1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/cpufreq/cpufreq.c 4 * 5 * Copyright (C) 2001 Russell King 6 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 7 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org> 8 * 9 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 10 * Added handling for CPU hotplug 11 * Feb 2006 - Jacob Shin <jacob.shin@amd.com> 12 * Fix handling for CPU hotplug -- affected CPUs 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/cpu.h> 18 #include <linux/cpufreq.h> 19 #include <linux/cpu_cooling.h> 20 #include <linux/delay.h> 21 #include <linux/device.h> 22 #include <linux/init.h> 23 #include <linux/kernel_stat.h> 24 #include <linux/module.h> 25 #include <linux/mutex.h> 26 #include <linux/pm_qos.h> 27 #include <linux/slab.h> 28 #include <linux/suspend.h> 29 #include <linux/syscore_ops.h> 30 #include <linux/tick.h> 31 #include <linux/units.h> 32 #include <trace/events/power.h> 33 34 static LIST_HEAD(cpufreq_policy_list); 35 36 /* Macros to iterate over CPU policies */ 37 #define for_each_suitable_policy(__policy, __active) \ 38 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \ 39 if ((__active) == !policy_is_inactive(__policy)) 40 41 #define for_each_active_policy(__policy) \ 42 for_each_suitable_policy(__policy, true) 43 #define for_each_inactive_policy(__policy) \ 44 for_each_suitable_policy(__policy, false) 45 46 /* Iterate over governors */ 47 static LIST_HEAD(cpufreq_governor_list); 48 #define for_each_governor(__governor) \ 49 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list) 50 51 static char default_governor[CPUFREQ_NAME_LEN]; 52 53 /* 54 * The "cpufreq driver" - the arch- or hardware-dependent low 55 * level driver of CPUFreq support, and its spinlock. This lock 56 * also protects the cpufreq_cpu_data array. 57 */ 58 static struct cpufreq_driver *cpufreq_driver; 59 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data); 60 static DEFINE_RWLOCK(cpufreq_driver_lock); 61 62 static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance); 63 bool cpufreq_supports_freq_invariance(void) 64 { 65 return static_branch_likely(&cpufreq_freq_invariance); 66 } 67 68 /* Flag to suspend/resume CPUFreq governors */ 69 static bool cpufreq_suspended; 70 71 static inline bool has_target(void) 72 { 73 return cpufreq_driver->target_index || cpufreq_driver->target; 74 } 75 76 bool has_target_index(void) 77 { 78 return !!cpufreq_driver->target_index; 79 } 80 81 /* internal prototypes */ 82 static unsigned int __cpufreq_get(struct cpufreq_policy *policy); 83 static int cpufreq_init_governor(struct cpufreq_policy *policy); 84 static void cpufreq_exit_governor(struct cpufreq_policy *policy); 85 static void cpufreq_governor_limits(struct cpufreq_policy *policy); 86 static int cpufreq_set_policy(struct cpufreq_policy *policy, 87 struct cpufreq_governor *new_gov, 88 unsigned int new_pol); 89 static bool cpufreq_boost_supported(void); 90 91 /* 92 * Two notifier lists: the "policy" list is involved in the 93 * validation process for a new CPU frequency policy; the 94 * "transition" list for kernel code that needs to handle 95 * changes to devices when the CPU clock speed changes. 96 * The mutex locks both lists. 97 */ 98 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list); 99 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list); 100 101 static int off __read_mostly; 102 static int cpufreq_disabled(void) 103 { 104 return off; 105 } 106 void disable_cpufreq(void) 107 { 108 off = 1; 109 } 110 static DEFINE_MUTEX(cpufreq_governor_mutex); 111 112 bool have_governor_per_policy(void) 113 { 114 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY); 115 } 116 EXPORT_SYMBOL_GPL(have_governor_per_policy); 117 118 static struct kobject *cpufreq_global_kobject; 119 120 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy) 121 { 122 if (have_governor_per_policy()) 123 return &policy->kobj; 124 else 125 return cpufreq_global_kobject; 126 } 127 EXPORT_SYMBOL_GPL(get_governor_parent_kobj); 128 129 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) 130 { 131 struct kernel_cpustat kcpustat; 132 u64 cur_wall_time; 133 u64 idle_time; 134 u64 busy_time; 135 136 cur_wall_time = jiffies64_to_nsecs(get_jiffies_64()); 137 138 kcpustat_cpu_fetch(&kcpustat, cpu); 139 140 busy_time = kcpustat.cpustat[CPUTIME_USER]; 141 busy_time += kcpustat.cpustat[CPUTIME_SYSTEM]; 142 busy_time += kcpustat.cpustat[CPUTIME_IRQ]; 143 busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ]; 144 busy_time += kcpustat.cpustat[CPUTIME_STEAL]; 145 busy_time += kcpustat.cpustat[CPUTIME_NICE]; 146 147 idle_time = cur_wall_time - busy_time; 148 if (wall) 149 *wall = div_u64(cur_wall_time, NSEC_PER_USEC); 150 151 return div_u64(idle_time, NSEC_PER_USEC); 152 } 153 154 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy) 155 { 156 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL); 157 158 if (idle_time == -1ULL) 159 return get_cpu_idle_time_jiffy(cpu, wall); 160 else if (!io_busy) 161 idle_time += get_cpu_iowait_time_us(cpu, wall); 162 163 return idle_time; 164 } 165 EXPORT_SYMBOL_GPL(get_cpu_idle_time); 166 167 /* 168 * This is a generic cpufreq init() routine which can be used by cpufreq 169 * drivers of SMP systems. It will do following: 170 * - validate & show freq table passed 171 * - set policies transition latency 172 * - policy->cpus with all possible CPUs 173 */ 174 void cpufreq_generic_init(struct cpufreq_policy *policy, 175 struct cpufreq_frequency_table *table, 176 unsigned int transition_latency) 177 { 178 policy->freq_table = table; 179 policy->cpuinfo.transition_latency = transition_latency; 180 181 /* 182 * The driver only supports the SMP configuration where all processors 183 * share the clock and voltage and clock. 184 */ 185 cpumask_setall(policy->cpus); 186 } 187 EXPORT_SYMBOL_GPL(cpufreq_generic_init); 188 189 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu) 190 { 191 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 192 193 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL; 194 } 195 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw); 196 197 unsigned int cpufreq_generic_get(unsigned int cpu) 198 { 199 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu); 200 201 if (!policy || IS_ERR(policy->clk)) { 202 pr_err("%s: No %s associated to cpu: %d\n", 203 __func__, policy ? "clk" : "policy", cpu); 204 return 0; 205 } 206 207 return clk_get_rate(policy->clk) / 1000; 208 } 209 EXPORT_SYMBOL_GPL(cpufreq_generic_get); 210 211 /** 212 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy. 213 * @cpu: CPU to find the policy for. 214 * 215 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment 216 * the kobject reference counter of that policy. Return a valid policy on 217 * success or NULL on failure. 218 * 219 * The policy returned by this function has to be released with the help of 220 * cpufreq_cpu_put() to balance its kobject reference counter properly. 221 */ 222 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) 223 { 224 struct cpufreq_policy *policy = NULL; 225 unsigned long flags; 226 227 if (WARN_ON(cpu >= nr_cpu_ids)) 228 return NULL; 229 230 /* get the cpufreq driver */ 231 read_lock_irqsave(&cpufreq_driver_lock, flags); 232 233 if (cpufreq_driver) { 234 /* get the CPU */ 235 policy = cpufreq_cpu_get_raw(cpu); 236 if (policy) 237 kobject_get(&policy->kobj); 238 } 239 240 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 241 242 return policy; 243 } 244 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 245 246 /** 247 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy. 248 * @policy: cpufreq policy returned by cpufreq_cpu_get(). 249 */ 250 void cpufreq_cpu_put(struct cpufreq_policy *policy) 251 { 252 kobject_put(&policy->kobj); 253 } 254 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 255 256 /** 257 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter. 258 * @policy: cpufreq policy returned by cpufreq_cpu_acquire(). 259 */ 260 void cpufreq_cpu_release(struct cpufreq_policy *policy) 261 { 262 if (WARN_ON(!policy)) 263 return; 264 265 lockdep_assert_held(&policy->rwsem); 266 267 up_write(&policy->rwsem); 268 269 cpufreq_cpu_put(policy); 270 } 271 272 /** 273 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it. 274 * @cpu: CPU to find the policy for. 275 * 276 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and 277 * if the policy returned by it is not NULL, acquire its rwsem for writing. 278 * Return the policy if it is active or release it and return NULL otherwise. 279 * 280 * The policy returned by this function has to be released with the help of 281 * cpufreq_cpu_release() in order to release its rwsem and balance its usage 282 * counter properly. 283 */ 284 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu) 285 { 286 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 287 288 if (!policy) 289 return NULL; 290 291 down_write(&policy->rwsem); 292 293 if (policy_is_inactive(policy)) { 294 cpufreq_cpu_release(policy); 295 return NULL; 296 } 297 298 return policy; 299 } 300 301 /********************************************************************* 302 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 303 *********************************************************************/ 304 305 /** 306 * adjust_jiffies - Adjust the system "loops_per_jiffy". 307 * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE. 308 * @ci: Frequency change information. 309 * 310 * This function alters the system "loops_per_jiffy" for the clock 311 * speed change. Note that loops_per_jiffy cannot be updated on SMP 312 * systems as each CPU might be scaled differently. So, use the arch 313 * per-CPU loops_per_jiffy value wherever possible. 314 */ 315 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 316 { 317 #ifndef CONFIG_SMP 318 static unsigned long l_p_j_ref; 319 static unsigned int l_p_j_ref_freq; 320 321 if (ci->flags & CPUFREQ_CONST_LOOPS) 322 return; 323 324 if (!l_p_j_ref_freq) { 325 l_p_j_ref = loops_per_jiffy; 326 l_p_j_ref_freq = ci->old; 327 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n", 328 l_p_j_ref, l_p_j_ref_freq); 329 } 330 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) { 331 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, 332 ci->new); 333 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n", 334 loops_per_jiffy, ci->new); 335 } 336 #endif 337 } 338 339 /** 340 * cpufreq_notify_transition - Notify frequency transition and adjust jiffies. 341 * @policy: cpufreq policy to enable fast frequency switching for. 342 * @freqs: contain details of the frequency update. 343 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE. 344 * 345 * This function calls the transition notifiers and adjust_jiffies(). 346 * 347 * It is called twice on all CPU frequency changes that have external effects. 