1419 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus)); 1420 if (!policy_is_inactive(policy)) 1421 return cpufreq_add_policy_cpu(policy, cpu); 1422 1423 /* This is the only online CPU for the policy. Start over. */ 1424 new_policy = false; 1425 down_write(&policy->rwsem); 1426 policy->cpu = cpu; 1427 policy->governor = NULL; 1428 } else { 1429 new_policy = true; 1430 policy = cpufreq_policy_alloc(cpu); 1431 if (!policy) 1432 return -ENOMEM; 1433 down_write(&policy->rwsem); 1434 } 1435 1436 if (!new_policy && cpufreq_driver->online) { 1437 /* Recover policy->cpus using related_cpus */ 1438 cpumask_copy(policy->cpus, policy->related_cpus); 1439 1440 ret = cpufreq_driver->online(policy); 1441 if (ret) { 1442 pr_debug("%s: %d: initialization failed\n", __func__, 1443 __LINE__); 1444 goto out_exit_policy; 1445 } 1446 } else { 1447 cpumask_copy(policy->cpus, cpumask_of(cpu)); 1448 1449 /* 1450 * Call driver. From then on the cpufreq must be able 1451 * to accept all calls to ->verify and ->setpolicy for this CPU. 1452 */ 1453 ret = cpufreq_driver->init(policy); 1454 if (ret) { 1455 pr_debug("%s: %d: initialization failed\n", __func__, 1456 __LINE__); 1457 goto out_free_policy; 1458 } 1459 1460 /* 1461 * The initialization has succeeded and the policy is online. 1462 * If there is a problem with its frequency table, take it 1463 * offline and drop it. 1464 */ 1465 ret = cpufreq_table_validate_and_sort(policy); 1466 if (ret) 1467 goto out_offline_policy; 1468 1469 /* related_cpus should at least include policy->cpus. */ 1470 cpumask_copy(policy->related_cpus, policy->cpus); 1471 } 1472 1473 /* 1474 * affected cpus must always be the one, which are online. We aren't 1475 * managing offline cpus here. 1476 */ 1477 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask); 1478 1479 if (new_policy) { 1480 for_each_cpu(j, policy->related_cpus) { 1481 per_cpu(cpufreq_cpu_data, j) = policy; 1482 add_cpu_dev_symlink(policy, j, get_cpu_device(j)); 1483 } 1484 1485 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req), 1486 GFP_KERNEL); 1487 if (!policy->min_freq_req) { 1488 ret = -ENOMEM; 1489 goto out_destroy_policy; 1490 } 1491 1492 ret = freq_qos_add_request(&policy->constraints, 1493 policy->min_freq_req, FREQ_QOS_MIN, 1494 FREQ_QOS_MIN_DEFAULT_VALUE); 1495 if (ret < 0) { 1496 /* 1497 * So we don't call freq_qos_remove_request() for an 1498 * uninitialized request. 1499 */ 1500 kfree(policy->min_freq_req); 1501 policy->min_freq_req = NULL; 1502 goto out_destroy_policy; 1503 } 1504 1505 /* 1506 * This must be initialized right here to avoid calling 1507 * freq_qos_remove_request() on uninitialized request in case 1508 * of errors. 1509 */ 1510 policy->max_freq_req = policy->min_freq_req + 1; 1511 1512 ret = freq_qos_add_request(&policy->constraints, 1513 policy->max_freq_req, FREQ_QOS_MAX, 1514 FREQ_QOS_MAX_DEFAULT_VALUE); 1515 if (ret < 0) { 1516 policy->max_freq_req = NULL; 1517 goto out_destroy_policy; 1518 } 1519 1520 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1521 CPUFREQ_CREATE_POLICY, policy); 1522 } else { 1523 ret = freq_qos_update_request(policy->max_freq_req, policy->max); 1524 if (ret < 0) 1525 goto out_destroy_policy; 1526 } 1527 1528 if (cpufreq_driver->get && has_target()) { 1529 policy->cur = cpufreq_driver->get(policy->cpu); 1530 if (!policy->cur) { 1531 ret = -EIO; 1532 pr_err("%s: ->get() failed\n", __func__); 1533 goto out_destroy_policy; 1534 } 1535 } 1536 1537 /* 1538 * Sometimes boot loaders set CPU frequency to a value outside of 1539 * frequency table present with cpufreq core. In such cases CPU might be 1540 * unstable if it has to run on that frequency for long duration of time 1541 * and so its better to set it to a frequency which is specified in 1542 * freq-table. This also makes cpufreq stats inconsistent as 1543 * cpufreq-stats would fail to register because current frequency of CPU 1544 * isn't found in freq-table. 1545 * 1546 * Because we don't want this change to effect boot process badly, we go 1547 * for the next freq which is >= policy->cur ('cur' must be set by now, 1548 * otherwise we will end up setting freq to lowest of the table as 'cur' 1549 * is initialized to zero). 1550 * 1551 * We are passing target-freq as "policy->cur - 1" otherwise 1552 * __cpufreq_driver_target() would simply fail, as policy->cur will be 1553 * equal to target-freq. 1554 */ 1555 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK) 1556 && has_target()) { 1557 unsigned int old_freq = policy->cur; 1558 1559 /* Are we running at unknown frequency ? */ 1560 ret = cpufreq_frequency_table_get_index(policy, old_freq); 1561 if (ret == -EINVAL) { 1562 ret = __cpufreq_driver_target(policy, old_freq - 1, 1563 CPUFREQ_RELATION_L); 1564 1565 /* 1566 * Reaching here after boot in a few seconds may not 1567 * mean that system will remain stable at "unknown" 1568 * frequency for longer duration. Hence, a BUG_ON(). 1569 */ 1570 BUG_ON(ret); 1571 pr_info("%s: CPU%d: Running at unlisted initial frequency: %u kHz, changing to: %u kHz\n", 1572 __func__, policy->cpu, old_freq, policy->cur); 1573 } 1574 } 1575 1576 if (new_policy) { 1577 ret = cpufreq_add_dev_interface(policy); 1578 if (ret) 1579 goto out_destroy_policy; 1580 1581 cpufreq_stats_create_table(policy); 1582 1583 write_lock_irqsave(&cpufreq_driver_lock, flags); 1584 list_add(&policy->policy_list, &cpufreq_policy_list); 1585 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1586 1587 /* 1588 * Register with the energy model before 1589 * em_rebuild_sched_domains() is called, which will result 1590 * in rebuilding of the sched domains, which should only be done 1591 * once the energy model is properly initialized for the policy 1592 * first. 1593 * 1594 * Also, this should be called before the policy is registered 1595 * with cooling framework. 