1 /* 2 * linux/drivers/cpufreq/cpufreq.c 3 * 4 * Copyright (C) 2001 Russell King 5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 6 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org> 7 * 8 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 9 * Added handling for CPU hotplug 10 * Feb 2006 - Jacob Shin <jacob.shin@amd.com> 11 * Fix handling for CPU hotplug -- affected CPUs 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License version 2 as 15 * published by the Free Software Foundation. 16 */ 17 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/cpu.h> 21 #include <linux/cpufreq.h> 22 #include <linux/cpu_cooling.h> 23 #include <linux/delay.h> 24 #include <linux/device.h> 25 #include <linux/init.h> 26 #include <linux/kernel_stat.h> 27 #include <linux/module.h> 28 #include <linux/mutex.h> 29 #include <linux/slab.h> 30 #include <linux/suspend.h> 31 #include <linux/syscore_ops.h> 32 #include <linux/tick.h> 33 #include <trace/events/power.h> 34 35 static LIST_HEAD(cpufreq_policy_list); 36 37 static inline bool policy_is_inactive(struct cpufreq_policy *policy) 38 { 39 return cpumask_empty(policy->cpus); 40 } 41 42 /* Macros to iterate over CPU policies */ 43 #define for_each_suitable_policy(__policy, __active) \ 44 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \ 45 if ((__active) == !policy_is_inactive(__policy)) 46 47 #define for_each_active_policy(__policy) \ 48 for_each_suitable_policy(__policy, true) 49 #define for_each_inactive_policy(__policy) \ 50 for_each_suitable_policy(__policy, false) 51 52 #define for_each_policy(__policy) \ 53 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) 54 55 /* Iterate over governors */ 56 static LIST_HEAD(cpufreq_governor_list); 57 #define for_each_governor(__governor) \ 58 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list) 59 60 /** 61 * The "cpufreq driver" - the arch- or hardware-dependent low 62 * level driver of CPUFreq support, and its spinlock. This lock 63 * also protects the cpufreq_cpu_data array. 64 */ 65 static struct cpufreq_driver *cpufreq_driver; 66 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data); 67 static DEFINE_RWLOCK(cpufreq_driver_lock); 68 69 /* Flag to suspend/resume CPUFreq governors */ 70 static bool cpufreq_suspended; 71 72 static inline bool has_target(void) 73 { 74 return cpufreq_driver->target_index || cpufreq_driver->target; 75 } 76 77 /* internal prototypes */ 78 static unsigned int __cpufreq_get(struct cpufreq_policy *policy); 79 static int cpufreq_init_governor(struct cpufreq_policy *policy); 80 static void cpufreq_exit_governor(struct cpufreq_policy *policy); 81 static int cpufreq_start_governor(struct cpufreq_policy *policy); 82 static void cpufreq_stop_governor(struct cpufreq_policy *policy); 83 static void cpufreq_governor_limits(struct cpufreq_policy *policy); 84 85 /** 86 * Two notifier lists: the "policy" list is involved in the 87 * validation process for a new CPU frequency policy; the 88 * "transition" list for kernel code that needs to handle 89 * changes to devices when the CPU clock speed changes. 90 * The mutex locks both lists. 91 */ 92 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list); 93 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list); 94 95 static int off __read_mostly; 96 static int cpufreq_disabled(void) 97 { 98 return off; 99 } 100 void disable_cpufreq(void) 101 { 102 off = 1; 103 } 104 static DEFINE_MUTEX(cpufreq_governor_mutex); 105 106 bool have_governor_per_policy(void) 107 { 108 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY); 109 } 110 EXPORT_SYMBOL_GPL(have_governor_per_policy); 111 112 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy) 113 { 114 if (have_governor_per_policy()) 115 return &policy->kobj; 116 else 117 return cpufreq_global_kobject; 118 } 119 EXPORT_SYMBOL_GPL(get_governor_parent_kobj); 120 121 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) 122 { 123 u64 idle_time; 124 u64 cur_wall_time; 125 u64 busy_time; 126 127 cur_wall_time = jiffies64_to_nsecs(get_jiffies_64()); 128 129 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER]; 130 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM]; 131 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ]; 132 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ]; 133 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL]; 134 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE]; 135 136 idle_time = cur_wall_time - busy_time; 137 if (wall) 138 *wall = div_u64(cur_wall_time, NSEC_PER_USEC); 139 140 return div_u64(idle_time, NSEC_PER_USEC); 141 } 142 143 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy) 144 { 145 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL); 146 147 if (idle_time == -1ULL) 148 return get_cpu_idle_time_jiffy(cpu, wall); 149 else if (!io_busy) 150 idle_time += get_cpu_iowait_time_us(cpu, wall); 151 152 return idle_time; 153 } 154 EXPORT_SYMBOL_GPL(get_cpu_idle_time); 155 156 __weak void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq, 157 unsigned long max_freq) 158 { 159 } 160 EXPORT_SYMBOL_GPL(arch_set_freq_scale); 161 162 /* 163 * This is a generic cpufreq init() routine which can be used by cpufreq 164 * drivers of SMP systems. It will do following: 165 * - validate & show freq table passed 166 * - set policies transition latency 167 * - policy->cpus with all possible CPUs 168 */ 169 int cpufreq_generic_init(struct cpufreq_policy *policy, 170 struct cpufreq_frequency_table *table, 171 unsigned int transition_latency) 172 { 173 policy->freq_table = table; 174 policy->cpuinfo.transition_latency = transition_latency; 175 176 /* 177 * The driver only supports the SMP configuration where all processors 178 * share the clock and voltage and clock. 179 */ 180 cpumask_setall(policy->cpus); 181 182 return 0; 183 } 184 EXPORT_SYMBOL_GPL(cpufreq_generic_init); 185 186 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu) 187 { 188 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 189 190 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL; 191 } 192 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw); 193 194 unsigned int cpufreq_generic_get(unsigned int cpu) 195 { 196 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu); 197 198 if (!policy || IS_ERR(policy->clk)) { 199 pr_err("%s: No %s associated to cpu: %d\n", 200 __func__, policy ? "clk" : "policy", cpu); 201 return 0; 202 } 203 204 return clk_get_rate(policy->clk) / 1000; 205 } 206 EXPORT_SYMBOL_GPL(cpufreq_generic_get); 207 208 /** 209 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy. 210 * @cpu: CPU to find the policy for. 211 * 212 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment 213 * the kobject reference counter of that policy. Return a valid policy on 214 * success or NULL on failure. 215 * 216 * The policy returned by this function has to be released with the help of 217 * cpufreq_cpu_put() to balance its kobject reference counter properly. 218 */ 219 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) 220 { 221 struct cpufreq_policy *policy = NULL; 222 unsigned long flags; 223 224 if (WARN_ON(cpu >= nr_cpu_ids)) 225 return NULL; 226 227 /* get the cpufreq driver */ 228 read_lock_irqsave(&cpufreq_driver_lock, flags); 229 230 if (cpufreq_driver) { 231 /* get the CPU */ 232 policy = cpufreq_cpu_get_raw(cpu); 233 if (policy) 234 kobject_get(&policy->kobj); 235 } 236 237 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 238 239 return policy; 240 } 241 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 242 243 /** 244 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy. 245 * @policy: cpufreq policy returned by cpufreq_cpu_get(). 246 */ 247 void cpufreq_cpu_put(struct cpufreq_policy *policy) 248 { 249 kobject_put(&policy->kobj); 250 } 251 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 252 253 /********************************************************************* 254 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 255 *********************************************************************/ 256 257 /** 258 * adjust_jiffies - adjust the system "loops_per_jiffy" 259 * 260 * This function alters the system "loops_per_jiffy" for the clock 261 * speed change. Note that loops_per_jiffy cannot be updated on SMP 262 * systems as each CPU might be scaled differently. So, use the arch 263 * per-CPU loops_per_jiffy value wherever possible. 264 */ 265 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 266 { 267 #ifndef CONFIG_SMP 268 static unsigned long l_p_j_ref; 269 static unsigned int l_p_j_ref_freq; 270 271 if (ci->flags & CPUFREQ_CONST_LOOPS) 272 return; 273 274 if (!l_p_j_ref_freq) { 275 l_p_j_ref = loops_per_jiffy; 276 l_p_j_ref_freq = ci->old; 277 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n", 278 l_p_j_ref, l_p_j_ref_freq); 279 } 280 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) { 281 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, 282 ci->new); 283 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n", 284 loops_per_jiffy, ci->new); 285 } 286 #endif 287 } 288 289 /** 290 * cpufreq_notify_transition - Notify frequency transition and adjust_jiffies. 291 * @policy: cpufreq policy to enable fast frequency switching for. 292 * @freqs: contain details of the frequency update. 293 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE. 294 * 295 * This function calls the transition notifiers and the "adjust_jiffies" 296 * function. It is called twice on all CPU frequency changes that have 297 * external effects. 