1 /* 2 * linux/drivers/cpufreq/cpufreq.c 3 * 4 * Copyright (C) 2001 Russell King 5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 6 * 7 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 8 * Added handling for CPU hotplug 9 * Feb 2006 - Jacob Shin <jacob.shin@amd.com> 10 * Fix handling for CPU hotplug -- affected CPUs 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License version 2 as 14 * published by the Free Software Foundation. 15 * 16 */ 17 18 #include <linux/kernel.h> 19 #include <linux/module.h> 20 #include <linux/init.h> 21 #include <linux/notifier.h> 22 #include <linux/cpufreq.h> 23 #include <linux/delay.h> 24 #include <linux/interrupt.h> 25 #include <linux/spinlock.h> 26 #include <linux/device.h> 27 #include <linux/slab.h> 28 #include <linux/cpu.h> 29 #include <linux/completion.h> 30 #include <linux/mutex.h> 31 #include <linux/syscore_ops.h> 32 33 #include <trace/events/power.h> 34 35 /** 36 * The "cpufreq driver" - the arch- or hardware-dependent low 37 * level driver of CPUFreq support, and its spinlock. This lock 38 * also protects the cpufreq_cpu_data array. 39 */ 40 static struct cpufreq_driver *cpufreq_driver; 41 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data); 42 #ifdef CONFIG_HOTPLUG_CPU 43 /* This one keeps track of the previously set governor of a removed CPU */ 44 static DEFINE_PER_CPU(char[CPUFREQ_NAME_LEN], cpufreq_cpu_governor); 45 #endif 46 static DEFINE_SPINLOCK(cpufreq_driver_lock); 47 48 /* 49 * cpu_policy_rwsem is a per CPU reader-writer semaphore designed to cure 50 * all cpufreq/hotplug/workqueue/etc related lock issues. 51 * 52 * The rules for this semaphore: 53 * - Any routine that wants to read from the policy structure will 54 * do a down_read on this semaphore. 55 * - Any routine that will write to the policy structure and/or may take away 56 * the policy altogether (eg. CPU hotplug), will hold this lock in write 57 * mode before doing so. 58 * 59 * Additional rules: 60 * - All holders of the lock should check to make sure that the CPU they 61 * are concerned with are online after they get the lock. 62 * - Governor routines that can be called in cpufreq hotplug path should not 63 * take this sem as top level hotplug notifier handler takes this. 64 * - Lock should not be held across 65 * __cpufreq_governor(data, CPUFREQ_GOV_STOP); 66 */ 67 static DEFINE_PER_CPU(int, cpufreq_policy_cpu); 68 static DEFINE_PER_CPU(struct rw_semaphore, cpu_policy_rwsem); 69 70 #define lock_policy_rwsem(mode, cpu) \ 71 static int lock_policy_rwsem_##mode \ 72 (int cpu) \ 73 { \ 74 int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu); \ 75 BUG_ON(policy_cpu == -1); \ 76 down_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu)); \ 77 if (unlikely(!cpu_online(cpu))) { \ 78 up_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu)); \ 79 return -1; \ 80 } \ 81 \ 82 return 0; \ 83 } 84 85 lock_policy_rwsem(read, cpu); 86 87 lock_policy_rwsem(write, cpu); 88 89 static void unlock_policy_rwsem_read(int cpu) 90 { 91 int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu); 92 BUG_ON(policy_cpu == -1); 93 up_read(&per_cpu(cpu_policy_rwsem, policy_cpu)); 94 } 95 96 static void unlock_policy_rwsem_write(int cpu) 97 { 98 int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu); 99 BUG_ON(policy_cpu == -1); 100 up_write(&per_cpu(cpu_policy_rwsem, policy_cpu)); 101 } 102 103 104 /* internal prototypes */ 105 static int __cpufreq_governor(struct cpufreq_policy *policy, 106 unsigned int event); 107 static unsigned int __cpufreq_get(unsigned int cpu); 108 static void handle_update(struct work_struct *work); 109 110 /** 111 * Two notifier lists: the "policy" list is involved in the 112 * validation process for a new CPU frequency policy; the 113 * "transition" list for kernel code that needs to handle 114 * changes to devices when the CPU clock speed changes. 115 * The mutex locks both lists. 116 */ 117 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list); 118 static struct srcu_notifier_head cpufreq_transition_notifier_list; 119 120 static bool init_cpufreq_transition_notifier_list_called; 121 static int __init init_cpufreq_transition_notifier_list(void) 122 { 123 srcu_init_notifier_head(&cpufreq_transition_notifier_list); 124 init_cpufreq_transition_notifier_list_called = true; 125 return 0; 126 } 127 pure_initcall(init_cpufreq_transition_notifier_list); 128 129 static LIST_HEAD(cpufreq_governor_list); 130 static DEFINE_MUTEX(cpufreq_governor_mutex); 131 132 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) 133 { 134 struct cpufreq_policy *data; 135 unsigned long flags; 136 137 if (cpu >= nr_cpu_ids) 138 goto err_out; 139 140 /* get the cpufreq driver */ 141 spin_lock_irqsave(&cpufreq_driver_lock, flags); 142 143 if (!cpufreq_driver) 144 goto err_out_unlock; 145 146 if (!try_module_get(cpufreq_driver->owner)) 147 goto err_out_unlock; 148 149 150 /* get the CPU */ 151 data = per_cpu(cpufreq_cpu_data, cpu); 152 153 if (!data) 154 goto err_out_put_module; 155 156 if (!kobject_get(&data->kobj)) 157 goto err_out_put_module; 158 159 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 160 return data; 161 162 err_out_put_module: 163 module_put(cpufreq_driver->owner); 164 err_out_unlock: 165 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 166 err_out: 167 return NULL; 168 } 169 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 170 171 172 void cpufreq_cpu_put(struct cpufreq_policy *data) 173 { 174 kobject_put(&data->kobj); 175 module_put(cpufreq_driver->owner); 176 } 177 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 178 179 180 /********************************************************************* 181 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 182 *********************************************************************/ 183 184 /** 185 * adjust_jiffies - adjust the system "loops_per_jiffy" 186 * 187 * This function alters the system "loops_per_jiffy" for the clock 188 * speed change. Note that loops_per_jiffy cannot be updated on SMP 189 * systems as each CPU might be scaled differently. So, use the arch 190 * per-CPU loops_per_jiffy value wherever possible. 191 */ 192 #ifndef CONFIG_SMP 193 static unsigned long l_p_j_ref; 194 static unsigned int l_p_j_ref_freq; 195 196 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 197 { 198 if (ci->flags & CPUFREQ_CONST_LOOPS) 199 return; 200 201 if (!l_p_j_ref_freq) { 202 l_p_j_ref = loops_per_jiffy; 203 l_p_j_ref_freq = ci->old; 204 pr_debug("saving %lu as reference value for loops_per_jiffy; " 205 "freq is %u kHz\n", l_p_j_ref, l_p_j_ref_freq); 206 } 207 if ((val == CPUFREQ_PRECHANGE && ci->old < ci->new) || 208 (val == CPUFREQ_POSTCHANGE && ci->old > ci->new) || 209 (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) { 210 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, 211 ci->new); 212 pr_debug("scaling loops_per_jiffy to %lu " 213 "for frequency %u kHz\n", loops_per_jiffy, ci->new); 214 } 215 } 216 #else 217 static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 218 { 219 return; 220 } 221 #endif 222 223 224 /** 225 * cpufreq_notify_transition - call notifier chain and adjust_jiffies 226 * on frequency transition. 