1596 */ 1597 if (cpufreq_driver->register_em) 1598 cpufreq_driver->register_em(policy); 1599 } 1600 1601 ret = cpufreq_init_policy(policy); 1602 if (ret) { 1603 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n", 1604 __func__, cpu, ret); 1605 goto out_destroy_policy; 1606 } 1607 1608 up_write(&policy->rwsem); 1609 1610 kobject_uevent(&policy->kobj, KOBJ_ADD); 1611 1612 /* Callback for handling stuff after policy is ready */ 1613 if (cpufreq_driver->ready) 1614 cpufreq_driver->ready(policy); 1615 1616 /* Register cpufreq cooling only for a new policy */ 1617 if (new_policy && cpufreq_thermal_control_enabled(cpufreq_driver)) 1618 policy->cdev = of_cpufreq_cooling_register(policy); 1619 1620 /* Let the per-policy boost flag mirror the cpufreq_driver boost during init */ 1621 if (cpufreq_driver->set_boost && policy->boost_supported && 1622 policy->boost_enabled != cpufreq_boost_enabled()) { 1623 policy->boost_enabled = cpufreq_boost_enabled(); 1624 ret = cpufreq_driver->set_boost(policy, policy->boost_enabled); 1625 if (ret) { 1626 /* If the set_boost fails, the online operation is not affected */ 1627 pr_info("%s: CPU%d: Cannot %s BOOST\n", __func__, policy->cpu, 1628 str_enable_disable(policy->boost_enabled)); 1629 policy->boost_enabled = !policy->boost_enabled; 1630 } 1631 } 1632 1633 pr_debug("initialization complete\n"); 1634 1635 return 0; 1636 1637 out_destroy_policy: 1638 for_each_cpu(j, policy->real_cpus) 1639 remove_cpu_dev_symlink(policy, j, get_cpu_device(j)); 1640 1641 out_offline_policy: 1642 if (cpufreq_driver->offline) 1643 cpufreq_driver->offline(policy); 1644 1645 out_exit_policy: 1646 if (cpufreq_driver->exit) 1647 cpufreq_driver->exit(policy); 1648 1649 out_free_policy: 1650 cpumask_clear(policy->cpus); 1651 up_write(&policy->rwsem); 1652 1653 cpufreq_policy_free(policy); 1654 return ret; 1655 } 1656 1657 /** 1658 * cpufreq_add_dev - the cpufreq interface for a CPU device. 1659 * @dev: CPU device. 1660 * @sif: Subsystem interface structure pointer (not used) 1661 */ 1662 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 1663 { 1664 struct cpufreq_policy *policy; 1665 unsigned cpu = dev->id; 1666 int ret; 1667 1668 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu); 1669 1670 if (cpu_online(cpu)) { 1671 ret = cpufreq_online(cpu); 1672 if (ret) 1673 return ret; 1674 } 1675 1676 /* Create sysfs link on CPU registration */ 1677 policy = per_cpu(cpufreq_cpu_data, cpu); 1678 if (policy) 1679 add_cpu_dev_symlink(policy, cpu, dev); 1680 1681 return 0; 1682 } 1683 1684 static void __cpufreq_offline(unsigned int cpu, struct cpufreq_policy *policy) 1685 { 1686 int ret; 1687 1688 if (has_target()) 1689 cpufreq_stop_governor(policy); 1690 1691 cpumask_clear_cpu(cpu, policy->cpus); 1692 1693 if (!policy_is_inactive(policy)) { 1694 /* Nominate a new CPU if necessary. */ 1695 if (cpu == policy->cpu) 1696 policy->cpu = cpumask_any(policy->cpus); 1697 1698 /* Start the governor again for the active policy. */ 1699 if (has_target()) { 1700 ret = cpufreq_start_governor(policy); 1701 if (ret) 1702 pr_err("%s: Failed to start governor\n", __func__); 1703 } 1704 1705 return; 1706 } 1707 1708 if (has_target()) 1709 strscpy(policy->last_governor, policy->governor->name, 1710 CPUFREQ_NAME_LEN); 1711 else 1712 policy->last_policy = policy->policy; 1713 1714 if (has_target()) 1715 cpufreq_exit_governor(policy); 1716 1717 /* 1718 * Perform the ->offline() during light-weight tear-down, as 1719 * that allows fast recovery when the CPU comes back. 1720 */ 1721 if (cpufreq_driver->offline) { 1722 cpufreq_driver->offline(policy); 1723 return; 1724 } 1725 1726 if (cpufreq_driver->exit) 1727 cpufreq_driver->exit(policy); 1728 1729 policy->freq_table = NULL; 1730 } 1731 1732 static int cpufreq_offline(unsigned int cpu) 1733 { 1734 struct cpufreq_policy *policy; 1735 1736 pr_debug("%s: unregistering CPU %u\n", __func__, cpu); 1737 1738 policy = cpufreq_cpu_get_raw(cpu); 1739 if (!policy) { 1740 pr_debug("%s: No cpu_data found\n", __func__); 1741 return 0; 1742 } 1743 1744 down_write(&policy->rwsem); 1745 1746 __cpufreq_offline(cpu, policy); 1747 1748 up_write(&policy->rwsem); 1749 return 0; 1750 } 1751 1752 /* 1753 * cpufreq_remove_dev - remove a CPU device 1754 * 1755 * Removes the cpufreq interface for a CPU device. 1756 */ 1757 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif) 1758 { 1759 unsigned int cpu = dev->id; 1760 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1761 1762 if (!policy) 1763 return; 1764 1765 down_write(&policy->rwsem); 1766 1767 if (cpu_online(cpu)) 1768 __cpufreq_offline(cpu, policy); 1769 1770 remove_cpu_dev_symlink(policy, cpu, dev); 1771 1772 if (!cpumask_empty(policy->real_cpus)) { 1773 up_write(&policy->rwsem); 1774 return; 1775 } 1776 1777 /* 1778 * Unregister cpufreq cooling once all the CPUs of the policy are 1779 * removed. 1780 */ 1781 if (cpufreq_thermal_control_enabled(cpufreq_driver)) { 1782 cpufreq_cooling_unregister(policy->cdev); 1783 policy->cdev = NULL; 1784 } 1785 1786 /* We did light-weight exit earlier, do full tear down now */ 1787 if (cpufreq_driver->offline && cpufreq_driver->exit) 1788 cpufreq_driver->exit(policy); 1789 1790 up_write(&policy->rwsem); 1791 1792 cpufreq_policy_free(policy); 1793 } 1794 1795 /** 1796 * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference. 1797 * @policy: Policy managing CPUs. 1798 * @new_freq: New CPU frequency. 1799 * 1800 * Adjust to the current frequency first and clean up later by either calling 1801 * cpufreq_update_policy(), or scheduling handle_update(). 1802 */ 1803 static void cpufreq_out_of_sync(struct cpufreq_policy *policy, 1804 unsigned int new_freq) 1805 { 1806 struct cpufreq_freqs freqs; 1807 1808 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n", 1809 policy->cur, new_freq); 1810 1811 freqs.old = policy->cur; 1812 freqs.new = new_freq; 1813 1814 cpufreq_freq_transition_begin(policy, &freqs); 1815 cpufreq_freq_transition_end(policy, &freqs, 0); 1816 } 1817 1818 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update) 1819 { 1820 unsigned int new_freq; 1821 1822 new_freq = cpufreq_driver->get(policy->cpu); 1823 if (!new_freq) 1824 return 0; 1825 1826 /* 1827 * If fast frequency switching is used with the given policy, the check 1828 * against policy->cur is pointless, so skip it in that case. 1829 */ 1830 if (policy->fast_switch_enabled || !has_target()) 1831 return new_freq; 1832 1833 if (policy->cur != new_freq) { 1834 /* 1835 * For some platforms, the frequency returned by hardware may be 1836 * slightly different from what is provided in the frequency 1837 * table, for example hardware may return 499 MHz instead of 500 1838 * MHz. In such cases it is better to avoid getting into 1839 * unnecessary frequency updates. 