1 /* 2 * linux/drivers/cpufreq/cpufreq.c 3 * 4 * Copyright (C) 2001 Russell King 5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 6 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org> 7 * 8 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 9 * Added handling for CPU hotplug 10 * Feb 2006 - Jacob Shin <jacob.shin@amd.com> 11 * Fix handling for CPU hotplug -- affected CPUs 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License version 2 as 15 * published by the Free Software Foundation. 16 */ 17 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/cpu.h> 21 #include <linux/cpufreq.h> 22 #include <linux/delay.h> 23 #include <linux/device.h> 24 #include <linux/init.h> 25 #include <linux/kernel_stat.h> 26 #include <linux/module.h> 27 #include <linux/mutex.h> 28 #include <linux/slab.h> 29 #include <linux/suspend.h> 30 #include <linux/syscore_ops.h> 31 #include <linux/tick.h> 32 #include <trace/events/power.h> 33 34 static LIST_HEAD(cpufreq_policy_list); 35 36 static inline bool policy_is_inactive(struct cpufreq_policy *policy) 37 { 38 return cpumask_empty(policy->cpus); 39 } 40 41 static bool suitable_policy(struct cpufreq_policy *policy, bool active) 42 { 43 return active == !policy_is_inactive(policy); 44 } 45 46 /* Finds Next Acive/Inactive policy */ 47 static struct cpufreq_policy *next_policy(struct cpufreq_policy *policy, 48 bool active) 49 { 50 do { 51 policy = list_next_entry(policy, policy_list); 52 53 /* No more policies in the list */ 54 if (&policy->policy_list == &cpufreq_policy_list) 55 return NULL; 56 } while (!suitable_policy(policy, active)); 57 58 return policy; 59 } 60 61 static struct cpufreq_policy *first_policy(bool active) 62 { 63 struct cpufreq_policy *policy; 64 65 /* No policies in the list */ 66 if (list_empty(&cpufreq_policy_list)) 67 return NULL; 68 69 policy = list_first_entry(&cpufreq_policy_list, typeof(*policy), 70 policy_list); 71 72 if (!suitable_policy(policy, active)) 73 policy = next_policy(policy, active); 74 75 return policy; 76 } 77 78 /* Macros to iterate over CPU policies */ 79 #define for_each_suitable_policy(__policy, __active) \ 80 for (__policy = first_policy(__active); \ 81 __policy; \ 82 __policy = next_policy(__policy, __active)) 83 84 #define for_each_active_policy(__policy) \ 85 for_each_suitable_policy(__policy, true) 86 #define for_each_inactive_policy(__policy) \ 87 for_each_suitable_policy(__policy, false) 88 89 #define for_each_policy(__policy) \ 90 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) 91 92 /* Iterate over governors */ 93 static LIST_HEAD(cpufreq_governor_list); 94 #define for_each_governor(__governor) \ 95 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list) 96 97 /** 98 * The "cpufreq driver" - the arch- or hardware-dependent low 99 * level driver of CPUFreq support, and its spinlock. This lock 100 * also protects the cpufreq_cpu_data array. 101 */ 102 static struct cpufreq_driver *cpufreq_driver; 103 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data); 104 static DEFINE_RWLOCK(cpufreq_driver_lock); 105 DEFINE_MUTEX(cpufreq_governor_lock); 106 107 /* Flag to suspend/resume CPUFreq governors */ 108 static bool cpufreq_suspended; 109 110 static inline bool has_target(void) 111 { 112 return cpufreq_driver->target_index || cpufreq_driver->target; 113 } 114 115 /* internal prototypes */ 116 static int __cpufreq_governor(struct cpufreq_policy *policy, 117 unsigned int event); 118 static unsigned int __cpufreq_get(struct cpufreq_policy *policy); 119 static void handle_update(struct work_struct *work); 120 121 /** 122 * Two notifier lists: the "policy" list is involved in the 123 * validation process for a new CPU frequency policy; the 124 * "transition" list for kernel code that needs to handle 125 * changes to devices when the CPU clock speed changes. 126 * The mutex locks both lists. 127 */ 128 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list); 129 static struct srcu_notifier_head cpufreq_transition_notifier_list; 130 131 static bool init_cpufreq_transition_notifier_list_called; 132 static int __init init_cpufreq_transition_notifier_list(void) 133 { 134 srcu_init_notifier_head(&cpufreq_transition_notifier_list); 135 init_cpufreq_transition_notifier_list_called = true; 136 return 0; 137 } 138 pure_initcall(init_cpufreq_transition_notifier_list); 139 140 static int off __read_mostly; 141 static int cpufreq_disabled(void) 142 { 143 return off; 144 } 145 void disable_cpufreq(void) 146 { 147 off = 1; 148 } 149 static DEFINE_MUTEX(cpufreq_governor_mutex); 150 151 bool have_governor_per_policy(void) 152 { 153 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY); 154 } 155 EXPORT_SYMBOL_GPL(have_governor_per_policy); 156 157 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy) 158 { 159 if (have_governor_per_policy()) 160 return &policy->kobj; 161 else 162 return cpufreq_global_kobject; 163 } 164 EXPORT_SYMBOL_GPL(get_governor_parent_kobj); 165 166 struct cpufreq_frequency_table *cpufreq_frequency_get_table(unsigned int cpu) 167 { 168 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 169 170 return policy && !policy_is_inactive(policy) ? 171 policy->freq_table : NULL; 172 } 173 EXPORT_SYMBOL_GPL(cpufreq_frequency_get_table); 174 175 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) 176 { 177 u64 idle_time; 178 u64 cur_wall_time; 179 u64 busy_time; 180 181 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64()); 182 183 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER]; 184 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM]; 185 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ]; 186 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ]; 187 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL]; 188 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE]; 189 190 idle_time = cur_wall_time - busy_time; 191 if (wall) 192 *wall = cputime_to_usecs(cur_wall_time); 193 194 return cputime_to_usecs(idle_time); 195 } 196 197 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy) 198 { 199 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL); 200 201 if (idle_time == -1ULL) 202 return get_cpu_idle_time_jiffy(cpu, wall); 203 else if (!io_busy) 204 idle_time += get_cpu_iowait_time_us(cpu, wall); 205 206 return idle_time; 207 } 208 EXPORT_SYMBOL_GPL(get_cpu_idle_time); 209 210 /* 211 * This is a generic cpufreq init() routine which can be used by cpufreq 212 * drivers of SMP systems. It will do following: 213 * - validate & show freq table passed 214 * - set policies transition latency 215 * - policy->cpus with all possible CPUs 216 */ 217 int cpufreq_generic_init(struct cpufreq_policy *policy, 218 struct cpufreq_frequency_table *table, 219 unsigned int transition_latency) 220 { 221 int ret; 222 223 ret = cpufreq_table_validate_and_show(policy, table); 224 if (ret) { 225 pr_err("%s: invalid frequency table: %d\n", __func__, ret); 226 return ret; 227 } 228 229 policy->cpuinfo.transition_latency = transition_latency; 230 231 /* 232 * The driver only supports the SMP configuration where all processors 233 * share the clock and voltage and clock. 234 */ 235 cpumask_setall(policy->cpus); 236 237 return 0; 238 } 239 EXPORT_SYMBOL_GPL(cpufreq_generic_init); 240 241 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu) 242 { 243 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 244 245 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL; 246 } 247 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw); 248 249 unsigned int cpufreq_generic_get(unsigned int cpu) 250 { 251 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu); 252 253 if (!policy || IS_ERR(policy->clk)) { 254 pr_err("%s: No %s associated to cpu: %d\n", 255 __func__, policy ? "clk" : "policy", cpu); 256 return 0; 257 } 258 259 return clk_get_rate(policy->clk) / 1000; 260 } 261 EXPORT_SYMBOL_GPL(cpufreq_generic_get); 262 263 /** 264 * cpufreq_cpu_get: returns policy for a cpu and marks it busy. 265 * 266 * @cpu: cpu to find policy for. 267 * 268 * This returns policy for 'cpu', returns NULL if it doesn't exist. 269 * It also increments the kobject reference count to mark it busy and so would 270 * require a corresponding call to cpufreq_cpu_put() to decrement it back. 271 * If corresponding call cpufreq_cpu_put() isn't made, the policy wouldn't be 272 * freed as that depends on the kobj count. 273 * 274 * Return: A valid policy on success, otherwise NULL on failure. 275 */ 276 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) 277 { 278 struct cpufreq_policy *policy = NULL; 279 unsigned long flags; 280 281 if (WARN_ON(cpu >= nr_cpu_ids)) 282 return NULL; 283 284 /* get the cpufreq driver */ 285 read_lock_irqsave(&cpufreq_driver_lock, flags); 286 287 if (cpufreq_driver) { 288 /* get the CPU */ 289 policy = cpufreq_cpu_get_raw(cpu); 290 if (policy) 291 kobject_get(&policy->kobj); 292 } 293 294 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 295 296 return policy; 297 } 298 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 299 300 /** 301 * cpufreq_cpu_put: Decrements the usage count of a policy 302 * 303 * @policy: policy earlier returned by cpufreq_cpu_get(). 304 * 305 * This decrements the kobject reference count incremented earlier by calling 306 * cpufreq_cpu_get(). 