227 * 228 * This function calls the transition notifiers and the "adjust_jiffies" 229 * function. It is called twice on all CPU frequency changes that have 230 * external effects. 231 */ 232 void cpufreq_notify_transition(struct cpufreq_freqs *freqs, unsigned int state) 233 { 234 struct cpufreq_policy *policy; 235 236 BUG_ON(irqs_disabled()); 237 238 freqs->flags = cpufreq_driver->flags; 239 pr_debug("notification %u of frequency transition to %u kHz\n", 240 state, freqs->new); 241 242 policy = per_cpu(cpufreq_cpu_data, freqs->cpu); 243 switch (state) { 244 245 case CPUFREQ_PRECHANGE: 246 /* detect if the driver reported a value as "old frequency" 247 * which is not equal to what the cpufreq core thinks is 248 * "old frequency". 249 */ 250 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 251 if ((policy) && (policy->cpu == freqs->cpu) && 252 (policy->cur) && (policy->cur != freqs->old)) { 253 pr_debug("Warning: CPU frequency is" 254 " %u, cpufreq assumed %u kHz.\n", 255 freqs->old, policy->cur); 256 freqs->old = policy->cur; 257 } 258 } 259 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 260 CPUFREQ_PRECHANGE, freqs); 261 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 262 break; 263 264 case CPUFREQ_POSTCHANGE: 265 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 266 pr_debug("FREQ: %lu - CPU: %lu", (unsigned long)freqs->new, 267 (unsigned long)freqs->cpu); 268 trace_power_frequency(POWER_PSTATE, freqs->new, freqs->cpu); 269 trace_cpu_frequency(freqs->new, freqs->cpu); 270 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 271 CPUFREQ_POSTCHANGE, freqs); 272 if (likely(policy) && likely(policy->cpu == freqs->cpu)) 273 policy->cur = freqs->new; 274 break; 275 } 276 } 277 EXPORT_SYMBOL_GPL(cpufreq_notify_transition); 278 279 280 281 /********************************************************************* 282 * SYSFS INTERFACE * 283 *********************************************************************/ 284 285 static struct cpufreq_governor *__find_governor(const char *str_governor) 286 { 287 struct cpufreq_governor *t; 288 289 list_for_each_entry(t, &cpufreq_governor_list, governor_list) 290 if (!strnicmp(str_governor, t->name, CPUFREQ_NAME_LEN)) 291 return t; 292 293 return NULL; 294 } 295 296 /** 297 * cpufreq_parse_governor - parse a governor string 298 */ 299 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy, 300 struct cpufreq_governor **governor) 301 { 302 int err = -EINVAL; 303 304 if (!cpufreq_driver) 305 goto out; 306 307 if (cpufreq_driver->setpolicy) { 308 if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) { 309 *policy = CPUFREQ_POLICY_PERFORMANCE; 310 err = 0; 311 } else if (!strnicmp(str_governor, "powersave", 312 CPUFREQ_NAME_LEN)) { 313 *policy = CPUFREQ_POLICY_POWERSAVE; 314 err = 0; 315 } 316 } else if (cpufreq_driver->target) { 317 struct cpufreq_governor *t; 318 319 mutex_lock(&cpufreq_governor_mutex); 320 321 t = __find_governor(str_governor); 322 323 if (t == NULL) { 324 int ret; 325 326 mutex_unlock(&cpufreq_governor_mutex); 327 ret = request_module("cpufreq_%s", str_governor); 328 mutex_lock(&cpufreq_governor_mutex); 329 330 if (ret == 0) 331 t = __find_governor(str_governor); 332 } 333 334 if (t != NULL) { 335 *governor = t; 336 err = 0; 337 } 338 339 mutex_unlock(&cpufreq_governor_mutex); 340 } 341 out: 342 return err; 343 } 344 345 346 /** 347 * cpufreq_per_cpu_attr_read() / show_##file_name() - 348 * print out cpufreq information 349 * 350 * Write out information from cpufreq_driver->policy[cpu]; object must be 351 * "unsigned int". 352 */ 353 354 #define show_one(file_name, object) \ 355 static ssize_t show_##file_name \ 356 (struct cpufreq_policy *policy, char *buf) \ 357 { \ 358 return sprintf(buf, "%u\n", policy->object); \ 359 } 360 361 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 362 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 363 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency); 364 show_one(scaling_min_freq, min); 365 show_one(scaling_max_freq, max); 366 show_one(scaling_cur_freq, cur); 367 368 static int __cpufreq_set_policy(struct cpufreq_policy *data, 369 struct cpufreq_policy *policy); 370 371 /** 372 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 373 */ 374 #define store_one(file_name, object) \ 375 static ssize_t store_##file_name \ 376 (struct cpufreq_policy *policy, const char *buf, size_t count) \ 377 { \ 378 unsigned int ret = -EINVAL; \ 379 struct cpufreq_policy new_policy; \ 380 \ 381 ret = cpufreq_get_policy(&new_policy, policy->cpu); \ 382 if (ret) \ 383 return -EINVAL; \ 384 \ 385 ret = sscanf(buf, "%u", &new_policy.object); \ 386 if (ret != 1) \ 387 return -EINVAL; \ 388 \ 389 ret = __cpufreq_set_policy(policy, &new_policy); \ 390 policy->user_policy.object = policy->object; \ 391 \ 392 return ret ? ret : count; \ 393 } 394 395 store_one(scaling_min_freq, min); 396 store_one(scaling_max_freq, max); 397 398 /** 399 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 400 */ 401 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy, 402 char *buf) 403 { 404 unsigned int cur_freq = __cpufreq_get(policy->cpu); 405 if (!cur_freq) 406 return sprintf(buf, "<unknown>"); 407 return sprintf(buf, "%u\n", cur_freq); 408 } 409 410 411 /** 412 * show_scaling_governor - show the current policy for the specified CPU 413 */ 414 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf) 415 { 416 if (policy->policy == CPUFREQ_POLICY_POWERSAVE) 417 return sprintf(buf, "powersave\n"); 418 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 419 return sprintf(buf, "performance\n"); 420 else if (policy->governor) 421 return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", 422 policy->governor->name); 423 return -EINVAL; 424 } 425 426 427 /** 428 * store_scaling_governor - store policy for the specified CPU 429 */ 430 static ssize_t store_scaling_governor(struct cpufreq_policy *policy, 431 const char *buf, size_t count) 432 { 433 unsigned int ret = -EINVAL; 434 char str_governor[16]; 435 struct cpufreq_policy new_policy; 436 437 ret = cpufreq_get_policy(&new_policy, policy->cpu); 438 if (ret) 439 return ret; 440 441 ret = sscanf(buf, "%15s", str_governor); 442 if (ret != 1) 443 return -EINVAL; 444 445 if (cpufreq_parse_governor(str_governor, &new_policy.policy, 446 &new_policy.governor)) 447 return -EINVAL; 448 449 /* Do not use cpufreq_set_policy here or the user_policy.max 450 will be wrongly overridden */ 