348 */ 349 static void cpufreq_notify_transition(struct cpufreq_policy *policy, 350 struct cpufreq_freqs *freqs, 351 unsigned int state) 352 { 353 int cpu; 354 355 BUG_ON(irqs_disabled()); 356 357 if (cpufreq_disabled()) 358 return; 359 360 freqs->policy = policy; 361 freqs->flags = cpufreq_driver->flags; 362 pr_debug("notification %u of frequency transition to %u kHz\n", 363 state, freqs->new); 364 365 switch (state) { 366 case CPUFREQ_PRECHANGE: 367 /* 368 * Detect if the driver reported a value as "old frequency" 369 * which is not equal to what the cpufreq core thinks is 370 * "old frequency". 371 */ 372 if (policy->cur && policy->cur != freqs->old) { 373 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n", 374 freqs->old, policy->cur); 375 freqs->old = policy->cur; 376 } 377 378 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 379 CPUFREQ_PRECHANGE, freqs); 380 381 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 382 break; 383 384 case CPUFREQ_POSTCHANGE: 385 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 386 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new, 387 cpumask_pr_args(policy->cpus)); 388 389 for_each_cpu(cpu, policy->cpus) 390 trace_cpu_frequency(freqs->new, cpu); 391 392 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 393 CPUFREQ_POSTCHANGE, freqs); 394 395 cpufreq_stats_record_transition(policy, freqs->new); 396 policy->cur = freqs->new; 397 } 398 } 399 400 /* Do post notifications when there are chances that transition has failed */ 401 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy, 402 struct cpufreq_freqs *freqs, int transition_failed) 403 { 404 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 405 if (!transition_failed) 406 return; 407 408 swap(freqs->old, freqs->new); 409 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 410 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 411 } 412 413 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy, 414 struct cpufreq_freqs *freqs) 415 { 416 417 /* 418 * Catch double invocations of _begin() which lead to self-deadlock. 419 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core 420 * doesn't invoke _begin() on their behalf, and hence the chances of 421 * double invocations are very low. Moreover, there are scenarios 422 * where these checks can emit false-positive warnings in these 423 * drivers; so we avoid that by skipping them altogether. 424 */ 425 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION) 426 && current == policy->transition_task); 427 428 wait: 429 wait_event(policy->transition_wait, !policy->transition_ongoing); 430 431 spin_lock(&policy->transition_lock); 432 433 if (unlikely(policy->transition_ongoing)) { 434 spin_unlock(&policy->transition_lock); 435 goto wait; 436 } 437 438 policy->transition_ongoing = true; 439 policy->transition_task = current; 440 441 spin_unlock(&policy->transition_lock); 442 443 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 444 } 445 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin); 446 447 void cpufreq_freq_transition_end(struct cpufreq_policy *policy, 448 struct cpufreq_freqs *freqs, int transition_failed) 449 { 450 if (WARN_ON(!policy->transition_ongoing)) 451 return; 452 453 cpufreq_notify_post_transition(policy, freqs, transition_failed); 454 455 arch_set_freq_scale(policy->related_cpus, 456 policy->cur, 457 arch_scale_freq_ref(policy->cpu)); 458 459 spin_lock(&policy->transition_lock); 460 policy->transition_ongoing = false; 461 policy->transition_task = NULL; 462 spin_unlock(&policy->transition_lock); 463 464 wake_up(&policy->transition_wait); 465 } 466 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end); 467 468 /* 469 * Fast frequency switching status count. Positive means "enabled", negative 470 * means "disabled" and 0 means "not decided yet". 471 */ 472 static int cpufreq_fast_switch_count; 473 static DEFINE_MUTEX(cpufreq_fast_switch_lock); 474 475 static void cpufreq_list_transition_notifiers(void) 476 { 477 struct notifier_block *nb; 478 479 pr_info("Registered transition notifiers:\n"); 480 481 mutex_lock(&cpufreq_transition_notifier_list.mutex); 482 483 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next) 484 pr_info("%pS\n", nb->notifier_call); 485 486 mutex_unlock(&cpufreq_transition_notifier_list.mutex); 487 } 488 489 /** 490 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy. 491 * @policy: cpufreq policy to enable fast frequency switching for. 492 * 493 * Try to enable fast frequency switching for @policy. 494 * 495 * The attempt will fail if there is at least one transition notifier registered 496 * at this point, as fast frequency switching is quite fundamentally at odds 497 * with transition notifiers. Thus if successful, it will make registration of 498 * transition notifiers fail going forward. 499 */ 500 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy) 501 { 502 lockdep_assert_held(&policy->rwsem); 503 504 if (!policy->fast_switch_possible) 505 return; 506 507 mutex_lock(&cpufreq_fast_switch_lock); 508 if (cpufreq_fast_switch_count >= 0) { 509 cpufreq_fast_switch_count++; 510 policy->fast_switch_enabled = true; 511 } else { 512 pr_warn("CPU%u: Fast frequency switching not enabled\n", 513 policy->cpu); 514 cpufreq_list_transition_notifiers(); 515 } 516 mutex_unlock(&cpufreq_fast_switch_lock); 517 } 518 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch); 519 520 /** 521 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy. 522 * @policy: cpufreq policy to disable fast frequency switching for. 523 */ 524 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy) 525 { 526 mutex_lock(&cpufreq_fast_switch_lock); 527 if (policy->fast_switch_enabled) { 528 policy->fast_switch_enabled = false; 529 if (!WARN_ON(cpufreq_fast_switch_count <= 0)) 530 cpufreq_fast_switch_count--; 531 } 532 mutex_unlock(&cpufreq_fast_switch_lock); 533 } 534 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch); 535 536 static unsigned int __resolve_freq(struct cpufreq_policy *policy, 537 unsigned int target_freq, unsigned int relation) 538 { 539 unsigned int idx; 540 541 target_freq = clamp_val(target_freq, policy->min, policy->max); 542 543 if (!policy->freq_table) 544 return target_freq; 545 546 idx = cpufreq_frequency_table_target(policy, target_freq, relation); 547 policy->cached_resolved_idx = idx; 548 policy->cached_target_freq = target_freq; 549 return policy->freq_table[idx].frequency; 550 } 551 552 /** 553 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported 554 * one. 555 * @policy: associated policy to interrogate 556 * @target_freq: target frequency to resolve. 557 * 558 * The target to driver frequency mapping is cached in the policy. 559 * 560 * Return: Lowest driver-supported frequency greater than or equal to the 561 * given target_freq, subject to policy (min/max) and driver limitations. 562 */ 563 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy, 564 unsigned int target_freq) 565 { 566 return __resolve_freq(policy, target_freq, CPUFREQ_RELATION_LE); 567 } 568 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq); 569 570 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy) 571 { 572 unsigned int latency; 573 574 if (policy->transition_delay_us) 575 return policy->transition_delay_us; 576 577 latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC; 578 if (latency) { 579 unsigned int max_delay_us = 2 * MSEC_PER_SEC; 580 581 /* 582 * If the platform already has high transition_latency, use it 583 * as-is. 584 */ 585 if (latency > max_delay_us) 586 return latency; 587 588 /* 589 * For platforms that can change the frequency very fast (< 2 590 * us), the above formula gives a decent transition delay. But 591 * for platforms where transition_latency is in milliseconds, it 592 * ends up giving unrealistic values. 593 * 594 * Cap the default transition delay to 2 ms, which seems to be 595 * a reasonable amount of time after which we should reevaluate 596 * the frequency. 597 */ 598 return min(latency * LATENCY_MULTIPLIER, max_delay_us); 599 } 600 601 return LATENCY_MULTIPLIER; 602 } 603 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us); 604 605 /********************************************************************* 606 * SYSFS INTERFACE * 607 *********************************************************************/ 608 static ssize_t show_boost(struct kobject *kobj, 609 struct kobj_attribute *attr, char *buf) 610 { 611 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled); 612 } 613 614 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr, 615 const char *buf, size_t count) 616 { 617 int ret, enable; 618 619 ret = sscanf(buf, "%d", &enable); 620 if (ret != 1 || enable < 0 || enable > 1) 621 return -EINVAL; 622 623 if (cpufreq_boost_trigger_state(enable)) { 624 pr_err("%s: Cannot %s BOOST!\n", 625 __func__, enable ? "enable" : "disable"); 626 return -EINVAL; 627 } 628 629 pr_debug("%s: cpufreq BOOST %s\n", 630 __func__, enable ? "enabled" : "disabled"); 631 632 return count; 633 } 634 define_one_global_rw(boost); 635 636 static ssize_t show_local_boost(struct cpufreq_policy *policy, char *buf) 637 { 638 return sysfs_emit(buf, "%d\n", policy->boost_enabled); 639 } 640 641 static ssize_t store_local_boost(struct cpufreq_policy *policy, 642 const char *buf, size_t count) 643 { 644 int ret, enable; 645 646 ret = kstrtoint(buf, 10, &enable); 647 if (ret || enable < 0 || enable > 1) 648 return -EINVAL; 649 650 if (!cpufreq_driver->boost_enabled) 651 return -EINVAL; 652 653 if (policy->boost_enabled == enable) 654 return count; 655 656 cpus_read_lock(); 657 ret = cpufreq_driver->set_boost(policy, enable); 658 cpus_read_unlock(); 659 660 if (ret) 661 return ret; 662 663 policy->boost_enabled = enable; 664 665 return count; 666 } 667 668 static struct freq_attr local_boost = __ATTR(boost, 0644, show_local_boost, store_local_boost); 669 670 static struct cpufreq_governor *find_governor(const char *str_governor) 671 { 672 struct cpufreq_governor *t; 673 674 for_each_governor(t) 675 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN)) 676 return t; 677 678 return NULL; 679 } 680 681 static struct cpufreq_governor *get_governor(const char *str_governor) 682 { 683 struct cpufreq_governor *t; 684 685 mutex_lock(&cpufreq_governor_mutex); 686 t = find_governor(str_governor); 687 if (!t) 688 goto unlock; 689 690 if (!try_module_get(t->owner)) 691 t = NULL; 692 693 unlock: 694 mutex_unlock(&cpufreq_governor_mutex); 695 696 return t; 697 } 698 699 static unsigned int cpufreq_parse_policy(char *str_governor) 700 { 701 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) 702 return CPUFREQ_POLICY_PERFORMANCE; 703 704 if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) 705 return CPUFREQ_POLICY_POWERSAVE; 706 707 return CPUFREQ_POLICY_UNKNOWN; 708 } 709 710 /** 711 * cpufreq_parse_governor - parse a governor string only for has_target() 712 * @str_governor: Governor name. 713 */ 714 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor) 715 { 716 struct cpufreq_governor *t; 717 718 t = get_governor(str_governor); 719 if (t) 720 return t; 721 722 if (request_module("cpufreq_%s", str_governor)) 723 return NULL; 724 725 return get_governor(str_governor); 726 } 727 728 /* 729 * cpufreq_per_cpu_attr_read() / show_##file_name() - 730 * print out cpufreq information 731 * 732 * Write out information from cpufreq_driver->policy[cpu]; object must be 733 * "unsigned int". 