298 */ 299 static void cpufreq_notify_transition(struct cpufreq_policy *policy, 300 struct cpufreq_freqs *freqs, 301 unsigned int state) 302 { 303 BUG_ON(irqs_disabled()); 304 305 if (cpufreq_disabled()) 306 return; 307 308 freqs->flags = cpufreq_driver->flags; 309 pr_debug("notification %u of frequency transition to %u kHz\n", 310 state, freqs->new); 311 312 switch (state) { 313 case CPUFREQ_PRECHANGE: 314 /* 315 * Detect if the driver reported a value as "old frequency" 316 * which is not equal to what the cpufreq core thinks is 317 * "old frequency". 318 */ 319 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 320 if (policy->cur && (policy->cur != freqs->old)) { 321 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n", 322 freqs->old, policy->cur); 323 freqs->old = policy->cur; 324 } 325 } 326 327 for_each_cpu(freqs->cpu, policy->cpus) { 328 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 329 CPUFREQ_PRECHANGE, freqs); 330 } 331 332 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 333 break; 334 335 case CPUFREQ_POSTCHANGE: 336 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 337 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new, 338 cpumask_pr_args(policy->cpus)); 339 340 for_each_cpu(freqs->cpu, policy->cpus) { 341 trace_cpu_frequency(freqs->new, freqs->cpu); 342 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 343 CPUFREQ_POSTCHANGE, freqs); 344 } 345 346 cpufreq_stats_record_transition(policy, freqs->new); 347 policy->cur = freqs->new; 348 } 349 } 350 351 /* Do post notifications when there are chances that transition has failed */ 352 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy, 353 struct cpufreq_freqs *freqs, int transition_failed) 354 { 355 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 356 if (!transition_failed) 357 return; 358 359 swap(freqs->old, freqs->new); 360 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 361 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 362 } 363 364 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy, 365 struct cpufreq_freqs *freqs) 366 { 367 368 /* 369 * Catch double invocations of _begin() which lead to self-deadlock. 370 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core 371 * doesn't invoke _begin() on their behalf, and hence the chances of 372 * double invocations are very low. Moreover, there are scenarios 373 * where these checks can emit false-positive warnings in these 374 * drivers; so we avoid that by skipping them altogether. 375 */ 376 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION) 377 && current == policy->transition_task); 378 379 wait: 380 wait_event(policy->transition_wait, !policy->transition_ongoing); 381 382 spin_lock(&policy->transition_lock); 383 384 if (unlikely(policy->transition_ongoing)) { 385 spin_unlock(&policy->transition_lock); 386 goto wait; 387 } 388 389 policy->transition_ongoing = true; 390 policy->transition_task = current; 391 392 spin_unlock(&policy->transition_lock); 393 394 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 395 } 396 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin); 397 398 void cpufreq_freq_transition_end(struct cpufreq_policy *policy, 399 struct cpufreq_freqs *freqs, int transition_failed) 400 { 401 if (WARN_ON(!policy->transition_ongoing)) 402 return; 403 404 cpufreq_notify_post_transition(policy, freqs, transition_failed); 405 406 policy->transition_ongoing = false; 407 policy->transition_task = NULL; 408 409 wake_up(&policy->transition_wait); 410 } 411 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end); 412 413 /* 414 * Fast frequency switching status count. Positive means "enabled", negative 415 * means "disabled" and 0 means "not decided yet". 416 */ 417 static int cpufreq_fast_switch_count; 418 static DEFINE_MUTEX(cpufreq_fast_switch_lock); 419 420 static void cpufreq_list_transition_notifiers(void) 421 { 422 struct notifier_block *nb; 423 424 pr_info("Registered transition notifiers:\n"); 425 426 mutex_lock(&cpufreq_transition_notifier_list.mutex); 427 428 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next) 429 pr_info("%pF\n", nb->notifier_call); 430 431 mutex_unlock(&cpufreq_transition_notifier_list.mutex); 432 } 433 434 /** 435 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy. 436 * @policy: cpufreq policy to enable fast frequency switching for. 437 * 438 * Try to enable fast frequency switching for @policy. 439 * 440 * The attempt will fail if there is at least one transition notifier registered 441 * at this point, as fast frequency switching is quite fundamentally at odds 442 * with transition notifiers. Thus if successful, it will make registration of 443 * transition notifiers fail going forward. 444 */ 445 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy) 446 { 447 lockdep_assert_held(&policy->rwsem); 448 449 if (!policy->fast_switch_possible) 450 return; 451 452 mutex_lock(&cpufreq_fast_switch_lock); 453 if (cpufreq_fast_switch_count >= 0) { 454 cpufreq_fast_switch_count++; 455 policy->fast_switch_enabled = true; 456 } else { 457 pr_warn("CPU%u: Fast frequency switching not enabled\n", 458 policy->cpu); 459 cpufreq_list_transition_notifiers(); 460 } 461 mutex_unlock(&cpufreq_fast_switch_lock); 462 } 463 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch); 464 465 /** 466 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy. 467 * @policy: cpufreq policy to disable fast frequency switching for. 468 */ 469 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy) 470 { 471 mutex_lock(&cpufreq_fast_switch_lock); 472 if (policy->fast_switch_enabled) { 473 policy->fast_switch_enabled = false; 474 if (!WARN_ON(cpufreq_fast_switch_count <= 0)) 475 cpufreq_fast_switch_count--; 476 } 477 mutex_unlock(&cpufreq_fast_switch_lock); 478 } 479 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch); 480 481 /** 482 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported 483 * one. 484 * @target_freq: target frequency to resolve. 485 * 486 * The target to driver frequency mapping is cached in the policy. 487 * 488 * Return: Lowest driver-supported frequency greater than or equal to the 489 * given target_freq, subject to policy (min/max) and driver limitations. 490 */ 491 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy, 492 unsigned int target_freq) 493 { 494 target_freq = clamp_val(target_freq, policy->min, policy->max); 495 policy->cached_target_freq = target_freq; 496 497 if (cpufreq_driver->target_index) { 498 int idx; 499 500 idx = cpufreq_frequency_table_target(policy, target_freq, 501 CPUFREQ_RELATION_L); 502 policy->cached_resolved_idx = idx; 503 return policy->freq_table[idx].frequency; 504 } 505 506 if (cpufreq_driver->resolve_freq) 507 return cpufreq_driver->resolve_freq(policy, target_freq); 508 509 return target_freq; 510 } 511 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq); 512 513 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy) 514 { 515 unsigned int latency; 516 517 if (policy->transition_delay_us) 518 return policy->transition_delay_us; 519 520 latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC; 521 if (latency) { 522 /* 523 * For platforms that can change the frequency very fast (< 10 524 * us), the above formula gives a decent transition delay. But 525 * for platforms where transition_latency is in milliseconds, it 526 * ends up giving unrealistic values. 527 * 528 * Cap the default transition delay to 10 ms, which seems to be 529 * a reasonable amount of time after which we should reevaluate 530 * the frequency. 531 */ 532 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000); 533 } 534 535 return LATENCY_MULTIPLIER; 536 } 537 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us); 538 539 /********************************************************************* 540 * SYSFS INTERFACE * 541 *********************************************************************/ 542 static ssize_t show_boost(struct kobject *kobj, 543 struct kobj_attribute *attr, char *buf) 544 { 545 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled); 546 } 547 548 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr, 549 const char *buf, size_t count) 550 { 551 int ret, enable; 552 553 ret = sscanf(buf, "%d", &enable); 554 if (ret != 1 || enable < 0 || enable > 1) 555 return -EINVAL; 556 557 if (cpufreq_boost_trigger_state(enable)) { 558 pr_err("%s: Cannot %s BOOST!\n", 559 __func__, enable ? "enable" : "disable"); 560 return -EINVAL; 561 } 562 563 pr_debug("%s: cpufreq BOOST %s\n", 564 __func__, enable ? "enabled" : "disabled"); 565 566 return count; 567 } 568 define_one_global_rw(boost); 569 570 static struct cpufreq_governor *find_governor(const char *str_governor) 571 { 572 struct cpufreq_governor *t; 573 574 for_each_governor(t) 575 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN)) 576 return t; 577 578 return NULL; 579 } 580 581 /** 582 * cpufreq_parse_governor - parse a governor string 583 */ 584 static int cpufreq_parse_governor(char *str_governor, 585 struct cpufreq_policy *policy) 586 { 587 if (cpufreq_driver->setpolicy) { 588 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) { 589 policy->policy = CPUFREQ_POLICY_PERFORMANCE; 590 return 0; 591 } 592 593 if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) { 594 policy->policy = CPUFREQ_POLICY_POWERSAVE; 595 return 0; 596 } 597 } else { 598 struct cpufreq_governor *t; 599 600 mutex_lock(&cpufreq_governor_mutex); 601 602 t = find_governor(str_governor); 603 if (!t) { 604 int ret; 605 606 mutex_unlock(&cpufreq_governor_mutex); 607 608 ret = request_module("cpufreq_%s", str_governor); 609 if (ret) 610 return -EINVAL; 611 612 mutex_lock(&cpufreq_governor_mutex); 613 614 t = find_governor(str_governor); 615 } 616 if (t && !try_module_get(t->owner)) 617 t = NULL; 618 619 mutex_unlock(&cpufreq_governor_mutex); 620 621 if (t) { 622 policy->governor = t; 623 return 0; 624 } 625 } 626 627 return -EINVAL; 628 } 629 630 /** 631 * cpufreq_per_cpu_attr_read() / show_##file_name() - 632 * print out cpufreq information 633 * 634 * Write out information from cpufreq_driver->policy[cpu]; object must be 635 * "unsigned int". 