451 ret = __cpufreq_set_policy(policy, &new_policy); 452 453 policy->user_policy.policy = policy->policy; 454 policy->user_policy.governor = policy->governor; 455 456 if (ret) 457 return ret; 458 else 459 return count; 460 } 461 462 /** 463 * show_scaling_driver - show the cpufreq driver currently loaded 464 */ 465 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf) 466 { 467 return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", cpufreq_driver->name); 468 } 469 470 /** 471 * show_scaling_available_governors - show the available CPUfreq governors 472 */ 473 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy, 474 char *buf) 475 { 476 ssize_t i = 0; 477 struct cpufreq_governor *t; 478 479 if (!cpufreq_driver->target) { 480 i += sprintf(buf, "performance powersave"); 481 goto out; 482 } 483 484 list_for_each_entry(t, &cpufreq_governor_list, governor_list) { 485 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) 486 - (CPUFREQ_NAME_LEN + 2))) 487 goto out; 488 i += scnprintf(&buf[i], CPUFREQ_NAME_LEN, "%s ", t->name); 489 } 490 out: 491 i += sprintf(&buf[i], "\n"); 492 return i; 493 } 494 495 static ssize_t show_cpus(const struct cpumask *mask, char *buf) 496 { 497 ssize_t i = 0; 498 unsigned int cpu; 499 500 for_each_cpu(cpu, mask) { 501 if (i) 502 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " "); 503 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu); 504 if (i >= (PAGE_SIZE - 5)) 505 break; 506 } 507 i += sprintf(&buf[i], "\n"); 508 return i; 509 } 510 511 /** 512 * show_related_cpus - show the CPUs affected by each transition even if 513 * hw coordination is in use 514 */ 515 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf) 516 { 517 if (cpumask_empty(policy->related_cpus)) 518 return show_cpus(policy->cpus, buf); 519 return show_cpus(policy->related_cpus, buf); 520 } 521 522 /** 523 * show_affected_cpus - show the CPUs affected by each transition 524 */ 525 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf) 526 { 527 return show_cpus(policy->cpus, buf); 528 } 529 530 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy, 531 const char *buf, size_t count) 532 { 533 unsigned int freq = 0; 534 unsigned int ret; 535 536 if (!policy->governor || !policy->governor->store_setspeed) 537 return -EINVAL; 538 539 ret = sscanf(buf, "%u", &freq); 540 if (ret != 1) 541 return -EINVAL; 542 543 policy->governor->store_setspeed(policy, freq); 544 545 return count; 546 } 547 548 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf) 549 { 550 if (!policy->governor || !policy->governor->show_setspeed) 551 return sprintf(buf, "<unsupported>\n"); 552 553 return policy->governor->show_setspeed(policy, buf); 554 } 555 556 /** 557 * show_scaling_driver - show the current cpufreq HW/BIOS limitation 558 */ 559 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf) 560 { 561 unsigned int limit; 562 int ret; 563 if (cpufreq_driver->bios_limit) { 564 ret = cpufreq_driver->bios_limit(policy->cpu, &limit); 565 if (!ret) 566 return sprintf(buf, "%u\n", limit); 567 } 568 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq); 569 } 570 571 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400); 572 cpufreq_freq_attr_ro(cpuinfo_min_freq); 573 cpufreq_freq_attr_ro(cpuinfo_max_freq); 574 cpufreq_freq_attr_ro(cpuinfo_transition_latency); 575 cpufreq_freq_attr_ro(scaling_available_governors); 576 cpufreq_freq_attr_ro(scaling_driver); 577 cpufreq_freq_attr_ro(scaling_cur_freq); 578 cpufreq_freq_attr_ro(bios_limit); 579 cpufreq_freq_attr_ro(related_cpus); 580 cpufreq_freq_attr_ro(affected_cpus); 581 cpufreq_freq_attr_rw(scaling_min_freq); 582 cpufreq_freq_attr_rw(scaling_max_freq); 583 cpufreq_freq_attr_rw(scaling_governor); 584 cpufreq_freq_attr_rw(scaling_setspeed); 585 586 static struct attribute *default_attrs[] = { 587 &cpuinfo_min_freq.attr, 588 &cpuinfo_max_freq.attr, 589 &cpuinfo_transition_latency.attr, 590 &scaling_min_freq.attr, 591 &scaling_max_freq.attr, 592 &affected_cpus.attr, 593 &related_cpus.attr, 594 &scaling_governor.attr, 595 &scaling_driver.attr, 596 &scaling_available_governors.attr, 597 &scaling_setspeed.attr, 598 NULL 599 }; 600 601 struct kobject *cpufreq_global_kobject; 602 EXPORT_SYMBOL(cpufreq_global_kobject); 603 604 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj) 605 #define to_attr(a) container_of(a, struct freq_attr, attr) 606 607 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) 608 { 609 struct cpufreq_policy *policy = to_policy(kobj); 610 struct freq_attr *fattr = to_attr(attr); 611 ssize_t ret = -EINVAL; 612 policy = cpufreq_cpu_get(policy->cpu); 613 if (!policy) 614 goto no_policy; 615 616 if (lock_policy_rwsem_read(policy->cpu) < 0) 617 goto fail; 618 619 if (fattr->show) 620 ret = fattr->show(policy, buf); 621 else 622 ret = -EIO; 623 624 unlock_policy_rwsem_read(policy->cpu); 625 fail: 626 cpufreq_cpu_put(policy); 627 no_policy: 628 return ret; 629 } 630 631 static ssize_t store(struct kobject *kobj, struct attribute *attr, 632 const char *buf, size_t count) 633 { 634 struct cpufreq_policy *policy = to_policy(kobj); 635 struct freq_attr *fattr = to_attr(attr); 636 ssize_t ret = -EINVAL; 637 policy = cpufreq_cpu_get(policy->cpu); 638 if (!policy) 639 goto no_policy; 640 641 if (lock_policy_rwsem_write(policy->cpu) < 0) 642 goto fail; 643 644 if (fattr->store) 645 ret = fattr->store(policy, buf, count); 646 else 647 ret = -EIO; 648 649 unlock_policy_rwsem_write(policy->cpu); 650 fail: 651 cpufreq_cpu_put(policy); 652 no_policy: 653 return ret; 654 } 655 656 static void cpufreq_sysfs_release(struct kobject *kobj) 657 { 658 struct cpufreq_policy *policy = to_policy(kobj); 659 pr_debug("last reference is dropped\n"); 660 complete(&policy->kobj_unregister); 661 } 662 663 static const struct sysfs_ops sysfs_ops = { 664 .show = show, 665 .store = store, 666 }; 667 668 static struct kobj_type ktype_cpufreq = { 669 .sysfs_ops = &sysfs_ops, 670 .default_attrs = default_attrs, 671 .release = cpufreq_sysfs_release, 672 }; 673 674 /* 675 * Returns: 676 * Negative: Failure 677 * 0: Success 678 * Positive: When we have a managed CPU and the sysfs got symlinked 679 */ 680 static int cpufreq_add_dev_policy(unsigned int cpu, 681 struct cpufreq_policy *policy, 682 struct device *dev) 683 { 684 int ret = 0; 685 #ifdef CONFIG_SMP 686 unsigned long flags; 687 unsigned int j; 688 #ifdef CONFIG_HOTPLUG_CPU 689 struct cpufreq_governor *gov; 690 691 gov = __find_governor(per_cpu(cpufreq_cpu_governor, cpu)); 692 if (gov) { 693 policy->governor = gov; 694 pr_debug("Restoring governor %s for cpu %d\n", 695 policy->governor->name, cpu); 696 } 697 #endif 698 699 for_each_cpu(j, policy->cpus) { 700 struct cpufreq_policy *managed_policy; 701 702 if (cpu == j) 703 continue; 704 705 /* Check for existing affected CPUs. 706 * They may not be aware of it due to CPU Hotplug. 