307 */ 308 void cpufreq_cpu_put(struct cpufreq_policy *policy) 309 { 310 kobject_put(&policy->kobj); 311 } 312 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 313 314 /********************************************************************* 315 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 316 *********************************************************************/ 317 318 /** 319 * adjust_jiffies - adjust the system "loops_per_jiffy" 320 * 321 * This function alters the system "loops_per_jiffy" for the clock 322 * speed change. Note that loops_per_jiffy cannot be updated on SMP 323 * systems as each CPU might be scaled differently. So, use the arch 324 * per-CPU loops_per_jiffy value wherever possible. 325 */ 326 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 327 { 328 #ifndef CONFIG_SMP 329 static unsigned long l_p_j_ref; 330 static unsigned int l_p_j_ref_freq; 331 332 if (ci->flags & CPUFREQ_CONST_LOOPS) 333 return; 334 335 if (!l_p_j_ref_freq) { 336 l_p_j_ref = loops_per_jiffy; 337 l_p_j_ref_freq = ci->old; 338 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n", 339 l_p_j_ref, l_p_j_ref_freq); 340 } 341 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) { 342 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, 343 ci->new); 344 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n", 345 loops_per_jiffy, ci->new); 346 } 347 #endif 348 } 349 350 static void __cpufreq_notify_transition(struct cpufreq_policy *policy, 351 struct cpufreq_freqs *freqs, unsigned int state) 352 { 353 BUG_ON(irqs_disabled()); 354 355 if (cpufreq_disabled()) 356 return; 357 358 freqs->flags = cpufreq_driver->flags; 359 pr_debug("notification %u of frequency transition to %u kHz\n", 360 state, freqs->new); 361 362 switch (state) { 363 364 case CPUFREQ_PRECHANGE: 365 /* detect if the driver reported a value as "old frequency" 366 * which is not equal to what the cpufreq core thinks is 367 * "old frequency". 368 */ 369 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 370 if ((policy) && (policy->cpu == freqs->cpu) && 371 (policy->cur) && (policy->cur != freqs->old)) { 372 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n", 373 freqs->old, policy->cur); 374 freqs->old = policy->cur; 375 } 376 } 377 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 378 CPUFREQ_PRECHANGE, freqs); 379 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 380 break; 381 382 case CPUFREQ_POSTCHANGE: 383 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 384 pr_debug("FREQ: %lu - CPU: %lu\n", 385 (unsigned long)freqs->new, (unsigned long)freqs->cpu); 386 trace_cpu_frequency(freqs->new, freqs->cpu); 387 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 388 CPUFREQ_POSTCHANGE, freqs); 389 if (likely(policy) && likely(policy->cpu == freqs->cpu)) 390 policy->cur = freqs->new; 391 break; 392 } 393 } 394 395 /** 396 * cpufreq_notify_transition - call notifier chain and adjust_jiffies 397 * on frequency transition. 398 * 399 * This function calls the transition notifiers and the "adjust_jiffies" 400 * function. It is called twice on all CPU frequency changes that have 401 * external effects. 402 */ 403 static void cpufreq_notify_transition(struct cpufreq_policy *policy, 404 struct cpufreq_freqs *freqs, unsigned int state) 405 { 406 for_each_cpu(freqs->cpu, policy->cpus) 407 __cpufreq_notify_transition(policy, freqs, state); 408 } 409 410 /* Do post notifications when there are chances that transition has failed */ 411 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy, 412 struct cpufreq_freqs *freqs, int transition_failed) 413 { 414 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 415 if (!transition_failed) 416 return; 417 418 swap(freqs->old, freqs->new); 419 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 420 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 421 } 422 423 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy, 424 struct cpufreq_freqs *freqs) 425 { 426 427 /* 428 * Catch double invocations of _begin() which lead to self-deadlock. 429 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core 430 * doesn't invoke _begin() on their behalf, and hence the chances of 431 * double invocations are very low. Moreover, there are scenarios 432 * where these checks can emit false-positive warnings in these 433 * drivers; so we avoid that by skipping them altogether. 434 */ 435 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION) 436 && current == policy->transition_task); 437 438 wait: 439 wait_event(policy->transition_wait, !policy->transition_ongoing); 440 441 spin_lock(&policy->transition_lock); 442 443 if (unlikely(policy->transition_ongoing)) { 444 spin_unlock(&policy->transition_lock); 445 goto wait; 446 } 447 448 policy->transition_ongoing = true; 449 policy->transition_task = current; 450 451 spin_unlock(&policy->transition_lock); 452 453 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 454 } 455 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin); 456 457 void cpufreq_freq_transition_end(struct cpufreq_policy *policy, 458 struct cpufreq_freqs *freqs, int transition_failed) 459 { 460 if (unlikely(WARN_ON(!policy->transition_ongoing))) 461 return; 462 463 cpufreq_notify_post_transition(policy, freqs, transition_failed); 464 465 policy->transition_ongoing = false; 466 policy->transition_task = NULL; 467 468 wake_up(&policy->transition_wait); 469 } 470 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end); 471 472 473 /********************************************************************* 474 * SYSFS INTERFACE * 475 *********************************************************************/ 476 static ssize_t show_boost(struct kobject *kobj, 477 struct attribute *attr, char *buf) 478 { 479 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled); 480 } 481 482 static ssize_t store_boost(struct kobject *kobj, struct attribute *attr, 483 const char *buf, size_t count) 484 { 485 int ret, enable; 486 487 ret = sscanf(buf, "%d", &enable); 488 if (ret != 1 || enable < 0 || enable > 1) 489 return -EINVAL; 490 491 if (cpufreq_boost_trigger_state(enable)) { 492 pr_err("%s: Cannot %s BOOST!\n", 493 __func__, enable ? "enable" : "disable"); 494 return -EINVAL; 495 } 496 497 pr_debug("%s: cpufreq BOOST %s\n", 498 __func__, enable ? "enabled" : "disabled"); 499 500 return count; 501 } 502 define_one_global_rw(boost); 503 504 static struct cpufreq_governor *find_governor(const char *str_governor) 505 { 506 struct cpufreq_governor *t; 507 508 for_each_governor(t) 509 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN)) 510 return t; 511 512 return NULL; 513 } 514 515 /** 516 * cpufreq_parse_governor - parse a governor string 517 */ 518 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy, 519 struct cpufreq_governor **governor) 520 { 521 int err = -EINVAL; 522 523 if (cpufreq_driver->setpolicy) { 524 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) { 525 *policy = CPUFREQ_POLICY_PERFORMANCE; 526 err = 0; 527 } else if (!strncasecmp(str_governor, "powersave", 528 CPUFREQ_NAME_LEN)) { 529 *policy = CPUFREQ_POLICY_POWERSAVE; 530 err = 0; 531 } 532 } else { 533 struct cpufreq_governor *t; 534 535 mutex_lock(&cpufreq_governor_mutex); 536 537 t = find_governor(str_governor); 538 539 if (t == NULL) { 540 int ret; 541 542 mutex_unlock(&cpufreq_governor_mutex); 543 ret = request_module("cpufreq_%s", str_governor); 544 mutex_lock(&cpufreq_governor_mutex); 545 546 if (ret == 0) 547 t = find_governor(str_governor); 548 } 549 550 if (t != NULL) { 551 *governor = t; 552 err = 0; 553 } 554 555 mutex_unlock(&cpufreq_governor_mutex); 556 } 557 return err; 558 } 559 560 /** 561 * cpufreq_per_cpu_attr_read() / show_##file_name() - 562 * print out cpufreq information 563 * 564 * Write out information from cpufreq_driver->policy[cpu]; object must be 565 * "unsigned int". 566 */ 567 568 #define show_one(file_name, object) \ 569 static ssize_t show_##file_name \ 570 (struct cpufreq_policy *policy, char *buf) \ 571 { \ 572 return sprintf(buf, "%u\n", policy->object); \ 573 } 574 575 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 576 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 577 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency); 578 show_one(scaling_min_freq, min); 579 show_one(scaling_max_freq, max); 580 581 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf) 582 { 583 ssize_t ret; 584 585 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) 586 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu)); 587 else 588 ret = sprintf(buf, "%u\n", policy->cur); 589 return ret; 590 } 591 592 static int cpufreq_set_policy(struct cpufreq_policy *policy, 593 struct cpufreq_policy *new_policy); 594 595 /** 596 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 597 */ 598 #define store_one(file_name, object) \ 599 static ssize_t store_##file_name \ 600 (struct cpufreq_policy *policy, const char *buf, size_t count) \ 601 { \ 602 int ret, temp; \ 603 struct cpufreq_policy new_policy; \ 604 \ 605 memcpy(&new_policy, policy, sizeof(*policy)); \ 606 \ 607 ret = sscanf(buf, "%u", &new_policy.object); \ 608 if (ret != 1) \ 609 return -EINVAL; \ 610 \ 611 temp = new_policy.object; \ 612 ret = cpufreq_set_policy(policy, &new_policy); \ 613 if (!ret) \ 614 policy->user_policy.object = temp; \ 615 \ 616 return ret ? ret : count; \ 617 } 618 619 store_one(scaling_min_freq, min); 620 store_one(scaling_max_freq, max); 621 622 /** 623 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 