636 */ 637 638 #define show_one(file_name, object) \ 639 static ssize_t show_##file_name \ 640 (struct cpufreq_policy *policy, char *buf) \ 641 { \ 642 return sprintf(buf, "%u\n", policy->object); \ 643 } 644 645 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 646 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 647 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency); 648 show_one(scaling_min_freq, min); 649 show_one(scaling_max_freq, max); 650 651 __weak unsigned int arch_freq_get_on_cpu(int cpu) 652 { 653 return 0; 654 } 655 656 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf) 657 { 658 ssize_t ret; 659 unsigned int freq; 660 661 freq = arch_freq_get_on_cpu(policy->cpu); 662 if (freq) 663 ret = sprintf(buf, "%u\n", freq); 664 else if (cpufreq_driver && cpufreq_driver->setpolicy && 665 cpufreq_driver->get) 666 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu)); 667 else 668 ret = sprintf(buf, "%u\n", policy->cur); 669 return ret; 670 } 671 672 static int cpufreq_set_policy(struct cpufreq_policy *policy, 673 struct cpufreq_policy *new_policy); 674 675 /** 676 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 677 */ 678 #define store_one(file_name, object) \ 679 static ssize_t store_##file_name \ 680 (struct cpufreq_policy *policy, const char *buf, size_t count) \ 681 { \ 682 int ret, temp; \ 683 struct cpufreq_policy new_policy; \ 684 \ 685 memcpy(&new_policy, policy, sizeof(*policy)); \ 686 new_policy.min = policy->user_policy.min; \ 687 new_policy.max = policy->user_policy.max; \ 688 \ 689 ret = sscanf(buf, "%u", &new_policy.object); \ 690 if (ret != 1) \ 691 return -EINVAL; \ 692 \ 693 temp = new_policy.object; \ 694 ret = cpufreq_set_policy(policy, &new_policy); \ 695 if (!ret) \ 696 policy->user_policy.object = temp; \ 697 \ 698 return ret ? ret : count; \ 699 } 700 701 store_one(scaling_min_freq, min); 702 store_one(scaling_max_freq, max); 703 704 /** 705 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 706 */ 707 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy, 708 char *buf) 709 { 710 unsigned int cur_freq = __cpufreq_get(policy); 711 712 if (cur_freq) 713 return sprintf(buf, "%u\n", cur_freq); 714 715 return sprintf(buf, "<unknown>\n"); 716 } 717 718 /** 719 * show_scaling_governor - show the current policy for the specified CPU 720 */ 721 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf) 722 { 723 if (policy->policy == CPUFREQ_POLICY_POWERSAVE) 724 return sprintf(buf, "powersave\n"); 725 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 726 return sprintf(buf, "performance\n"); 727 else if (policy->governor) 728 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", 729 policy->governor->name); 730 return -EINVAL; 731 } 732 733 /** 734 * store_scaling_governor - store policy for the specified CPU 735 */ 736 static ssize_t store_scaling_governor(struct cpufreq_policy *policy, 737 const char *buf, size_t count) 738 { 739 int ret; 740 char str_governor[16]; 741 struct cpufreq_policy new_policy; 742 743 memcpy(&new_policy, policy, sizeof(*policy)); 744 745 ret = sscanf(buf, "%15s", str_governor); 746 if (ret != 1) 747 return -EINVAL; 748 749 if (cpufreq_parse_governor(str_governor, &new_policy)) 750 return -EINVAL; 751 752 ret = cpufreq_set_policy(policy, &new_policy); 753 754 if (new_policy.governor) 755 module_put(new_policy.governor->owner); 756 757 return ret ? ret : count; 758 } 759 760 /** 761 * show_scaling_driver - show the cpufreq driver currently loaded 762 */ 763 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf) 764 { 765 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name); 766 } 767 768 /** 769 * show_scaling_available_governors - show the available CPUfreq governors 770 */ 771 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy, 772 char *buf) 773 { 774 ssize_t i = 0; 775 struct cpufreq_governor *t; 776 777 if (!has_target()) { 778 i += sprintf(buf, "performance powersave"); 779 goto out; 780 } 781 782 for_each_governor(t) { 783 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) 784 - (CPUFREQ_NAME_LEN + 2))) 785 goto out; 786 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name); 787 } 788 out: 789 i += sprintf(&buf[i], "\n"); 790 return i; 791 } 792 793 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf) 794 { 795 ssize_t i = 0; 796 unsigned int cpu; 797 798 for_each_cpu(cpu, mask) { 799 if (i) 800 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " "); 801 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu); 802 if (i >= (PAGE_SIZE - 5)) 803 break; 804 } 805 i += sprintf(&buf[i], "\n"); 806 return i; 807 } 808 EXPORT_SYMBOL_GPL(cpufreq_show_cpus); 809 810 /** 811 * show_related_cpus - show the CPUs affected by each transition even if 812 * hw coordination is in use 813 */ 814 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf) 815 { 816 return cpufreq_show_cpus(policy->related_cpus, buf); 817 } 818 819 /** 820 * show_affected_cpus - show the CPUs affected by each transition 821 */ 822 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf) 823 { 824 return cpufreq_show_cpus(policy->cpus, buf); 825 } 826 827 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy, 828 const char *buf, size_t count) 829 { 830 unsigned int freq = 0; 831 unsigned int ret; 832 833 if (!policy->governor || !policy->governor->store_setspeed) 834 return -EINVAL; 835 836 ret = sscanf(buf, "%u", &freq); 837 if (ret != 1) 838 return -EINVAL; 839 840 policy->governor->store_setspeed(policy, freq); 841 842 return count; 843 } 844 845 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf) 846 { 847 if (!policy->governor || !policy->governor->show_setspeed) 848 return sprintf(buf, "<unsupported>\n"); 849 850 return policy->governor->show_setspeed(policy, buf); 851 } 852 853 /** 854 * show_bios_limit - show the current cpufreq HW/BIOS limitation 855 */ 856 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf) 857 { 858 unsigned int limit; 859 int ret; 860 if (cpufreq_driver->bios_limit) { 861 ret = cpufreq_driver->bios_limit(policy->cpu, &limit); 862 if (!ret) 863 return sprintf(buf, "%u\n", limit); 864 } 865 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq); 866 } 867 868 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400); 869 cpufreq_freq_attr_ro(cpuinfo_min_freq); 870 cpufreq_freq_attr_ro(cpuinfo_max_freq); 871 cpufreq_freq_attr_ro(cpuinfo_transition_latency); 872 cpufreq_freq_attr_ro(scaling_available_governors); 873 cpufreq_freq_attr_ro(scaling_driver); 874 cpufreq_freq_attr_ro(scaling_cur_freq); 875 cpufreq_freq_attr_ro(bios_limit); 876 cpufreq_freq_attr_ro(related_cpus); 877 cpufreq_freq_attr_ro(affected_cpus); 878 cpufreq_freq_attr_rw(scaling_min_freq); 879 cpufreq_freq_attr_rw(scaling_max_freq); 880 cpufreq_freq_attr_rw(scaling_governor); 881 cpufreq_freq_attr_rw(scaling_setspeed); 882 883 static struct attribute *default_attrs[] = { 884 &cpuinfo_min_freq.attr, 885 &cpuinfo_max_freq.attr, 886 &cpuinfo_transition_latency.attr, 887 &scaling_min_freq.attr, 888 &scaling_max_freq.attr, 889 &affected_cpus.attr, 890 &related_cpus.attr, 891 &scaling_governor.attr, 892 &scaling_driver.attr, 893 &scaling_available_governors.attr, 894 &scaling_setspeed.attr, 895 NULL 896 }; 897 898 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj) 899 #define to_attr(a) container_of(a, struct freq_attr, attr) 900 901 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) 902 { 903 struct cpufreq_policy *policy = to_policy(kobj); 904 struct freq_attr *fattr = to_attr(attr); 905 ssize_t ret; 906 907 down_read(&policy->rwsem); 908 ret = fattr->show(policy, buf); 909 up_read(&policy->rwsem); 910 911 return ret; 912 } 913 914 static ssize_t store(struct kobject *kobj, struct attribute *attr, 915 const char *buf, size_t count) 916 { 917 struct cpufreq_policy *policy = to_policy(kobj); 918 struct freq_attr *fattr = to_attr(attr); 919 ssize_t ret = -EINVAL; 920 921 /* 922 * cpus_read_trylock() is used here to work around a circular lock 923 * dependency problem with respect to the cpufreq_register_driver(). 