707 * cpufreq_cpu_put is called when the device is removed 708 * in __cpufreq_remove_dev() 709 */ 710 managed_policy = cpufreq_cpu_get(j); 711 if (unlikely(managed_policy)) { 712 713 /* Set proper policy_cpu */ 714 unlock_policy_rwsem_write(cpu); 715 per_cpu(cpufreq_policy_cpu, cpu) = managed_policy->cpu; 716 717 if (lock_policy_rwsem_write(cpu) < 0) { 718 /* Should not go through policy unlock path */ 719 if (cpufreq_driver->exit) 720 cpufreq_driver->exit(policy); 721 cpufreq_cpu_put(managed_policy); 722 return -EBUSY; 723 } 724 725 spin_lock_irqsave(&cpufreq_driver_lock, flags); 726 cpumask_copy(managed_policy->cpus, policy->cpus); 727 per_cpu(cpufreq_cpu_data, cpu) = managed_policy; 728 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 729 730 pr_debug("CPU already managed, adding link\n"); 731 ret = sysfs_create_link(&dev->kobj, 732 &managed_policy->kobj, 733 "cpufreq"); 734 if (ret) 735 cpufreq_cpu_put(managed_policy); 736 /* 737 * Success. We only needed to be added to the mask. 738 * Call driver->exit() because only the cpu parent of 739 * the kobj needed to call init(). 740 */ 741 if (cpufreq_driver->exit) 742 cpufreq_driver->exit(policy); 743 744 if (!ret) 745 return 1; 746 else 747 return ret; 748 } 749 } 750 #endif 751 return ret; 752 } 753 754 755 /* symlink affected CPUs */ 756 static int cpufreq_add_dev_symlink(unsigned int cpu, 757 struct cpufreq_policy *policy) 758 { 759 unsigned int j; 760 int ret = 0; 761 762 for_each_cpu(j, policy->cpus) { 763 struct cpufreq_policy *managed_policy; 764 struct device *cpu_dev; 765 766 if (j == cpu) 767 continue; 768 if (!cpu_online(j)) 769 continue; 770 771 pr_debug("CPU %u already managed, adding link\n", j); 772 managed_policy = cpufreq_cpu_get(cpu); 773 cpu_dev = get_cpu_device(j); 774 ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj, 775 "cpufreq"); 776 if (ret) { 777 cpufreq_cpu_put(managed_policy); 778 return ret; 779 } 780 } 781 return ret; 782 } 783 784 static int cpufreq_add_dev_interface(unsigned int cpu, 785 struct cpufreq_policy *policy, 786 struct device *dev) 787 { 788 struct cpufreq_policy new_policy; 789 struct freq_attr **drv_attr; 790 unsigned long flags; 791 int ret = 0; 792 unsigned int j; 793 794 /* prepare interface data */ 795 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, 796 &dev->kobj, "cpufreq"); 797 if (ret) 798 return ret; 799 800 /* set up files for this cpu device */ 801 drv_attr = cpufreq_driver->attr; 802 while ((drv_attr) && (*drv_attr)) { 803 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 804 if (ret) 805 goto err_out_kobj_put; 806 drv_attr++; 807 } 808 if (cpufreq_driver->get) { 809 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 810 if (ret) 811 goto err_out_kobj_put; 812 } 813 if (cpufreq_driver->target) { 814 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 815 if (ret) 816 goto err_out_kobj_put; 817 } 818 if (cpufreq_driver->bios_limit) { 819 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr); 820 if (ret) 821 goto err_out_kobj_put; 822 } 823 824 spin_lock_irqsave(&cpufreq_driver_lock, flags); 825 for_each_cpu(j, policy->cpus) { 826 if (!cpu_online(j)) 827 continue; 828 per_cpu(cpufreq_cpu_data, j) = policy; 829 per_cpu(cpufreq_policy_cpu, j) = policy->cpu; 830 } 831 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 832 833 ret = cpufreq_add_dev_symlink(cpu, policy); 834 if (ret) 835 goto err_out_kobj_put; 836 837 memcpy(&new_policy, policy, sizeof(struct cpufreq_policy)); 838 /* assure that the starting sequence is run in __cpufreq_set_policy */ 839 policy->governor = NULL; 840 841 /* set default policy */ 842 ret = __cpufreq_set_policy(policy, &new_policy); 843 policy->user_policy.policy = policy->policy; 844 policy->user_policy.governor = policy->governor; 845 846 if (ret) { 847 pr_debug("setting policy failed\n"); 848 if (cpufreq_driver->exit) 849 cpufreq_driver->exit(policy); 850 } 851 return ret; 852 853 err_out_kobj_put: 854 kobject_put(&policy->kobj); 855 wait_for_completion(&policy->kobj_unregister); 856 return ret; 857 } 858 859 860 /** 861 * cpufreq_add_dev - add a CPU device 862 * 863 * Adds the cpufreq interface for a CPU device. 864 * 865 * The Oracle says: try running cpufreq registration/unregistration concurrently 866 * with with cpu hotplugging and all hell will break loose. Tried to clean this 867 * mess up, but more thorough testing is needed. - Mathieu 868 */ 869 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 870 { 871 unsigned int cpu = dev->id; 872 int ret = 0, found = 0; 873 struct cpufreq_policy *policy; 874 unsigned long flags; 875 unsigned int j; 876 #ifdef CONFIG_HOTPLUG_CPU 877 int sibling; 878 #endif 879 880 if (cpu_is_offline(cpu)) 881 return 0; 882 883 pr_debug("adding CPU %u\n", cpu); 884 885 #ifdef CONFIG_SMP 886 /* check whether a different CPU already registered this 887 * CPU because it is in the same boat. */ 888 policy = cpufreq_cpu_get(cpu); 889 if (unlikely(policy)) { 890 cpufreq_cpu_put(policy); 891 return 0; 892 } 893 #endif 894 895 if (!try_module_get(cpufreq_driver->owner)) { 896 ret = -EINVAL; 897 goto module_out; 898 } 899 900 ret = -ENOMEM; 901 policy = kzalloc(sizeof(struct cpufreq_policy), GFP_KERNEL); 902 if (!policy) 903 goto nomem_out; 904 905 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) 906 goto err_free_policy; 907 908 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) 909 goto err_free_cpumask; 910 911 policy->cpu = cpu; 912 cpumask_copy(policy->cpus, cpumask_of(cpu)); 913 914 /* Initially set CPU itself as the policy_cpu */ 915 per_cpu(cpufreq_policy_cpu, cpu) = cpu; 916 ret = (lock_policy_rwsem_write(cpu) < 0); 917 WARN_ON(ret); 918 919 init_completion(&policy->kobj_unregister); 920 INIT_WORK(&policy->update, handle_update); 921 922 /* Set governor before ->init, so that driver could check it */ 923 #ifdef CONFIG_HOTPLUG_CPU 924 for_each_online_cpu(sibling) { 925 struct cpufreq_policy *cp = per_cpu(cpufreq_cpu_data, sibling); 926 if (cp && cp->governor && 927 (cpumask_test_cpu(cpu, cp->related_cpus))) { 928 policy->governor = cp->governor; 929 found = 1; 930 break; 931 } 932 } 933 #endif 934 if (!found) 935 policy->governor = CPUFREQ_DEFAULT_GOVERNOR; 936 /* call driver. From then on the cpufreq must be able 937 * to accept all calls to ->verify and ->setpolicy for this CPU 938 */ 939 ret = cpufreq_driver->init(policy); 940 if (ret) { 941 pr_debug("initialization failed\n"); 942 goto err_unlock_policy; 943 } 944 policy->user_policy.min = policy->min; 945 policy->user_policy.max = policy->max; 946 947 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 948 CPUFREQ_START, policy); 949 950 ret = cpufreq_add_dev_policy(cpu, policy, dev); 951 if (ret) { 952 if (ret > 0) 953 /* This is a managed cpu, symlink created, 954 exit with 0 */ 955 ret = 0; 