624 */ 625 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy, 626 char *buf) 627 { 628 unsigned int cur_freq = __cpufreq_get(policy); 629 if (!cur_freq) 630 return sprintf(buf, "<unknown>"); 631 return sprintf(buf, "%u\n", cur_freq); 632 } 633 634 /** 635 * show_scaling_governor - show the current policy for the specified CPU 636 */ 637 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf) 638 { 639 if (policy->policy == CPUFREQ_POLICY_POWERSAVE) 640 return sprintf(buf, "powersave\n"); 641 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 642 return sprintf(buf, "performance\n"); 643 else if (policy->governor) 644 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", 645 policy->governor->name); 646 return -EINVAL; 647 } 648 649 /** 650 * store_scaling_governor - store policy for the specified CPU 651 */ 652 static ssize_t store_scaling_governor(struct cpufreq_policy *policy, 653 const char *buf, size_t count) 654 { 655 int ret; 656 char str_governor[16]; 657 struct cpufreq_policy new_policy; 658 659 memcpy(&new_policy, policy, sizeof(*policy)); 660 661 ret = sscanf(buf, "%15s", str_governor); 662 if (ret != 1) 663 return -EINVAL; 664 665 if (cpufreq_parse_governor(str_governor, &new_policy.policy, 666 &new_policy.governor)) 667 return -EINVAL; 668 669 ret = cpufreq_set_policy(policy, &new_policy); 670 return ret ? ret : count; 671 } 672 673 /** 674 * show_scaling_driver - show the cpufreq driver currently loaded 675 */ 676 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf) 677 { 678 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name); 679 } 680 681 /** 682 * show_scaling_available_governors - show the available CPUfreq governors 683 */ 684 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy, 685 char *buf) 686 { 687 ssize_t i = 0; 688 struct cpufreq_governor *t; 689 690 if (!has_target()) { 691 i += sprintf(buf, "performance powersave"); 692 goto out; 693 } 694 695 for_each_governor(t) { 696 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) 697 - (CPUFREQ_NAME_LEN + 2))) 698 goto out; 699 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name); 700 } 701 out: 702 i += sprintf(&buf[i], "\n"); 703 return i; 704 } 705 706 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf) 707 { 708 ssize_t i = 0; 709 unsigned int cpu; 710 711 for_each_cpu(cpu, mask) { 712 if (i) 713 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " "); 714 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu); 715 if (i >= (PAGE_SIZE - 5)) 716 break; 717 } 718 i += sprintf(&buf[i], "\n"); 719 return i; 720 } 721 EXPORT_SYMBOL_GPL(cpufreq_show_cpus); 722 723 /** 724 * show_related_cpus - show the CPUs affected by each transition even if 725 * hw coordination is in use 726 */ 727 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf) 728 { 729 return cpufreq_show_cpus(policy->related_cpus, buf); 730 } 731 732 /** 733 * show_affected_cpus - show the CPUs affected by each transition 734 */ 735 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf) 736 { 737 return cpufreq_show_cpus(policy->cpus, buf); 738 } 739 740 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy, 741 const char *buf, size_t count) 742 { 743 unsigned int freq = 0; 744 unsigned int ret; 745 746 if (!policy->governor || !policy->governor->store_setspeed) 747 return -EINVAL; 748 749 ret = sscanf(buf, "%u", &freq); 750 if (ret != 1) 751 return -EINVAL; 752 753 policy->governor->store_setspeed(policy, freq); 754 755 return count; 756 } 757 758 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf) 759 { 760 if (!policy->governor || !policy->governor->show_setspeed) 761 return sprintf(buf, "<unsupported>\n"); 762 763 return policy->governor->show_setspeed(policy, buf); 764 } 765 766 /** 767 * show_bios_limit - show the current cpufreq HW/BIOS limitation 768 */ 769 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf) 770 { 771 unsigned int limit; 772 int ret; 773 if (cpufreq_driver->bios_limit) { 774 ret = cpufreq_driver->bios_limit(policy->cpu, &limit); 775 if (!ret) 776 return sprintf(buf, "%u\n", limit); 777 } 778 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq); 779 } 780 781 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400); 782 cpufreq_freq_attr_ro(cpuinfo_min_freq); 783 cpufreq_freq_attr_ro(cpuinfo_max_freq); 784 cpufreq_freq_attr_ro(cpuinfo_transition_latency); 785 cpufreq_freq_attr_ro(scaling_available_governors); 786 cpufreq_freq_attr_ro(scaling_driver); 787 cpufreq_freq_attr_ro(scaling_cur_freq); 788 cpufreq_freq_attr_ro(bios_limit); 789 cpufreq_freq_attr_ro(related_cpus); 790 cpufreq_freq_attr_ro(affected_cpus); 791 cpufreq_freq_attr_rw(scaling_min_freq); 792 cpufreq_freq_attr_rw(scaling_max_freq); 793 cpufreq_freq_attr_rw(scaling_governor); 794 cpufreq_freq_attr_rw(scaling_setspeed); 795 796 static struct attribute *default_attrs[] = { 797 &cpuinfo_min_freq.attr, 798 &cpuinfo_max_freq.attr, 799 &cpuinfo_transition_latency.attr, 800 &scaling_min_freq.attr, 801 &scaling_max_freq.attr, 802 &affected_cpus.attr, 803 &related_cpus.attr, 804 &scaling_governor.attr, 805 &scaling_driver.attr, 806 &scaling_available_governors.attr, 807 &scaling_setspeed.attr, 808 NULL 809 }; 810 811 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj) 812 #define to_attr(a) container_of(a, struct freq_attr, attr) 813 814 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) 815 { 816 struct cpufreq_policy *policy = to_policy(kobj); 817 struct freq_attr *fattr = to_attr(attr); 818 ssize_t ret; 819 820 down_read(&policy->rwsem); 821 822 if (fattr->show) 823 ret = fattr->show(policy, buf); 824 else 825 ret = -EIO; 826 827 up_read(&policy->rwsem); 828 829 return ret; 830 } 831 832 static ssize_t store(struct kobject *kobj, struct attribute *attr, 833 const char *buf, size_t count) 834 { 835 struct cpufreq_policy *policy = to_policy(kobj); 836 struct freq_attr *fattr = to_attr(attr); 837 ssize_t ret = -EINVAL; 838 839 get_online_cpus(); 840 841 if (!cpu_online(policy->cpu)) 842 goto unlock; 843 844 down_write(&policy->rwsem); 845 846 /* Updating inactive policies is invalid, so avoid doing that. */ 847 if (unlikely(policy_is_inactive(policy))) { 848 ret = -EBUSY; 849 goto unlock_policy_rwsem; 850 } 851 852 if (fattr->store) 853 ret = fattr->store(policy, buf, count); 854 else 855 ret = -EIO; 856 857 unlock_policy_rwsem: 858 up_write(&policy->rwsem); 859 unlock: 860 put_online_cpus(); 861 862 return ret; 863 } 864 865 static void cpufreq_sysfs_release(struct kobject *kobj) 866 { 867 struct cpufreq_policy *policy = to_policy(kobj); 868 pr_debug("last reference is dropped\n"); 869 complete(&policy->kobj_unregister); 870 } 871 872 static const struct sysfs_ops sysfs_ops = { 873 .show = show, 874 .store = store, 875 }; 876 877 static struct kobj_type ktype_cpufreq = { 878 .sysfs_ops = &sysfs_ops, 879 .default_attrs = default_attrs, 880 .release = cpufreq_sysfs_release, 881 }; 882 883 struct kobject *cpufreq_global_kobject; 884 EXPORT_SYMBOL(cpufreq_global_kobject); 885 886 static int cpufreq_global_kobject_usage; 887 888 int cpufreq_get_global_kobject(void) 889 { 890 if (!cpufreq_global_kobject_usage++) 891 return kobject_add(cpufreq_global_kobject, 892 &cpu_subsys.dev_root->kobj, "%s", "cpufreq"); 893 894 return 0; 895 } 896 EXPORT_SYMBOL(cpufreq_get_global_kobject); 897 898 void cpufreq_put_global_kobject(void) 899 { 900 if (!--cpufreq_global_kobject_usage) 901 kobject_del(cpufreq_global_kobject); 902 } 903 EXPORT_SYMBOL(cpufreq_put_global_kobject); 904 905 int cpufreq_sysfs_create_file(const struct attribute *attr) 906 { 907 int ret = cpufreq_get_global_kobject(); 908 909 if (!ret) { 910 ret = sysfs_create_file(cpufreq_global_kobject, attr); 911 if (ret) 912 cpufreq_put_global_kobject(); 913 } 914 915 return ret; 916 } 917 EXPORT_SYMBOL(cpufreq_sysfs_create_file); 918 919 void cpufreq_sysfs_remove_file(const struct attribute *attr) 920 { 921 sysfs_remove_file(cpufreq_global_kobject, attr); 922 cpufreq_put_global_kobject(); 923 } 924 EXPORT_SYMBOL(cpufreq_sysfs_remove_file); 925 926 static int add_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu) 927 { 928 struct device *cpu_dev; 929 930 pr_debug("%s: Adding symlink for CPU: %u\n", __func__, cpu); 931 932 if (!policy) 933 return 0; 934 935 cpu_dev = get_cpu_device(cpu); 936 if (WARN_ON(!cpu_dev)) 937 return 0; 938 939 return sysfs_create_link(&cpu_dev->kobj, &policy->kobj, "cpufreq"); 940 } 941 942 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu) 943 { 944 struct device *cpu_dev; 945 946 pr_debug("%s: Removing symlink for CPU: %u\n", __func__, cpu); 947 948 cpu_dev = get_cpu_device(cpu); 949 if (WARN_ON(!cpu_dev)) 950 return; 951 952 sysfs_remove_link(&cpu_dev->kobj, "cpufreq"); 953 } 954 955 /* Add/remove symlinks for all related CPUs */ 956 static int cpufreq_add_dev_symlink(struct cpufreq_policy *policy) 957 { 958 unsigned int j; 959 int ret = 0; 960 961 /* Some related CPUs might not be present (physically hotplugged) */ 962 for_each_cpu(j, policy->real_cpus) { 963 if (j == policy->kobj_cpu) 964 continue; 965 966 ret = add_cpu_dev_symlink(policy, j); 967 if (ret) 968 break; 969 } 970 971 return ret; 972 } 973 974 static void cpufreq_remove_dev_symlink(struct cpufreq_policy *policy) 975 { 976 unsigned int j; 977 978 /* Some related CPUs might not be present (physically hotplugged) */ 979 for_each_cpu(j, policy->real_cpus) { 980 if (j == policy->kobj_cpu) 981 continue; 982 983 remove_cpu_dev_symlink(policy, j); 984 } 985 } 986 987 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy) 988 { 989 struct freq_attr **drv_attr; 990 int ret = 0; 991 992 /* set up files for this cpu device */ 993 drv_attr = cpufreq_driver->attr; 994 while (drv_attr && *drv_attr) { 995 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 996 if (ret) 997 return ret; 998 drv_attr++; 999 } 1000 if (cpufreq_driver->get) { 1001 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 1002 if (ret) 1003 return ret; 1004 } 1005 1006 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 1007 if (ret) 1008 return ret; 1009 1010 if (cpufreq_driver->bios_limit) { 1011 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr); 1012 if (ret) 1013 return ret; 1014 } 1015 1016 return cpufreq_add_dev_symlink(policy); 1017 } 1018 1019 static int cpufreq_init_policy(struct cpufreq_policy *policy) 1020 { 1021 struct cpufreq_governor *gov = NULL; 1022 struct cpufreq_policy new_policy; 1023 1024 memcpy(&new_policy, policy, sizeof(*policy)); 1025 1026 /* Update governor of new_policy to the governor used before hotplug */ 1027 gov = find_governor(policy->last_governor); 1028 if (gov) 1029 pr_debug("Restoring governor %s for cpu %d\n", 1030 policy->governor->name, policy->cpu); 1031 else 1032 gov = CPUFREQ_DEFAULT_GOVERNOR; 1033 1034 new_policy.governor = gov; 1035 1036 /* Use the default policy if its valid. */ 1037 if (cpufreq_driver->setpolicy) 1038 cpufreq_parse_governor(gov->name, &new_policy.policy, NULL); 1039 1040 /* set default policy */ 1041 return cpufreq_set_policy(policy, &new_policy); 1042 } 1043 1044 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu) 1045 { 1046 int ret = 0; 1047 1048 /* Has this CPU been taken care of already? */ 1049 if (cpumask_test_cpu(cpu, policy->cpus)) 1050 return 0; 1051 1052 if (has_target()) { 1053 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP); 1054 if (ret) { 1055 pr_err("%s: Failed to stop governor\n", __func__); 1056 return ret; 1057 } 1058 } 1059 1060 down_write(&policy->rwsem); 1061 cpumask_set_cpu(cpu, policy->cpus); 1062 up_write(&policy->rwsem); 1063 1064 if (has_target()) { 1065 ret = __cpufreq_governor(policy, CPUFREQ_GOV_START); 1066 if (!ret) 1067 ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); 1068 1069 if (ret) { 1070 pr_err("%s: Failed to start governor\n", __func__); 1071 return ret; 1072 } 1073 } 1074 1075 return 0; 1076 } 1077 1078 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu) 1079 { 1080 struct device *dev = get_cpu_device(cpu); 1081 struct cpufreq_policy *policy; 1082 int ret; 1083 1084 if (WARN_ON(!dev)) 1085 return NULL; 1086 1087 policy = kzalloc(sizeof(*policy), GFP_KERNEL); 1088 if (!policy) 1089 return NULL; 1090 1091 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) 1092 goto err_free_policy; 1093 1094 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) 1095 goto err_free_cpumask; 1096 1097 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL)) 1098 goto err_free_rcpumask; 1099 1100 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, &dev->kobj, 1101 "cpufreq"); 1102 if (ret) { 1103 pr_err("%s: failed to init policy->kobj: %d\n", __func__, ret); 1104 goto err_free_real_cpus; 1105 } 1106 1107 INIT_LIST_HEAD(&policy->policy_list); 1108 init_rwsem(&policy->rwsem); 1109 spin_lock_init(&policy->transition_lock); 1110 init_waitqueue_head(&policy->transition_wait); 1111 init_completion(&policy->kobj_unregister); 1112 INIT_WORK(&policy->update, handle_update); 1113 1114 policy->cpu = cpu; 1115 1116 /* Set this once on allocation */ 1117 policy->kobj_cpu = cpu; 1118 1119 return policy; 1120 1121 err_free_real_cpus: 1122 free_cpumask_var(policy->real_cpus); 1123 err_free_rcpumask: 1124 free_cpumask_var(policy->related_cpus); 1125 err_free_cpumask: 1126 free_cpumask_var(policy->cpus); 1127 err_free_policy: 1128 kfree(policy); 1129 1130 return NULL; 1131 } 1132 1133 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy, bool notify) 1134 { 1135 struct kobject *kobj; 1136 struct completion *cmp; 1137 1138 if (notify) 1139 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1140 CPUFREQ_REMOVE_POLICY, policy); 1141 1142 down_write(&policy->rwsem); 1143 cpufreq_remove_dev_symlink(policy); 1144 kobj = &policy->kobj; 1145 cmp = &policy->kobj_unregister; 1146 up_write(&policy->rwsem); 1147 kobject_put(kobj); 1148 1149 /* 1150 * We need to make sure that the underlying kobj is 1151 * actually not referenced anymore by anybody before we 1152 * proceed with unloading. 1153 */ 1154 pr_debug("waiting for dropping of refcount\n"); 1155 wait_for_completion(cmp); 1156 pr_debug("wait complete\n"); 1157 } 1158 1159 static void cpufreq_policy_free(struct cpufreq_policy *policy, bool notify) 1160 { 1161 unsigned long flags; 1162 int cpu; 1163 1164 /* Remove policy from list */ 1165 write_lock_irqsave(&cpufreq_driver_lock, flags); 1166 list_del(&policy->policy_list); 1167 1168 for_each_cpu(cpu, policy->related_cpus) 1169 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1170 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1171 1172 cpufreq_policy_put_kobj(policy, notify); 1173 free_cpumask_var(policy->real_cpus); 1174 free_cpumask_var(policy->related_cpus); 1175 free_cpumask_var(policy->cpus); 1176 kfree(policy); 1177 } 1178 1179 static int cpufreq_online(unsigned int cpu) 1180 { 1181 struct cpufreq_policy *policy; 1182 bool new_policy; 1183 unsigned long flags; 1184 unsigned int j; 1185 int ret; 1186 1187 pr_debug("%s: bringing CPU%u online\n", __func__, cpu); 1188 1189 /* Check if this CPU already has a policy to manage it */ 1190 policy = per_cpu(cpufreq_cpu_data, cpu); 1191 if (policy) { 1192 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus)); 1193 if (!policy_is_inactive(policy)) 1194 return cpufreq_add_policy_cpu(policy, cpu); 1195 1196 /* This is the only online CPU for the policy. Start over. */ 1197 new_policy = false; 1198 down_write(&policy->rwsem); 1199 policy->cpu = cpu; 1200 policy->governor = NULL; 1201 up_write(&policy->rwsem); 1202 } else { 1203 new_policy = true; 1204 policy = cpufreq_policy_alloc(cpu); 1205 if (!policy) 1206 return -ENOMEM; 1207 } 1208 1209 cpumask_copy(policy->cpus, cpumask_of(cpu)); 1210 1211 /* call driver. From then on the cpufreq must be able 1212 * to accept all calls to ->verify and ->setpolicy for this CPU 1213 */ 1214 ret = cpufreq_driver->init(policy); 1215 if (ret) { 1216 pr_debug("initialization failed\n"); 1217 goto out_free_policy; 1218 } 1219 1220 down_write(&policy->rwsem); 1221 1222 if (new_policy) { 1223 /* related_cpus should at least include policy->cpus. */ 1224 cpumask_or(policy->related_cpus, policy->related_cpus, policy->cpus); 1225 /* Remember CPUs present at the policy creation time. */ 1226 cpumask_and(policy->real_cpus, policy->cpus, cpu_present_mask); 1227 } 1228 1229 /* 1230 * affected cpus must always be the one, which are online. We aren't 1231 * managing offline cpus here. 1232 */ 1233 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask); 1234 1235 if (new_policy) { 1236 policy->user_policy.min = policy->min; 1237 policy->user_policy.max = policy->max; 1238 1239 write_lock_irqsave(&cpufreq_driver_lock, flags); 1240 for_each_cpu(j, policy->related_cpus) 1241 per_cpu(cpufreq_cpu_data, j) = policy; 1242 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1243 } 1244 1245 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) { 1246 policy->cur = cpufreq_driver->get(policy->cpu); 1247 if (!policy->cur) { 1248 pr_err("%s: ->get() failed\n", __func__); 1249 goto out_exit_policy; 1250 } 1251 } 1252 1253 /* 1254 * Sometimes boot loaders set CPU frequency to a value outside of 1255 * frequency table present with cpufreq core. In such cases CPU might be 1256 * unstable if it has to run on that frequency for long duration of time 1257 * and so its better to set it to a frequency which is specified in 1258 * freq-table. This also makes cpufreq stats inconsistent as 1259 * cpufreq-stats would fail to register because current frequency of CPU 1260 * isn't found in freq-table. 1261 * 1262 * Because we don't want this change to effect boot process badly, we go 1263 * for the next freq which is >= policy->cur ('cur' must be set by now, 1264 * otherwise we will end up setting freq to lowest of the table as 'cur' 1265 * is initialized to zero). 1266 * 1267 * We are passing target-freq as "policy->cur - 1" otherwise 1268 * __cpufreq_driver_target() would simply fail, as policy->cur will be 1269 * equal to target-freq. 1270 */ 1271 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK) 1272 && has_target()) { 1273 /* Are we running at unknown frequency ? */ 1274 ret = cpufreq_frequency_table_get_index(policy, policy->cur); 1275 if (ret == -EINVAL) { 1276 /* Warn user and fix it */ 1277 pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n", 1278 __func__, policy->cpu, policy->cur); 1279 ret = __cpufreq_driver_target(policy, policy->cur - 1, 1280 CPUFREQ_RELATION_L); 1281 1282 /* 1283 * Reaching here after boot in a few seconds may not 1284 * mean that system will remain stable at "unknown" 1285 * frequency for longer duration. Hence, a BUG_ON(). 