734 */ 735 736 #define show_one(file_name, object) \ 737 static ssize_t show_##file_name \ 738 (struct cpufreq_policy *policy, char *buf) \ 739 { \ 740 return sprintf(buf, "%u\n", policy->object); \ 741 } 742 743 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 744 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 745 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency); 746 show_one(scaling_min_freq, min); 747 show_one(scaling_max_freq, max); 748 749 __weak unsigned int arch_freq_get_on_cpu(int cpu) 750 { 751 return 0; 752 } 753 754 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf) 755 { 756 ssize_t ret; 757 unsigned int freq; 758 759 freq = arch_freq_get_on_cpu(policy->cpu); 760 if (freq) 761 ret = sprintf(buf, "%u\n", freq); 762 else if (cpufreq_driver->setpolicy && cpufreq_driver->get) 763 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu)); 764 else 765 ret = sprintf(buf, "%u\n", policy->cur); 766 return ret; 767 } 768 769 /* 770 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 771 */ 772 #define store_one(file_name, object) \ 773 static ssize_t store_##file_name \ 774 (struct cpufreq_policy *policy, const char *buf, size_t count) \ 775 { \ 776 unsigned long val; \ 777 int ret; \ 778 \ 779 ret = kstrtoul(buf, 0, &val); \ 780 if (ret) \ 781 return ret; \ 782 \ 783 ret = freq_qos_update_request(policy->object##_freq_req, val);\ 784 return ret >= 0 ? count : ret; \ 785 } 786 787 store_one(scaling_min_freq, min); 788 store_one(scaling_max_freq, max); 789 790 /* 791 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 792 */ 793 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy, 794 char *buf) 795 { 796 unsigned int cur_freq = __cpufreq_get(policy); 797 798 if (cur_freq) 799 return sprintf(buf, "%u\n", cur_freq); 800 801 return sprintf(buf, "<unknown>\n"); 802 } 803 804 /* 805 * show_scaling_governor - show the current policy for the specified CPU 806 */ 807 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf) 808 { 809 if (policy->policy == CPUFREQ_POLICY_POWERSAVE) 810 return sprintf(buf, "powersave\n"); 811 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 812 return sprintf(buf, "performance\n"); 813 else if (policy->governor) 814 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", 815 policy->governor->name); 816 return -EINVAL; 817 } 818 819 /* 820 * store_scaling_governor - store policy for the specified CPU 821 */ 822 static ssize_t store_scaling_governor(struct cpufreq_policy *policy, 823 const char *buf, size_t count) 824 { 825 char str_governor[16]; 826 int ret; 827 828 ret = sscanf(buf, "%15s", str_governor); 829 if (ret != 1) 830 return -EINVAL; 831 832 if (cpufreq_driver->setpolicy) { 833 unsigned int new_pol; 834 835 new_pol = cpufreq_parse_policy(str_governor); 836 if (!new_pol) 837 return -EINVAL; 838 839 ret = cpufreq_set_policy(policy, NULL, new_pol); 840 } else { 841 struct cpufreq_governor *new_gov; 842 843 new_gov = cpufreq_parse_governor(str_governor); 844 if (!new_gov) 845 return -EINVAL; 846 847 ret = cpufreq_set_policy(policy, new_gov, 848 CPUFREQ_POLICY_UNKNOWN); 849 850 module_put(new_gov->owner); 851 } 852 853 return ret ? ret : count; 854 } 855 856 /* 857 * show_scaling_driver - show the cpufreq driver currently loaded 858 */ 859 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf) 860 { 861 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name); 862 } 863 864 /* 865 * show_scaling_available_governors - show the available CPUfreq governors 866 */ 867 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy, 868 char *buf) 869 { 870 ssize_t i = 0; 871 struct cpufreq_governor *t; 872 873 if (!has_target()) { 874 i += sprintf(buf, "performance powersave"); 875 goto out; 876 } 877 878 mutex_lock(&cpufreq_governor_mutex); 879 for_each_governor(t) { 880 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) 881 - (CPUFREQ_NAME_LEN + 2))) 882 break; 883 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name); 884 } 885 mutex_unlock(&cpufreq_governor_mutex); 886 out: 887 i += sprintf(&buf[i], "\n"); 888 return i; 889 } 890 891 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf) 892 { 893 ssize_t i = 0; 894 unsigned int cpu; 895 896 for_each_cpu(cpu, mask) { 897 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u ", cpu); 898 if (i >= (PAGE_SIZE - 5)) 899 break; 900 } 901 902 /* Remove the extra space at the end */ 903 i--; 904 905 i += sprintf(&buf[i], "\n"); 906 return i; 907 } 908 EXPORT_SYMBOL_GPL(cpufreq_show_cpus); 909 910 /* 911 * show_related_cpus - show the CPUs affected by each transition even if 912 * hw coordination is in use 913 */ 914 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf) 915 { 916 return cpufreq_show_cpus(policy->related_cpus, buf); 917 } 918 919 /* 920 * show_affected_cpus - show the CPUs affected by each transition 921 */ 922 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf) 923 { 924 return cpufreq_show_cpus(policy->cpus, buf); 925 } 926 927 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy, 928 const char *buf, size_t count) 929 { 930 unsigned int freq = 0; 931 unsigned int ret; 932 933 if (!policy->governor || !policy->governor->store_setspeed) 934 return -EINVAL; 935 936 ret = sscanf(buf, "%u", &freq); 937 if (ret != 1) 938 return -EINVAL; 939 940 policy->governor->store_setspeed(policy, freq); 941 942 return count; 943 } 944 945 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf) 946 { 947 if (!policy->governor || !policy->governor->show_setspeed) 948 return sprintf(buf, "<unsupported>\n"); 949 950 return policy->governor->show_setspeed(policy, buf); 951 } 952 953 /* 954 * show_bios_limit - show the current cpufreq HW/BIOS limitation 955 */ 956 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf) 957 { 958 unsigned int limit; 959 int ret; 960 ret = cpufreq_driver->bios_limit(policy->cpu, &limit); 961 if (!ret) 962 return sprintf(buf, "%u\n", limit); 963 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq); 964 } 965 966 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400); 967 cpufreq_freq_attr_ro(cpuinfo_min_freq); 968 cpufreq_freq_attr_ro(cpuinfo_max_freq); 969 cpufreq_freq_attr_ro(cpuinfo_transition_latency); 970 cpufreq_freq_attr_ro(scaling_available_governors); 971 cpufreq_freq_attr_ro(scaling_driver); 972 cpufreq_freq_attr_ro(scaling_cur_freq); 973 cpufreq_freq_attr_ro(bios_limit); 974 cpufreq_freq_attr_ro(related_cpus); 975 cpufreq_freq_attr_ro(affected_cpus); 976 cpufreq_freq_attr_rw(scaling_min_freq); 977 cpufreq_freq_attr_rw(scaling_max_freq); 978 cpufreq_freq_attr_rw(scaling_governor); 979 cpufreq_freq_attr_rw(scaling_setspeed); 980 981 static struct attribute *cpufreq_attrs[] = { 982 &cpuinfo_min_freq.attr, 983 &cpuinfo_max_freq.attr, 984 &cpuinfo_transition_latency.attr, 985 &scaling_min_freq.attr, 986 &scaling_max_freq.attr, 987 &affected_cpus.attr, 988 &related_cpus.attr, 989 &scaling_governor.attr, 990 &scaling_driver.attr, 991 &scaling_available_governors.attr, 992 &scaling_setspeed.attr, 993 NULL 994 }; 995 ATTRIBUTE_GROUPS(cpufreq); 996 997 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj) 998 #define to_attr(a) container_of(a, struct freq_attr, attr) 999 1000 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) 1001 { 1002 struct cpufreq_policy *policy = to_policy(kobj); 1003 struct freq_attr *fattr = to_attr(attr); 1004 ssize_t ret = -EBUSY; 1005 1006 if (!fattr->show) 1007 return -EIO; 1008 1009 down_read(&policy->rwsem); 1010 if (likely(!policy_is_inactive(policy))) 1011 ret = fattr->show(policy, buf); 1012 up_read(&policy->rwsem); 1013 1014 return ret; 1015 } 1016 1017 static ssize_t store(struct kobject *kobj, struct attribute *attr, 1018 const char *buf, size_t count) 1019 { 1020 struct cpufreq_policy *policy = to_policy(kobj); 1021 struct freq_attr *fattr = to_attr(attr); 1022 ssize_t ret = -EBUSY; 1023 1024 if (!fattr->store) 1025 return -EIO; 1026 1027 down_write(&policy->rwsem); 1028 if (likely(!policy_is_inactive(policy))) 1029 ret = fattr->store(policy, buf, count); 1030 up_write(&policy->rwsem); 1031 1032 return ret; 1033 } 1034 1035 static void cpufreq_sysfs_release(struct kobject *kobj) 1036 { 1037 struct cpufreq_policy *policy = to_policy(kobj); 1038 pr_debug("last reference is dropped\n"); 1039 complete(&policy->kobj_unregister); 1040 } 1041 1042 static const struct sysfs_ops sysfs_ops = { 1043 .show = show, 1044 .store = store, 1045 }; 1046 1047 static const struct kobj_type ktype_cpufreq = { 1048 .sysfs_ops = &sysfs_ops, 1049 .default_groups = cpufreq_groups, 1050 .release = cpufreq_sysfs_release, 1051 }; 1052 1053 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu, 1054 struct device *dev) 1055 { 1056 if (unlikely(!dev)) 1057 return; 1058 1059 if (cpumask_test_and_set_cpu(cpu, policy->real_cpus)) 1060 return; 1061 1062 dev_dbg(dev, "%s: Adding symlink\n", __func__); 1063 if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq")) 1064 dev_err(dev, "cpufreq symlink creation failed\n"); 1065 } 1066 1067 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu, 1068 struct device *dev) 1069 { 1070 dev_dbg(dev, "%s: Removing symlink\n", __func__); 1071 sysfs_remove_link(&dev->kobj, "cpufreq"); 1072 cpumask_clear_cpu(cpu, policy->real_cpus); 1073 } 1074 1075 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy) 1076 { 1077 struct freq_attr **drv_attr; 1078 int ret = 0; 1079 1080 /* set up files for this cpu device */ 1081 drv_attr = cpufreq_driver->attr; 1082 while (drv_attr && *drv_attr) { 1083 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 1084 if (ret) 1085 return ret; 1086 drv_attr++; 1087 } 1088 if (cpufreq_driver->get) { 1089 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 1090 if (ret) 1091 return ret; 1092 } 1093 1094 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 1095 if (ret) 1096 return ret; 1097 1098 if (cpufreq_driver->bios_limit) { 1099 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr); 1100 if (ret) 1101 return ret; 1102 } 1103 1104 if (cpufreq_boost_supported()) { 1105 ret = sysfs_create_file(&policy->kobj, &local_boost.attr); 1106 if (ret) 1107 return ret; 1108 } 1109 1110 return 0; 1111 } 1112 1113 static int cpufreq_init_policy(struct cpufreq_policy *policy) 1114 { 1115 struct cpufreq_governor *gov = NULL; 1116 unsigned int pol = CPUFREQ_POLICY_UNKNOWN; 1117 int ret; 1118 1119 if (has_target()) { 1120 /* Update policy governor to the one used before hotplug. */ 1121 gov = get_governor(policy->last_governor); 1122 if (gov) { 1123 pr_debug("Restoring governor %s for cpu %d\n", 1124 gov->name, policy->cpu); 1125 } else { 1126 gov = get_governor(default_governor); 1127 } 1128 1129 if (!gov) { 1130 gov = cpufreq_default_governor(); 1131 __module_get(gov->owner); 1132 } 1133 1134 } else { 1135 1136 /* Use the default policy if there is no last_policy. */ 1137 if (policy->last_policy) { 1138 pol = policy->last_policy; 1139 } else { 1140 pol = cpufreq_parse_policy(default_governor); 1141 /* 1142 * In case the default governor is neither "performance" 1143 * nor "powersave", fall back to the initial policy 1144 * value set by the driver. 