956 goto err_unlock_policy; 957 } 958 959 ret = cpufreq_add_dev_interface(cpu, policy, dev); 960 if (ret) 961 goto err_out_unregister; 962 963 unlock_policy_rwsem_write(cpu); 964 965 kobject_uevent(&policy->kobj, KOBJ_ADD); 966 module_put(cpufreq_driver->owner); 967 pr_debug("initialization complete\n"); 968 969 return 0; 970 971 972 err_out_unregister: 973 spin_lock_irqsave(&cpufreq_driver_lock, flags); 974 for_each_cpu(j, policy->cpus) 975 per_cpu(cpufreq_cpu_data, j) = NULL; 976 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 977 978 kobject_put(&policy->kobj); 979 wait_for_completion(&policy->kobj_unregister); 980 981 err_unlock_policy: 982 unlock_policy_rwsem_write(cpu); 983 free_cpumask_var(policy->related_cpus); 984 err_free_cpumask: 985 free_cpumask_var(policy->cpus); 986 err_free_policy: 987 kfree(policy); 988 nomem_out: 989 module_put(cpufreq_driver->owner); 990 module_out: 991 return ret; 992 } 993 994 995 /** 996 * __cpufreq_remove_dev - remove a CPU device 997 * 998 * Removes the cpufreq interface for a CPU device. 999 * Caller should already have policy_rwsem in write mode for this CPU. 1000 * This routine frees the rwsem before returning. 1001 */ 1002 static int __cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif) 1003 { 1004 unsigned int cpu = dev->id; 1005 unsigned long flags; 1006 struct cpufreq_policy *data; 1007 struct kobject *kobj; 1008 struct completion *cmp; 1009 #ifdef CONFIG_SMP 1010 struct device *cpu_dev; 1011 unsigned int j; 1012 #endif 1013 1014 pr_debug("unregistering CPU %u\n", cpu); 1015 1016 spin_lock_irqsave(&cpufreq_driver_lock, flags); 1017 data = per_cpu(cpufreq_cpu_data, cpu); 1018 1019 if (!data) { 1020 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 1021 unlock_policy_rwsem_write(cpu); 1022 return -EINVAL; 1023 } 1024 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1025 1026 1027 #ifdef CONFIG_SMP 1028 /* if this isn't the CPU which is the parent of the kobj, we 1029 * only need to unlink, put and exit 1030 */ 1031 if (unlikely(cpu != data->cpu)) { 1032 pr_debug("removing link\n"); 1033 cpumask_clear_cpu(cpu, data->cpus); 1034 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 1035 kobj = &dev->kobj; 1036 cpufreq_cpu_put(data); 1037 unlock_policy_rwsem_write(cpu); 1038 sysfs_remove_link(kobj, "cpufreq"); 1039 return 0; 1040 } 1041 #endif 1042 1043 #ifdef CONFIG_SMP 1044 1045 #ifdef CONFIG_HOTPLUG_CPU 1046 strncpy(per_cpu(cpufreq_cpu_governor, cpu), data->governor->name, 1047 CPUFREQ_NAME_LEN); 1048 #endif 1049 1050 /* if we have other CPUs still registered, we need to unlink them, 1051 * or else wait_for_completion below will lock up. Clean the 1052 * per_cpu(cpufreq_cpu_data) while holding the lock, and remove 1053 * the sysfs links afterwards. 1054 */ 1055 if (unlikely(cpumask_weight(data->cpus) > 1)) { 1056 for_each_cpu(j, data->cpus) { 1057 if (j == cpu) 1058 continue; 1059 per_cpu(cpufreq_cpu_data, j) = NULL; 1060 } 1061 } 1062 1063 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 1064 1065 if (unlikely(cpumask_weight(data->cpus) > 1)) { 1066 for_each_cpu(j, data->cpus) { 1067 if (j == cpu) 1068 continue; 1069 pr_debug("removing link for cpu %u\n", j); 1070 #ifdef CONFIG_HOTPLUG_CPU 1071 strncpy(per_cpu(cpufreq_cpu_governor, j), 1072 data->governor->name, CPUFREQ_NAME_LEN); 1073 #endif 1074 cpu_dev = get_cpu_device(j); 1075 kobj = &cpu_dev->kobj; 1076 unlock_policy_rwsem_write(cpu); 1077 sysfs_remove_link(kobj, "cpufreq"); 1078 lock_policy_rwsem_write(cpu); 1079 cpufreq_cpu_put(data); 1080 } 1081 } 1082 #else 1083 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 1084 #endif 1085 1086 if (cpufreq_driver->target) 1087 __cpufreq_governor(data, CPUFREQ_GOV_STOP); 1088 1089 kobj = &data->kobj; 1090 cmp = &data->kobj_unregister; 1091 unlock_policy_rwsem_write(cpu); 1092 kobject_put(kobj); 1093 1094 /* we need to make sure that the underlying kobj is actually 1095 * not referenced anymore by anybody before we proceed with 1096 * unloading. 1097 */ 1098 pr_debug("waiting for dropping of refcount\n"); 1099 wait_for_completion(cmp); 1100 pr_debug("wait complete\n"); 1101 1102 lock_policy_rwsem_write(cpu); 1103 if (cpufreq_driver->exit) 1104 cpufreq_driver->exit(data); 1105 unlock_policy_rwsem_write(cpu); 1106 1107 #ifdef CONFIG_HOTPLUG_CPU 1108 /* when the CPU which is the parent of the kobj is hotplugged 1109 * offline, check for siblings, and create cpufreq sysfs interface 1110 * and symlinks 1111 */ 1112 if (unlikely(cpumask_weight(data->cpus) > 1)) { 1113 /* first sibling now owns the new sysfs dir */ 1114 cpumask_clear_cpu(cpu, data->cpus); 1115 cpufreq_add_dev(get_cpu_device(cpumask_first(data->cpus)), NULL); 1116 1117 /* finally remove our own symlink */ 1118 lock_policy_rwsem_write(cpu); 1119 __cpufreq_remove_dev(dev, sif); 1120 } 1121 #endif 1122 1123 free_cpumask_var(data->related_cpus); 1124 free_cpumask_var(data->cpus); 1125 kfree(data); 1126 1127 return 0; 1128 } 1129 1130 1131 static int cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif) 1132 { 1133 unsigned int cpu = dev->id; 1134 int retval; 1135 1136 if (cpu_is_offline(cpu)) 1137 return 0; 1138 1139 if (unlikely(lock_policy_rwsem_write(cpu))) 1140 BUG(); 1141 1142 retval = __cpufreq_remove_dev(dev, sif); 1143 return retval; 1144 } 1145 1146 1147 static void handle_update(struct work_struct *work) 1148 { 1149 struct cpufreq_policy *policy = 1150 container_of(work, struct cpufreq_policy, update); 1151 unsigned int cpu = policy->cpu; 1152 pr_debug("handle_update for cpu %u called\n", cpu); 1153 cpufreq_update_policy(cpu); 1154 } 1155 1156 /** 1157 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're in deep trouble. 1158 * @cpu: cpu number 1159 * @old_freq: CPU frequency the kernel thinks the CPU runs at 1160 * @new_freq: CPU frequency the CPU actually runs at 1161 * 1162 * We adjust to current frequency first, and need to clean up later. 1163 * So either call to cpufreq_update_policy() or schedule handle_update()). 1164 */ 1165 static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq, 1166 unsigned int new_freq) 1167 { 1168 struct cpufreq_freqs freqs; 1169 1170 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing " 1171 "core thinks of %u, is %u kHz.\n", old_freq, new_freq); 1172 1173 freqs.cpu = cpu; 1174 freqs.old = old_freq; 1175 freqs.new = new_freq; 1176 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); 1177 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); 1178 } 1179 1180 1181 /** 1182 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur 1183 * @cpu: CPU number 1184 * 1185 * This is the last known freq, without actually getting it from the driver. 1186 * Return value will be same as what is shown in scaling_cur_freq in sysfs. 