924 */ 925 if (!cpus_read_trylock()) 926 return -EBUSY; 927 928 if (cpu_online(policy->cpu)) { 929 down_write(&policy->rwsem); 930 ret = fattr->store(policy, buf, count); 931 up_write(&policy->rwsem); 932 } 933 934 cpus_read_unlock(); 935 936 return ret; 937 } 938 939 static void cpufreq_sysfs_release(struct kobject *kobj) 940 { 941 struct cpufreq_policy *policy = to_policy(kobj); 942 pr_debug("last reference is dropped\n"); 943 complete(&policy->kobj_unregister); 944 } 945 946 static const struct sysfs_ops sysfs_ops = { 947 .show = show, 948 .store = store, 949 }; 950 951 static struct kobj_type ktype_cpufreq = { 952 .sysfs_ops = &sysfs_ops, 953 .default_attrs = default_attrs, 954 .release = cpufreq_sysfs_release, 955 }; 956 957 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu) 958 { 959 struct device *dev = get_cpu_device(cpu); 960 961 if (!dev) 962 return; 963 964 if (cpumask_test_and_set_cpu(cpu, policy->real_cpus)) 965 return; 966 967 dev_dbg(dev, "%s: Adding symlink\n", __func__); 968 if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq")) 969 dev_err(dev, "cpufreq symlink creation failed\n"); 970 } 971 972 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, 973 struct device *dev) 974 { 975 dev_dbg(dev, "%s: Removing symlink\n", __func__); 976 sysfs_remove_link(&dev->kobj, "cpufreq"); 977 } 978 979 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy) 980 { 981 struct freq_attr **drv_attr; 982 int ret = 0; 983 984 /* set up files for this cpu device */ 985 drv_attr = cpufreq_driver->attr; 986 while (drv_attr && *drv_attr) { 987 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 988 if (ret) 989 return ret; 990 drv_attr++; 991 } 992 if (cpufreq_driver->get) { 993 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 994 if (ret) 995 return ret; 996 } 997 998 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 999 if (ret) 1000 return ret; 1001 1002 if (cpufreq_driver->bios_limit) { 1003 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr); 1004 if (ret) 1005 return ret; 1006 } 1007 1008 return 0; 1009 } 1010 1011 __weak struct cpufreq_governor *cpufreq_default_governor(void) 1012 { 1013 return NULL; 1014 } 1015 1016 static int cpufreq_init_policy(struct cpufreq_policy *policy) 1017 { 1018 struct cpufreq_governor *gov = NULL; 1019 struct cpufreq_policy new_policy; 1020 1021 memcpy(&new_policy, policy, sizeof(*policy)); 1022 1023 /* Update governor of new_policy to the governor used before hotplug */ 1024 gov = find_governor(policy->last_governor); 1025 if (gov) { 1026 pr_debug("Restoring governor %s for cpu %d\n", 1027 policy->governor->name, policy->cpu); 1028 } else { 1029 gov = cpufreq_default_governor(); 1030 if (!gov) 1031 return -ENODATA; 1032 } 1033 1034 new_policy.governor = gov; 1035 1036 /* Use the default policy if there is no last_policy. */ 1037 if (cpufreq_driver->setpolicy) { 1038 if (policy->last_policy) 1039 new_policy.policy = policy->last_policy; 1040 else 1041 cpufreq_parse_governor(gov->name, &new_policy); 1042 } 1043 /* set default policy */ 1044 return cpufreq_set_policy(policy, &new_policy); 1045 } 1046 1047 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu) 1048 { 1049 int ret = 0; 1050 1051 /* Has this CPU been taken care of already? */ 1052 if (cpumask_test_cpu(cpu, policy->cpus)) 1053 return 0; 1054 1055 down_write(&policy->rwsem); 1056 if (has_target()) 1057 cpufreq_stop_governor(policy); 1058 1059 cpumask_set_cpu(cpu, policy->cpus); 1060 1061 if (has_target()) { 1062 ret = cpufreq_start_governor(policy); 1063 if (ret) 1064 pr_err("%s: Failed to start governor\n", __func__); 1065 } 1066 up_write(&policy->rwsem); 1067 return ret; 1068 } 1069 1070 static void handle_update(struct work_struct *work) 1071 { 1072 struct cpufreq_policy *policy = 1073 container_of(work, struct cpufreq_policy, update); 1074 unsigned int cpu = policy->cpu; 1075 pr_debug("handle_update for cpu %u called\n", cpu); 1076 cpufreq_update_policy(cpu); 1077 } 1078 1079 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu) 1080 { 1081 struct cpufreq_policy *policy; 1082 int ret; 1083 1084 policy = kzalloc(sizeof(*policy), GFP_KERNEL); 1085 if (!policy) 1086 return NULL; 1087 1088 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) 1089 goto err_free_policy; 1090 1091 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) 1092 goto err_free_cpumask; 1093 1094 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL)) 1095 goto err_free_rcpumask; 1096 1097 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, 1098 cpufreq_global_kobject, "policy%u", cpu); 1099 if (ret) { 1100 pr_err("%s: failed to init policy->kobj: %d\n", __func__, ret); 1101 goto err_free_real_cpus; 1102 } 1103 1104 INIT_LIST_HEAD(&policy->policy_list); 1105 init_rwsem(&policy->rwsem); 1106 spin_lock_init(&policy->transition_lock); 1107 init_waitqueue_head(&policy->transition_wait); 1108 init_completion(&policy->kobj_unregister); 1109 INIT_WORK(&policy->update, handle_update); 1110 1111 policy->cpu = cpu; 1112 return policy; 1113 1114 err_free_real_cpus: 1115 free_cpumask_var(policy->real_cpus); 1116 err_free_rcpumask: 1117 free_cpumask_var(policy->related_cpus); 1118 err_free_cpumask: 1119 free_cpumask_var(policy->cpus); 1120 err_free_policy: 1121 kfree(policy); 1122 1123 return NULL; 1124 } 1125 1126 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy) 1127 { 1128 struct kobject *kobj; 1129 struct completion *cmp; 1130 1131 down_write(&policy->rwsem); 1132 cpufreq_stats_free_table(policy); 1133 kobj = &policy->kobj; 1134 cmp = &policy->kobj_unregister; 1135 up_write(&policy->rwsem); 1136 kobject_put(kobj); 1137 1138 /* 1139 * We need to make sure that the underlying kobj is 1140 * actually not referenced anymore by anybody before we 1141 * proceed with unloading. 1142 */ 1143 pr_debug("waiting for dropping of refcount\n"); 1144 wait_for_completion(cmp); 1145 pr_debug("wait complete\n"); 1146 } 1147 1148 static void cpufreq_policy_free(struct cpufreq_policy *policy) 1149 { 1150 unsigned long flags; 1151 int cpu; 1152 1153 /* Remove policy from list */ 1154 write_lock_irqsave(&cpufreq_driver_lock, flags); 1155 list_del(&policy->policy_list); 1156 1157 for_each_cpu(cpu, policy->related_cpus) 1158 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1159 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1160 1161 cpufreq_policy_put_kobj(policy); 1162 free_cpumask_var(policy->real_cpus); 1163 free_cpumask_var(policy->related_cpus); 1164 free_cpumask_var(policy->cpus); 1165 kfree(policy); 1166 } 1167 1168 static int cpufreq_online(unsigned int cpu) 1169 { 1170 struct cpufreq_policy *policy; 1171 bool new_policy; 1172 unsigned long flags; 1173 unsigned int j; 1174 int ret; 1175 1176 pr_debug("%s: bringing CPU%u online\n", __func__, cpu); 1177 1178 /* Check if this CPU already has a policy to manage it */ 1179 policy = per_cpu(cpufreq_cpu_data, cpu); 1180 if (policy) { 1181 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus)); 1182 if (!policy_is_inactive(policy)) 1183 return cpufreq_add_policy_cpu(policy, cpu); 1184 1185 /* This is the only online CPU for the policy. Start over. */ 1186 new_policy = false; 1187 down_write(&policy->rwsem); 1188 policy->cpu = cpu; 1189 policy->governor = NULL; 1190 up_write(&policy->rwsem); 1191 } else { 1192 new_policy = true; 1193 policy = cpufreq_policy_alloc(cpu); 1194 if (!policy) 1195 return -ENOMEM; 1196 } 1197 1198 if (!new_policy && cpufreq_driver->online) { 1199 ret = cpufreq_driver->online(policy); 1200 if (ret) { 1201 pr_debug("%s: %d: initialization failed\n", __func__, 1202 __LINE__); 1203 goto out_exit_policy; 1204 } 1205 1206 /* Recover policy->cpus using related_cpus */ 1207 cpumask_copy(policy->cpus, policy->related_cpus); 1208 } else { 1209 cpumask_copy(policy->cpus, cpumask_of(cpu)); 1210 1211 /* 1212 * Call driver. From then on the cpufreq must be able 1213 * to accept all calls to ->verify and ->setpolicy for this CPU. 1214 */ 1215 ret = cpufreq_driver->init(policy); 1216 if (ret) { 1217 pr_debug("%s: %d: initialization failed\n", __func__, 1218 __LINE__); 1219 goto out_free_policy; 1220 } 1221 1222 ret = cpufreq_table_validate_and_sort(policy); 1223 if (ret) 1224 goto out_exit_policy; 1225 1226 /* related_cpus should at least include policy->cpus. */ 1227 cpumask_copy(policy->related_cpus, policy->cpus); 1228 } 1229 1230 down_write(&policy->rwsem); 1231 /* 1232 * affected cpus must always be the one, which are online. We aren't 1233 * managing offline cpus here. 1234 */ 1235 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask); 1236 1237 if (new_policy) { 1238 policy->user_policy.min = policy->min; 1239 policy->user_policy.max = policy->max; 1240 1241 for_each_cpu(j, policy->related_cpus) { 1242 per_cpu(cpufreq_cpu_data, j) = policy; 1243 add_cpu_dev_symlink(policy, j); 1244 } 1245 } else { 1246 policy->min = policy->user_policy.min; 1247 policy->max = policy->user_policy.max; 1248 } 1249 1250 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) { 1251 policy->cur = cpufreq_driver->get(policy->cpu); 1252 if (!policy->cur) { 1253 pr_err("%s: ->get() failed\n", __func__); 1254 goto out_destroy_policy; 1255 } 1256 } 1257 1258 /* 1259 * Sometimes boot loaders set CPU frequency to a value outside of 1260 * frequency table present with cpufreq core. In such cases CPU might be 1261 * unstable if it has to run on that frequency for long duration of time 1262 * and so its better to set it to a frequency which is specified in 1263 * freq-table. This also makes cpufreq stats inconsistent as 1264 * cpufreq-stats would fail to register because current frequency of CPU 1265 * isn't found in freq-table. 1266 * 1267 * Because we don't want this change to effect boot process badly, we go 1268 * for the next freq which is >= policy->cur ('cur' must be set by now, 1269 * otherwise we will end up setting freq to lowest of the table as 'cur' 1270 * is initialized to zero). 1271 * 1272 * We are passing target-freq as "policy->cur - 1" otherwise 1273 * __cpufreq_driver_target() would simply fail, as policy->cur will be 1274 * equal to target-freq. 1275 */ 1276 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK) 1277 && has_target()) { 1278 /* Are we running at unknown frequency ? */ 1279 ret = cpufreq_frequency_table_get_index(policy, policy->cur); 1280 if (ret == -EINVAL) { 1281 /* Warn user and fix it */ 1282 pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n", 1283 __func__, policy->cpu, policy->cur); 1284 ret = __cpufreq_driver_target(policy, policy->cur - 1, 1285 CPUFREQ_RELATION_L); 1286 1287 /* 1288 * Reaching here after boot in a few seconds may not 1289 * mean that system will remain stable at "unknown" 1290 * frequency for longer duration. Hence, a BUG_ON(). 