1286 */ 1287 BUG_ON(ret); 1288 pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n", 1289 __func__, policy->cpu, policy->cur); 1290 } 1291 } 1292 1293 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1294 CPUFREQ_START, policy); 1295 1296 if (new_policy) { 1297 ret = cpufreq_add_dev_interface(policy); 1298 if (ret) 1299 goto out_exit_policy; 1300 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1301 CPUFREQ_CREATE_POLICY, policy); 1302 1303 write_lock_irqsave(&cpufreq_driver_lock, flags); 1304 list_add(&policy->policy_list, &cpufreq_policy_list); 1305 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1306 } 1307 1308 ret = cpufreq_init_policy(policy); 1309 if (ret) { 1310 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n", 1311 __func__, cpu, ret); 1312 /* cpufreq_policy_free() will notify based on this */ 1313 new_policy = false; 1314 goto out_exit_policy; 1315 } 1316 1317 up_write(&policy->rwsem); 1318 1319 kobject_uevent(&policy->kobj, KOBJ_ADD); 1320 1321 /* Callback for handling stuff after policy is ready */ 1322 if (cpufreq_driver->ready) 1323 cpufreq_driver->ready(policy); 1324 1325 pr_debug("initialization complete\n"); 1326 1327 return 0; 1328 1329 out_exit_policy: 1330 up_write(&policy->rwsem); 1331 1332 if (cpufreq_driver->exit) 1333 cpufreq_driver->exit(policy); 1334 out_free_policy: 1335 cpufreq_policy_free(policy, !new_policy); 1336 return ret; 1337 } 1338 1339 /** 1340 * cpufreq_add_dev - the cpufreq interface for a CPU device. 1341 * @dev: CPU device. 1342 * @sif: Subsystem interface structure pointer (not used) 1343 */ 1344 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 1345 { 1346 unsigned cpu = dev->id; 1347 int ret; 1348 1349 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu); 1350 1351 if (cpu_online(cpu)) { 1352 ret = cpufreq_online(cpu); 1353 } else { 1354 /* 1355 * A hotplug notifier will follow and we will handle it as CPU 1356 * online then. For now, just create the sysfs link, unless 1357 * there is no policy or the link is already present. 1358 */ 1359 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1360 1361 ret = policy && !cpumask_test_and_set_cpu(cpu, policy->real_cpus) 1362 ? add_cpu_dev_symlink(policy, cpu) : 0; 1363 } 1364 1365 return ret; 1366 } 1367 1368 static void cpufreq_offline_prepare(unsigned int cpu) 1369 { 1370 struct cpufreq_policy *policy; 1371 1372 pr_debug("%s: unregistering CPU %u\n", __func__, cpu); 1373 1374 policy = cpufreq_cpu_get_raw(cpu); 1375 if (!policy) { 1376 pr_debug("%s: No cpu_data found\n", __func__); 1377 return; 1378 } 1379 1380 if (has_target()) { 1381 int ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP); 1382 if (ret) 1383 pr_err("%s: Failed to stop governor\n", __func__); 1384 } 1385 1386 down_write(&policy->rwsem); 1387 cpumask_clear_cpu(cpu, policy->cpus); 1388 1389 if (policy_is_inactive(policy)) { 1390 if (has_target()) 1391 strncpy(policy->last_governor, policy->governor->name, 1392 CPUFREQ_NAME_LEN); 1393 } else if (cpu == policy->cpu) { 1394 /* Nominate new CPU */ 1395 policy->cpu = cpumask_any(policy->cpus); 1396 } 1397 up_write(&policy->rwsem); 1398 1399 /* Start governor again for active policy */ 1400 if (!policy_is_inactive(policy)) { 1401 if (has_target()) { 1402 int ret = __cpufreq_governor(policy, CPUFREQ_GOV_START); 1403 if (!ret) 1404 ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); 1405 1406 if (ret) 1407 pr_err("%s: Failed to start governor\n", __func__); 1408 } 1409 } else if (cpufreq_driver->stop_cpu) { 1410 cpufreq_driver->stop_cpu(policy); 1411 } 1412 } 1413 1414 static void cpufreq_offline_finish(unsigned int cpu) 1415 { 1416 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1417 1418 if (!policy) { 1419 pr_debug("%s: No cpu_data found\n", __func__); 1420 return; 1421 } 1422 1423 /* Only proceed for inactive policies */ 1424 if (!policy_is_inactive(policy)) 1425 return; 1426 1427 /* If cpu is last user of policy, free policy */ 1428 if (has_target()) { 1429 int ret = __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT); 1430 if (ret) 1431 pr_err("%s: Failed to exit governor\n", __func__); 1432 } 1433 1434 /* 1435 * Perform the ->exit() even during light-weight tear-down, 1436 * since this is a core component, and is essential for the 1437 * subsequent light-weight ->init() to succeed. 1438 */ 1439 if (cpufreq_driver->exit) { 1440 cpufreq_driver->exit(policy); 1441 policy->freq_table = NULL; 1442 } 1443 } 1444 1445 /** 1446 * cpufreq_remove_dev - remove a CPU device 1447 * 1448 * Removes the cpufreq interface for a CPU device. 1449 */ 1450 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif) 1451 { 1452 unsigned int cpu = dev->id; 1453 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1454 1455 if (!policy) 1456 return; 1457 1458 if (cpu_online(cpu)) { 1459 cpufreq_offline_prepare(cpu); 1460 cpufreq_offline_finish(cpu); 1461 } 1462 1463 cpumask_clear_cpu(cpu, policy->real_cpus); 1464 1465 if (cpumask_empty(policy->real_cpus)) { 1466 cpufreq_policy_free(policy, true); 1467 return; 1468 } 1469 1470 if (cpu != policy->kobj_cpu) { 1471 remove_cpu_dev_symlink(policy, cpu); 1472 } else { 1473 /* 1474 * The CPU owning the policy object is going away. Move it to 1475 * another suitable CPU. 1476 */ 1477 unsigned int new_cpu = cpumask_first(policy->real_cpus); 1478 struct device *new_dev = get_cpu_device(new_cpu); 1479 1480 dev_dbg(dev, "%s: Moving policy object to CPU%u\n", __func__, new_cpu); 1481 1482 sysfs_remove_link(&new_dev->kobj, "cpufreq"); 1483 policy->kobj_cpu = new_cpu; 1484 WARN_ON(kobject_move(&policy->kobj, &new_dev->kobj)); 1485 } 1486 } 1487 1488 static void handle_update(struct work_struct *work) 1489 { 1490 struct cpufreq_policy *policy = 1491 container_of(work, struct cpufreq_policy, update); 1492 unsigned int cpu = policy->cpu; 1493 pr_debug("handle_update for cpu %u called\n", cpu); 1494 cpufreq_update_policy(cpu); 1495 } 1496 1497 /** 1498 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're 1499 * in deep trouble. 1500 * @policy: policy managing CPUs 1501 * @new_freq: CPU frequency the CPU actually runs at 1502 * 1503 * We adjust to current frequency first, and need to clean up later. 1504 * So either call to cpufreq_update_policy() or schedule handle_update()). 1505 */ 1506 static void cpufreq_out_of_sync(struct cpufreq_policy *policy, 1507 unsigned int new_freq) 1508 { 1509 struct cpufreq_freqs freqs; 1510 1511 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n", 1512 policy->cur, new_freq); 1513 1514 freqs.old = policy->cur; 1515 freqs.new = new_freq; 1516 1517 cpufreq_freq_transition_begin(policy, &freqs); 1518 cpufreq_freq_transition_end(policy, &freqs, 0); 1519 } 1520 1521 /** 1522 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur 1523 * @cpu: CPU number 1524 * 1525 * This is the last known freq, without actually getting it from the driver. 1526 * Return value will be same as what is shown in scaling_cur_freq in sysfs. 1527 */ 1528 unsigned int cpufreq_quick_get(unsigned int cpu) 1529 { 1530 struct cpufreq_policy *policy; 1531 unsigned int ret_freq = 0; 1532 1533 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) 1534 return cpufreq_driver->get(cpu); 1535 1536 policy = cpufreq_cpu_get(cpu); 1537 if (policy) { 1538 ret_freq = policy->cur; 1539 cpufreq_cpu_put(policy); 1540 } 1541 1542 return ret_freq; 1543 } 1544 EXPORT_SYMBOL(cpufreq_quick_get); 1545 1546 /** 1547 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU 1548 * @cpu: CPU number 1549 * 1550 * Just return the max possible frequency for a given CPU. 1551 */ 1552 unsigned int cpufreq_quick_get_max(unsigned int cpu) 1553 { 1554 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1555 unsigned int ret_freq = 0; 1556 1557 if (policy) { 1558 ret_freq = policy->max; 1559 cpufreq_cpu_put(policy); 1560 } 1561 1562 return ret_freq; 1563 } 1564 EXPORT_SYMBOL(cpufreq_quick_get_max); 1565 1566 static unsigned int __cpufreq_get(struct cpufreq_policy *policy) 1567 { 1568 unsigned int ret_freq = 0; 1569 1570 if (!cpufreq_driver->get) 1571 return ret_freq; 1572 1573 ret_freq = cpufreq_driver->get(policy->cpu); 1574 1575 /* Updating inactive policies is invalid, so avoid doing that. */ 1576 if (unlikely(policy_is_inactive(policy))) 1577 return ret_freq; 1578 1579 if (ret_freq && policy->cur && 1580 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 1581 /* verify no discrepancy between actual and 1582 saved value exists */ 1583 if (unlikely(ret_freq != policy->cur)) { 1584 cpufreq_out_of_sync(policy, ret_freq); 1585 schedule_work(&policy->update); 1586 } 1587 } 1588 1589 return ret_freq; 1590 } 1591 1592 /** 1593 * cpufreq_get - get the current CPU frequency (in kHz) 1594 * @cpu: CPU number 1595 * 1596 * Get the CPU current (static) CPU frequency 1597 */ 1598 unsigned int cpufreq_get(unsigned int cpu) 1599 { 1600 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1601 unsigned int ret_freq = 0; 1602 1603 if (policy) { 1604 down_read(&policy->rwsem); 1605 ret_freq = __cpufreq_get(policy); 1606 up_read(&policy->rwsem); 1607 1608 cpufreq_cpu_put(policy); 1609 } 1610 1611 return ret_freq; 1612 } 1613 EXPORT_SYMBOL(cpufreq_get); 1614 1615 static struct subsys_interface cpufreq_interface = { 1616 .name = "cpufreq", 1617 .subsys = &cpu_subsys, 1618 .add_dev = cpufreq_add_dev, 1619 .remove_dev = cpufreq_remove_dev, 1620 }; 1621 1622 /* 1623 * In case platform wants some specific frequency to be configured 1624 * during suspend.. 