1840 */ 1841 if (abs(policy->cur - new_freq) < KHZ_PER_MHZ) 1842 return policy->cur; 1843 1844 cpufreq_out_of_sync(policy, new_freq); 1845 if (update) 1846 schedule_work(&policy->update); 1847 } 1848 1849 return new_freq; 1850 } 1851 1852 /** 1853 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur 1854 * @cpu: CPU number 1855 * 1856 * This is the last known freq, without actually getting it from the driver. 1857 * Return value will be same as what is shown in scaling_cur_freq in sysfs. 1858 */ 1859 unsigned int cpufreq_quick_get(unsigned int cpu) 1860 { 1861 struct cpufreq_policy *policy; 1862 unsigned int ret_freq = 0; 1863 unsigned long flags; 1864 1865 read_lock_irqsave(&cpufreq_driver_lock, flags); 1866 1867 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) { 1868 ret_freq = cpufreq_driver->get(cpu); 1869 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1870 return ret_freq; 1871 } 1872 1873 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1874 1875 policy = cpufreq_cpu_get(cpu); 1876 if (policy) { 1877 ret_freq = policy->cur; 1878 cpufreq_cpu_put(policy); 1879 } 1880 1881 return ret_freq; 1882 } 1883 EXPORT_SYMBOL(cpufreq_quick_get); 1884 1885 /** 1886 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU 1887 * @cpu: CPU number 1888 * 1889 * Just return the max possible frequency for a given CPU. 1890 */ 1891 unsigned int cpufreq_quick_get_max(unsigned int cpu) 1892 { 1893 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1894 unsigned int ret_freq = 0; 1895 1896 if (policy) { 1897 ret_freq = policy->max; 1898 cpufreq_cpu_put(policy); 1899 } 1900 1901 return ret_freq; 1902 } 1903 EXPORT_SYMBOL(cpufreq_quick_get_max); 1904 1905 /** 1906 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU 1907 * @cpu: CPU number 1908 * 1909 * The default return value is the max_freq field of cpuinfo. 1910 */ 1911 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu) 1912 { 1913 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1914 unsigned int ret_freq = 0; 1915 1916 if (policy) { 1917 ret_freq = policy->cpuinfo.max_freq; 1918 cpufreq_cpu_put(policy); 1919 } 1920 1921 return ret_freq; 1922 } 1923 EXPORT_SYMBOL(cpufreq_get_hw_max_freq); 1924 1925 static unsigned int __cpufreq_get(struct cpufreq_policy *policy) 1926 { 1927 if (unlikely(policy_is_inactive(policy))) 1928 return 0; 1929 1930 return cpufreq_verify_current_freq(policy, true); 1931 } 1932 1933 /** 1934 * cpufreq_get - get the current CPU frequency (in kHz) 1935 * @cpu: CPU number 1936 * 1937 * Get the CPU current (static) CPU frequency 1938 */ 1939 unsigned int cpufreq_get(unsigned int cpu) 1940 { 1941 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1942 unsigned int ret_freq = 0; 1943 1944 if (policy) { 1945 down_read(&policy->rwsem); 1946 if (cpufreq_driver->get) 1947 ret_freq = __cpufreq_get(policy); 1948 up_read(&policy->rwsem); 1949 1950 cpufreq_cpu_put(policy); 1951 } 1952 1953 return ret_freq; 1954 } 1955 EXPORT_SYMBOL(cpufreq_get); 1956 1957 static struct subsys_interface cpufreq_interface = { 1958 .name = "cpufreq", 1959 .subsys = &cpu_subsys, 1960 .add_dev = cpufreq_add_dev, 1961 .remove_dev = cpufreq_remove_dev, 1962 }; 1963 1964 /* 1965 * In case platform wants some specific frequency to be configured 1966 * during suspend.. 1967 */ 1968 int cpufreq_generic_suspend(struct cpufreq_policy *policy) 1969 { 1970 int ret; 1971 1972 if (!policy->suspend_freq) { 1973 pr_debug("%s: suspend_freq not defined\n", __func__); 1974 return 0; 1975 } 1976 1977 pr_debug("%s: Setting suspend-freq: %u\n", __func__, 1978 policy->suspend_freq); 1979 1980 ret = __cpufreq_driver_target(policy, policy->suspend_freq, 1981 CPUFREQ_RELATION_H); 1982 if (ret) 1983 pr_err("%s: unable to set suspend-freq: %u. err: %d\n", 1984 __func__, policy->suspend_freq, ret); 1985 1986 return ret; 1987 } 1988 EXPORT_SYMBOL(cpufreq_generic_suspend); 1989 1990 /** 1991 * cpufreq_suspend() - Suspend CPUFreq governors. 1992 * 1993 * Called during system wide Suspend/Hibernate cycles for suspending governors 1994 * as some platforms can't change frequency after this point in suspend cycle. 1995 * Because some of the devices (like: i2c, regulators, etc) they use for 1996 * changing frequency are suspended quickly after this point. 1997 */ 1998 void cpufreq_suspend(void) 1999 { 2000 struct cpufreq_policy *policy; 2001 2002 if (!cpufreq_driver) 2003 return; 2004 2005 if (!has_target() && !cpufreq_driver->suspend) 2006 goto suspend; 2007 2008 pr_debug("%s: Suspending Governors\n", __func__); 2009 2010 for_each_active_policy(policy) { 2011 if (has_target()) { 2012 down_write(&policy->rwsem); 2013 cpufreq_stop_governor(policy); 2014 up_write(&policy->rwsem); 2015 } 2016 2017 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy)) 2018 pr_err("%s: Failed to suspend driver: %s\n", __func__, 2019 cpufreq_driver->name); 2020 } 2021 2022 suspend: 2023 cpufreq_suspended = true; 2024 } 2025 2026 /** 2027 * cpufreq_resume() - Resume CPUFreq governors. 2028 * 2029 * Called during system wide Suspend/Hibernate cycle for resuming governors that 2030 * are suspended with cpufreq_suspend(). 2031 */ 2032 void cpufreq_resume(void) 2033 { 2034 struct cpufreq_policy *policy; 2035 int ret; 2036 2037 if (!cpufreq_driver) 2038 return; 2039 2040 if (unlikely(!cpufreq_suspended)) 2041 return; 2042 2043 cpufreq_suspended = false; 2044 2045 if (!has_target() && !cpufreq_driver->resume) 2046 return; 2047 2048 pr_debug("%s: Resuming Governors\n", __func__); 2049 2050 for_each_active_policy(policy) { 2051 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) { 2052 pr_err("%s: Failed to resume driver: %s\n", __func__, 2053 cpufreq_driver->name); 2054 } else if (has_target()) { 2055 down_write(&policy->rwsem); 2056 ret = cpufreq_start_governor(policy); 2057 up_write(&policy->rwsem); 2058 2059 if (ret) 2060 pr_err("%s: Failed to start governor for CPU%u's policy\n", 2061 __func__, policy->cpu); 2062 } 2063 } 2064 } 2065 2066 /** 2067 * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones. 2068 * @flags: Flags to test against the current cpufreq driver's flags. 