1291 */ 1292 BUG_ON(ret); 1293 pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n", 1294 __func__, policy->cpu, policy->cur); 1295 } 1296 } 1297 1298 if (new_policy) { 1299 ret = cpufreq_add_dev_interface(policy); 1300 if (ret) 1301 goto out_destroy_policy; 1302 1303 cpufreq_stats_create_table(policy); 1304 1305 write_lock_irqsave(&cpufreq_driver_lock, flags); 1306 list_add(&policy->policy_list, &cpufreq_policy_list); 1307 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1308 } 1309 1310 ret = cpufreq_init_policy(policy); 1311 if (ret) { 1312 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n", 1313 __func__, cpu, ret); 1314 goto out_destroy_policy; 1315 } 1316 1317 up_write(&policy->rwsem); 1318 1319 kobject_uevent(&policy->kobj, KOBJ_ADD); 1320 1321 /* Callback for handling stuff after policy is ready */ 1322 if (cpufreq_driver->ready) 1323 cpufreq_driver->ready(policy); 1324 1325 if (IS_ENABLED(CONFIG_CPU_THERMAL) && 1326 cpufreq_driver->flags & CPUFREQ_IS_COOLING_DEV) 1327 policy->cdev = of_cpufreq_cooling_register(policy); 1328 1329 pr_debug("initialization complete\n"); 1330 1331 return 0; 1332 1333 out_destroy_policy: 1334 for_each_cpu(j, policy->real_cpus) 1335 remove_cpu_dev_symlink(policy, get_cpu_device(j)); 1336 1337 up_write(&policy->rwsem); 1338 1339 out_exit_policy: 1340 if (cpufreq_driver->exit) 1341 cpufreq_driver->exit(policy); 1342 1343 out_free_policy: 1344 cpufreq_policy_free(policy); 1345 return ret; 1346 } 1347 1348 /** 1349 * cpufreq_add_dev - the cpufreq interface for a CPU device. 1350 * @dev: CPU device. 1351 * @sif: Subsystem interface structure pointer (not used) 1352 */ 1353 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 1354 { 1355 struct cpufreq_policy *policy; 1356 unsigned cpu = dev->id; 1357 int ret; 1358 1359 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu); 1360 1361 if (cpu_online(cpu)) { 1362 ret = cpufreq_online(cpu); 1363 if (ret) 1364 return ret; 1365 } 1366 1367 /* Create sysfs link on CPU registration */ 1368 policy = per_cpu(cpufreq_cpu_data, cpu); 1369 if (policy) 1370 add_cpu_dev_symlink(policy, cpu); 1371 1372 return 0; 1373 } 1374 1375 static int cpufreq_offline(unsigned int cpu) 1376 { 1377 struct cpufreq_policy *policy; 1378 int ret; 1379 1380 pr_debug("%s: unregistering CPU %u\n", __func__, cpu); 1381 1382 policy = cpufreq_cpu_get_raw(cpu); 1383 if (!policy) { 1384 pr_debug("%s: No cpu_data found\n", __func__); 1385 return 0; 1386 } 1387 1388 down_write(&policy->rwsem); 1389 if (has_target()) 1390 cpufreq_stop_governor(policy); 1391 1392 cpumask_clear_cpu(cpu, policy->cpus); 1393 1394 if (policy_is_inactive(policy)) { 1395 if (has_target()) 1396 strncpy(policy->last_governor, policy->governor->name, 1397 CPUFREQ_NAME_LEN); 1398 else 1399 policy->last_policy = policy->policy; 1400 } else if (cpu == policy->cpu) { 1401 /* Nominate new CPU */ 1402 policy->cpu = cpumask_any(policy->cpus); 1403 } 1404 1405 /* Start governor again for active policy */ 1406 if (!policy_is_inactive(policy)) { 1407 if (has_target()) { 1408 ret = cpufreq_start_governor(policy); 1409 if (ret) 1410 pr_err("%s: Failed to start governor\n", __func__); 1411 } 1412 1413 goto unlock; 1414 } 1415 1416 if (IS_ENABLED(CONFIG_CPU_THERMAL) && 1417 cpufreq_driver->flags & CPUFREQ_IS_COOLING_DEV) { 1418 cpufreq_cooling_unregister(policy->cdev); 1419 policy->cdev = NULL; 1420 } 1421 1422 if (cpufreq_driver->stop_cpu) 1423 cpufreq_driver->stop_cpu(policy); 1424 1425 if (has_target()) 1426 cpufreq_exit_governor(policy); 1427 1428 /* 1429 * Perform the ->offline() during light-weight tear-down, as 1430 * that allows fast recovery when the CPU comes back. 1431 */ 1432 if (cpufreq_driver->offline) { 1433 cpufreq_driver->offline(policy); 1434 } else if (cpufreq_driver->exit) { 1435 cpufreq_driver->exit(policy); 1436 policy->freq_table = NULL; 1437 } 1438 1439 unlock: 1440 up_write(&policy->rwsem); 1441 return 0; 1442 } 1443 1444 /** 1445 * cpufreq_remove_dev - remove a CPU device 1446 * 1447 * Removes the cpufreq interface for a CPU device. 1448 */ 1449 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif) 1450 { 1451 unsigned int cpu = dev->id; 1452 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1453 1454 if (!policy) 1455 return; 1456 1457 if (cpu_online(cpu)) 1458 cpufreq_offline(cpu); 1459 1460 cpumask_clear_cpu(cpu, policy->real_cpus); 1461 remove_cpu_dev_symlink(policy, dev); 1462 1463 if (cpumask_empty(policy->real_cpus)) { 1464 /* We did light-weight exit earlier, do full tear down now */ 1465 if (cpufreq_driver->offline) 1466 cpufreq_driver->exit(policy); 1467 1468 cpufreq_policy_free(policy); 1469 } 1470 } 1471 1472 /** 1473 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're 1474 * in deep trouble. 1475 * @policy: policy managing CPUs 1476 * @new_freq: CPU frequency the CPU actually runs at 1477 * 1478 * We adjust to current frequency first, and need to clean up later. 1479 * So either call to cpufreq_update_policy() or schedule handle_update()). 1480 */ 1481 static void cpufreq_out_of_sync(struct cpufreq_policy *policy, 1482 unsigned int new_freq) 1483 { 1484 struct cpufreq_freqs freqs; 1485 1486 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n", 1487 policy->cur, new_freq); 1488 1489 freqs.old = policy->cur; 1490 freqs.new = new_freq; 1491 1492 cpufreq_freq_transition_begin(policy, &freqs); 1493 cpufreq_freq_transition_end(policy, &freqs, 0); 1494 } 1495 1496 /** 1497 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur 1498 * @cpu: CPU number 1499 * 1500 * This is the last known freq, without actually getting it from the driver. 1501 * Return value will be same as what is shown in scaling_cur_freq in sysfs. 1502 */ 1503 unsigned int cpufreq_quick_get(unsigned int cpu) 1504 { 1505 struct cpufreq_policy *policy; 1506 unsigned int ret_freq = 0; 1507 unsigned long flags; 1508 1509 read_lock_irqsave(&cpufreq_driver_lock, flags); 1510 1511 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) { 1512 ret_freq = cpufreq_driver->get(cpu); 1513 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1514 return ret_freq; 1515 } 1516 1517 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1518 1519 policy = cpufreq_cpu_get(cpu); 1520 if (policy) { 1521 ret_freq = policy->cur; 1522 cpufreq_cpu_put(policy); 1523 } 1524 1525 return ret_freq; 1526 } 1527 EXPORT_SYMBOL(cpufreq_quick_get); 1528 1529 /** 1530 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU 1531 * @cpu: CPU number 1532 * 1533 * Just return the max possible frequency for a given CPU. 1534 */ 1535 unsigned int cpufreq_quick_get_max(unsigned int cpu) 1536 { 1537 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1538 unsigned int ret_freq = 0; 1539 1540 if (policy) { 1541 ret_freq = policy->max; 1542 cpufreq_cpu_put(policy); 1543 } 1544 1545 return ret_freq; 1546 } 1547 EXPORT_SYMBOL(cpufreq_quick_get_max); 1548 1549 static unsigned int __cpufreq_get(struct cpufreq_policy *policy) 1550 { 1551 unsigned int ret_freq = 0; 1552 1553 if (unlikely(policy_is_inactive(policy)) || !cpufreq_driver->get) 1554 return ret_freq; 1555 1556 ret_freq = cpufreq_driver->get(policy->cpu); 1557 1558 /* 1559 * If fast frequency switching is used with the given policy, the check 1560 * against policy->cur is pointless, so skip it in that case too. 1561 */ 1562 if (policy->fast_switch_enabled) 1563 return ret_freq; 1564 1565 if (ret_freq && policy->cur && 1566 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 1567 /* verify no discrepancy between actual and 1568 saved value exists */ 1569 if (unlikely(ret_freq != policy->cur)) { 1570 cpufreq_out_of_sync(policy, ret_freq); 1571 schedule_work(&policy->update); 1572 } 1573 } 1574 1575 return ret_freq; 1576 } 1577 1578 /** 1579 * cpufreq_get - get the current CPU frequency (in kHz) 1580 * @cpu: CPU number 1581 * 1582 * Get the CPU current (static) CPU frequency 1583 */ 1584 unsigned int cpufreq_get(unsigned int cpu) 1585 { 1586 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1587 unsigned int ret_freq = 0; 1588 1589 if (policy) { 1590 down_read(&policy->rwsem); 1591 ret_freq = __cpufreq_get(policy); 1592 up_read(&policy->rwsem); 1593 1594 cpufreq_cpu_put(policy); 1595 } 1596 1597 return ret_freq; 1598 } 1599 EXPORT_SYMBOL(cpufreq_get); 1600 1601 static unsigned int cpufreq_update_current_freq(struct cpufreq_policy *policy) 1602 { 1603 unsigned int new_freq; 1604 1605 new_freq = cpufreq_driver->get(policy->cpu); 1606 if (!new_freq) 1607 return 0; 1608 1609 if (!policy->cur) { 1610 pr_debug("cpufreq: Driver did not initialize current freq\n"); 1611 policy->cur = new_freq; 1612 } else if (policy->cur != new_freq && has_target()) { 1613 cpufreq_out_of_sync(policy, new_freq); 1614 } 1615 1616 return new_freq; 1617 } 1618 1619 static struct subsys_interface cpufreq_interface = { 1620 .name = "cpufreq", 1621 .subsys = &cpu_subsys, 1622 .add_dev = cpufreq_add_dev, 1623 .remove_dev = cpufreq_remove_dev, 1624 }; 1625 1626 /* 1627 * In case platform wants some specific frequency to be configured 1628 * during suspend.. 1629 */ 1630 int cpufreq_generic_suspend(struct cpufreq_policy *policy) 1631 { 1632 int ret; 1633 1634 if (!policy->suspend_freq) { 1635 pr_debug("%s: suspend_freq not defined\n", __func__); 1636 return 0; 1637 } 1638 1639 pr_debug("%s: Setting suspend-freq: %u\n", __func__, 1640 policy->suspend_freq); 1641 1642 ret = __cpufreq_driver_target(policy, policy->suspend_freq, 1643 CPUFREQ_RELATION_H); 1644 if (ret) 1645 pr_err("%s: unable to set suspend-freq: %u. err: %d\n", 1646 __func__, policy->suspend_freq, ret); 1647 1648 return ret; 1649 } 1650 EXPORT_SYMBOL(cpufreq_generic_suspend); 1651 1652 /** 1653 * cpufreq_suspend() - Suspend CPUFreq governors 1654 * 1655 * Called during system wide Suspend/Hibernate cycles for suspending governors 1656 * as some platforms can't change frequency after this point in suspend cycle. 