1145 */ 1146 if (pol == CPUFREQ_POLICY_UNKNOWN) 1147 pol = policy->policy; 1148 } 1149 if (pol != CPUFREQ_POLICY_PERFORMANCE && 1150 pol != CPUFREQ_POLICY_POWERSAVE) 1151 return -ENODATA; 1152 } 1153 1154 ret = cpufreq_set_policy(policy, gov, pol); 1155 if (gov) 1156 module_put(gov->owner); 1157 1158 return ret; 1159 } 1160 1161 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu) 1162 { 1163 int ret = 0; 1164 1165 /* Has this CPU been taken care of already? */ 1166 if (cpumask_test_cpu(cpu, policy->cpus)) 1167 return 0; 1168 1169 down_write(&policy->rwsem); 1170 if (has_target()) 1171 cpufreq_stop_governor(policy); 1172 1173 cpumask_set_cpu(cpu, policy->cpus); 1174 1175 if (has_target()) { 1176 ret = cpufreq_start_governor(policy); 1177 if (ret) 1178 pr_err("%s: Failed to start governor\n", __func__); 1179 } 1180 up_write(&policy->rwsem); 1181 return ret; 1182 } 1183 1184 void refresh_frequency_limits(struct cpufreq_policy *policy) 1185 { 1186 if (!policy_is_inactive(policy)) { 1187 pr_debug("updating policy for CPU %u\n", policy->cpu); 1188 1189 cpufreq_set_policy(policy, policy->governor, policy->policy); 1190 } 1191 } 1192 EXPORT_SYMBOL(refresh_frequency_limits); 1193 1194 static void handle_update(struct work_struct *work) 1195 { 1196 struct cpufreq_policy *policy = 1197 container_of(work, struct cpufreq_policy, update); 1198 1199 pr_debug("handle_update for cpu %u called\n", policy->cpu); 1200 down_write(&policy->rwsem); 1201 refresh_frequency_limits(policy); 1202 up_write(&policy->rwsem); 1203 } 1204 1205 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq, 1206 void *data) 1207 { 1208 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min); 1209 1210 schedule_work(&policy->update); 1211 return 0; 1212 } 1213 1214 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq, 1215 void *data) 1216 { 1217 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max); 1218 1219 schedule_work(&policy->update); 1220 return 0; 1221 } 1222 1223 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy) 1224 { 1225 struct kobject *kobj; 1226 struct completion *cmp; 1227 1228 down_write(&policy->rwsem); 1229 cpufreq_stats_free_table(policy); 1230 kobj = &policy->kobj; 1231 cmp = &policy->kobj_unregister; 1232 up_write(&policy->rwsem); 1233 kobject_put(kobj); 1234 1235 /* 1236 * We need to make sure that the underlying kobj is 1237 * actually not referenced anymore by anybody before we 1238 * proceed with unloading. 1239 */ 1240 pr_debug("waiting for dropping of refcount\n"); 1241 wait_for_completion(cmp); 1242 pr_debug("wait complete\n"); 1243 } 1244 1245 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu) 1246 { 1247 struct cpufreq_policy *policy; 1248 struct device *dev = get_cpu_device(cpu); 1249 int ret; 1250 1251 if (!dev) 1252 return NULL; 1253 1254 policy = kzalloc(sizeof(*policy), GFP_KERNEL); 1255 if (!policy) 1256 return NULL; 1257 1258 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) 1259 goto err_free_policy; 1260 1261 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) 1262 goto err_free_cpumask; 1263 1264 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL)) 1265 goto err_free_rcpumask; 1266 1267 init_completion(&policy->kobj_unregister); 1268 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, 1269 cpufreq_global_kobject, "policy%u", cpu); 1270 if (ret) { 1271 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret); 1272 /* 1273 * The entire policy object will be freed below, but the extra 1274 * memory allocated for the kobject name needs to be freed by 1275 * releasing the kobject. 1276 */ 1277 kobject_put(&policy->kobj); 1278 goto err_free_real_cpus; 1279 } 1280 1281 freq_constraints_init(&policy->constraints); 1282 1283 policy->nb_min.notifier_call = cpufreq_notifier_min; 1284 policy->nb_max.notifier_call = cpufreq_notifier_max; 1285 1286 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN, 1287 &policy->nb_min); 1288 if (ret) { 1289 dev_err(dev, "Failed to register MIN QoS notifier: %d (CPU%u)\n", 1290 ret, cpu); 1291 goto err_kobj_remove; 1292 } 1293 1294 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX, 1295 &policy->nb_max); 1296 if (ret) { 1297 dev_err(dev, "Failed to register MAX QoS notifier: %d (CPU%u)\n", 1298 ret, cpu); 1299 goto err_min_qos_notifier; 1300 } 1301 1302 INIT_LIST_HEAD(&policy->policy_list); 1303 init_rwsem(&policy->rwsem); 1304 spin_lock_init(&policy->transition_lock); 1305 init_waitqueue_head(&policy->transition_wait); 1306 INIT_WORK(&policy->update, handle_update); 1307 1308 policy->cpu = cpu; 1309 return policy; 1310 1311 err_min_qos_notifier: 1312 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN, 1313 &policy->nb_min); 1314 err_kobj_remove: 1315 cpufreq_policy_put_kobj(policy); 1316 err_free_real_cpus: 1317 free_cpumask_var(policy->real_cpus); 1318 err_free_rcpumask: 1319 free_cpumask_var(policy->related_cpus); 1320 err_free_cpumask: 1321 free_cpumask_var(policy->cpus); 1322 err_free_policy: 1323 kfree(policy); 1324 1325 return NULL; 1326 } 1327 1328 static void cpufreq_policy_free(struct cpufreq_policy *policy) 1329 { 1330 unsigned long flags; 1331 int cpu; 1332 1333 /* 1334 * The callers must ensure the policy is inactive by now, to avoid any 1335 * races with show()/store() callbacks. 1336 */ 1337 if (unlikely(!policy_is_inactive(policy))) 1338 pr_warn("%s: Freeing active policy\n", __func__); 1339 1340 /* Remove policy from list */ 1341 write_lock_irqsave(&cpufreq_driver_lock, flags); 1342 list_del(&policy->policy_list); 1343 1344 for_each_cpu(cpu, policy->related_cpus) 1345 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1346 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1347 1348 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX, 1349 &policy->nb_max); 1350 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN, 1351 &policy->nb_min); 1352 1353 /* Cancel any pending policy->update work before freeing the policy. */ 1354 cancel_work_sync(&policy->update); 1355 1356 if (policy->max_freq_req) { 1357 /* 1358 * Remove max_freq_req after sending CPUFREQ_REMOVE_POLICY 1359 * notification, since CPUFREQ_CREATE_POLICY notification was 1360 * sent after adding max_freq_req earlier. 1361 */ 1362 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1363 CPUFREQ_REMOVE_POLICY, policy); 1364 freq_qos_remove_request(policy->max_freq_req); 1365 } 1366 1367 freq_qos_remove_request(policy->min_freq_req); 1368 kfree(policy->min_freq_req); 1369 1370 cpufreq_policy_put_kobj(policy); 1371 free_cpumask_var(policy->real_cpus); 1372 free_cpumask_var(policy->related_cpus); 1373 free_cpumask_var(policy->cpus); 1374 kfree(policy); 1375 } 1376 1377 static int cpufreq_online(unsigned int cpu) 1378 { 1379 struct cpufreq_policy *policy; 1380 bool new_policy; 1381 unsigned long flags; 1382 unsigned int j; 1383 int ret; 1384 1385 pr_debug("%s: bringing CPU%u online\n", __func__, cpu); 1386 1387 /* Check if this CPU already has a policy to manage it */ 1388 policy = per_cpu(cpufreq_cpu_data, cpu); 1389 if (policy) { 1390 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus)); 1391 if (!policy_is_inactive(policy)) 1392 return cpufreq_add_policy_cpu(policy, cpu); 1393 1394 /* This is the only online CPU for the policy. Start over. */ 1395 new_policy = false; 1396 down_write(&policy->rwsem); 1397 policy->cpu = cpu; 1398 policy->governor = NULL; 1399 } else { 1400 new_policy = true; 1401 policy = cpufreq_policy_alloc(cpu); 1402 if (!policy) 1403 return -ENOMEM; 1404 down_write(&policy->rwsem); 1405 } 1406 1407 if (!new_policy && cpufreq_driver->online) { 1408 /* Recover policy->cpus using related_cpus */ 1409 cpumask_copy(policy->cpus, policy->related_cpus); 1410 1411 ret = cpufreq_driver->online(policy); 1412 if (ret) { 1413 pr_debug("%s: %d: initialization failed\n", __func__, 1414 __LINE__); 1415 goto out_exit_policy; 1416 } 1417 } else { 1418 cpumask_copy(policy->cpus, cpumask_of(cpu)); 1419 1420 /* 1421 * Call driver. From then on the cpufreq must be able 1422 * to accept all calls to ->verify and ->setpolicy for this CPU. 1423 */ 1424 ret = cpufreq_driver->init(policy); 1425 if (ret) { 1426 pr_debug("%s: %d: initialization failed\n", __func__, 1427 __LINE__); 1428 goto out_free_policy; 1429 } 1430 1431 /* 1432 * The initialization has succeeded and the policy is online. 1433 * If there is a problem with its frequency table, take it 1434 * offline and drop it. 1435 */ 1436 ret = cpufreq_table_validate_and_sort(policy); 1437 if (ret) 1438 goto out_offline_policy; 1439 1440 /* related_cpus should at least include policy->cpus. */ 1441 cpumask_copy(policy->related_cpus, policy->cpus); 1442 } 1443 1444 /* 1445 * affected cpus must always be the one, which are online. We aren't 1446 * managing offline cpus here. 1447 */ 1448 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask); 1449 1450 if (new_policy) { 1451 for_each_cpu(j, policy->related_cpus) { 1452 per_cpu(cpufreq_cpu_data, j) = policy; 1453 add_cpu_dev_symlink(policy, j, get_cpu_device(j)); 1454 } 1455 1456 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req), 1457 GFP_KERNEL); 1458 if (!policy->min_freq_req) { 1459 ret = -ENOMEM; 1460 goto out_destroy_policy; 1461 } 1462 1463 ret = freq_qos_add_request(&policy->constraints, 1464 policy->min_freq_req, FREQ_QOS_MIN, 1465 FREQ_QOS_MIN_DEFAULT_VALUE); 1466 if (ret < 0) { 1467 /* 1468 * So we don't call freq_qos_remove_request() for an 1469 * uninitialized request. 1470 */ 1471 kfree(policy->min_freq_req); 1472 policy->min_freq_req = NULL; 1473 goto out_destroy_policy; 1474 } 1475 1476 /* 1477 * This must be initialized right here to avoid calling 1478 * freq_qos_remove_request() on uninitialized request in case 1479 * of errors. 1480 */ 1481 policy->max_freq_req = policy->min_freq_req + 1; 1482 1483 ret = freq_qos_add_request(&policy->constraints, 1484 policy->max_freq_req, FREQ_QOS_MAX, 1485 FREQ_QOS_MAX_DEFAULT_VALUE); 1486 if (ret < 0) { 1487 policy->max_freq_req = NULL; 1488 goto out_destroy_policy; 1489 } 1490 1491 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1492 CPUFREQ_CREATE_POLICY, policy); 1493 } 1494 1495 if (cpufreq_driver->get && has_target()) { 1496 policy->cur = cpufreq_driver->get(policy->cpu); 1497 if (!policy->cur) { 1498 ret = -EIO; 1499 pr_err("%s: ->get() failed\n", __func__); 1500 goto out_destroy_policy; 1501 } 1502 } 1503 1504 /* 1505 * Sometimes boot loaders set CPU frequency to a value outside of 1506 * frequency table present with cpufreq core. In such cases CPU might be 1507 * unstable if it has to run on that frequency for long duration of time 1508 * and so its better to set it to a frequency which is specified in 1509 * freq-table. This also makes cpufreq stats inconsistent as 1510 * cpufreq-stats would fail to register because current frequency of CPU 1511 * isn't found in freq-table. 