1187 */ 1188 unsigned int cpufreq_quick_get(unsigned int cpu) 1189 { 1190 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1191 unsigned int ret_freq = 0; 1192 1193 if (policy) { 1194 ret_freq = policy->cur; 1195 cpufreq_cpu_put(policy); 1196 } 1197 1198 return ret_freq; 1199 } 1200 EXPORT_SYMBOL(cpufreq_quick_get); 1201 1202 /** 1203 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU 1204 * @cpu: CPU number 1205 * 1206 * Just return the max possible frequency for a given CPU. 1207 */ 1208 unsigned int cpufreq_quick_get_max(unsigned int cpu) 1209 { 1210 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1211 unsigned int ret_freq = 0; 1212 1213 if (policy) { 1214 ret_freq = policy->max; 1215 cpufreq_cpu_put(policy); 1216 } 1217 1218 return ret_freq; 1219 } 1220 EXPORT_SYMBOL(cpufreq_quick_get_max); 1221 1222 1223 static unsigned int __cpufreq_get(unsigned int cpu) 1224 { 1225 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1226 unsigned int ret_freq = 0; 1227 1228 if (!cpufreq_driver->get) 1229 return ret_freq; 1230 1231 ret_freq = cpufreq_driver->get(cpu); 1232 1233 if (ret_freq && policy->cur && 1234 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 1235 /* verify no discrepancy between actual and 1236 saved value exists */ 1237 if (unlikely(ret_freq != policy->cur)) { 1238 cpufreq_out_of_sync(cpu, policy->cur, ret_freq); 1239 schedule_work(&policy->update); 1240 } 1241 } 1242 1243 return ret_freq; 1244 } 1245 1246 /** 1247 * cpufreq_get - get the current CPU frequency (in kHz) 1248 * @cpu: CPU number 1249 * 1250 * Get the CPU current (static) CPU frequency 1251 */ 1252 unsigned int cpufreq_get(unsigned int cpu) 1253 { 1254 unsigned int ret_freq = 0; 1255 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1256 1257 if (!policy) 1258 goto out; 1259 1260 if (unlikely(lock_policy_rwsem_read(cpu))) 1261 goto out_policy; 1262 1263 ret_freq = __cpufreq_get(cpu); 1264 1265 unlock_policy_rwsem_read(cpu); 1266 1267 out_policy: 1268 cpufreq_cpu_put(policy); 1269 out: 1270 return ret_freq; 1271 } 1272 EXPORT_SYMBOL(cpufreq_get); 1273 1274 static struct subsys_interface cpufreq_interface = { 1275 .name = "cpufreq", 1276 .subsys = &cpu_subsys, 1277 .add_dev = cpufreq_add_dev, 1278 .remove_dev = cpufreq_remove_dev, 1279 }; 1280 1281 1282 /** 1283 * cpufreq_bp_suspend - Prepare the boot CPU for system suspend. 1284 * 1285 * This function is only executed for the boot processor. The other CPUs 1286 * have been put offline by means of CPU hotplug. 1287 */ 1288 static int cpufreq_bp_suspend(void) 1289 { 1290 int ret = 0; 1291 1292 int cpu = smp_processor_id(); 1293 struct cpufreq_policy *cpu_policy; 1294 1295 pr_debug("suspending cpu %u\n", cpu); 1296 1297 /* If there's no policy for the boot CPU, we have nothing to do. */ 1298 cpu_policy = cpufreq_cpu_get(cpu); 1299 if (!cpu_policy) 1300 return 0; 1301 1302 if (cpufreq_driver->suspend) { 1303 ret = cpufreq_driver->suspend(cpu_policy); 1304 if (ret) 1305 printk(KERN_ERR "cpufreq: suspend failed in ->suspend " 1306 "step on CPU %u\n", cpu_policy->cpu); 1307 } 1308 1309 cpufreq_cpu_put(cpu_policy); 1310 return ret; 1311 } 1312 1313 /** 1314 * cpufreq_bp_resume - Restore proper frequency handling of the boot CPU. 1315 * 1316 * 1.) resume CPUfreq hardware support (cpufreq_driver->resume()) 1317 * 2.) schedule call cpufreq_update_policy() ASAP as interrupts are 1318 * restored. It will verify that the current freq is in sync with 1319 * what we believe it to be. This is a bit later than when it 1320 * should be, but nonethteless it's better than calling 1321 * cpufreq_driver->get() here which might re-enable interrupts... 1322 * 1323 * This function is only executed for the boot CPU. The other CPUs have not 1324 * been turned on yet. 1325 */ 1326 static void cpufreq_bp_resume(void) 1327 { 1328 int ret = 0; 1329 1330 int cpu = smp_processor_id(); 1331 struct cpufreq_policy *cpu_policy; 1332 1333 pr_debug("resuming cpu %u\n", cpu); 1334 1335 /* If there's no policy for the boot CPU, we have nothing to do. */ 1336 cpu_policy = cpufreq_cpu_get(cpu); 1337 if (!cpu_policy) 1338 return; 1339 1340 if (cpufreq_driver->resume) { 1341 ret = cpufreq_driver->resume(cpu_policy); 1342 if (ret) { 1343 printk(KERN_ERR "cpufreq: resume failed in ->resume " 1344 "step on CPU %u\n", cpu_policy->cpu); 1345 goto fail; 1346 } 1347 } 1348 1349 schedule_work(&cpu_policy->update); 1350 1351 fail: 1352 cpufreq_cpu_put(cpu_policy); 1353 } 1354 1355 static struct syscore_ops cpufreq_syscore_ops = { 1356 .suspend = cpufreq_bp_suspend, 1357 .resume = cpufreq_bp_resume, 1358 }; 1359 1360 1361 /********************************************************************* 1362 * NOTIFIER LISTS INTERFACE * 1363 *********************************************************************/ 1364 1365 /** 1366 * cpufreq_register_notifier - register a driver with cpufreq 1367 * @nb: notifier function to register 1368 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1369 * 1370 * Add a driver to one of two lists: either a list of drivers that 1371 * are notified about clock rate changes (once before and once after 1372 * the transition), or a list of drivers that are notified about 1373 * changes in cpufreq policy. 1374 * 1375 * This function may sleep, and has the same return conditions as 1376 * blocking_notifier_chain_register. 1377 */ 1378 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 1379 { 1380 int ret; 1381 1382 WARN_ON(!init_cpufreq_transition_notifier_list_called); 1383 1384 switch (list) { 1385 case CPUFREQ_TRANSITION_NOTIFIER: 1386 ret = srcu_notifier_chain_register( 1387 &cpufreq_transition_notifier_list, nb); 1388 break; 1389 case CPUFREQ_POLICY_NOTIFIER: 1390 ret = blocking_notifier_chain_register( 1391 &cpufreq_policy_notifier_list, nb); 1392 break; 1393 default: 1394 ret = -EINVAL; 1395 } 1396 1397 return ret; 1398 } 1399 EXPORT_SYMBOL(cpufreq_register_notifier); 1400 1401 1402 /** 1403 * cpufreq_unregister_notifier - unregister a driver with cpufreq 1404 * @nb: notifier block to be unregistered 1405 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1406 * 1407 * Remove a driver from the CPU frequency notifier list. 1408 * 1409 * This function may sleep, and has the same return conditions as 1410 * blocking_notifier_chain_unregister. 