1657 * Because some of the devices (like: i2c, regulators, etc) they use for 1658 * changing frequency are suspended quickly after this point. 1659 */ 1660 void cpufreq_suspend(void) 1661 { 1662 struct cpufreq_policy *policy; 1663 1664 if (!cpufreq_driver) 1665 return; 1666 1667 if (!has_target() && !cpufreq_driver->suspend) 1668 goto suspend; 1669 1670 pr_debug("%s: Suspending Governors\n", __func__); 1671 1672 for_each_active_policy(policy) { 1673 if (has_target()) { 1674 down_write(&policy->rwsem); 1675 cpufreq_stop_governor(policy); 1676 up_write(&policy->rwsem); 1677 } 1678 1679 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy)) 1680 pr_err("%s: Failed to suspend driver: %p\n", __func__, 1681 policy); 1682 } 1683 1684 suspend: 1685 cpufreq_suspended = true; 1686 } 1687 1688 /** 1689 * cpufreq_resume() - Resume CPUFreq governors 1690 * 1691 * Called during system wide Suspend/Hibernate cycle for resuming governors that 1692 * are suspended with cpufreq_suspend(). 1693 */ 1694 void cpufreq_resume(void) 1695 { 1696 struct cpufreq_policy *policy; 1697 int ret; 1698 1699 if (!cpufreq_driver) 1700 return; 1701 1702 if (unlikely(!cpufreq_suspended)) 1703 return; 1704 1705 cpufreq_suspended = false; 1706 1707 if (!has_target() && !cpufreq_driver->resume) 1708 return; 1709 1710 pr_debug("%s: Resuming Governors\n", __func__); 1711 1712 for_each_active_policy(policy) { 1713 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) { 1714 pr_err("%s: Failed to resume driver: %p\n", __func__, 1715 policy); 1716 } else if (has_target()) { 1717 down_write(&policy->rwsem); 1718 ret = cpufreq_start_governor(policy); 1719 up_write(&policy->rwsem); 1720 1721 if (ret) 1722 pr_err("%s: Failed to start governor for policy: %p\n", 1723 __func__, policy); 1724 } 1725 } 1726 } 1727 1728 /** 1729 * cpufreq_get_current_driver - return current driver's name 1730 * 1731 * Return the name string of the currently loaded cpufreq driver 1732 * or NULL, if none. 1733 */ 1734 const char *cpufreq_get_current_driver(void) 1735 { 1736 if (cpufreq_driver) 1737 return cpufreq_driver->name; 1738 1739 return NULL; 1740 } 1741 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver); 1742 1743 /** 1744 * cpufreq_get_driver_data - return current driver data 1745 * 1746 * Return the private data of the currently loaded cpufreq 1747 * driver, or NULL if no cpufreq driver is loaded. 1748 */ 1749 void *cpufreq_get_driver_data(void) 1750 { 1751 if (cpufreq_driver) 1752 return cpufreq_driver->driver_data; 1753 1754 return NULL; 1755 } 1756 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data); 1757 1758 /********************************************************************* 1759 * NOTIFIER LISTS INTERFACE * 1760 *********************************************************************/ 1761 1762 /** 1763 * cpufreq_register_notifier - register a driver with cpufreq 1764 * @nb: notifier function to register 1765 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1766 * 1767 * Add a driver to one of two lists: either a list of drivers that 1768 * are notified about clock rate changes (once before and once after 1769 * the transition), or a list of drivers that are notified about 1770 * changes in cpufreq policy. 1771 * 1772 * This function may sleep, and has the same return conditions as 1773 * blocking_notifier_chain_register. 1774 */ 1775 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 1776 { 1777 int ret; 1778 1779 if (cpufreq_disabled()) 1780 return -EINVAL; 1781 1782 switch (list) { 1783 case CPUFREQ_TRANSITION_NOTIFIER: 1784 mutex_lock(&cpufreq_fast_switch_lock); 1785 1786 if (cpufreq_fast_switch_count > 0) { 1787 mutex_unlock(&cpufreq_fast_switch_lock); 1788 return -EBUSY; 1789 } 1790 ret = srcu_notifier_chain_register( 1791 &cpufreq_transition_notifier_list, nb); 1792 if (!ret) 1793 cpufreq_fast_switch_count--; 1794 1795 mutex_unlock(&cpufreq_fast_switch_lock); 1796 break; 1797 case CPUFREQ_POLICY_NOTIFIER: 1798 ret = blocking_notifier_chain_register( 1799 &cpufreq_policy_notifier_list, nb); 1800 break; 1801 default: 1802 ret = -EINVAL; 1803 } 1804 1805 return ret; 1806 } 1807 EXPORT_SYMBOL(cpufreq_register_notifier); 1808 1809 /** 1810 * cpufreq_unregister_notifier - unregister a driver with cpufreq 1811 * @nb: notifier block to be unregistered 1812 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1813 * 1814 * Remove a driver from the CPU frequency notifier list. 1815 * 1816 * This function may sleep, and has the same return conditions as 1817 * blocking_notifier_chain_unregister. 1818 */ 1819 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 1820 { 1821 int ret; 1822 1823 if (cpufreq_disabled()) 1824 return -EINVAL; 1825 1826 switch (list) { 1827 case CPUFREQ_TRANSITION_NOTIFIER: 1828 mutex_lock(&cpufreq_fast_switch_lock); 1829 1830 ret = srcu_notifier_chain_unregister( 1831 &cpufreq_transition_notifier_list, nb); 1832 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0)) 1833 cpufreq_fast_switch_count++; 1834 1835 mutex_unlock(&cpufreq_fast_switch_lock); 1836 break; 1837 case CPUFREQ_POLICY_NOTIFIER: 1838 ret = blocking_notifier_chain_unregister( 1839 &cpufreq_policy_notifier_list, nb); 1840 break; 1841 default: 1842 ret = -EINVAL; 1843 } 1844 1845 return ret; 1846 } 1847 EXPORT_SYMBOL(cpufreq_unregister_notifier); 1848 1849 1850 /********************************************************************* 1851 * GOVERNORS * 1852 *********************************************************************/ 1853 1854 /** 1855 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch. 1856 * @policy: cpufreq policy to switch the frequency for. 1857 * @target_freq: New frequency to set (may be approximate). 1858 * 1859 * Carry out a fast frequency switch without sleeping. 1860 * 1861 * The driver's ->fast_switch() callback invoked by this function must be 1862 * suitable for being called from within RCU-sched read-side critical sections 1863 * and it is expected to select the minimum available frequency greater than or 1864 * equal to @target_freq (CPUFREQ_RELATION_L). 1865 * 1866 * This function must not be called if policy->fast_switch_enabled is unset. 1867 * 1868 * Governors calling this function must guarantee that it will never be invoked 1869 * twice in parallel for the same policy and that it will never be called in 1870 * parallel with either ->target() or ->target_index() for the same policy. 1871 * 1872 * Returns the actual frequency set for the CPU. 1873 * 1874 * If 0 is returned by the driver's ->fast_switch() callback to indicate an 1875 * error condition, the hardware configuration must be preserved. 1876 */ 1877 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy, 1878 unsigned int target_freq) 1879 { 1880 target_freq = clamp_val(target_freq, policy->min, policy->max); 1881 1882 return cpufreq_driver->fast_switch(policy, target_freq); 1883 } 1884 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch); 1885 1886 /* Must set freqs->new to intermediate frequency */ 1887 static int __target_intermediate(struct cpufreq_policy *policy, 1888 struct cpufreq_freqs *freqs, int index) 1889 { 1890 int ret; 1891 1892 freqs->new = cpufreq_driver->get_intermediate(policy, index); 1893 1894 /* We don't need to switch to intermediate freq */ 1895 if (!freqs->new) 1896 return 0; 1897 1898 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n", 1899 __func__, policy->cpu, freqs->old, freqs->new); 1900 1901 cpufreq_freq_transition_begin(policy, freqs); 1902 ret = cpufreq_driver->target_intermediate(policy, index); 1903 cpufreq_freq_transition_end(policy, freqs, ret); 1904 1905 if (ret) 1906 pr_err("%s: Failed to change to intermediate frequency: %d\n", 1907 __func__, ret); 1908 1909 return ret; 1910 } 1911 1912 static int __target_index(struct cpufreq_policy *policy, int index) 1913 { 1914 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0}; 1915 unsigned int intermediate_freq = 0; 1916 unsigned int newfreq = policy->freq_table[index].frequency; 1917 int retval = -EINVAL; 1918 bool notify; 1919 1920 if (newfreq == policy->cur) 1921 return 0; 1922 1923 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION); 1924 if (notify) { 1925 /* Handle switching to intermediate frequency */ 1926 if (cpufreq_driver->get_intermediate) { 1927 retval = __target_intermediate(policy, &freqs, index); 1928 if (retval) 1929 return retval; 1930 1931 intermediate_freq = freqs.new; 1932 /* Set old freq to intermediate */ 1933 if (intermediate_freq) 1934 freqs.old = freqs.new; 1935 } 1936 1937 freqs.new = newfreq; 1938 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n", 1939 __func__, policy->cpu, freqs.old, freqs.new); 1940 1941 cpufreq_freq_transition_begin(policy, &freqs); 1942 } 1943 1944 retval = cpufreq_driver->target_index(policy, index); 1945 if (retval) 1946 pr_err("%s: Failed to change cpu frequency: %d\n", __func__, 1947 retval); 1948 1949 if (notify) { 1950 cpufreq_freq_transition_end(policy, &freqs, retval); 1951 1952 /* 1953 * Failed after setting to intermediate freq? Driver should have 1954 * reverted back to initial frequency and so should we. Check 1955 * here for intermediate_freq instead of get_intermediate, in 1956 * case we haven't switched to intermediate freq at all. 1957 */ 1958 if (unlikely(retval && intermediate_freq)) { 1959 freqs.old = intermediate_freq; 1960 freqs.new = policy->restore_freq; 1961 cpufreq_freq_transition_begin(policy, &freqs); 1962 cpufreq_freq_transition_end(policy, &freqs, 0); 1963 } 1964 } 1965 1966 return retval; 1967 } 1968 1969 int __cpufreq_driver_target(struct cpufreq_policy *policy, 1970 unsigned int target_freq, 1971 unsigned int relation) 1972 { 1973 unsigned int old_target_freq = target_freq; 1974 int index; 1975 1976 if (cpufreq_disabled()) 1977 return -ENODEV; 1978 1979 /* Make sure that target_freq is within supported range */ 1980 target_freq = clamp_val(target_freq, policy->min, policy->max); 1981 1982 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n", 1983 policy->cpu, target_freq, relation, old_target_freq); 1984 1985 /* 1986 * This might look like a redundant call as we are checking it again 1987 * after finding index. But it is left intentionally for cases where 1988 * exactly same freq is called again and so we can save on few function 1989 * calls. 