1625 */ 1626 int cpufreq_generic_suspend(struct cpufreq_policy *policy) 1627 { 1628 int ret; 1629 1630 if (!policy->suspend_freq) { 1631 pr_debug("%s: suspend_freq not defined\n", __func__); 1632 return 0; 1633 } 1634 1635 pr_debug("%s: Setting suspend-freq: %u\n", __func__, 1636 policy->suspend_freq); 1637 1638 ret = __cpufreq_driver_target(policy, policy->suspend_freq, 1639 CPUFREQ_RELATION_H); 1640 if (ret) 1641 pr_err("%s: unable to set suspend-freq: %u. err: %d\n", 1642 __func__, policy->suspend_freq, ret); 1643 1644 return ret; 1645 } 1646 EXPORT_SYMBOL(cpufreq_generic_suspend); 1647 1648 /** 1649 * cpufreq_suspend() - Suspend CPUFreq governors 1650 * 1651 * Called during system wide Suspend/Hibernate cycles for suspending governors 1652 * as some platforms can't change frequency after this point in suspend cycle. 1653 * Because some of the devices (like: i2c, regulators, etc) they use for 1654 * changing frequency are suspended quickly after this point. 1655 */ 1656 void cpufreq_suspend(void) 1657 { 1658 struct cpufreq_policy *policy; 1659 1660 if (!cpufreq_driver) 1661 return; 1662 1663 if (!has_target()) 1664 goto suspend; 1665 1666 pr_debug("%s: Suspending Governors\n", __func__); 1667 1668 for_each_active_policy(policy) { 1669 if (__cpufreq_governor(policy, CPUFREQ_GOV_STOP)) 1670 pr_err("%s: Failed to stop governor for policy: %p\n", 1671 __func__, policy); 1672 else if (cpufreq_driver->suspend 1673 && cpufreq_driver->suspend(policy)) 1674 pr_err("%s: Failed to suspend driver: %p\n", __func__, 1675 policy); 1676 } 1677 1678 suspend: 1679 cpufreq_suspended = true; 1680 } 1681 1682 /** 1683 * cpufreq_resume() - Resume CPUFreq governors 1684 * 1685 * Called during system wide Suspend/Hibernate cycle for resuming governors that 1686 * are suspended with cpufreq_suspend(). 1687 */ 1688 void cpufreq_resume(void) 1689 { 1690 struct cpufreq_policy *policy; 1691 1692 if (!cpufreq_driver) 1693 return; 1694 1695 cpufreq_suspended = false; 1696 1697 if (!has_target()) 1698 return; 1699 1700 pr_debug("%s: Resuming Governors\n", __func__); 1701 1702 for_each_active_policy(policy) { 1703 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) 1704 pr_err("%s: Failed to resume driver: %p\n", __func__, 1705 policy); 1706 else if (__cpufreq_governor(policy, CPUFREQ_GOV_START) 1707 || __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS)) 1708 pr_err("%s: Failed to start governor for policy: %p\n", 1709 __func__, policy); 1710 } 1711 1712 /* 1713 * schedule call cpufreq_update_policy() for first-online CPU, as that 1714 * wouldn't be hotplugged-out on suspend. It will verify that the 1715 * current freq is in sync with what we believe it to be. 1716 */ 1717 policy = cpufreq_cpu_get_raw(cpumask_first(cpu_online_mask)); 1718 if (WARN_ON(!policy)) 1719 return; 1720 1721 schedule_work(&policy->update); 1722 } 1723 1724 /** 1725 * cpufreq_get_current_driver - return current driver's name 1726 * 1727 * Return the name string of the currently loaded cpufreq driver 1728 * or NULL, if none. 1729 */ 1730 const char *cpufreq_get_current_driver(void) 1731 { 1732 if (cpufreq_driver) 1733 return cpufreq_driver->name; 1734 1735 return NULL; 1736 } 1737 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver); 1738 1739 /** 1740 * cpufreq_get_driver_data - return current driver data 1741 * 1742 * Return the private data of the currently loaded cpufreq 1743 * driver, or NULL if no cpufreq driver is loaded. 1744 */ 1745 void *cpufreq_get_driver_data(void) 1746 { 1747 if (cpufreq_driver) 1748 return cpufreq_driver->driver_data; 1749 1750 return NULL; 1751 } 1752 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data); 1753 1754 /********************************************************************* 1755 * NOTIFIER LISTS INTERFACE * 1756 *********************************************************************/ 1757 1758 /** 1759 * cpufreq_register_notifier - register a driver with cpufreq 1760 * @nb: notifier function to register 1761 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1762 * 1763 * Add a driver to one of two lists: either a list of drivers that 1764 * are notified about clock rate changes (once before and once after 1765 * the transition), or a list of drivers that are notified about 1766 * changes in cpufreq policy. 1767 * 1768 * This function may sleep, and has the same return conditions as 1769 * blocking_notifier_chain_register. 1770 */ 1771 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 1772 { 1773 int ret; 1774 1775 if (cpufreq_disabled()) 1776 return -EINVAL; 1777 1778 WARN_ON(!init_cpufreq_transition_notifier_list_called); 1779 1780 switch (list) { 1781 case CPUFREQ_TRANSITION_NOTIFIER: 1782 ret = srcu_notifier_chain_register( 1783 &cpufreq_transition_notifier_list, nb); 1784 break; 1785 case CPUFREQ_POLICY_NOTIFIER: 1786 ret = blocking_notifier_chain_register( 1787 &cpufreq_policy_notifier_list, nb); 1788 break; 1789 default: 1790 ret = -EINVAL; 1791 } 1792 1793 return ret; 1794 } 1795 EXPORT_SYMBOL(cpufreq_register_notifier); 1796 1797 /** 1798 * cpufreq_unregister_notifier - unregister a driver with cpufreq 1799 * @nb: notifier block to be unregistered 1800 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1801 * 1802 * Remove a driver from the CPU frequency notifier list. 1803 * 1804 * This function may sleep, and has the same return conditions as 1805 * blocking_notifier_chain_unregister. 1806 */ 1807 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 1808 { 1809 int ret; 1810 1811 if (cpufreq_disabled()) 1812 return -EINVAL; 1813 1814 switch (list) { 1815 case CPUFREQ_TRANSITION_NOTIFIER: 1816 ret = srcu_notifier_chain_unregister( 1817 &cpufreq_transition_notifier_list, nb); 1818 break; 1819 case CPUFREQ_POLICY_NOTIFIER: 1820 ret = blocking_notifier_chain_unregister( 1821 &cpufreq_policy_notifier_list, nb); 1822 break; 1823 default: 1824 ret = -EINVAL; 1825 } 1826 1827 return ret; 1828 } 1829 EXPORT_SYMBOL(cpufreq_unregister_notifier); 1830 1831 1832 /********************************************************************* 1833 * GOVERNORS * 1834 *********************************************************************/ 1835 1836 /* Must set freqs->new to intermediate frequency */ 1837 static int __target_intermediate(struct cpufreq_policy *policy, 1838 struct cpufreq_freqs *freqs, int index) 1839 { 1840 int ret; 1841 1842 freqs->new = cpufreq_driver->get_intermediate(policy, index); 1843 1844 /* We don't need to switch to intermediate freq */ 1845 if (!freqs->new) 1846 return 0; 1847 1848 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n", 1849 __func__, policy->cpu, freqs->old, freqs->new); 1850 1851 cpufreq_freq_transition_begin(policy, freqs); 1852 ret = cpufreq_driver->target_intermediate(policy, index); 1853 cpufreq_freq_transition_end(policy, freqs, ret); 1854 1855 if (ret) 1856 pr_err("%s: Failed to change to intermediate frequency: %d\n", 1857 __func__, ret); 1858 1859 return ret; 1860 } 1861 1862 static int __target_index(struct cpufreq_policy *policy, 1863 struct cpufreq_frequency_table *freq_table, int index) 1864 { 1865 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0}; 1866 unsigned int intermediate_freq = 0; 1867 int retval = -EINVAL; 1868 bool notify; 1869 1870 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION); 1871 if (notify) { 1872 /* Handle switching to intermediate frequency */ 1873 if (cpufreq_driver->get_intermediate) { 1874 retval = __target_intermediate(policy, &freqs, index); 1875 if (retval) 1876 return retval; 1877 1878 intermediate_freq = freqs.new; 1879 /* Set old freq to intermediate */ 1880 if (intermediate_freq) 1881 freqs.old = freqs.new; 1882 } 1883 1884 freqs.new = freq_table[index].frequency; 1885 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n", 1886 __func__, policy->cpu, freqs.old, freqs.new); 1887 1888 cpufreq_freq_transition_begin(policy, &freqs); 1889 } 1890 1891 retval = cpufreq_driver->target_index(policy, index); 1892 if (retval) 1893 pr_err("%s: Failed to change cpu frequency: %d\n", __func__, 1894 retval); 1895 1896 if (notify) { 1897 cpufreq_freq_transition_end(policy, &freqs, retval); 1898 1899 /* 1900 * Failed after setting to intermediate freq? Driver should have 1901 * reverted back to initial frequency and so should we. Check 1902 * here for intermediate_freq instead of get_intermediate, in 1903 * case we haven't switched to intermediate freq at all. 1904 */ 1905 if (unlikely(retval && intermediate_freq)) { 1906 freqs.old = intermediate_freq; 1907 freqs.new = policy->restore_freq; 1908 cpufreq_freq_transition_begin(policy, &freqs); 1909 cpufreq_freq_transition_end(policy, &freqs, 0); 1910 } 1911 } 1912 1913 return retval; 1914 } 1915 1916 int __cpufreq_driver_target(struct cpufreq_policy *policy, 1917 unsigned int target_freq, 1918 unsigned int relation) 1919 { 1920 unsigned int old_target_freq = target_freq; 1921 int retval = -EINVAL; 1922 1923 if (cpufreq_disabled()) 1924 return -ENODEV; 1925 1926 /* Make sure that target_freq is within supported range */ 1927 if (target_freq > policy->max) 1928 target_freq = policy->max; 1929 if (target_freq < policy->min) 1930 target_freq = policy->min; 1931 1932 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n", 1933 policy->cpu, target_freq, relation, old_target_freq); 1934 1935 /* 1936 * This might look like a redundant call as we are checking it again 1937 * after finding index. But it is left intentionally for cases where 1938 * exactly same freq is called again and so we can save on few function 1939 * calls. 