1411 */ 1412 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 1413 { 1414 int ret; 1415 1416 switch (list) { 1417 case CPUFREQ_TRANSITION_NOTIFIER: 1418 ret = srcu_notifier_chain_unregister( 1419 &cpufreq_transition_notifier_list, nb); 1420 break; 1421 case CPUFREQ_POLICY_NOTIFIER: 1422 ret = blocking_notifier_chain_unregister( 1423 &cpufreq_policy_notifier_list, nb); 1424 break; 1425 default: 1426 ret = -EINVAL; 1427 } 1428 1429 return ret; 1430 } 1431 EXPORT_SYMBOL(cpufreq_unregister_notifier); 1432 1433 1434 /********************************************************************* 1435 * GOVERNORS * 1436 *********************************************************************/ 1437 1438 1439 int __cpufreq_driver_target(struct cpufreq_policy *policy, 1440 unsigned int target_freq, 1441 unsigned int relation) 1442 { 1443 int retval = -EINVAL; 1444 1445 pr_debug("target for CPU %u: %u kHz, relation %u\n", policy->cpu, 1446 target_freq, relation); 1447 if (cpu_online(policy->cpu) && cpufreq_driver->target) 1448 retval = cpufreq_driver->target(policy, target_freq, relation); 1449 1450 return retval; 1451 } 1452 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 1453 1454 int cpufreq_driver_target(struct cpufreq_policy *policy, 1455 unsigned int target_freq, 1456 unsigned int relation) 1457 { 1458 int ret = -EINVAL; 1459 1460 policy = cpufreq_cpu_get(policy->cpu); 1461 if (!policy) 1462 goto no_policy; 1463 1464 if (unlikely(lock_policy_rwsem_write(policy->cpu))) 1465 goto fail; 1466 1467 ret = __cpufreq_driver_target(policy, target_freq, relation); 1468 1469 unlock_policy_rwsem_write(policy->cpu); 1470 1471 fail: 1472 cpufreq_cpu_put(policy); 1473 no_policy: 1474 return ret; 1475 } 1476 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 1477 1478 int __cpufreq_driver_getavg(struct cpufreq_policy *policy, unsigned int cpu) 1479 { 1480 int ret = 0; 1481 1482 policy = cpufreq_cpu_get(policy->cpu); 1483 if (!policy) 1484 return -EINVAL; 1485 1486 if (cpu_online(cpu) && cpufreq_driver->getavg) 1487 ret = cpufreq_driver->getavg(policy, cpu); 1488 1489 cpufreq_cpu_put(policy); 1490 return ret; 1491 } 1492 EXPORT_SYMBOL_GPL(__cpufreq_driver_getavg); 1493 1494 /* 1495 * when "event" is CPUFREQ_GOV_LIMITS 1496 */ 1497 1498 static int __cpufreq_governor(struct cpufreq_policy *policy, 1499 unsigned int event) 1500 { 1501 int ret; 1502 1503 /* Only must be defined when default governor is known to have latency 1504 restrictions, like e.g. conservative or ondemand. 1505 That this is the case is already ensured in Kconfig 1506 */ 1507 #ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE 1508 struct cpufreq_governor *gov = &cpufreq_gov_performance; 1509 #else 1510 struct cpufreq_governor *gov = NULL; 1511 #endif 1512 1513 if (policy->governor->max_transition_latency && 1514 policy->cpuinfo.transition_latency > 1515 policy->governor->max_transition_latency) { 1516 if (!gov) 1517 return -EINVAL; 1518 else { 1519 printk(KERN_WARNING "%s governor failed, too long" 1520 " transition latency of HW, fallback" 1521 " to %s governor\n", 1522 policy->governor->name, 1523 gov->name); 1524 policy->governor = gov; 1525 } 1526 } 1527 1528 if (!try_module_get(policy->governor->owner)) 1529 return -EINVAL; 1530 1531 pr_debug("__cpufreq_governor for CPU %u, event %u\n", 1532 policy->cpu, event); 1533 ret = policy->governor->governor(policy, event); 1534 1535 /* we keep one module reference alive for 1536 each CPU governed by this CPU */ 1537 if ((event != CPUFREQ_GOV_START) || ret) 1538 module_put(policy->governor->owner); 1539 if ((event == CPUFREQ_GOV_STOP) && !ret) 1540 module_put(policy->governor->owner); 1541 1542 return ret; 1543 } 1544 1545 1546 int cpufreq_register_governor(struct cpufreq_governor *governor) 1547 { 1548 int err; 1549 1550 if (!governor) 1551 return -EINVAL; 1552 1553 mutex_lock(&cpufreq_governor_mutex); 1554 1555 err = -EBUSY; 1556 if (__find_governor(governor->name) == NULL) { 1557 err = 0; 1558 list_add(&governor->governor_list, &cpufreq_governor_list); 1559 } 1560 1561 mutex_unlock(&cpufreq_governor_mutex); 1562 return err; 1563 } 1564 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 1565 1566 1567 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 1568 { 1569 #ifdef CONFIG_HOTPLUG_CPU 1570 int cpu; 1571 #endif 1572 1573 if (!governor) 1574 return; 1575 1576 #ifdef CONFIG_HOTPLUG_CPU 1577 for_each_present_cpu(cpu) { 1578 if (cpu_online(cpu)) 1579 continue; 1580 if (!strcmp(per_cpu(cpufreq_cpu_governor, cpu), governor->name)) 1581 strcpy(per_cpu(cpufreq_cpu_governor, cpu), "\0"); 1582 } 1583 #endif 1584 1585 mutex_lock(&cpufreq_governor_mutex); 1586 list_del(&governor->governor_list); 1587 mutex_unlock(&cpufreq_governor_mutex); 1588 return; 1589 } 1590 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 1591 1592 1593 1594 /********************************************************************* 1595 * POLICY INTERFACE * 1596 *********************************************************************/ 1597 1598 /** 1599 * cpufreq_get_policy - get the current cpufreq_policy 1600 * @policy: struct cpufreq_policy into which the current cpufreq_policy 1601 * is written 1602 * 1603 * Reads the current cpufreq policy. 1604 */ 1605 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 1606 { 1607 struct cpufreq_policy *cpu_policy; 1608 if (!policy) 1609 return -EINVAL; 1610 1611 cpu_policy = cpufreq_cpu_get(cpu); 1612 if (!cpu_policy) 1613 return -EINVAL; 1614 1615 memcpy(policy, cpu_policy, sizeof(struct cpufreq_policy)); 1616 1617 cpufreq_cpu_put(cpu_policy); 1618 return 0; 1619 } 1620 EXPORT_SYMBOL(cpufreq_get_policy); 1621 1622 1623 /* 1624 * data : current policy. 1625 * policy : policy to be set. 1626 */ 1627 static int __cpufreq_set_policy(struct cpufreq_policy *data, 1628 struct cpufreq_policy *policy) 1629 { 1630 int ret = 0; 1631 1632 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", policy->cpu, 1633 policy->min, policy->max); 1634 1635 memcpy(&policy->cpuinfo, &data->cpuinfo, 1636 sizeof(struct cpufreq_cpuinfo)); 1637 1638 if (policy->min > data->max || policy->max < data->min) { 1639 ret = -EINVAL; 1640 goto error_out; 1641 } 1642 1643 /* verify the cpu speed can be set within this limit */ 1644 ret = cpufreq_driver->verify(policy); 1645 if (ret) 1646 goto error_out; 1647 1648 /* adjust if necessary - all reasons */ 1649 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1650 CPUFREQ_ADJUST, policy); 1651 1652 /* adjust if necessary - hardware incompatibility*/ 1653 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1654 CPUFREQ_INCOMPATIBLE, policy); 1655 1656 /* verify the cpu speed can be set within this limit, 1657 which might be different to the first one */ 1658 ret = cpufreq_driver->verify(policy); 1659 if (ret) 1660 goto error_out; 1661 1662 /* notification of the new policy */ 1663 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1664 CPUFREQ_NOTIFY, policy); 1665 1666 data->min = policy->min; 1667 data->max = policy->max; 1668 1669 pr_debug("new min and max freqs are %u - %u kHz\n", 1670 data->min, data->max); 1671 1672 if (cpufreq_driver->setpolicy) { 1673 data->policy = policy->policy; 1674 pr_debug("setting range\n"); 1675 ret = cpufreq_driver->setpolicy(policy); 1676 } else { 1677 if (policy->governor != data->governor) { 1678 /* save old, working values */ 1679 struct cpufreq_governor *old_gov = data->governor; 1680 1681 pr_debug("governor switch\n"); 1682 1683 /* end old governor */ 1684 if (data->governor) 1685 __cpufreq_governor(data, CPUFREQ_GOV_STOP); 1686 1687 /* start new governor */ 1688 data->governor = policy->governor; 1689 if (__cpufreq_governor(data, CPUFREQ_GOV_START)) { 1690 /* new governor failed, so re-start old one */ 1691 pr_debug("starting governor %s failed\n", 1692 data->governor->name); 1693 if (old_gov) { 1694 data->governor = old_gov; 1695 __cpufreq_governor(data, 1696 CPUFREQ_GOV_START); 1697 } 1698 ret = -EINVAL; 1699 goto error_out; 1700 } 1701 /* might be a policy change, too, so fall through */ 1702 } 1703 pr_debug("governor: change or update limits\n"); 1704 __cpufreq_governor(data, CPUFREQ_GOV_LIMITS); 1705 } 1706 1707 error_out: 1708 return ret; 1709 } 1710 1711 /** 1712 * cpufreq_update_policy - re-evaluate an existing cpufreq policy 1713 * @cpu: CPU which shall be re-evaluated 1714 * 1715 * Useful for policy notifiers which have different necessities 1716 * at different times. 