1512 * 1513 * Because we don't want this change to effect boot process badly, we go 1514 * for the next freq which is >= policy->cur ('cur' must be set by now, 1515 * otherwise we will end up setting freq to lowest of the table as 'cur' 1516 * is initialized to zero). 1517 * 1518 * We are passing target-freq as "policy->cur - 1" otherwise 1519 * __cpufreq_driver_target() would simply fail, as policy->cur will be 1520 * equal to target-freq. 1521 */ 1522 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK) 1523 && has_target()) { 1524 unsigned int old_freq = policy->cur; 1525 1526 /* Are we running at unknown frequency ? */ 1527 ret = cpufreq_frequency_table_get_index(policy, old_freq); 1528 if (ret == -EINVAL) { 1529 ret = __cpufreq_driver_target(policy, old_freq - 1, 1530 CPUFREQ_RELATION_L); 1531 1532 /* 1533 * Reaching here after boot in a few seconds may not 1534 * mean that system will remain stable at "unknown" 1535 * frequency for longer duration. Hence, a BUG_ON(). 1536 */ 1537 BUG_ON(ret); 1538 pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n", 1539 __func__, policy->cpu, old_freq, policy->cur); 1540 } 1541 } 1542 1543 if (new_policy) { 1544 ret = cpufreq_add_dev_interface(policy); 1545 if (ret) 1546 goto out_destroy_policy; 1547 1548 cpufreq_stats_create_table(policy); 1549 1550 write_lock_irqsave(&cpufreq_driver_lock, flags); 1551 list_add(&policy->policy_list, &cpufreq_policy_list); 1552 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1553 1554 /* 1555 * Register with the energy model before 1556 * sugov_eas_rebuild_sd() is called, which will result 1557 * in rebuilding of the sched domains, which should only be done 1558 * once the energy model is properly initialized for the policy 1559 * first. 1560 * 1561 * Also, this should be called before the policy is registered 1562 * with cooling framework. 1563 */ 1564 if (cpufreq_driver->register_em) 1565 cpufreq_driver->register_em(policy); 1566 } 1567 1568 ret = cpufreq_init_policy(policy); 1569 if (ret) { 1570 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n", 1571 __func__, cpu, ret); 1572 goto out_destroy_policy; 1573 } 1574 1575 up_write(&policy->rwsem); 1576 1577 kobject_uevent(&policy->kobj, KOBJ_ADD); 1578 1579 /* Callback for handling stuff after policy is ready */ 1580 if (cpufreq_driver->ready) 1581 cpufreq_driver->ready(policy); 1582 1583 /* Register cpufreq cooling only for a new policy */ 1584 if (new_policy && cpufreq_thermal_control_enabled(cpufreq_driver)) 1585 policy->cdev = of_cpufreq_cooling_register(policy); 1586 1587 pr_debug("initialization complete\n"); 1588 1589 return 0; 1590 1591 out_destroy_policy: 1592 for_each_cpu(j, policy->real_cpus) 1593 remove_cpu_dev_symlink(policy, j, get_cpu_device(j)); 1594 1595 out_offline_policy: 1596 if (cpufreq_driver->offline) 1597 cpufreq_driver->offline(policy); 1598 1599 out_exit_policy: 1600 if (cpufreq_driver->exit) 1601 cpufreq_driver->exit(policy); 1602 1603 out_free_policy: 1604 cpumask_clear(policy->cpus); 1605 up_write(&policy->rwsem); 1606 1607 cpufreq_policy_free(policy); 1608 return ret; 1609 } 1610 1611 /** 1612 * cpufreq_add_dev - the cpufreq interface for a CPU device. 1613 * @dev: CPU device. 1614 * @sif: Subsystem interface structure pointer (not used) 1615 */ 1616 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 1617 { 1618 struct cpufreq_policy *policy; 1619 unsigned cpu = dev->id; 1620 int ret; 1621 1622 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu); 1623 1624 if (cpu_online(cpu)) { 1625 ret = cpufreq_online(cpu); 1626 if (ret) 1627 return ret; 1628 } 1629 1630 /* Create sysfs link on CPU registration */ 1631 policy = per_cpu(cpufreq_cpu_data, cpu); 1632 if (policy) 1633 add_cpu_dev_symlink(policy, cpu, dev); 1634 1635 return 0; 1636 } 1637 1638 static void __cpufreq_offline(unsigned int cpu, struct cpufreq_policy *policy) 1639 { 1640 int ret; 1641 1642 if (has_target()) 1643 cpufreq_stop_governor(policy); 1644 1645 cpumask_clear_cpu(cpu, policy->cpus); 1646 1647 if (!policy_is_inactive(policy)) { 1648 /* Nominate a new CPU if necessary. */ 1649 if (cpu == policy->cpu) 1650 policy->cpu = cpumask_any(policy->cpus); 1651 1652 /* Start the governor again for the active policy. */ 1653 if (has_target()) { 1654 ret = cpufreq_start_governor(policy); 1655 if (ret) 1656 pr_err("%s: Failed to start governor\n", __func__); 1657 } 1658 1659 return; 1660 } 1661 1662 if (has_target()) 1663 strscpy(policy->last_governor, policy->governor->name, 1664 CPUFREQ_NAME_LEN); 1665 else 1666 policy->last_policy = policy->policy; 1667 1668 if (has_target()) 1669 cpufreq_exit_governor(policy); 1670 1671 /* 1672 * Perform the ->offline() during light-weight tear-down, as 1673 * that allows fast recovery when the CPU comes back. 1674 */ 1675 if (cpufreq_driver->offline) { 1676 cpufreq_driver->offline(policy); 1677 } else if (cpufreq_driver->exit) { 1678 cpufreq_driver->exit(policy); 1679 policy->freq_table = NULL; 1680 } 1681 } 1682 1683 static int cpufreq_offline(unsigned int cpu) 1684 { 1685 struct cpufreq_policy *policy; 1686 1687 pr_debug("%s: unregistering CPU %u\n", __func__, cpu); 1688 1689 policy = cpufreq_cpu_get_raw(cpu); 1690 if (!policy) { 1691 pr_debug("%s: No cpu_data found\n", __func__); 1692 return 0; 1693 } 1694 1695 down_write(&policy->rwsem); 1696 1697 __cpufreq_offline(cpu, policy); 1698 1699 up_write(&policy->rwsem); 1700 return 0; 1701 } 1702 1703 /* 1704 * cpufreq_remove_dev - remove a CPU device 1705 * 1706 * Removes the cpufreq interface for a CPU device. 1707 */ 1708 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif) 1709 { 1710 unsigned int cpu = dev->id; 1711 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1712 1713 if (!policy) 1714 return; 1715 1716 down_write(&policy->rwsem); 1717 1718 if (cpu_online(cpu)) 1719 __cpufreq_offline(cpu, policy); 1720 1721 remove_cpu_dev_symlink(policy, cpu, dev); 1722 1723 if (!cpumask_empty(policy->real_cpus)) { 1724 up_write(&policy->rwsem); 1725 return; 1726 } 1727 1728 /* 1729 * Unregister cpufreq cooling once all the CPUs of the policy are 1730 * removed. 1731 */ 1732 if (cpufreq_thermal_control_enabled(cpufreq_driver)) { 1733 cpufreq_cooling_unregister(policy->cdev); 1734 policy->cdev = NULL; 1735 } 1736 1737 /* We did light-weight exit earlier, do full tear down now */ 1738 if (cpufreq_driver->offline) 1739 cpufreq_driver->exit(policy); 1740 1741 up_write(&policy->rwsem); 1742 1743 cpufreq_policy_free(policy); 1744 } 1745 1746 /** 1747 * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference. 1748 * @policy: Policy managing CPUs. 1749 * @new_freq: New CPU frequency. 1750 * 1751 * Adjust to the current frequency first and clean up later by either calling 1752 * cpufreq_update_policy(), or scheduling handle_update(). 1753 */ 1754 static void cpufreq_out_of_sync(struct cpufreq_policy *policy, 1755 unsigned int new_freq) 1756 { 1757 struct cpufreq_freqs freqs; 1758 1759 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n", 1760 policy->cur, new_freq); 1761 1762 freqs.old = policy->cur; 1763 freqs.new = new_freq; 1764 1765 cpufreq_freq_transition_begin(policy, &freqs); 1766 cpufreq_freq_transition_end(policy, &freqs, 0); 1767 } 1768 1769 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update) 1770 { 1771 unsigned int new_freq; 1772 1773 new_freq = cpufreq_driver->get(policy->cpu); 1774 if (!new_freq) 1775 return 0; 1776 1777 /* 1778 * If fast frequency switching is used with the given policy, the check 1779 * against policy->cur is pointless, so skip it in that case. 1780 */ 1781 if (policy->fast_switch_enabled || !has_target()) 1782 return new_freq; 1783 1784 if (policy->cur != new_freq) { 1785 /* 1786 * For some platforms, the frequency returned by hardware may be 1787 * slightly different from what is provided in the frequency 1788 * table, for example hardware may return 499 MHz instead of 500 1789 * MHz. In such cases it is better to avoid getting into 1790 * unnecessary frequency updates. 1791 */ 1792 if (abs(policy->cur - new_freq) < KHZ_PER_MHZ) 1793 return policy->cur; 1794 1795 cpufreq_out_of_sync(policy, new_freq); 1796 if (update) 1797 schedule_work(&policy->update); 1798 } 1799 1800 return new_freq; 1801 } 1802 1803 /** 1804 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur 1805 * @cpu: CPU number 1806 * 1807 * This is the last known freq, without actually getting it from the driver. 1808 * Return value will be same as what is shown in scaling_cur_freq in sysfs. 1809 */ 1810 unsigned int cpufreq_quick_get(unsigned int cpu) 1811 { 1812 struct cpufreq_policy *policy; 1813 unsigned int ret_freq = 0; 1814 unsigned long flags; 1815 1816 read_lock_irqsave(&cpufreq_driver_lock, flags); 1817 1818 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) { 1819 ret_freq = cpufreq_driver->get(cpu); 1820 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1821 return ret_freq; 1822 } 1823 1824 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1825 1826 policy = cpufreq_cpu_get(cpu); 1827 if (policy) { 1828 ret_freq = policy->cur; 1829 cpufreq_cpu_put(policy); 1830 } 1831 1832 return ret_freq; 1833 } 1834 EXPORT_SYMBOL(cpufreq_quick_get); 1835 1836 /** 1837 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU 1838 * @cpu: CPU number 1839 * 1840 * Just return the max possible frequency for a given CPU. 1841 */ 1842 unsigned int cpufreq_quick_get_max(unsigned int cpu) 1843 { 1844 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1845 unsigned int ret_freq = 0; 1846 1847 if (policy) { 1848 ret_freq = policy->max; 1849 cpufreq_cpu_put(policy); 1850 } 1851 1852 return ret_freq; 1853 } 1854 EXPORT_SYMBOL(cpufreq_quick_get_max); 1855 1856 /** 1857 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU 1858 * @cpu: CPU number 1859 * 1860 * The default return value is the max_freq field of cpuinfo. 1861 */ 1862 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu) 1863 { 1864 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1865 unsigned int ret_freq = 0; 1866 1867 if (policy) { 1868 ret_freq = policy->cpuinfo.max_freq; 1869 cpufreq_cpu_put(policy); 1870 } 1871 1872 return ret_freq; 1873 } 1874 EXPORT_SYMBOL(cpufreq_get_hw_max_freq); 1875 1876 static unsigned int __cpufreq_get(struct cpufreq_policy *policy) 1877 { 1878 if (unlikely(policy_is_inactive(policy))) 1879 return 0; 1880 1881 return cpufreq_verify_current_freq(policy, true); 1882 } 1883 1884 /** 1885 * cpufreq_get - get the current CPU frequency (in kHz) 1886 * @cpu: CPU number 1887 * 1888 * Get the CPU current (static) CPU frequency 1889 */ 1890 unsigned int cpufreq_get(unsigned int cpu) 1891 { 1892 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1893 unsigned int ret_freq = 0; 1894 1895 if (policy) { 1896 down_read(&policy->rwsem); 1897 if (cpufreq_driver->get) 1898 ret_freq = __cpufreq_get(policy); 1899 up_read(&policy->rwsem); 1900 1901 cpufreq_cpu_put(policy); 1902 } 1903 1904 return ret_freq; 1905 } 1906 EXPORT_SYMBOL(cpufreq_get); 1907 1908 static struct subsys_interface cpufreq_interface = { 1909 .name = "cpufreq", 1910 .subsys = &cpu_subsys, 1911 .add_dev = cpufreq_add_dev, 1912 .remove_dev = cpufreq_remove_dev, 1913 }; 1914 1915 /* 1916 * In case platform wants some specific frequency to be configured 1917 * during suspend.. 