2069 * 2070 * Assumes that the driver is there, so callers must ensure that this is the 2071 * case. 2072 */ 2073 bool cpufreq_driver_test_flags(u16 flags) 2074 { 2075 return !!(cpufreq_driver->flags & flags); 2076 } 2077 2078 /** 2079 * cpufreq_get_current_driver - Return the current driver's name. 2080 * 2081 * Return the name string of the currently registered cpufreq driver or NULL if 2082 * none. 2083 */ 2084 const char *cpufreq_get_current_driver(void) 2085 { 2086 if (cpufreq_driver) 2087 return cpufreq_driver->name; 2088 2089 return NULL; 2090 } 2091 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver); 2092 2093 /** 2094 * cpufreq_get_driver_data - Return current driver data. 2095 * 2096 * Return the private data of the currently registered cpufreq driver, or NULL 2097 * if no cpufreq driver has been registered. 2098 */ 2099 void *cpufreq_get_driver_data(void) 2100 { 2101 if (cpufreq_driver) 2102 return cpufreq_driver->driver_data; 2103 2104 return NULL; 2105 } 2106 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data); 2107 2108 /********************************************************************* 2109 * NOTIFIER LISTS INTERFACE * 2110 *********************************************************************/ 2111 2112 /** 2113 * cpufreq_register_notifier - Register a notifier with cpufreq. 2114 * @nb: notifier function to register. 2115 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER. 2116 * 2117 * Add a notifier to one of two lists: either a list of notifiers that run on 2118 * clock rate changes (once before and once after every transition), or a list 2119 * of notifiers that ron on cpufreq policy changes. 2120 * 2121 * This function may sleep and it has the same return values as 2122 * blocking_notifier_chain_register(). 2123 */ 2124 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 2125 { 2126 int ret; 2127 2128 if (cpufreq_disabled()) 2129 return -EINVAL; 2130 2131 switch (list) { 2132 case CPUFREQ_TRANSITION_NOTIFIER: 2133 mutex_lock(&cpufreq_fast_switch_lock); 2134 2135 if (cpufreq_fast_switch_count > 0) { 2136 mutex_unlock(&cpufreq_fast_switch_lock); 2137 return -EBUSY; 2138 } 2139 ret = srcu_notifier_chain_register( 2140 &cpufreq_transition_notifier_list, nb); 2141 if (!ret) 2142 cpufreq_fast_switch_count--; 2143 2144 mutex_unlock(&cpufreq_fast_switch_lock); 2145 break; 2146 case CPUFREQ_POLICY_NOTIFIER: 2147 ret = blocking_notifier_chain_register( 2148 &cpufreq_policy_notifier_list, nb); 2149 break; 2150 default: 2151 ret = -EINVAL; 2152 } 2153 2154 return ret; 2155 } 2156 EXPORT_SYMBOL(cpufreq_register_notifier); 2157 2158 /** 2159 * cpufreq_unregister_notifier - Unregister a notifier from cpufreq. 2160 * @nb: notifier block to be unregistered. 2161 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER. 2162 * 2163 * Remove a notifier from one of the cpufreq notifier lists. 2164 * 2165 * This function may sleep and it has the same return values as 2166 * blocking_notifier_chain_unregister(). 2167 */ 2168 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 2169 { 2170 int ret; 2171 2172 if (cpufreq_disabled()) 2173 return -EINVAL; 2174 2175 switch (list) { 2176 case CPUFREQ_TRANSITION_NOTIFIER: 2177 mutex_lock(&cpufreq_fast_switch_lock); 2178 2179 ret = srcu_notifier_chain_unregister( 2180 &cpufreq_transition_notifier_list, nb); 2181 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0)) 2182 cpufreq_fast_switch_count++; 2183 2184 mutex_unlock(&cpufreq_fast_switch_lock); 2185 break; 2186 case CPUFREQ_POLICY_NOTIFIER: 2187 ret = blocking_notifier_chain_unregister( 2188 &cpufreq_policy_notifier_list, nb); 2189 break; 2190 default: 2191 ret = -EINVAL; 2192 } 2193 2194 return ret; 2195 } 2196 EXPORT_SYMBOL(cpufreq_unregister_notifier); 2197 2198 2199 /********************************************************************* 2200 * GOVERNORS * 2201 *********************************************************************/ 2202 2203 /** 2204 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch. 2205 * @policy: cpufreq policy to switch the frequency for. 2206 * @target_freq: New frequency to set (may be approximate). 2207 * 2208 * Carry out a fast frequency switch without sleeping. 2209 * 2210 * The driver's ->fast_switch() callback invoked by this function must be 2211 * suitable for being called from within RCU-sched read-side critical sections 2212 * and it is expected to select the minimum available frequency greater than or 2213 * equal to @target_freq (CPUFREQ_RELATION_L). 2214 * 2215 * This function must not be called if policy->fast_switch_enabled is unset. 2216 * 2217 * Governors calling this function must guarantee that it will never be invoked 2218 * twice in parallel for the same policy and that it will never be called in 2219 * parallel with either ->target() or ->target_index() for the same policy. 2220 * 2221 * Returns the actual frequency set for the CPU. 2222 * 2223 * If 0 is returned by the driver's ->fast_switch() callback to indicate an 2224 * error condition, the hardware configuration must be preserved. 2225 */ 2226 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy, 2227 unsigned int target_freq) 2228 { 2229 unsigned int freq; 2230 int cpu; 2231 2232 target_freq = clamp_val(target_freq, policy->min, policy->max); 2233 freq = cpufreq_driver->fast_switch(policy, target_freq); 2234 2235 if (!freq) 2236 return 0; 2237 2238 policy->cur = freq; 2239 arch_set_freq_scale(policy->related_cpus, freq, 2240 arch_scale_freq_ref(policy->cpu)); 2241 cpufreq_stats_record_transition(policy, freq); 2242 2243 if (trace_cpu_frequency_enabled()) { 2244 for_each_cpu(cpu, policy->cpus) 2245 trace_cpu_frequency(freq, cpu); 2246 } 2247 2248 return freq; 2249 } 2250 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch); 2251 2252 /** 2253 * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go. 2254 * @cpu: Target CPU. 2255 * @min_perf: Minimum (required) performance level (units of @capacity). 2256 * @target_perf: Target (desired) performance level (units of @capacity). 2257 * @capacity: Capacity of the target CPU. 2258 * 2259 * Carry out a fast performance level switch of @cpu without sleeping. 