1717 */ 1718 int cpufreq_update_policy(unsigned int cpu) 1719 { 1720 struct cpufreq_policy *data = cpufreq_cpu_get(cpu); 1721 struct cpufreq_policy policy; 1722 int ret; 1723 1724 if (!data) { 1725 ret = -ENODEV; 1726 goto no_policy; 1727 } 1728 1729 if (unlikely(lock_policy_rwsem_write(cpu))) { 1730 ret = -EINVAL; 1731 goto fail; 1732 } 1733 1734 pr_debug("updating policy for CPU %u\n", cpu); 1735 memcpy(&policy, data, sizeof(struct cpufreq_policy)); 1736 policy.min = data->user_policy.min; 1737 policy.max = data->user_policy.max; 1738 policy.policy = data->user_policy.policy; 1739 policy.governor = data->user_policy.governor; 1740 1741 /* BIOS might change freq behind our back 1742 -> ask driver for current freq and notify governors about a change */ 1743 if (cpufreq_driver->get) { 1744 policy.cur = cpufreq_driver->get(cpu); 1745 if (!data->cur) { 1746 pr_debug("Driver did not initialize current freq"); 1747 data->cur = policy.cur; 1748 } else { 1749 if (data->cur != policy.cur) 1750 cpufreq_out_of_sync(cpu, data->cur, 1751 policy.cur); 1752 } 1753 } 1754 1755 ret = __cpufreq_set_policy(data, &policy); 1756 1757 unlock_policy_rwsem_write(cpu); 1758 1759 fail: 1760 cpufreq_cpu_put(data); 1761 no_policy: 1762 return ret; 1763 } 1764 EXPORT_SYMBOL(cpufreq_update_policy); 1765 1766 static int __cpuinit cpufreq_cpu_callback(struct notifier_block *nfb, 1767 unsigned long action, void *hcpu) 1768 { 1769 unsigned int cpu = (unsigned long)hcpu; 1770 struct device *dev; 1771 1772 dev = get_cpu_device(cpu); 1773 if (dev) { 1774 switch (action) { 1775 case CPU_ONLINE: 1776 case CPU_ONLINE_FROZEN: 1777 cpufreq_add_dev(dev, NULL); 1778 break; 1779 case CPU_DOWN_PREPARE: 1780 case CPU_DOWN_PREPARE_FROZEN: 1781 if (unlikely(lock_policy_rwsem_write(cpu))) 1782 BUG(); 1783 1784 __cpufreq_remove_dev(dev, NULL); 1785 break; 1786 case CPU_DOWN_FAILED: 1787 case CPU_DOWN_FAILED_FROZEN: 1788 cpufreq_add_dev(dev, NULL); 1789 break; 1790 } 1791 } 1792 return NOTIFY_OK; 1793 } 1794 1795 static struct notifier_block __refdata cpufreq_cpu_notifier = { 1796 .notifier_call = cpufreq_cpu_callback, 1797 }; 1798 1799 /********************************************************************* 1800 * REGISTER / UNREGISTER CPUFREQ DRIVER * 1801 *********************************************************************/ 1802 1803 /** 1804 * cpufreq_register_driver - register a CPU Frequency driver 1805 * @driver_data: A struct cpufreq_driver containing the values# 1806 * submitted by the CPU Frequency driver. 1807 * 1808 * Registers a CPU Frequency driver to this core code. This code 1809 * returns zero on success, -EBUSY when another driver got here first 1810 * (and isn't unregistered in the meantime). 1811 * 1812 */ 1813 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 1814 { 1815 unsigned long flags; 1816 int ret; 1817 1818 if (!driver_data || !driver_data->verify || !driver_data->init || 1819 ((!driver_data->setpolicy) && (!driver_data->target))) 1820 return -EINVAL; 1821 1822 pr_debug("trying to register driver %s\n", driver_data->name); 1823 1824 if (driver_data->setpolicy) 1825 driver_data->flags |= CPUFREQ_CONST_LOOPS; 1826 1827 spin_lock_irqsave(&cpufreq_driver_lock, flags); 1828 if (cpufreq_driver) { 1829 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 1830 return -EBUSY; 1831 } 1832 cpufreq_driver = driver_data; 1833 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 1834 1835 ret = subsys_interface_register(&cpufreq_interface); 1836 if (ret) 1837 goto err_null_driver; 1838 1839 if (!(cpufreq_driver->flags & CPUFREQ_STICKY)) { 1840 int i; 1841 ret = -ENODEV; 1842 1843 /* check for at least one working CPU */ 1844 for (i = 0; i < nr_cpu_ids; i++) 1845 if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) { 1846 ret = 0; 1847 break; 1848 } 1849 1850 /* if all ->init() calls failed, unregister */ 1851 if (ret) { 1852 pr_debug("no CPU initialized for driver %s\n", 1853 driver_data->name); 1854 goto err_if_unreg; 1855 } 1856 } 1857 1858 register_hotcpu_notifier(&cpufreq_cpu_notifier); 1859 pr_debug("driver %s up and running\n", driver_data->name); 1860 1861 return 0; 1862 err_if_unreg: 1863 subsys_interface_unregister(&cpufreq_interface); 1864 err_null_driver: 1865 spin_lock_irqsave(&cpufreq_driver_lock, flags); 1866 cpufreq_driver = NULL; 1867 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 1868 return ret; 1869 } 1870 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 1871 1872 1873 /** 1874 * cpufreq_unregister_driver - unregister the current CPUFreq driver 1875 * 1876 * Unregister the current CPUFreq driver. Only call this if you have 1877 * the right to do so, i.e. if you have succeeded in initialising before! 1878 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 1879 * currently not initialised. 1880 */ 1881 int cpufreq_unregister_driver(struct cpufreq_driver *driver) 1882 { 1883 unsigned long flags; 1884 1885 if (!cpufreq_driver || (driver != cpufreq_driver)) 1886 return -EINVAL; 1887 1888 pr_debug("unregistering driver %s\n", driver->name); 1889 1890 subsys_interface_unregister(&cpufreq_interface); 1891 unregister_hotcpu_notifier(&cpufreq_cpu_notifier); 1892 1893 spin_lock_irqsave(&cpufreq_driver_lock, flags); 1894 cpufreq_driver = NULL; 1895 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 1896 1897 return 0; 1898 } 1899 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 1900 1901 static int __init cpufreq_core_init(void) 1902 { 1903 int cpu; 1904 1905 for_each_possible_cpu(cpu) { 1906 per_cpu(cpufreq_policy_cpu, cpu) = -1; 1907 init_rwsem(&per_cpu(cpu_policy_rwsem, cpu)); 1908 } 1909 1910 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj); 1911 BUG_ON(!cpufreq_global_kobject); 1912 register_syscore_ops(&cpufreq_syscore_ops); 1913 1914 return 0; 1915 } 1916 core_initcall(cpufreq_core_init); 1917