1918 */ 1919 int cpufreq_generic_suspend(struct cpufreq_policy *policy) 1920 { 1921 int ret; 1922 1923 if (!policy->suspend_freq) { 1924 pr_debug("%s: suspend_freq not defined\n", __func__); 1925 return 0; 1926 } 1927 1928 pr_debug("%s: Setting suspend-freq: %u\n", __func__, 1929 policy->suspend_freq); 1930 1931 ret = __cpufreq_driver_target(policy, policy->suspend_freq, 1932 CPUFREQ_RELATION_H); 1933 if (ret) 1934 pr_err("%s: unable to set suspend-freq: %u. err: %d\n", 1935 __func__, policy->suspend_freq, ret); 1936 1937 return ret; 1938 } 1939 EXPORT_SYMBOL(cpufreq_generic_suspend); 1940 1941 /** 1942 * cpufreq_suspend() - Suspend CPUFreq governors. 1943 * 1944 * Called during system wide Suspend/Hibernate cycles for suspending governors 1945 * as some platforms can't change frequency after this point in suspend cycle. 1946 * Because some of the devices (like: i2c, regulators, etc) they use for 1947 * changing frequency are suspended quickly after this point. 1948 */ 1949 void cpufreq_suspend(void) 1950 { 1951 struct cpufreq_policy *policy; 1952 1953 if (!cpufreq_driver) 1954 return; 1955 1956 if (!has_target() && !cpufreq_driver->suspend) 1957 goto suspend; 1958 1959 pr_debug("%s: Suspending Governors\n", __func__); 1960 1961 for_each_active_policy(policy) { 1962 if (has_target()) { 1963 down_write(&policy->rwsem); 1964 cpufreq_stop_governor(policy); 1965 up_write(&policy->rwsem); 1966 } 1967 1968 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy)) 1969 pr_err("%s: Failed to suspend driver: %s\n", __func__, 1970 cpufreq_driver->name); 1971 } 1972 1973 suspend: 1974 cpufreq_suspended = true; 1975 } 1976 1977 /** 1978 * cpufreq_resume() - Resume CPUFreq governors. 1979 * 1980 * Called during system wide Suspend/Hibernate cycle for resuming governors that 1981 * are suspended with cpufreq_suspend(). 1982 */ 1983 void cpufreq_resume(void) 1984 { 1985 struct cpufreq_policy *policy; 1986 int ret; 1987 1988 if (!cpufreq_driver) 1989 return; 1990 1991 if (unlikely(!cpufreq_suspended)) 1992 return; 1993 1994 cpufreq_suspended = false; 1995 1996 if (!has_target() && !cpufreq_driver->resume) 1997 return; 1998 1999 pr_debug("%s: Resuming Governors\n", __func__); 2000 2001 for_each_active_policy(policy) { 2002 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) { 2003 pr_err("%s: Failed to resume driver: %s\n", __func__, 2004 cpufreq_driver->name); 2005 } else if (has_target()) { 2006 down_write(&policy->rwsem); 2007 ret = cpufreq_start_governor(policy); 2008 up_write(&policy->rwsem); 2009 2010 if (ret) 2011 pr_err("%s: Failed to start governor for CPU%u's policy\n", 2012 __func__, policy->cpu); 2013 } 2014 } 2015 } 2016 2017 /** 2018 * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones. 2019 * @flags: Flags to test against the current cpufreq driver's flags. 2020 * 2021 * Assumes that the driver is there, so callers must ensure that this is the 2022 * case. 2023 */ 2024 bool cpufreq_driver_test_flags(u16 flags) 2025 { 2026 return !!(cpufreq_driver->flags & flags); 2027 } 2028 2029 /** 2030 * cpufreq_get_current_driver - Return the current driver's name. 2031 * 2032 * Return the name string of the currently registered cpufreq driver or NULL if 2033 * none. 2034 */ 2035 const char *cpufreq_get_current_driver(void) 2036 { 2037 if (cpufreq_driver) 2038 return cpufreq_driver->name; 2039 2040 return NULL; 2041 } 2042 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver); 2043 2044 /** 2045 * cpufreq_get_driver_data - Return current driver data. 2046 * 2047 * Return the private data of the currently registered cpufreq driver, or NULL 2048 * if no cpufreq driver has been registered. 2049 */ 2050 void *cpufreq_get_driver_data(void) 2051 { 2052 if (cpufreq_driver) 2053 return cpufreq_driver->driver_data; 2054 2055 return NULL; 2056 } 2057 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data); 2058 2059 /********************************************************************* 2060 * NOTIFIER LISTS INTERFACE * 2061 *********************************************************************/ 2062 2063 /** 2064 * cpufreq_register_notifier - Register a notifier with cpufreq. 2065 * @nb: notifier function to register. 2066 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER. 2067 * 2068 * Add a notifier to one of two lists: either a list of notifiers that run on 2069 * clock rate changes (once before and once after every transition), or a list 2070 * of notifiers that ron on cpufreq policy changes. 2071 * 2072 * This function may sleep and it has the same return values as 2073 * blocking_notifier_chain_register(). 2074 */ 2075 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 2076 { 2077 int ret; 2078 2079 if (cpufreq_disabled()) 2080 return -EINVAL; 2081 2082 switch (list) { 2083 case CPUFREQ_TRANSITION_NOTIFIER: 2084 mutex_lock(&cpufreq_fast_switch_lock); 2085 2086 if (cpufreq_fast_switch_count > 0) { 2087 mutex_unlock(&cpufreq_fast_switch_lock); 2088 return -EBUSY; 2089 } 2090 ret = srcu_notifier_chain_register( 2091 &cpufreq_transition_notifier_list, nb); 2092 if (!ret) 2093 cpufreq_fast_switch_count--; 2094 2095 mutex_unlock(&cpufreq_fast_switch_lock); 2096 break; 2097 case CPUFREQ_POLICY_NOTIFIER: 2098 ret = blocking_notifier_chain_register( 2099 &cpufreq_policy_notifier_list, nb); 2100 break; 2101 default: 2102 ret = -EINVAL; 2103 } 2104 2105 return ret; 2106 } 2107 EXPORT_SYMBOL(cpufreq_register_notifier); 2108 2109 /** 2110 * cpufreq_unregister_notifier - Unregister a notifier from cpufreq. 2111 * @nb: notifier block to be unregistered. 2112 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER. 2113 * 2114 * Remove a notifier from one of the cpufreq notifier lists. 2115 * 2116 * This function may sleep and it has the same return values as 2117 * blocking_notifier_chain_unregister(). 2118 */ 2119 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 2120 { 2121 int ret; 2122 2123 if (cpufreq_disabled()) 2124 return -EINVAL; 2125 2126 switch (list) { 2127 case CPUFREQ_TRANSITION_NOTIFIER: 2128 mutex_lock(&cpufreq_fast_switch_lock); 2129 2130 ret = srcu_notifier_chain_unregister( 2131 &cpufreq_transition_notifier_list, nb); 2132 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0)) 2133 cpufreq_fast_switch_count++; 2134 2135 mutex_unlock(&cpufreq_fast_switch_lock); 2136 break; 2137 case CPUFREQ_POLICY_NOTIFIER: 2138 ret = blocking_notifier_chain_unregister( 2139 &cpufreq_policy_notifier_list, nb); 2140 break; 2141 default: 2142 ret = -EINVAL; 2143 } 2144 2145 return ret; 2146 } 2147 EXPORT_SYMBOL(cpufreq_unregister_notifier); 2148 2149 2150 /********************************************************************* 2151 * GOVERNORS * 2152 *********************************************************************/ 2153 2154 /** 2155 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch. 2156 * @policy: cpufreq policy to switch the frequency for. 2157 * @target_freq: New frequency to set (may be approximate). 2158 * 2159 * Carry out a fast frequency switch without sleeping. 2160 * 2161 * The driver's ->fast_switch() callback invoked by this function must be 2162 * suitable for being called from within RCU-sched read-side critical sections 2163 * and it is expected to select the minimum available frequency greater than or 2164 * equal to @target_freq (CPUFREQ_RELATION_L). 2165 * 2166 * This function must not be called if policy->fast_switch_enabled is unset. 2167 * 2168 * Governors calling this function must guarantee that it will never be invoked 2169 * twice in parallel for the same policy and that it will never be called in 2170 * parallel with either ->target() or ->target_index() for the same policy. 2171 * 2172 * Returns the actual frequency set for the CPU. 2173 * 2174 * If 0 is returned by the driver's ->fast_switch() callback to indicate an 2175 * error condition, the hardware configuration must be preserved. 2176 */ 2177 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy, 2178 unsigned int target_freq) 2179 { 2180 unsigned int freq; 2181 int cpu; 2182 2183 target_freq = clamp_val(target_freq, policy->min, policy->max); 2184 freq = cpufreq_driver->fast_switch(policy, target_freq); 2185 2186 if (!freq) 2187 return 0; 2188 2189 policy->cur = freq; 2190 arch_set_freq_scale(policy->related_cpus, freq, 2191 arch_scale_freq_ref(policy->cpu)); 2192 cpufreq_stats_record_transition(policy, freq); 2193 2194 if (trace_cpu_frequency_enabled()) { 2195 for_each_cpu(cpu, policy->cpus) 2196 trace_cpu_frequency(freq, cpu); 2197 } 2198 2199 return freq; 2200 } 2201 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch); 2202 2203 /** 2204 * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go. 2205 * @cpu: Target CPU. 2206 * @min_perf: Minimum (required) performance level (units of @capacity). 2207 * @target_perf: Target (desired) performance level (units of @capacity). 2208 * @capacity: Capacity of the target CPU. 2209 * 2210 * Carry out a fast performance level switch of @cpu without sleeping. 2211 * 2212 * The driver's ->adjust_perf() callback invoked by this function must be 2213 * suitable for being called from within RCU-sched read-side critical sections 2214 * and it is expected to select a suitable performance level equal to or above 2215 * @min_perf and preferably equal to or below @target_perf. 2216 * 2217 * This function must not be called if policy->fast_switch_enabled is unset. 2218 * 2219 * Governors calling this function must guarantee that it will never be invoked 2220 * twice in parallel for the same CPU and that it will never be called in 2221 * parallel with either ->target() or ->target_index() or ->fast_switch() for 2222 * the same CPU. 2223 */ 2224 void cpufreq_driver_adjust_perf(unsigned int cpu, 2225 unsigned long min_perf, 2226 unsigned long target_perf, 2227 unsigned long capacity) 2228 { 2229 cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity); 2230 } 2231 2232 /** 2233 * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback. 2234 * 2235 * Return 'true' if the ->adjust_perf callback is present for the 2236 * current driver or 'false' otherwise. 