1990 */ 1991 if (target_freq == policy->cur) 1992 return 0; 1993 1994 /* Save last value to restore later on errors */ 1995 policy->restore_freq = policy->cur; 1996 1997 if (cpufreq_driver->target) 1998 return cpufreq_driver->target(policy, target_freq, relation); 1999 2000 if (!cpufreq_driver->target_index) 2001 return -EINVAL; 2002 2003 index = cpufreq_frequency_table_target(policy, target_freq, relation); 2004 2005 return __target_index(policy, index); 2006 } 2007 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 2008 2009 int cpufreq_driver_target(struct cpufreq_policy *policy, 2010 unsigned int target_freq, 2011 unsigned int relation) 2012 { 2013 int ret = -EINVAL; 2014 2015 down_write(&policy->rwsem); 2016 2017 ret = __cpufreq_driver_target(policy, target_freq, relation); 2018 2019 up_write(&policy->rwsem); 2020 2021 return ret; 2022 } 2023 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 2024 2025 __weak struct cpufreq_governor *cpufreq_fallback_governor(void) 2026 { 2027 return NULL; 2028 } 2029 2030 static int cpufreq_init_governor(struct cpufreq_policy *policy) 2031 { 2032 int ret; 2033 2034 /* Don't start any governor operations if we are entering suspend */ 2035 if (cpufreq_suspended) 2036 return 0; 2037 /* 2038 * Governor might not be initiated here if ACPI _PPC changed 2039 * notification happened, so check it. 2040 */ 2041 if (!policy->governor) 2042 return -EINVAL; 2043 2044 /* Platform doesn't want dynamic frequency switching ? */ 2045 if (policy->governor->dynamic_switching && 2046 cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) { 2047 struct cpufreq_governor *gov = cpufreq_fallback_governor(); 2048 2049 if (gov) { 2050 pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n", 2051 policy->governor->name, gov->name); 2052 policy->governor = gov; 2053 } else { 2054 return -EINVAL; 2055 } 2056 } 2057 2058 if (!try_module_get(policy->governor->owner)) 2059 return -EINVAL; 2060 2061 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2062 2063 if (policy->governor->init) { 2064 ret = policy->governor->init(policy); 2065 if (ret) { 2066 module_put(policy->governor->owner); 2067 return ret; 2068 } 2069 } 2070 2071 return 0; 2072 } 2073 2074 static void cpufreq_exit_governor(struct cpufreq_policy *policy) 2075 { 2076 if (cpufreq_suspended || !policy->governor) 2077 return; 2078 2079 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2080 2081 if (policy->governor->exit) 2082 policy->governor->exit(policy); 2083 2084 module_put(policy->governor->owner); 2085 } 2086 2087 static int cpufreq_start_governor(struct cpufreq_policy *policy) 2088 { 2089 int ret; 2090 2091 if (cpufreq_suspended) 2092 return 0; 2093 2094 if (!policy->governor) 2095 return -EINVAL; 2096 2097 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2098 2099 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) 2100 cpufreq_update_current_freq(policy); 2101 2102 if (policy->governor->start) { 2103 ret = policy->governor->start(policy); 2104 if (ret) 2105 return ret; 2106 } 2107 2108 if (policy->governor->limits) 2109 policy->governor->limits(policy); 2110 2111 return 0; 2112 } 2113 2114 static void cpufreq_stop_governor(struct cpufreq_policy *policy) 2115 { 2116 if (cpufreq_suspended || !policy->governor) 2117 return; 2118 2119 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2120 2121 if (policy->governor->stop) 2122 policy->governor->stop(policy); 2123 } 2124 2125 static void cpufreq_governor_limits(struct cpufreq_policy *policy) 2126 { 2127 if (cpufreq_suspended || !policy->governor) 2128 return; 2129 2130 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2131 2132 if (policy->governor->limits) 2133 policy->governor->limits(policy); 2134 } 2135 2136 int cpufreq_register_governor(struct cpufreq_governor *governor) 2137 { 2138 int err; 2139 2140 if (!governor) 2141 return -EINVAL; 2142 2143 if (cpufreq_disabled()) 2144 return -ENODEV; 2145 2146 mutex_lock(&cpufreq_governor_mutex); 2147 2148 err = -EBUSY; 2149 if (!find_governor(governor->name)) { 2150 err = 0; 2151 list_add(&governor->governor_list, &cpufreq_governor_list); 2152 } 2153 2154 mutex_unlock(&cpufreq_governor_mutex); 2155 return err; 2156 } 2157 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 2158 2159 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 2160 { 2161 struct cpufreq_policy *policy; 2162 unsigned long flags; 2163 2164 if (!governor) 2165 return; 2166 2167 if (cpufreq_disabled()) 2168 return; 2169 2170 /* clear last_governor for all inactive policies */ 2171 read_lock_irqsave(&cpufreq_driver_lock, flags); 2172 for_each_inactive_policy(policy) { 2173 if (!strcmp(policy->last_governor, governor->name)) { 2174 policy->governor = NULL; 2175 strcpy(policy->last_governor, "\0"); 2176 } 2177 } 2178 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 2179 2180 mutex_lock(&cpufreq_governor_mutex); 2181 list_del(&governor->governor_list); 2182 mutex_unlock(&cpufreq_governor_mutex); 2183 } 2184 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 2185 2186 2187 /********************************************************************* 2188 * POLICY INTERFACE * 2189 *********************************************************************/ 2190 2191 /** 2192 * cpufreq_get_policy - get the current cpufreq_policy 2193 * @policy: struct cpufreq_policy into which the current cpufreq_policy 2194 * is written 2195 * 2196 * Reads the current cpufreq policy. 2197 */ 2198 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 2199 { 2200 struct cpufreq_policy *cpu_policy; 2201 if (!policy) 2202 return -EINVAL; 2203 2204 cpu_policy = cpufreq_cpu_get(cpu); 2205 if (!cpu_policy) 2206 return -EINVAL; 2207 2208 memcpy(policy, cpu_policy, sizeof(*policy)); 2209 2210 cpufreq_cpu_put(cpu_policy); 2211 return 0; 2212 } 2213 EXPORT_SYMBOL(cpufreq_get_policy); 2214 2215 /** 2216 * cpufreq_set_policy - Modify cpufreq policy parameters. 2217 * @policy: Policy object to modify. 2218 * @new_policy: New policy data. 2219 * 2220 * Pass @new_policy to the cpufreq driver's ->verify() callback, run the 2221 * installed policy notifiers for it with the CPUFREQ_ADJUST value, pass it to 2222 * the driver's ->verify() callback again and run the notifiers for it again 2223 * with the CPUFREQ_NOTIFY value. Next, copy the min and max parameters 2224 * of @new_policy to @policy and either invoke the driver's ->setpolicy() 2225 * callback (if present) or carry out a governor update for @policy. That is, 2226 * run the current governor's ->limits() callback (if the governor field in 2227 * @new_policy points to the same object as the one in @policy) or replace the 2228 * governor for @policy with the new one stored in @new_policy. 2229 * 2230 * The cpuinfo part of @policy is not updated by this function. 2231 */ 2232 static int cpufreq_set_policy(struct cpufreq_policy *policy, 2233 struct cpufreq_policy *new_policy) 2234 { 2235 struct cpufreq_governor *old_gov; 2236 int ret; 2237 2238 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", 2239 new_policy->cpu, new_policy->min, new_policy->max); 2240 2241 memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo)); 2242 2243 /* 2244 * This check works well when we store new min/max freq attributes, 2245 * because new_policy is a copy of policy with one field updated. 2246 */ 2247 if (new_policy->min > new_policy->max) 2248 return -EINVAL; 2249 2250 /* verify the cpu speed can be set within this limit */ 2251 ret = cpufreq_driver->verify(new_policy); 2252 if (ret) 2253 return ret; 2254 2255 /* adjust if necessary - all reasons */ 2256 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 2257 CPUFREQ_ADJUST, new_policy); 2258 2259 /* 2260 * verify the cpu speed can be set within this limit, which might be 2261 * different to the first one 2262 */ 2263 ret = cpufreq_driver->verify(new_policy); 2264 if (ret) 2265 return ret; 2266 2267 /* notification of the new policy */ 2268 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 2269 CPUFREQ_NOTIFY, new_policy); 2270 2271 policy->min = new_policy->min; 2272 policy->max = new_policy->max; 2273 trace_cpu_frequency_limits(policy); 2274 2275 policy->cached_target_freq = UINT_MAX; 2276 2277 pr_debug("new min and max freqs are %u - %u kHz\n", 2278 policy->min, policy->max); 2279 2280 if (cpufreq_driver->setpolicy) { 2281 policy->policy = new_policy->policy; 2282 pr_debug("setting range\n"); 2283 return cpufreq_driver->setpolicy(policy); 2284 } 2285 2286 if (new_policy->governor == policy->governor) { 2287 pr_debug("governor limits update\n"); 2288 cpufreq_governor_limits(policy); 2289 return 0; 2290 } 2291 2292 pr_debug("governor switch\n"); 2293 2294 /* save old, working values */ 2295 old_gov = policy->governor; 2296 /* end old governor */ 2297 if (old_gov) { 2298 cpufreq_stop_governor(policy); 2299 cpufreq_exit_governor(policy); 2300 } 2301 2302 /* start new governor */ 2303 policy->governor = new_policy->governor; 2304 ret = cpufreq_init_governor(policy); 2305 if (!ret) { 2306 ret = cpufreq_start_governor(policy); 2307 if (!ret) { 2308 pr_debug("governor change\n"); 2309 sched_cpufreq_governor_change(policy, old_gov); 2310 return 0; 2311 } 2312 cpufreq_exit_governor(policy); 2313 } 2314 2315 /* new governor failed, so re-start old one */ 2316 pr_debug("starting governor %s failed\n", policy->governor->name); 2317 if (old_gov) { 2318 policy->governor = old_gov; 2319 if (cpufreq_init_governor(policy)) 2320 policy->governor = NULL; 2321 else 2322 cpufreq_start_governor(policy); 2323 } 2324 2325 return ret; 2326 } 2327 2328 /** 2329 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy. 2330 * @cpu: CPU to re-evaluate the policy for. 2331 * 2332 * Update the current frequency for the cpufreq policy of @cpu and use 2333 * cpufreq_set_policy() to re-apply the min and max limits saved in the 2334 * user_policy sub-structure of that policy, which triggers the evaluation 2335 * of policy notifiers and the cpufreq driver's ->verify() callback for the 2336 * policy in question, among other things. 