1940 */ 1941 if (target_freq == policy->cur) 1942 return 0; 1943 1944 /* Save last value to restore later on errors */ 1945 policy->restore_freq = policy->cur; 1946 1947 if (cpufreq_driver->target) 1948 retval = cpufreq_driver->target(policy, target_freq, relation); 1949 else if (cpufreq_driver->target_index) { 1950 struct cpufreq_frequency_table *freq_table; 1951 int index; 1952 1953 freq_table = cpufreq_frequency_get_table(policy->cpu); 1954 if (unlikely(!freq_table)) { 1955 pr_err("%s: Unable to find freq_table\n", __func__); 1956 goto out; 1957 } 1958 1959 retval = cpufreq_frequency_table_target(policy, freq_table, 1960 target_freq, relation, &index); 1961 if (unlikely(retval)) { 1962 pr_err("%s: Unable to find matching freq\n", __func__); 1963 goto out; 1964 } 1965 1966 if (freq_table[index].frequency == policy->cur) { 1967 retval = 0; 1968 goto out; 1969 } 1970 1971 retval = __target_index(policy, freq_table, index); 1972 } 1973 1974 out: 1975 return retval; 1976 } 1977 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 1978 1979 int cpufreq_driver_target(struct cpufreq_policy *policy, 1980 unsigned int target_freq, 1981 unsigned int relation) 1982 { 1983 int ret = -EINVAL; 1984 1985 down_write(&policy->rwsem); 1986 1987 ret = __cpufreq_driver_target(policy, target_freq, relation); 1988 1989 up_write(&policy->rwsem); 1990 1991 return ret; 1992 } 1993 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 1994 1995 static int __cpufreq_governor(struct cpufreq_policy *policy, 1996 unsigned int event) 1997 { 1998 int ret; 1999 2000 /* Only must be defined when default governor is known to have latency 2001 restrictions, like e.g. conservative or ondemand. 2002 That this is the case is already ensured in Kconfig 2003 */ 2004 #ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE 2005 struct cpufreq_governor *gov = &cpufreq_gov_performance; 2006 #else 2007 struct cpufreq_governor *gov = NULL; 2008 #endif 2009 2010 /* Don't start any governor operations if we are entering suspend */ 2011 if (cpufreq_suspended) 2012 return 0; 2013 /* 2014 * Governor might not be initiated here if ACPI _PPC changed 2015 * notification happened, so check it. 2016 */ 2017 if (!policy->governor) 2018 return -EINVAL; 2019 2020 if (policy->governor->max_transition_latency && 2021 policy->cpuinfo.transition_latency > 2022 policy->governor->max_transition_latency) { 2023 if (!gov) 2024 return -EINVAL; 2025 else { 2026 pr_warn("%s governor failed, too long transition latency of HW, fallback to %s governor\n", 2027 policy->governor->name, gov->name); 2028 policy->governor = gov; 2029 } 2030 } 2031 2032 if (event == CPUFREQ_GOV_POLICY_INIT) 2033 if (!try_module_get(policy->governor->owner)) 2034 return -EINVAL; 2035 2036 pr_debug("%s: for CPU %u, event %u\n", __func__, policy->cpu, event); 2037 2038 mutex_lock(&cpufreq_governor_lock); 2039 if ((policy->governor_enabled && event == CPUFREQ_GOV_START) 2040 || (!policy->governor_enabled 2041 && (event == CPUFREQ_GOV_LIMITS || event == CPUFREQ_GOV_STOP))) { 2042 mutex_unlock(&cpufreq_governor_lock); 2043 return -EBUSY; 2044 } 2045 2046 if (event == CPUFREQ_GOV_STOP) 2047 policy->governor_enabled = false; 2048 else if (event == CPUFREQ_GOV_START) 2049 policy->governor_enabled = true; 2050 2051 mutex_unlock(&cpufreq_governor_lock); 2052 2053 ret = policy->governor->governor(policy, event); 2054 2055 if (!ret) { 2056 if (event == CPUFREQ_GOV_POLICY_INIT) 2057 policy->governor->initialized++; 2058 else if (event == CPUFREQ_GOV_POLICY_EXIT) 2059 policy->governor->initialized--; 2060 } else { 2061 /* Restore original values */ 2062 mutex_lock(&cpufreq_governor_lock); 2063 if (event == CPUFREQ_GOV_STOP) 2064 policy->governor_enabled = true; 2065 else if (event == CPUFREQ_GOV_START) 2066 policy->governor_enabled = false; 2067 mutex_unlock(&cpufreq_governor_lock); 2068 } 2069 2070 if (((event == CPUFREQ_GOV_POLICY_INIT) && ret) || 2071 ((event == CPUFREQ_GOV_POLICY_EXIT) && !ret)) 2072 module_put(policy->governor->owner); 2073 2074 return ret; 2075 } 2076 2077 int cpufreq_register_governor(struct cpufreq_governor *governor) 2078 { 2079 int err; 2080 2081 if (!governor) 2082 return -EINVAL; 2083 2084 if (cpufreq_disabled()) 2085 return -ENODEV; 2086 2087 mutex_lock(&cpufreq_governor_mutex); 2088 2089 governor->initialized = 0; 2090 err = -EBUSY; 2091 if (!find_governor(governor->name)) { 2092 err = 0; 2093 list_add(&governor->governor_list, &cpufreq_governor_list); 2094 } 2095 2096 mutex_unlock(&cpufreq_governor_mutex); 2097 return err; 2098 } 2099 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 2100 2101 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 2102 { 2103 struct cpufreq_policy *policy; 2104 unsigned long flags; 2105 2106 if (!governor) 2107 return; 2108 2109 if (cpufreq_disabled()) 2110 return; 2111 2112 /* clear last_governor for all inactive policies */ 2113 read_lock_irqsave(&cpufreq_driver_lock, flags); 2114 for_each_inactive_policy(policy) { 2115 if (!strcmp(policy->last_governor, governor->name)) { 2116 policy->governor = NULL; 2117 strcpy(policy->last_governor, "\0"); 2118 } 2119 } 2120 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 2121 2122 mutex_lock(&cpufreq_governor_mutex); 2123 list_del(&governor->governor_list); 2124 mutex_unlock(&cpufreq_governor_mutex); 2125 return; 2126 } 2127 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 2128 2129 2130 /********************************************************************* 2131 * POLICY INTERFACE * 2132 *********************************************************************/ 2133 2134 /** 2135 * cpufreq_get_policy - get the current cpufreq_policy 2136 * @policy: struct cpufreq_policy into which the current cpufreq_policy 2137 * is written 2138 * 2139 * Reads the current cpufreq policy. 2140 */ 2141 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 2142 { 2143 struct cpufreq_policy *cpu_policy; 2144 if (!policy) 2145 return -EINVAL; 2146 2147 cpu_policy = cpufreq_cpu_get(cpu); 2148 if (!cpu_policy) 2149 return -EINVAL; 2150 2151 memcpy(policy, cpu_policy, sizeof(*policy)); 2152 2153 cpufreq_cpu_put(cpu_policy); 2154 return 0; 2155 } 2156 EXPORT_SYMBOL(cpufreq_get_policy); 2157 2158 /* 2159 * policy : current policy. 2160 * new_policy: policy to be set. 2161 */ 2162 static int cpufreq_set_policy(struct cpufreq_policy *policy, 2163 struct cpufreq_policy *new_policy) 2164 { 2165 struct cpufreq_governor *old_gov; 2166 int ret; 2167 2168 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", 2169 new_policy->cpu, new_policy->min, new_policy->max); 2170 2171 memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo)); 2172 2173 /* 2174 * This check works well when we store new min/max freq attributes, 2175 * because new_policy is a copy of policy with one field updated. 2176 */ 2177 if (new_policy->min > new_policy->max) 2178 return -EINVAL; 2179 2180 /* verify the cpu speed can be set within this limit */ 2181 ret = cpufreq_driver->verify(new_policy); 2182 if (ret) 2183 return ret; 2184 2185 /* adjust if necessary - all reasons */ 2186 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 2187 CPUFREQ_ADJUST, new_policy); 2188 2189 /* 2190 * verify the cpu speed can be set within this limit, which might be 2191 * different to the first one 2192 */ 2193 ret = cpufreq_driver->verify(new_policy); 2194 if (ret) 2195 return ret; 2196 2197 /* notification of the new policy */ 2198 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 2199 CPUFREQ_NOTIFY, new_policy); 2200 2201 policy->min = new_policy->min; 2202 policy->max = new_policy->max; 2203 2204 pr_debug("new min and max freqs are %u - %u kHz\n", 2205 policy->min, policy->max); 2206 2207 if (cpufreq_driver->setpolicy) { 2208 policy->policy = new_policy->policy; 2209 pr_debug("setting range\n"); 2210 return cpufreq_driver->setpolicy(new_policy); 2211 } 2212 2213 if (new_policy->governor == policy->governor) 2214 goto out; 2215 2216 pr_debug("governor switch\n"); 2217 2218 /* save old, working values */ 2219 old_gov = policy->governor; 2220 /* end old governor */ 2221 if (old_gov) { 2222 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP); 2223 if (ret) { 2224 /* This can happen due to race with other operations */ 2225 pr_debug("%s: Failed to Stop Governor: %s (%d)\n", 2226 __func__, old_gov->name, ret); 2227 return ret; 2228 } 2229 2230 up_write(&policy->rwsem); 2231 ret = __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT); 2232 down_write(&policy->rwsem); 2233 2234 if (ret) { 2235 pr_err("%s: Failed to Exit Governor: %s (%d)\n", 2236 __func__, old_gov->name, ret); 2237 return ret; 2238 } 2239 } 2240 2241 /* start new governor */ 2242 policy->governor = new_policy->governor; 2243 ret = __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT); 2244 if (!ret) { 2245 ret = __cpufreq_governor(policy, CPUFREQ_GOV_START); 2246 if (!ret) 2247 goto out; 2248 2249 up_write(&policy->rwsem); 2250 __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT); 2251 down_write(&policy->rwsem); 2252 } 2253 2254 /* new governor failed, so re-start old one */ 2255 pr_debug("starting governor %s failed\n", policy->governor->name); 2256 if (old_gov) { 2257 policy->governor = old_gov; 2258 if (__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT)) 2259 policy->governor = NULL; 2260 else 2261 __cpufreq_governor(policy, CPUFREQ_GOV_START); 2262 } 2263 2264 return ret; 2265 2266 out: 2267 pr_debug("governor: change or update limits\n"); 2268 return __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); 2269 } 2270 2271 /** 2272 * cpufreq_update_policy - re-evaluate an existing cpufreq policy 2273 * @cpu: CPU which shall be re-evaluated 2274 * 2275 * Useful for policy notifiers which have different necessities 2276 * at different times. 