2237 */ 2238 bool cpufreq_driver_has_adjust_perf(void) 2239 { 2240 return !!cpufreq_driver->adjust_perf; 2241 } 2242 2243 /* Must set freqs->new to intermediate frequency */ 2244 static int __target_intermediate(struct cpufreq_policy *policy, 2245 struct cpufreq_freqs *freqs, int index) 2246 { 2247 int ret; 2248 2249 freqs->new = cpufreq_driver->get_intermediate(policy, index); 2250 2251 /* We don't need to switch to intermediate freq */ 2252 if (!freqs->new) 2253 return 0; 2254 2255 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n", 2256 __func__, policy->cpu, freqs->old, freqs->new); 2257 2258 cpufreq_freq_transition_begin(policy, freqs); 2259 ret = cpufreq_driver->target_intermediate(policy, index); 2260 cpufreq_freq_transition_end(policy, freqs, ret); 2261 2262 if (ret) 2263 pr_err("%s: Failed to change to intermediate frequency: %d\n", 2264 __func__, ret); 2265 2266 return ret; 2267 } 2268 2269 static int __target_index(struct cpufreq_policy *policy, int index) 2270 { 2271 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0}; 2272 unsigned int restore_freq, intermediate_freq = 0; 2273 unsigned int newfreq = policy->freq_table[index].frequency; 2274 int retval = -EINVAL; 2275 bool notify; 2276 2277 if (newfreq == policy->cur) 2278 return 0; 2279 2280 /* Save last value to restore later on errors */ 2281 restore_freq = policy->cur; 2282 2283 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION); 2284 if (notify) { 2285 /* Handle switching to intermediate frequency */ 2286 if (cpufreq_driver->get_intermediate) { 2287 retval = __target_intermediate(policy, &freqs, index); 2288 if (retval) 2289 return retval; 2290 2291 intermediate_freq = freqs.new; 2292 /* Set old freq to intermediate */ 2293 if (intermediate_freq) 2294 freqs.old = freqs.new; 2295 } 2296 2297 freqs.new = newfreq; 2298 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n", 2299 __func__, policy->cpu, freqs.old, freqs.new); 2300 2301 cpufreq_freq_transition_begin(policy, &freqs); 2302 } 2303 2304 retval = cpufreq_driver->target_index(policy, index); 2305 if (retval) 2306 pr_err("%s: Failed to change cpu frequency: %d\n", __func__, 2307 retval); 2308 2309 if (notify) { 2310 cpufreq_freq_transition_end(policy, &freqs, retval); 2311 2312 /* 2313 * Failed after setting to intermediate freq? Driver should have 2314 * reverted back to initial frequency and so should we. Check 2315 * here for intermediate_freq instead of get_intermediate, in 2316 * case we haven't switched to intermediate freq at all. 2317 */ 2318 if (unlikely(retval && intermediate_freq)) { 2319 freqs.old = intermediate_freq; 2320 freqs.new = restore_freq; 2321 cpufreq_freq_transition_begin(policy, &freqs); 2322 cpufreq_freq_transition_end(policy, &freqs, 0); 2323 } 2324 } 2325 2326 return retval; 2327 } 2328 2329 int __cpufreq_driver_target(struct cpufreq_policy *policy, 2330 unsigned int target_freq, 2331 unsigned int relation) 2332 { 2333 unsigned int old_target_freq = target_freq; 2334 2335 if (cpufreq_disabled()) 2336 return -ENODEV; 2337 2338 target_freq = __resolve_freq(policy, target_freq, relation); 2339 2340 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n", 2341 policy->cpu, target_freq, relation, old_target_freq); 2342 2343 /* 2344 * This might look like a redundant call as we are checking it again 2345 * after finding index. But it is left intentionally for cases where 2346 * exactly same freq is called again and so we can save on few function 2347 * calls. 2348 */ 2349 if (target_freq == policy->cur && 2350 !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS)) 2351 return 0; 2352 2353 if (cpufreq_driver->target) { 2354 /* 2355 * If the driver hasn't setup a single inefficient frequency, 2356 * it's unlikely it knows how to decode CPUFREQ_RELATION_E. 2357 */ 2358 if (!policy->efficiencies_available) 2359 relation &= ~CPUFREQ_RELATION_E; 2360 2361 return cpufreq_driver->target(policy, target_freq, relation); 2362 } 2363 2364 if (!cpufreq_driver->target_index) 2365 return -EINVAL; 2366 2367 return __target_index(policy, policy->cached_resolved_idx); 2368 } 2369 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 2370 2371 int cpufreq_driver_target(struct cpufreq_policy *policy, 2372 unsigned int target_freq, 2373 unsigned int relation) 2374 { 2375 int ret; 2376 2377 down_write(&policy->rwsem); 2378 2379 ret = __cpufreq_driver_target(policy, target_freq, relation); 2380 2381 up_write(&policy->rwsem); 2382 2383 return ret; 2384 } 2385 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 2386 2387 __weak struct cpufreq_governor *cpufreq_fallback_governor(void) 2388 { 2389 return NULL; 2390 } 2391 2392 static int cpufreq_init_governor(struct cpufreq_policy *policy) 2393 { 2394 int ret; 2395 2396 /* Don't start any governor operations if we are entering suspend */ 2397 if (cpufreq_suspended) 2398 return 0; 2399 /* 2400 * Governor might not be initiated here if ACPI _PPC changed 2401 * notification happened, so check it. 2402 */ 2403 if (!policy->governor) 2404 return -EINVAL; 2405 2406 /* Platform doesn't want dynamic frequency switching ? */ 2407 if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING && 2408 cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) { 2409 struct cpufreq_governor *gov = cpufreq_fallback_governor(); 2410 2411 if (gov) { 2412 pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n", 2413 policy->governor->name, gov->name); 2414 policy->governor = gov; 2415 } else { 2416 return -EINVAL; 2417 } 2418 } 2419 2420 if (!try_module_get(policy->governor->owner)) 2421 return -EINVAL; 2422 2423 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2424 2425 if (policy->governor->init) { 2426 ret = policy->governor->init(policy); 2427 if (ret) { 2428 module_put(policy->governor->owner); 2429 return ret; 2430 } 2431 } 2432 2433 policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET); 2434 2435 return 0; 2436 } 2437 2438 static void cpufreq_exit_governor(struct cpufreq_policy *policy) 2439 { 2440 if (cpufreq_suspended || !policy->governor) 2441 return; 2442 2443 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2444 2445 if (policy->governor->exit) 2446 policy->governor->exit(policy); 2447 2448 module_put(policy->governor->owner); 2449 } 2450 2451 int cpufreq_start_governor(struct cpufreq_policy *policy) 2452 { 2453 int ret; 2454 2455 if (cpufreq_suspended) 2456 return 0; 2457 2458 if (!policy->governor) 2459 return -EINVAL; 2460 2461 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2462 2463 if (cpufreq_driver->get) 2464 cpufreq_verify_current_freq(policy, false); 2465 2466 if (policy->governor->start) { 2467 ret = policy->governor->start(policy); 2468 if (ret) 2469 return ret; 2470 } 2471 2472 if (policy->governor->limits) 2473 policy->governor->limits(policy); 2474 2475 return 0; 2476 } 2477 2478 void cpufreq_stop_governor(struct cpufreq_policy *policy) 2479 { 2480 if (cpufreq_suspended || !policy->governor) 2481 return; 2482 2483 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2484 2485 if (policy->governor->stop) 2486 policy->governor->stop(policy); 2487 } 2488 2489 static void cpufreq_governor_limits(struct cpufreq_policy *policy) 2490 { 2491 if (cpufreq_suspended || !policy->governor) 2492 return; 2493 2494 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2495 2496 if (policy->governor->limits) 2497 policy->governor->limits(policy); 2498 } 2499 2500 int cpufreq_register_governor(struct cpufreq_governor *governor) 2501 { 2502 int err; 2503 2504 if (!governor) 2505 return -EINVAL; 2506 2507 if (cpufreq_disabled()) 2508 return -ENODEV; 2509 2510 mutex_lock(&cpufreq_governor_mutex); 2511 2512 err = -EBUSY; 2513 if (!find_governor(governor->name)) { 2514 err = 0; 2515 list_add(&governor->governor_list, &cpufreq_governor_list); 2516 } 2517 2518 mutex_unlock(&cpufreq_governor_mutex); 2519 return err; 2520 } 2521 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 2522 2523 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 2524 { 2525 struct cpufreq_policy *policy; 2526 unsigned long flags; 2527 2528 if (!governor) 2529 return; 2530 2531 if (cpufreq_disabled()) 2532 return; 2533 2534 /* clear last_governor for all inactive policies */ 2535 read_lock_irqsave(&cpufreq_driver_lock, flags); 2536 for_each_inactive_policy(policy) { 2537 if (!strcmp(policy->last_governor, governor->name)) { 2538 policy->governor = NULL; 2539 strcpy(policy->last_governor, "\0"); 2540 } 2541 } 2542 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 2543 2544 mutex_lock(&cpufreq_governor_mutex); 2545 list_del(&governor->governor_list); 2546 mutex_unlock(&cpufreq_governor_mutex); 2547 } 2548 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 2549 2550 2551 /********************************************************************* 2552 * POLICY INTERFACE * 2553 *********************************************************************/ 2554 2555 /** 2556 * cpufreq_get_policy - get the current cpufreq_policy 2557 * @policy: struct cpufreq_policy into which the current cpufreq_policy 2558 * is written 2559 * @cpu: CPU to find the policy for 2560 * 2561 * Reads the current cpufreq policy. 2562 */ 2563 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 2564 { 2565 struct cpufreq_policy *cpu_policy; 2566 if (!policy) 2567 return -EINVAL; 2568 2569 cpu_policy = cpufreq_cpu_get(cpu); 2570 if (!cpu_policy) 2571 return -EINVAL; 2572 2573 memcpy(policy, cpu_policy, sizeof(*policy)); 2574 2575 cpufreq_cpu_put(cpu_policy); 2576 return 0; 2577 } 2578 EXPORT_SYMBOL(cpufreq_get_policy); 2579 2580 /** 2581 * cpufreq_set_policy - Modify cpufreq policy parameters. 2582 * @policy: Policy object to modify. 2583 * @new_gov: Policy governor pointer. 2584 * @new_pol: Policy value (for drivers with built-in governors). 2585 * 2586 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency 2587 * limits to be set for the policy, update @policy with the verified limits 2588 * values and either invoke the driver's ->setpolicy() callback (if present) or 2589 * carry out a governor update for @policy. That is, run the current governor's 2590 * ->limits() callback (if @new_gov points to the same object as the one in 2591 * @policy) or replace the governor for @policy with @new_gov. 2592 * 2593 * The cpuinfo part of @policy is not updated by this function. 2594 */ 2595 static int cpufreq_set_policy(struct cpufreq_policy *policy, 2596 struct cpufreq_governor *new_gov, 2597 unsigned int new_pol) 2598 { 2599 struct cpufreq_policy_data new_data; 2600 struct cpufreq_governor *old_gov; 2601 int ret; 2602 2603 memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo)); 2604 new_data.freq_table = policy->freq_table; 2605 new_data.cpu = policy->cpu; 2606 /* 2607 * PM QoS framework collects all the requests from users and provide us 2608 * the final aggregated value here. 2609 */ 2610 new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN); 2611 new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX); 2612 2613 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", 2614 new_data.cpu, new_data.min, new_data.max); 2615 2616 /* 2617 * Verify that the CPU speed can be set within these limits and make sure 2618 * that min <= max. 2619 */ 2620 ret = cpufreq_driver->verify(&new_data); 2621 if (ret) 2622 return ret; 2623 2624 /* 2625 * Resolve policy min/max to available frequencies. It ensures 2626 * no frequency resolution will neither overshoot the requested maximum 2627 * nor undershoot the requested minimum. 