2337 */ 2338 void cpufreq_update_policy(unsigned int cpu) 2339 { 2340 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 2341 struct cpufreq_policy new_policy; 2342 2343 if (!policy) 2344 return; 2345 2346 down_write(&policy->rwsem); 2347 2348 if (policy_is_inactive(policy)) 2349 goto unlock; 2350 2351 /* 2352 * BIOS might change freq behind our back 2353 * -> ask driver for current freq and notify governors about a change 2354 */ 2355 if (cpufreq_driver->get && !cpufreq_driver->setpolicy && 2356 (cpufreq_suspended || WARN_ON(!cpufreq_update_current_freq(policy)))) 2357 goto unlock; 2358 2359 pr_debug("updating policy for CPU %u\n", cpu); 2360 memcpy(&new_policy, policy, sizeof(*policy)); 2361 new_policy.min = policy->user_policy.min; 2362 new_policy.max = policy->user_policy.max; 2363 2364 cpufreq_set_policy(policy, &new_policy); 2365 2366 unlock: 2367 up_write(&policy->rwsem); 2368 2369 cpufreq_cpu_put(policy); 2370 } 2371 EXPORT_SYMBOL(cpufreq_update_policy); 2372 2373 /********************************************************************* 2374 * BOOST * 2375 *********************************************************************/ 2376 static int cpufreq_boost_set_sw(int state) 2377 { 2378 struct cpufreq_policy *policy; 2379 int ret = -EINVAL; 2380 2381 for_each_active_policy(policy) { 2382 if (!policy->freq_table) 2383 continue; 2384 2385 ret = cpufreq_frequency_table_cpuinfo(policy, 2386 policy->freq_table); 2387 if (ret) { 2388 pr_err("%s: Policy frequency update failed\n", 2389 __func__); 2390 break; 2391 } 2392 2393 down_write(&policy->rwsem); 2394 policy->user_policy.max = policy->max; 2395 cpufreq_governor_limits(policy); 2396 up_write(&policy->rwsem); 2397 } 2398 2399 return ret; 2400 } 2401 2402 int cpufreq_boost_trigger_state(int state) 2403 { 2404 unsigned long flags; 2405 int ret = 0; 2406 2407 if (cpufreq_driver->boost_enabled == state) 2408 return 0; 2409 2410 write_lock_irqsave(&cpufreq_driver_lock, flags); 2411 cpufreq_driver->boost_enabled = state; 2412 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2413 2414 ret = cpufreq_driver->set_boost(state); 2415 if (ret) { 2416 write_lock_irqsave(&cpufreq_driver_lock, flags); 2417 cpufreq_driver->boost_enabled = !state; 2418 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2419 2420 pr_err("%s: Cannot %s BOOST\n", 2421 __func__, state ? "enable" : "disable"); 2422 } 2423 2424 return ret; 2425 } 2426 2427 static bool cpufreq_boost_supported(void) 2428 { 2429 return likely(cpufreq_driver) && cpufreq_driver->set_boost; 2430 } 2431 2432 static int create_boost_sysfs_file(void) 2433 { 2434 int ret; 2435 2436 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr); 2437 if (ret) 2438 pr_err("%s: cannot register global BOOST sysfs file\n", 2439 __func__); 2440 2441 return ret; 2442 } 2443 2444 static void remove_boost_sysfs_file(void) 2445 { 2446 if (cpufreq_boost_supported()) 2447 sysfs_remove_file(cpufreq_global_kobject, &boost.attr); 2448 } 2449 2450 int cpufreq_enable_boost_support(void) 2451 { 2452 if (!cpufreq_driver) 2453 return -EINVAL; 2454 2455 if (cpufreq_boost_supported()) 2456 return 0; 2457 2458 cpufreq_driver->set_boost = cpufreq_boost_set_sw; 2459 2460 /* This will get removed on driver unregister */ 2461 return create_boost_sysfs_file(); 2462 } 2463 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support); 2464 2465 int cpufreq_boost_enabled(void) 2466 { 2467 return cpufreq_driver->boost_enabled; 2468 } 2469 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled); 2470 2471 /********************************************************************* 2472 * REGISTER / UNREGISTER CPUFREQ DRIVER * 2473 *********************************************************************/ 2474 static enum cpuhp_state hp_online; 2475 2476 static int cpuhp_cpufreq_online(unsigned int cpu) 2477 { 2478 cpufreq_online(cpu); 2479 2480 return 0; 2481 } 2482 2483 static int cpuhp_cpufreq_offline(unsigned int cpu) 2484 { 2485 cpufreq_offline(cpu); 2486 2487 return 0; 2488 } 2489 2490 /** 2491 * cpufreq_register_driver - register a CPU Frequency driver 2492 * @driver_data: A struct cpufreq_driver containing the values# 2493 * submitted by the CPU Frequency driver. 2494 * 2495 * Registers a CPU Frequency driver to this core code. This code 2496 * returns zero on success, -EEXIST when another driver got here first 2497 * (and isn't unregistered in the meantime). 2498 * 2499 */ 2500 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 2501 { 2502 unsigned long flags; 2503 int ret; 2504 2505 if (cpufreq_disabled()) 2506 return -ENODEV; 2507 2508 if (!driver_data || !driver_data->verify || !driver_data->init || 2509 !(driver_data->setpolicy || driver_data->target_index || 2510 driver_data->target) || 2511 (driver_data->setpolicy && (driver_data->target_index || 2512 driver_data->target)) || 2513 (!driver_data->get_intermediate != !driver_data->target_intermediate) || 2514 (!driver_data->online != !driver_data->offline)) 2515 return -EINVAL; 2516 2517 pr_debug("trying to register driver %s\n", driver_data->name); 2518 2519 /* Protect against concurrent CPU online/offline. */ 2520 cpus_read_lock(); 2521 2522 write_lock_irqsave(&cpufreq_driver_lock, flags); 2523 if (cpufreq_driver) { 2524 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2525 ret = -EEXIST; 2526 goto out; 2527 } 2528 cpufreq_driver = driver_data; 2529 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2530 2531 if (driver_data->setpolicy) 2532 driver_data->flags |= CPUFREQ_CONST_LOOPS; 2533 2534 if (cpufreq_boost_supported()) { 2535 ret = create_boost_sysfs_file(); 2536 if (ret) 2537 goto err_null_driver; 2538 } 2539 2540 ret = subsys_interface_register(&cpufreq_interface); 2541 if (ret) 2542 goto err_boost_unreg; 2543 2544 if (!(cpufreq_driver->flags & CPUFREQ_STICKY) && 2545 list_empty(&cpufreq_policy_list)) { 2546 /* if all ->init() calls failed, unregister */ 2547 ret = -ENODEV; 2548 pr_debug("%s: No CPU initialized for driver %s\n", __func__, 2549 driver_data->name); 2550 goto err_if_unreg; 2551 } 2552 2553 ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN, 2554 "cpufreq:online", 2555 cpuhp_cpufreq_online, 2556 cpuhp_cpufreq_offline); 2557 if (ret < 0) 2558 goto err_if_unreg; 2559 hp_online = ret; 2560 ret = 0; 2561 2562 pr_debug("driver %s up and running\n", driver_data->name); 2563 goto out; 2564 2565 err_if_unreg: 2566 subsys_interface_unregister(&cpufreq_interface); 2567 err_boost_unreg: 2568 remove_boost_sysfs_file(); 2569 err_null_driver: 2570 write_lock_irqsave(&cpufreq_driver_lock, flags); 2571 cpufreq_driver = NULL; 2572 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2573 out: 2574 cpus_read_unlock(); 2575 return ret; 2576 } 2577 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 2578 2579 /** 2580 * cpufreq_unregister_driver - unregister the current CPUFreq driver 2581 * 2582 * Unregister the current CPUFreq driver. Only call this if you have 2583 * the right to do so, i.e. if you have succeeded in initialising before! 2584 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 2585 * currently not initialised. 2586 */ 2587 int cpufreq_unregister_driver(struct cpufreq_driver *driver) 2588 { 2589 unsigned long flags; 2590 2591 if (!cpufreq_driver || (driver != cpufreq_driver)) 2592 return -EINVAL; 2593 2594 pr_debug("unregistering driver %s\n", driver->name); 2595 2596 /* Protect against concurrent cpu hotplug */ 2597 cpus_read_lock(); 2598 subsys_interface_unregister(&cpufreq_interface); 2599 remove_boost_sysfs_file(); 2600 cpuhp_remove_state_nocalls_cpuslocked(hp_online); 2601 2602 write_lock_irqsave(&cpufreq_driver_lock, flags); 2603 2604 cpufreq_driver = NULL; 2605 2606 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2607 cpus_read_unlock(); 2608 2609 return 0; 2610 } 2611 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 2612 2613 /* 2614 * Stop cpufreq at shutdown to make sure it isn't holding any locks 2615 * or mutexes when secondary CPUs are halted. 2616 */ 2617 static struct syscore_ops cpufreq_syscore_ops = { 2618 .shutdown = cpufreq_suspend, 2619 }; 2620 2621 struct kobject *cpufreq_global_kobject; 2622 EXPORT_SYMBOL(cpufreq_global_kobject); 2623 2624 static int __init cpufreq_core_init(void) 2625 { 2626 if (cpufreq_disabled()) 2627 return -ENODEV; 2628 2629 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj); 2630 BUG_ON(!cpufreq_global_kobject); 2631 2632 register_syscore_ops(&cpufreq_syscore_ops); 2633 2634 return 0; 2635 } 2636 module_param(off, int, 0444); 2637 core_initcall(cpufreq_core_init); 2638