2260 * 2261 * The driver's ->adjust_perf() callback invoked by this function must be 2262 * suitable for being called from within RCU-sched read-side critical sections 2263 * and it is expected to select a suitable performance level equal to or above 2264 * @min_perf and preferably equal to or below @target_perf. 2265 * 2266 * This function must not be called if policy->fast_switch_enabled is unset. 2267 * 2268 * Governors calling this function must guarantee that it will never be invoked 2269 * twice in parallel for the same CPU and that it will never be called in 2270 * parallel with either ->target() or ->target_index() or ->fast_switch() for 2271 * the same CPU. 2272 */ 2273 void cpufreq_driver_adjust_perf(unsigned int cpu, 2274 unsigned long min_perf, 2275 unsigned long target_perf, 2276 unsigned long capacity) 2277 { 2278 cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity); 2279 } 2280 2281 /** 2282 * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback. 2283 * 2284 * Return 'true' if the ->adjust_perf callback is present for the 2285 * current driver or 'false' otherwise. 2286 */ 2287 bool cpufreq_driver_has_adjust_perf(void) 2288 { 2289 return !!cpufreq_driver->adjust_perf; 2290 } 2291 2292 /* Must set freqs->new to intermediate frequency */ 2293 static int __target_intermediate(struct cpufreq_policy *policy, 2294 struct cpufreq_freqs *freqs, int index) 2295 { 2296 int ret; 2297 2298 freqs->new = cpufreq_driver->get_intermediate(policy, index); 2299 2300 /* We don't need to switch to intermediate freq */ 2301 if (!freqs->new) 2302 return 0; 2303 2304 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n", 2305 __func__, policy->cpu, freqs->old, freqs->new); 2306 2307 cpufreq_freq_transition_begin(policy, freqs); 2308 ret = cpufreq_driver->target_intermediate(policy, index); 2309 cpufreq_freq_transition_end(policy, freqs, ret); 2310 2311 if (ret) 2312 pr_err("%s: Failed to change to intermediate frequency: %d\n", 2313 __func__, ret); 2314 2315 return ret; 2316 } 2317 2318 static int __target_index(struct cpufreq_policy *policy, int index) 2319 { 2320 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0}; 2321 unsigned int restore_freq, intermediate_freq = 0; 2322 unsigned int newfreq = policy->freq_table[index].frequency; 2323 int retval = -EINVAL; 2324 bool notify; 2325 2326 if (newfreq == policy->cur) 2327 return 0; 2328 2329 /* Save last value to restore later on errors */ 2330 restore_freq = policy->cur; 2331 2332 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION); 2333 if (notify) { 2334 /* Handle switching to intermediate frequency */ 2335 if (cpufreq_driver->get_intermediate) { 2336 retval = __target_intermediate(policy, &freqs, index); 2337 if (retval) 2338 return retval; 2339 2340 intermediate_freq = freqs.new; 2341 /* Set old freq to intermediate */ 2342 if (intermediate_freq) 2343 freqs.old = freqs.new; 2344 } 2345 2346 freqs.new = newfreq; 2347 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n", 2348 __func__, policy->cpu, freqs.old, freqs.new); 2349 2350 cpufreq_freq_transition_begin(policy, &freqs); 2351 } 2352 2353 retval = cpufreq_driver->target_index(policy, index); 2354 if (retval) 2355 pr_err("%s: Failed to change cpu frequency: %d\n", __func__, 2356 retval); 2357 2358 if (notify) { 2359 cpufreq_freq_transition_end(policy, &freqs, retval); 2360 2361 /* 2362 * Failed after setting to intermediate freq? Driver should have 2363 * reverted back to initial frequency and so should we. Check 2364 * here for intermediate_freq instead of get_intermediate, in 2365 * case we haven't switched to intermediate freq at all. 2366 */ 2367 if (unlikely(retval && intermediate_freq)) { 2368 freqs.old = intermediate_freq; 2369 freqs.new = restore_freq; 2370 cpufreq_freq_transition_begin(policy, &freqs); 2371 cpufreq_freq_transition_end(policy, &freqs, 0); 2372 } 2373 } 2374 2375 return retval; 2376 } 2377 2378 int __cpufreq_driver_target(struct cpufreq_policy *policy, 2379 unsigned int target_freq, 2380 unsigned int relation) 2381 { 2382 unsigned int old_target_freq = target_freq; 2383 2384 if (cpufreq_disabled()) 2385 return -ENODEV; 2386 2387 target_freq = __resolve_freq(policy, target_freq, relation); 2388 2389 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n", 2390 policy->cpu, target_freq, relation, old_target_freq); 2391 2392 /* 2393 * This might look like a redundant call as we are checking it again 2394 * after finding index. But it is left intentionally for cases where 2395 * exactly same freq is called again and so we can save on few function 2396 * calls. 2397 */ 2398 if (target_freq == policy->cur && 2399 !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS)) 2400 return 0; 2401 2402 if (cpufreq_driver->target) { 2403 /* 2404 * If the driver hasn't setup a single inefficient frequency, 2405 * it's unlikely it knows how to decode CPUFREQ_RELATION_E. 2406 */ 2407 if (!policy->efficiencies_available) 2408 relation &= ~CPUFREQ_RELATION_E; 2409 2410 return cpufreq_driver->target(policy, target_freq, relation); 2411 } 2412 2413 if (!cpufreq_driver->target_index) 2414 return -EINVAL; 2415 2416 return __target_index(policy, policy->cached_resolved_idx); 2417 } 2418 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 2419 2420 int cpufreq_driver_target(struct cpufreq_policy *policy, 2421 unsigned int target_freq, 2422 unsigned int relation) 2423 { 2424 int ret; 2425 2426 down_write(&policy->rwsem); 2427 2428 ret = __cpufreq_driver_target(policy, target_freq, relation); 2429 2430 up_write(&policy->rwsem); 2431 2432 return ret; 2433 } 2434 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 2435 2436 __weak struct cpufreq_governor *cpufreq_fallback_governor(void) 2437 { 2438 return NULL; 2439 } 2440 2441 static int cpufreq_init_governor(struct cpufreq_policy *policy) 2442 { 2443 int ret; 2444 2445 /* Don't start any governor operations if we are entering suspend */ 2446 if (cpufreq_suspended) 2447 return 0; 2448 /* 2449 * Governor might not be initiated here if ACPI _PPC changed 2450 * notification happened, so check it. 2451 */ 2452 if (!policy->governor) 2453 return -EINVAL; 2454 2455 /* Platform doesn't want dynamic frequency switching ? */ 2456 if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING && 2457 cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) { 2458 struct cpufreq_governor *gov = cpufreq_fallback_governor(); 2459 2460 if (gov) { 2461 pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n", 2462 policy->governor->name, gov->name); 2463 policy->governor = gov; 2464 } else { 2465 return -EINVAL; 2466 } 2467 } 2468 2469 if (!try_module_get(policy->governor->owner)) 2470 return -EINVAL; 2471 2472 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2473 2474 if (policy->governor->init) { 2475 ret = policy->governor->init(policy); 2476 if (ret) { 2477 module_put(policy->governor->owner); 2478 return ret; 2479 } 2480 } 2481 2482 policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET); 2483 2484 return 0; 2485 } 2486 2487 static void cpufreq_exit_governor(struct cpufreq_policy *policy) 2488 { 2489 if (cpufreq_suspended || !policy->governor) 2490 return; 2491 2492 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2493 2494 if (policy->governor->exit) 2495 policy->governor->exit(policy); 2496 2497 module_put(policy->governor->owner); 2498 } 2499 2500 int cpufreq_start_governor(struct cpufreq_policy *policy) 2501 { 2502 int ret; 2503 2504 if (cpufreq_suspended) 2505 return 0; 2506 2507 if (!policy->governor) 2508 return -EINVAL; 2509 2510 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2511 2512 if (cpufreq_driver->get) 2513 cpufreq_verify_current_freq(policy, false); 2514 2515 if (policy->governor->start) { 2516 ret = policy->governor->start(policy); 2517 if (ret) 2518 return ret; 2519 } 2520 2521 if (policy->governor->limits) 2522 policy->governor->limits(policy); 2523 2524 return 0; 2525 } 2526 2527 void cpufreq_stop_governor(struct cpufreq_policy *policy) 2528 { 2529 if (cpufreq_suspended || !policy->governor) 2530 return; 2531 2532 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2533 2534 if (policy->governor->stop) 2535 policy->governor->stop(policy); 2536 } 2537 2538 static void cpufreq_governor_limits(struct cpufreq_policy *policy) 2539 { 2540 if (cpufreq_suspended || !policy->governor) 2541 return; 2542 2543 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2544 2545 if (policy->governor->limits) 2546 policy->governor->limits(policy); 2547 } 2548 2549 int cpufreq_register_governor(struct cpufreq_governor *governor) 2550 { 2551 int err; 2552 2553 if (!governor) 2554 return -EINVAL; 2555 2556 if (cpufreq_disabled()) 2557 return -ENODEV; 2558 2559 mutex_lock(&cpufreq_governor_mutex); 2560 2561 err = -EBUSY; 2562 if (!find_governor(governor->name)) { 2563 err = 0; 2564 list_add(&governor->governor_list, &cpufreq_governor_list); 2565 } 2566 2567 mutex_unlock(&cpufreq_governor_mutex); 2568 return err; 2569 } 2570 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 2571 2572 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 2573 { 2574 struct cpufreq_policy *policy; 2575 unsigned long flags; 2576 2577 if (!governor) 2578 return; 2579 2580 if (cpufreq_disabled()) 2581 return; 2582 2583 /* clear last_governor for all inactive policies */ 2584 read_lock_irqsave(&cpufreq_driver_lock, flags); 2585 for_each_inactive_policy(policy) { 2586 if (!strcmp(policy->last_governor, governor->name)) { 2587 policy->governor = NULL; 2588 strcpy(policy->last_governor, "\0"); 2589 } 2590 } 2591 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 2592 2593 mutex_lock(&cpufreq_governor_mutex); 2594 list_del(&governor->governor_list); 2595 mutex_unlock(&cpufreq_governor_mutex); 2596 } 2597 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 2598 2599 2600 /********************************************************************* 2601 * POLICY INTERFACE * 2602 *********************************************************************/ 2603 2604 /** 2605 * cpufreq_get_policy - get the current cpufreq_policy 2606 * @policy: struct cpufreq_policy into which the current cpufreq_policy 2607 * is written 2608 * @cpu: CPU to find the policy for 2609 * 2610 * Reads the current cpufreq policy. 2611 */ 2612 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 2613 { 2614 struct cpufreq_policy *cpu_policy; 2615 if (!policy) 2616 return -EINVAL; 2617 2618 cpu_policy = cpufreq_cpu_get(cpu); 2619 if (!cpu_policy) 2620 return -EINVAL; 2621 2622 memcpy(policy, cpu_policy, sizeof(*policy)); 2623 2624 cpufreq_cpu_put(cpu_policy); 2625 return 0; 2626 } 2627 EXPORT_SYMBOL(cpufreq_get_policy); 2628 2629 DEFINE_PER_CPU(unsigned long, cpufreq_pressure); 2630 2631 /** 2632 * cpufreq_update_pressure() - Update cpufreq pressure for CPUs 2633 * @policy: cpufreq policy of the CPUs. 2634 * 2635 * Update the value of cpufreq pressure for all @cpus in the policy. 2636 */ 2637 static void cpufreq_update_pressure(struct cpufreq_policy *policy) 2638 { 2639 unsigned long max_capacity, capped_freq, pressure; 2640 u32 max_freq; 2641 int cpu; 2642 2643 cpu = cpumask_first(policy->related_cpus); 2644 max_freq = arch_scale_freq_ref(cpu); 2645 capped_freq = policy->max; 2646 2647 /* 2648 * Handle properly the boost frequencies, which should simply clean 2649 * the cpufreq pressure value. 2650 */ 2651 if (max_freq <= capped_freq) { 2652 pressure = 0; 2653 } else { 2654 max_capacity = arch_scale_cpu_capacity(cpu); 2655 pressure = max_capacity - 2656 mult_frac(max_capacity, capped_freq, max_freq); 2657 } 2658 2659 for_each_cpu(cpu, policy->related_cpus) 2660 WRITE_ONCE(per_cpu(cpufreq_pressure, cpu), pressure); 2661 } 2662 2663 /** 2664 * cpufreq_set_policy - Modify cpufreq policy parameters. 2665 * @policy: Policy object to modify. 2666 * @new_gov: Policy governor pointer. 2667 * @new_pol: Policy value (for drivers with built-in governors). 2668 * 2669 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency 2670 * limits to be set for the policy, update @policy with the verified limits 2671 * values and either invoke the driver's ->setpolicy() callback (if present) or 2672 * carry out a governor update for @policy. That is, run the current governor's 2673 * ->limits() callback (if @new_gov points to the same object as the one in 2674 * @policy) or replace the governor for @policy with @new_gov. 2675 * 2676 * The cpuinfo part of @policy is not updated by this function. 