2628 */ 2629 policy->min = new_data.min; 2630 policy->max = new_data.max; 2631 policy->min = __resolve_freq(policy, policy->min, CPUFREQ_RELATION_L); 2632 policy->max = __resolve_freq(policy, policy->max, CPUFREQ_RELATION_H); 2633 trace_cpu_frequency_limits(policy); 2634 2635 policy->cached_target_freq = UINT_MAX; 2636 2637 pr_debug("new min and max freqs are %u - %u kHz\n", 2638 policy->min, policy->max); 2639 2640 if (cpufreq_driver->setpolicy) { 2641 policy->policy = new_pol; 2642 pr_debug("setting range\n"); 2643 return cpufreq_driver->setpolicy(policy); 2644 } 2645 2646 if (new_gov == policy->governor) { 2647 pr_debug("governor limits update\n"); 2648 cpufreq_governor_limits(policy); 2649 return 0; 2650 } 2651 2652 pr_debug("governor switch\n"); 2653 2654 /* save old, working values */ 2655 old_gov = policy->governor; 2656 /* end old governor */ 2657 if (old_gov) { 2658 cpufreq_stop_governor(policy); 2659 cpufreq_exit_governor(policy); 2660 } 2661 2662 /* start new governor */ 2663 policy->governor = new_gov; 2664 ret = cpufreq_init_governor(policy); 2665 if (!ret) { 2666 ret = cpufreq_start_governor(policy); 2667 if (!ret) { 2668 pr_debug("governor change\n"); 2669 return 0; 2670 } 2671 cpufreq_exit_governor(policy); 2672 } 2673 2674 /* new governor failed, so re-start old one */ 2675 pr_debug("starting governor %s failed\n", policy->governor->name); 2676 if (old_gov) { 2677 policy->governor = old_gov; 2678 if (cpufreq_init_governor(policy)) 2679 policy->governor = NULL; 2680 else 2681 cpufreq_start_governor(policy); 2682 } 2683 2684 return ret; 2685 } 2686 2687 /** 2688 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy. 2689 * @cpu: CPU to re-evaluate the policy for. 2690 * 2691 * Update the current frequency for the cpufreq policy of @cpu and use 2692 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the 2693 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback 2694 * for the policy in question, among other things. 2695 */ 2696 void cpufreq_update_policy(unsigned int cpu) 2697 { 2698 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu); 2699 2700 if (!policy) 2701 return; 2702 2703 /* 2704 * BIOS might change freq behind our back 2705 * -> ask driver for current freq and notify governors about a change 2706 */ 2707 if (cpufreq_driver->get && has_target() && 2708 (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false)))) 2709 goto unlock; 2710 2711 refresh_frequency_limits(policy); 2712 2713 unlock: 2714 cpufreq_cpu_release(policy); 2715 } 2716 EXPORT_SYMBOL(cpufreq_update_policy); 2717 2718 /** 2719 * cpufreq_update_limits - Update policy limits for a given CPU. 2720 * @cpu: CPU to update the policy limits for. 2721 * 2722 * Invoke the driver's ->update_limits callback if present or call 2723 * cpufreq_update_policy() for @cpu. 2724 */ 2725 void cpufreq_update_limits(unsigned int cpu) 2726 { 2727 if (cpufreq_driver->update_limits) 2728 cpufreq_driver->update_limits(cpu); 2729 else 2730 cpufreq_update_policy(cpu); 2731 } 2732 EXPORT_SYMBOL_GPL(cpufreq_update_limits); 2733 2734 /********************************************************************* 2735 * BOOST * 2736 *********************************************************************/ 2737 static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state) 2738 { 2739 int ret; 2740 2741 if (!policy->freq_table) 2742 return -ENXIO; 2743 2744 ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table); 2745 if (ret) { 2746 pr_err("%s: Policy frequency update failed\n", __func__); 2747 return ret; 2748 } 2749 2750 ret = freq_qos_update_request(policy->max_freq_req, policy->max); 2751 if (ret < 0) 2752 return ret; 2753 2754 return 0; 2755 } 2756 2757 int cpufreq_boost_trigger_state(int state) 2758 { 2759 struct cpufreq_policy *policy; 2760 unsigned long flags; 2761 int ret = 0; 2762 2763 if (cpufreq_driver->boost_enabled == state) 2764 return 0; 2765 2766 write_lock_irqsave(&cpufreq_driver_lock, flags); 2767 cpufreq_driver->boost_enabled = state; 2768 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2769 2770 cpus_read_lock(); 2771 for_each_active_policy(policy) { 2772 ret = cpufreq_driver->set_boost(policy, state); 2773 if (ret) 2774 goto err_reset_state; 2775 2776 policy->boost_enabled = state; 2777 } 2778 cpus_read_unlock(); 2779 2780 return 0; 2781 2782 err_reset_state: 2783 cpus_read_unlock(); 2784 2785 write_lock_irqsave(&cpufreq_driver_lock, flags); 2786 cpufreq_driver->boost_enabled = !state; 2787 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2788 2789 pr_err("%s: Cannot %s BOOST\n", 2790 __func__, state ? "enable" : "disable"); 2791 2792 return ret; 2793 } 2794 2795 static bool cpufreq_boost_supported(void) 2796 { 2797 return cpufreq_driver->set_boost; 2798 } 2799 2800 static int create_boost_sysfs_file(void) 2801 { 2802 int ret; 2803 2804 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr); 2805 if (ret) 2806 pr_err("%s: cannot register global BOOST sysfs file\n", 2807 __func__); 2808 2809 return ret; 2810 } 2811 2812 static void remove_boost_sysfs_file(void) 2813 { 2814 if (cpufreq_boost_supported()) 2815 sysfs_remove_file(cpufreq_global_kobject, &boost.attr); 2816 } 2817 2818 int cpufreq_enable_boost_support(void) 2819 { 2820 if (!cpufreq_driver) 2821 return -EINVAL; 2822 2823 if (cpufreq_boost_supported()) 2824 return 0; 2825 2826 cpufreq_driver->set_boost = cpufreq_boost_set_sw; 2827 2828 /* This will get removed on driver unregister */ 2829 return create_boost_sysfs_file(); 2830 } 2831 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support); 2832 2833 int cpufreq_boost_enabled(void) 2834 { 2835 return cpufreq_driver->boost_enabled; 2836 } 2837 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled); 2838 2839 /********************************************************************* 2840 * REGISTER / UNREGISTER CPUFREQ DRIVER * 2841 *********************************************************************/ 2842 static enum cpuhp_state hp_online; 2843 2844 static int cpuhp_cpufreq_online(unsigned int cpu) 2845 { 2846 cpufreq_online(cpu); 2847 2848 return 0; 2849 } 2850 2851 static int cpuhp_cpufreq_offline(unsigned int cpu) 2852 { 2853 cpufreq_offline(cpu); 2854 2855 return 0; 2856 } 2857 2858 /** 2859 * cpufreq_register_driver - register a CPU Frequency driver 2860 * @driver_data: A struct cpufreq_driver containing the values# 2861 * submitted by the CPU Frequency driver. 2862 * 2863 * Registers a CPU Frequency driver to this core code. This code 2864 * returns zero on success, -EEXIST when another driver got here first 2865 * (and isn't unregistered in the meantime). 2866 * 2867 */ 2868 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 2869 { 2870 unsigned long flags; 2871 int ret; 2872 2873 if (cpufreq_disabled()) 2874 return -ENODEV; 2875 2876 /* 2877 * The cpufreq core depends heavily on the availability of device 2878 * structure, make sure they are available before proceeding further. 2879 */ 2880 if (!get_cpu_device(0)) 2881 return -EPROBE_DEFER; 2882 2883 if (!driver_data || !driver_data->verify || !driver_data->init || 2884 !(driver_data->setpolicy || driver_data->target_index || 2885 driver_data->target) || 2886 (driver_data->setpolicy && (driver_data->target_index || 2887 driver_data->target)) || 2888 (!driver_data->get_intermediate != !driver_data->target_intermediate) || 2889 (!driver_data->online != !driver_data->offline) || 2890 (driver_data->adjust_perf && !driver_data->fast_switch)) 2891 return -EINVAL; 2892 2893 pr_debug("trying to register driver %s\n", driver_data->name); 2894 2895 /* Protect against concurrent CPU online/offline. */ 2896 cpus_read_lock(); 2897 2898 write_lock_irqsave(&cpufreq_driver_lock, flags); 2899 if (cpufreq_driver) { 2900 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2901 ret = -EEXIST; 2902 goto out; 2903 } 2904 cpufreq_driver = driver_data; 2905 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2906 2907 /* 2908 * Mark support for the scheduler's frequency invariance engine for 2909 * drivers that implement target(), target_index() or fast_switch(). 2910 */ 2911 if (!cpufreq_driver->setpolicy) { 2912 static_branch_enable_cpuslocked(&cpufreq_freq_invariance); 2913 pr_debug("supports frequency invariance"); 2914 } 2915 2916 if (driver_data->setpolicy) 2917 driver_data->flags |= CPUFREQ_CONST_LOOPS; 2918 2919 if (cpufreq_boost_supported()) { 2920 ret = create_boost_sysfs_file(); 2921 if (ret) 2922 goto err_null_driver; 2923 } 2924 2925 ret = subsys_interface_register(&cpufreq_interface); 2926 if (ret) 2927 goto err_boost_unreg; 2928 2929 if (unlikely(list_empty(&cpufreq_policy_list))) { 2930 /* if all ->init() calls failed, unregister */ 2931 ret = -ENODEV; 2932 pr_debug("%s: No CPU initialized for driver %s\n", __func__, 2933 driver_data->name); 2934 goto err_if_unreg; 2935 } 2936 2937 ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN, 2938 "cpufreq:online", 2939 cpuhp_cpufreq_online, 2940 cpuhp_cpufreq_offline); 2941 if (ret < 0) 2942 goto err_if_unreg; 2943 hp_online = ret; 2944 ret = 0; 2945 2946 pr_debug("driver %s up and running\n", driver_data->name); 2947 goto out; 2948 2949 err_if_unreg: 2950 subsys_interface_unregister(&cpufreq_interface); 2951 err_boost_unreg: 2952 remove_boost_sysfs_file(); 2953 err_null_driver: 2954 write_lock_irqsave(&cpufreq_driver_lock, flags); 2955 cpufreq_driver = NULL; 2956 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2957 out: 2958 cpus_read_unlock(); 2959 return ret; 2960 } 2961 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 2962 2963 /* 2964 * cpufreq_unregister_driver - unregister the current CPUFreq driver 2965 * 2966 * Unregister the current CPUFreq driver. Only call this if you have 2967 * the right to do so, i.e. if you have succeeded in initialising before! 2968 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 2969 * currently not initialised. 2970 */ 2971 void cpufreq_unregister_driver(struct cpufreq_driver *driver) 2972 { 2973 unsigned long flags; 2974 2975 if (WARN_ON(!cpufreq_driver || (driver != cpufreq_driver))) 2976 return; 2977 2978 pr_debug("unregistering driver %s\n", driver->name); 2979 2980 /* Protect against concurrent cpu hotplug */ 2981 cpus_read_lock(); 2982 subsys_interface_unregister(&cpufreq_interface); 2983 remove_boost_sysfs_file(); 2984 static_branch_disable_cpuslocked(&cpufreq_freq_invariance); 2985 cpuhp_remove_state_nocalls_cpuslocked(hp_online); 2986 2987 write_lock_irqsave(&cpufreq_driver_lock, flags); 2988 2989 cpufreq_driver = NULL; 2990 2991 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2992 cpus_read_unlock(); 2993 } 2994 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 2995 2996 static int __init cpufreq_core_init(void) 2997 { 2998 struct cpufreq_governor *gov = cpufreq_default_governor(); 2999 struct device *dev_root; 3000 3001 if (cpufreq_disabled()) 3002 return -ENODEV; 3003 3004 dev_root = bus_get_dev_root(&cpu_subsys); 3005 if (dev_root) { 3006 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &dev_root->kobj); 3007 put_device(dev_root); 3008 } 3009 BUG_ON(!cpufreq_global_kobject); 3010 3011 if (!strlen(default_governor)) 3012 strscpy(default_governor, gov->name, CPUFREQ_NAME_LEN); 3013 3014 return 0; 3015 } 3016 module_param(off, int, 0444); 3017 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444); 3018 core_initcall(cpufreq_core_init); 3019