2677 */ 2678 static int cpufreq_set_policy(struct cpufreq_policy *policy, 2679 struct cpufreq_governor *new_gov, 2680 unsigned int new_pol) 2681 { 2682 struct cpufreq_policy_data new_data; 2683 struct cpufreq_governor *old_gov; 2684 int ret; 2685 2686 memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo)); 2687 new_data.freq_table = policy->freq_table; 2688 new_data.cpu = policy->cpu; 2689 /* 2690 * PM QoS framework collects all the requests from users and provide us 2691 * the final aggregated value here. 2692 */ 2693 new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN); 2694 new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX); 2695 2696 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", 2697 new_data.cpu, new_data.min, new_data.max); 2698 2699 /* 2700 * Verify that the CPU speed can be set within these limits and make sure 2701 * that min <= max. 2702 */ 2703 ret = cpufreq_driver->verify(&new_data); 2704 if (ret) 2705 return ret; 2706 2707 /* 2708 * Resolve policy min/max to available frequencies. It ensures 2709 * no frequency resolution will neither overshoot the requested maximum 2710 * nor undershoot the requested minimum. 2711 */ 2712 policy->min = new_data.min; 2713 policy->max = new_data.max; 2714 policy->min = __resolve_freq(policy, policy->min, CPUFREQ_RELATION_L); 2715 policy->max = __resolve_freq(policy, policy->max, CPUFREQ_RELATION_H); 2716 trace_cpu_frequency_limits(policy); 2717 2718 cpufreq_update_pressure(policy); 2719 2720 policy->cached_target_freq = UINT_MAX; 2721 2722 pr_debug("new min and max freqs are %u - %u kHz\n", 2723 policy->min, policy->max); 2724 2725 if (cpufreq_driver->setpolicy) { 2726 policy->policy = new_pol; 2727 pr_debug("setting range\n"); 2728 return cpufreq_driver->setpolicy(policy); 2729 } 2730 2731 if (new_gov == policy->governor) { 2732 pr_debug("governor limits update\n"); 2733 cpufreq_governor_limits(policy); 2734 return 0; 2735 } 2736 2737 pr_debug("governor switch\n"); 2738 2739 /* save old, working values */ 2740 old_gov = policy->governor; 2741 /* end old governor */ 2742 if (old_gov) { 2743 cpufreq_stop_governor(policy); 2744 cpufreq_exit_governor(policy); 2745 } 2746 2747 /* start new governor */ 2748 policy->governor = new_gov; 2749 ret = cpufreq_init_governor(policy); 2750 if (!ret) { 2751 ret = cpufreq_start_governor(policy); 2752 if (!ret) { 2753 pr_debug("governor change\n"); 2754 return 0; 2755 } 2756 cpufreq_exit_governor(policy); 2757 } 2758 2759 /* new governor failed, so re-start old one */ 2760 pr_debug("starting governor %s failed\n", policy->governor->name); 2761 if (old_gov) { 2762 policy->governor = old_gov; 2763 if (cpufreq_init_governor(policy)) 2764 policy->governor = NULL; 2765 else 2766 cpufreq_start_governor(policy); 2767 } 2768 2769 return ret; 2770 } 2771 2772 /** 2773 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy. 2774 * @cpu: CPU to re-evaluate the policy for. 2775 * 2776 * Update the current frequency for the cpufreq policy of @cpu and use 2777 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the 2778 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback 2779 * for the policy in question, among other things. 2780 */ 2781 void cpufreq_update_policy(unsigned int cpu) 2782 { 2783 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu); 2784 2785 if (!policy) 2786 return; 2787 2788 /* 2789 * BIOS might change freq behind our back 2790 * -> ask driver for current freq and notify governors about a change 2791 */ 2792 if (cpufreq_driver->get && has_target() && 2793 (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false)))) 2794 goto unlock; 2795 2796 refresh_frequency_limits(policy); 2797 2798 unlock: 2799 cpufreq_cpu_release(policy); 2800 } 2801 EXPORT_SYMBOL(cpufreq_update_policy); 2802 2803 /** 2804 * cpufreq_update_limits - Update policy limits for a given CPU. 2805 * @cpu: CPU to update the policy limits for. 2806 * 2807 * Invoke the driver's ->update_limits callback if present or call 2808 * cpufreq_update_policy() for @cpu. 2809 */ 2810 void cpufreq_update_limits(unsigned int cpu) 2811 { 2812 struct cpufreq_policy *policy __free(put_cpufreq_policy); 2813 2814 policy = cpufreq_cpu_get(cpu); 2815 if (!policy) 2816 return; 2817 2818 if (cpufreq_driver->update_limits) 2819 cpufreq_driver->update_limits(cpu); 2820 else 2821 cpufreq_update_policy(cpu); 2822 } 2823 EXPORT_SYMBOL_GPL(cpufreq_update_limits); 2824 2825 /********************************************************************* 2826 * BOOST * 2827 *********************************************************************/ 2828 int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state) 2829 { 2830 int ret; 2831 2832 if (!policy->freq_table) 2833 return -ENXIO; 2834 2835 ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table); 2836 if (ret) { 2837 pr_err("%s: Policy frequency update failed\n", __func__); 2838 return ret; 2839 } 2840 2841 ret = freq_qos_update_request(policy->max_freq_req, policy->max); 2842 if (ret < 0) 2843 return ret; 2844 2845 return 0; 2846 } 2847 EXPORT_SYMBOL_GPL(cpufreq_boost_set_sw); 2848 2849 static int cpufreq_boost_trigger_state(int state) 2850 { 2851 struct cpufreq_policy *policy; 2852 unsigned long flags; 2853 int ret = 0; 2854 2855 if (cpufreq_driver->boost_enabled == state) 2856 return 0; 2857 2858 write_lock_irqsave(&cpufreq_driver_lock, flags); 2859 cpufreq_driver->boost_enabled = state; 2860 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2861 2862 cpus_read_lock(); 2863 for_each_active_policy(policy) { 2864 if (!policy->boost_supported) 2865 continue; 2866 2867 policy->boost_enabled = state; 2868 ret = cpufreq_driver->set_boost(policy, state); 2869 if (ret) { 2870 policy->boost_enabled = !policy->boost_enabled; 2871 goto err_reset_state; 2872 } 2873 } 2874 cpus_read_unlock(); 2875 2876 return 0; 2877 2878 err_reset_state: 2879 cpus_read_unlock(); 2880 2881 write_lock_irqsave(&cpufreq_driver_lock, flags); 2882 cpufreq_driver->boost_enabled = !state; 2883 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2884 2885 pr_err("%s: Cannot %s BOOST\n", 2886 __func__, str_enable_disable(state)); 2887 2888 return ret; 2889 } 2890 2891 static bool cpufreq_boost_supported(void) 2892 { 2893 return cpufreq_driver->set_boost; 2894 } 2895 2896 static int create_boost_sysfs_file(void) 2897 { 2898 int ret; 2899 2900 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr); 2901 if (ret) 2902 pr_err("%s: cannot register global BOOST sysfs file\n", 2903 __func__); 2904 2905 return ret; 2906 } 2907 2908 static void remove_boost_sysfs_file(void) 2909 { 2910 if (cpufreq_boost_supported()) 2911 sysfs_remove_file(cpufreq_global_kobject, &boost.attr); 2912 } 2913 2914 bool cpufreq_boost_enabled(void) 2915 { 2916 return cpufreq_driver->boost_enabled; 2917 } 2918 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled); 2919 2920 /********************************************************************* 2921 * REGISTER / UNREGISTER CPUFREQ DRIVER * 2922 *********************************************************************/ 2923 static enum cpuhp_state hp_online; 2924 2925 static int cpuhp_cpufreq_online(unsigned int cpu) 2926 { 2927 cpufreq_online(cpu); 2928 2929 return 0; 2930 } 2931 2932 static int cpuhp_cpufreq_offline(unsigned int cpu) 2933 { 2934 cpufreq_offline(cpu); 2935 2936 return 0; 2937 } 2938 2939 /** 2940 * cpufreq_register_driver - register a CPU Frequency driver 2941 * @driver_data: A struct cpufreq_driver containing the values# 2942 * submitted by the CPU Frequency driver. 2943 * 2944 * Registers a CPU Frequency driver to this core code. This code 2945 * returns zero on success, -EEXIST when another driver got here first 2946 * (and isn't unregistered in the meantime). 2947 * 2948 */ 2949 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 2950 { 2951 unsigned long flags; 2952 int ret; 2953 2954 if (cpufreq_disabled()) 2955 return -ENODEV; 2956 2957 /* 2958 * The cpufreq core depends heavily on the availability of device 2959 * structure, make sure they are available before proceeding further. 2960 */ 2961 if (!get_cpu_device(0)) 2962 return -EPROBE_DEFER; 2963 2964 if (!driver_data || !driver_data->verify || !driver_data->init || 2965 !(driver_data->setpolicy || driver_data->target_index || 2966 driver_data->target) || 2967 (driver_data->setpolicy && (driver_data->target_index || 2968 driver_data->target)) || 2969 (!driver_data->get_intermediate != !driver_data->target_intermediate) || 2970 (!driver_data->online != !driver_data->offline) || 2971 (driver_data->adjust_perf && !driver_data->fast_switch)) 2972 return -EINVAL; 2973 2974 pr_debug("trying to register driver %s\n", driver_data->name); 2975 2976 /* Protect against concurrent CPU online/offline. */ 2977 cpus_read_lock(); 2978 2979 write_lock_irqsave(&cpufreq_driver_lock, flags); 2980 if (cpufreq_driver) { 2981 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2982 ret = -EEXIST; 2983 goto out; 2984 } 2985 cpufreq_driver = driver_data; 2986 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2987 2988 /* 2989 * Mark support for the scheduler's frequency invariance engine for 2990 * drivers that implement target(), target_index() or fast_switch(). 2991 */ 2992 if (!cpufreq_driver->setpolicy) { 2993 static_branch_enable_cpuslocked(&cpufreq_freq_invariance); 2994 pr_debug("supports frequency invariance"); 2995 } 2996 2997 if (driver_data->setpolicy) 2998 driver_data->flags |= CPUFREQ_CONST_LOOPS; 2999 3000 if (cpufreq_boost_supported()) { 3001 ret = create_boost_sysfs_file(); 3002 if (ret) 3003 goto err_null_driver; 3004 } 3005 3006 ret = subsys_interface_register(&cpufreq_interface); 3007 if (ret) 3008 goto err_boost_unreg; 3009 3010 if (unlikely(list_empty(&cpufreq_policy_list))) { 3011 /* if all ->init() calls failed, unregister */ 3012 ret = -ENODEV; 3013 pr_debug("%s: No CPU initialized for driver %s\n", __func__, 3014 driver_data->name); 3015 goto err_if_unreg; 3016 } 3017 3018 ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN, 3019 "cpufreq:online", 3020 cpuhp_cpufreq_online, 3021 cpuhp_cpufreq_offline); 3022 if (ret < 0) 3023 goto err_if_unreg; 3024 hp_online = ret; 3025 ret = 0; 3026 3027 pr_debug("driver %s up and running\n", driver_data->name); 3028 goto out; 3029 3030 err_if_unreg: 3031 subsys_interface_unregister(&cpufreq_interface); 3032 err_boost_unreg: 3033 remove_boost_sysfs_file(); 3034 err_null_driver: 3035 write_lock_irqsave(&cpufreq_driver_lock, flags); 3036 cpufreq_driver = NULL; 3037 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 3038 out: 3039 cpus_read_unlock(); 3040 return ret; 3041 } 3042 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 3043 3044 /* 3045 * cpufreq_unregister_driver - unregister the current CPUFreq driver 3046 * 3047 * Unregister the current CPUFreq driver. Only call this if you have 3048 * the right to do so, i.e. if you have succeeded in initialising before! 3049 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 3050 * currently not initialised. 3051 */ 3052 void cpufreq_unregister_driver(struct cpufreq_driver *driver) 3053 { 3054 unsigned long flags; 3055 3056 if (WARN_ON(!cpufreq_driver || (driver != cpufreq_driver))) 3057 return; 3058 3059 pr_debug("unregistering driver %s\n", driver->name); 3060 3061 /* Protect against concurrent cpu hotplug */ 3062 cpus_read_lock(); 3063 subsys_interface_unregister(&cpufreq_interface); 3064 remove_boost_sysfs_file(); 3065 static_branch_disable_cpuslocked(&cpufreq_freq_invariance); 3066 cpuhp_remove_state_nocalls_cpuslocked(hp_online); 3067 3068 write_lock_irqsave(&cpufreq_driver_lock, flags); 3069 3070 cpufreq_driver = NULL; 3071 3072 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 3073 cpus_read_unlock(); 3074 } 3075 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 3076 3077 static int __init cpufreq_core_init(void) 3078 { 3079 struct cpufreq_governor *gov = cpufreq_default_governor(); 3080 struct device *dev_root; 3081 3082 if (cpufreq_disabled()) 3083 return -ENODEV; 3084 3085 dev_root = bus_get_dev_root(&cpu_subsys); 3086 if (dev_root) { 3087 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &dev_root->kobj); 3088 put_device(dev_root); 3089 } 3090 BUG_ON(!cpufreq_global_kobject); 3091 3092 if (!strlen(default_governor)) 3093 strscpy(default_governor, gov->name, CPUFREQ_NAME_LEN); 3094 3095 return 0; 3096 } 3097 module_param(off, int, 0444); 3098 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444); 3099 core_initcall(cpufreq_core_init); 3100