2277 */ 2278 int cpufreq_update_policy(unsigned int cpu) 2279 { 2280 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 2281 struct cpufreq_policy new_policy; 2282 int ret; 2283 2284 if (!policy) 2285 return -ENODEV; 2286 2287 down_write(&policy->rwsem); 2288 2289 pr_debug("updating policy for CPU %u\n", cpu); 2290 memcpy(&new_policy, policy, sizeof(*policy)); 2291 new_policy.min = policy->user_policy.min; 2292 new_policy.max = policy->user_policy.max; 2293 2294 /* 2295 * BIOS might change freq behind our back 2296 * -> ask driver for current freq and notify governors about a change 2297 */ 2298 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) { 2299 new_policy.cur = cpufreq_driver->get(cpu); 2300 if (WARN_ON(!new_policy.cur)) { 2301 ret = -EIO; 2302 goto unlock; 2303 } 2304 2305 if (!policy->cur) { 2306 pr_debug("Driver did not initialize current freq\n"); 2307 policy->cur = new_policy.cur; 2308 } else { 2309 if (policy->cur != new_policy.cur && has_target()) 2310 cpufreq_out_of_sync(policy, new_policy.cur); 2311 } 2312 } 2313 2314 ret = cpufreq_set_policy(policy, &new_policy); 2315 2316 unlock: 2317 up_write(&policy->rwsem); 2318 2319 cpufreq_cpu_put(policy); 2320 return ret; 2321 } 2322 EXPORT_SYMBOL(cpufreq_update_policy); 2323 2324 static int cpufreq_cpu_callback(struct notifier_block *nfb, 2325 unsigned long action, void *hcpu) 2326 { 2327 unsigned int cpu = (unsigned long)hcpu; 2328 2329 switch (action & ~CPU_TASKS_FROZEN) { 2330 case CPU_ONLINE: 2331 cpufreq_online(cpu); 2332 break; 2333 2334 case CPU_DOWN_PREPARE: 2335 cpufreq_offline_prepare(cpu); 2336 break; 2337 2338 case CPU_POST_DEAD: 2339 cpufreq_offline_finish(cpu); 2340 break; 2341 2342 case CPU_DOWN_FAILED: 2343 cpufreq_online(cpu); 2344 break; 2345 } 2346 return NOTIFY_OK; 2347 } 2348 2349 static struct notifier_block __refdata cpufreq_cpu_notifier = { 2350 .notifier_call = cpufreq_cpu_callback, 2351 }; 2352 2353 /********************************************************************* 2354 * BOOST * 2355 *********************************************************************/ 2356 static int cpufreq_boost_set_sw(int state) 2357 { 2358 struct cpufreq_frequency_table *freq_table; 2359 struct cpufreq_policy *policy; 2360 int ret = -EINVAL; 2361 2362 for_each_active_policy(policy) { 2363 freq_table = cpufreq_frequency_get_table(policy->cpu); 2364 if (freq_table) { 2365 ret = cpufreq_frequency_table_cpuinfo(policy, 2366 freq_table); 2367 if (ret) { 2368 pr_err("%s: Policy frequency update failed\n", 2369 __func__); 2370 break; 2371 } 2372 policy->user_policy.max = policy->max; 2373 __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); 2374 } 2375 } 2376 2377 return ret; 2378 } 2379 2380 int cpufreq_boost_trigger_state(int state) 2381 { 2382 unsigned long flags; 2383 int ret = 0; 2384 2385 if (cpufreq_driver->boost_enabled == state) 2386 return 0; 2387 2388 write_lock_irqsave(&cpufreq_driver_lock, flags); 2389 cpufreq_driver->boost_enabled = state; 2390 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2391 2392 ret = cpufreq_driver->set_boost(state); 2393 if (ret) { 2394 write_lock_irqsave(&cpufreq_driver_lock, flags); 2395 cpufreq_driver->boost_enabled = !state; 2396 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2397 2398 pr_err("%s: Cannot %s BOOST\n", 2399 __func__, state ? "enable" : "disable"); 2400 } 2401 2402 return ret; 2403 } 2404 2405 int cpufreq_boost_supported(void) 2406 { 2407 if (likely(cpufreq_driver)) 2408 return cpufreq_driver->boost_supported; 2409 2410 return 0; 2411 } 2412 EXPORT_SYMBOL_GPL(cpufreq_boost_supported); 2413 2414 static int create_boost_sysfs_file(void) 2415 { 2416 int ret; 2417 2418 if (!cpufreq_boost_supported()) 2419 return 0; 2420 2421 /* 2422 * Check if driver provides function to enable boost - 2423 * if not, use cpufreq_boost_set_sw as default 2424 */ 2425 if (!cpufreq_driver->set_boost) 2426 cpufreq_driver->set_boost = cpufreq_boost_set_sw; 2427 2428 ret = cpufreq_sysfs_create_file(&boost.attr); 2429 if (ret) 2430 pr_err("%s: cannot register global BOOST sysfs file\n", 2431 __func__); 2432 2433 return ret; 2434 } 2435 2436 static void remove_boost_sysfs_file(void) 2437 { 2438 if (cpufreq_boost_supported()) 2439 cpufreq_sysfs_remove_file(&boost.attr); 2440 } 2441 2442 int cpufreq_enable_boost_support(void) 2443 { 2444 if (!cpufreq_driver) 2445 return -EINVAL; 2446 2447 if (cpufreq_boost_supported()) 2448 return 0; 2449 2450 cpufreq_driver->boost_supported = true; 2451 2452 /* This will get removed on driver unregister */ 2453 return create_boost_sysfs_file(); 2454 } 2455 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support); 2456 2457 int cpufreq_boost_enabled(void) 2458 { 2459 return cpufreq_driver->boost_enabled; 2460 } 2461 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled); 2462 2463 /********************************************************************* 2464 * REGISTER / UNREGISTER CPUFREQ DRIVER * 2465 *********************************************************************/ 2466 2467 /** 2468 * cpufreq_register_driver - register a CPU Frequency driver 2469 * @driver_data: A struct cpufreq_driver containing the values# 2470 * submitted by the CPU Frequency driver. 2471 * 2472 * Registers a CPU Frequency driver to this core code. This code 2473 * returns zero on success, -EBUSY when another driver got here first 2474 * (and isn't unregistered in the meantime). 2475 * 2476 */ 2477 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 2478 { 2479 unsigned long flags; 2480 int ret; 2481 2482 if (cpufreq_disabled()) 2483 return -ENODEV; 2484 2485 if (!driver_data || !driver_data->verify || !driver_data->init || 2486 !(driver_data->setpolicy || driver_data->target_index || 2487 driver_data->target) || 2488 (driver_data->setpolicy && (driver_data->target_index || 2489 driver_data->target)) || 2490 (!!driver_data->get_intermediate != !!driver_data->target_intermediate)) 2491 return -EINVAL; 2492 2493 pr_debug("trying to register driver %s\n", driver_data->name); 2494 2495 /* Protect against concurrent CPU online/offline. */ 2496 get_online_cpus(); 2497 2498 write_lock_irqsave(&cpufreq_driver_lock, flags); 2499 if (cpufreq_driver) { 2500 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2501 ret = -EEXIST; 2502 goto out; 2503 } 2504 cpufreq_driver = driver_data; 2505 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2506 2507 if (driver_data->setpolicy) 2508 driver_data->flags |= CPUFREQ_CONST_LOOPS; 2509 2510 ret = create_boost_sysfs_file(); 2511 if (ret) 2512 goto err_null_driver; 2513 2514 ret = subsys_interface_register(&cpufreq_interface); 2515 if (ret) 2516 goto err_boost_unreg; 2517 2518 if (!(cpufreq_driver->flags & CPUFREQ_STICKY) && 2519 list_empty(&cpufreq_policy_list)) { 2520 /* if all ->init() calls failed, unregister */ 2521 pr_debug("%s: No CPU initialized for driver %s\n", __func__, 2522 driver_data->name); 2523 goto err_if_unreg; 2524 } 2525 2526 register_hotcpu_notifier(&cpufreq_cpu_notifier); 2527 pr_debug("driver %s up and running\n", driver_data->name); 2528 2529 out: 2530 put_online_cpus(); 2531 return ret; 2532 2533 err_if_unreg: 2534 subsys_interface_unregister(&cpufreq_interface); 2535 err_boost_unreg: 2536 remove_boost_sysfs_file(); 2537 err_null_driver: 2538 write_lock_irqsave(&cpufreq_driver_lock, flags); 2539 cpufreq_driver = NULL; 2540 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2541 goto out; 2542 } 2543 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 2544 2545 /** 2546 * cpufreq_unregister_driver - unregister the current CPUFreq driver 2547 * 2548 * Unregister the current CPUFreq driver. Only call this if you have 2549 * the right to do so, i.e. if you have succeeded in initialising before! 2550 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 2551 * currently not initialised. 2552 */ 2553 int cpufreq_unregister_driver(struct cpufreq_driver *driver) 2554 { 2555 unsigned long flags; 2556 2557 if (!cpufreq_driver || (driver != cpufreq_driver)) 2558 return -EINVAL; 2559 2560 pr_debug("unregistering driver %s\n", driver->name); 2561 2562 /* Protect against concurrent cpu hotplug */ 2563 get_online_cpus(); 2564 subsys_interface_unregister(&cpufreq_interface); 2565 remove_boost_sysfs_file(); 2566 unregister_hotcpu_notifier(&cpufreq_cpu_notifier); 2567 2568 write_lock_irqsave(&cpufreq_driver_lock, flags); 2569 2570 cpufreq_driver = NULL; 2571 2572 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2573 put_online_cpus(); 2574 2575 return 0; 2576 } 2577 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 2578 2579 /* 2580 * Stop cpufreq at shutdown to make sure it isn't holding any locks 2581 * or mutexes when secondary CPUs are halted. 2582 */ 2583 static struct syscore_ops cpufreq_syscore_ops = { 2584 .shutdown = cpufreq_suspend, 2585 }; 2586 2587 static int __init cpufreq_core_init(void) 2588 { 2589 if (cpufreq_disabled()) 2590 return -ENODEV; 2591 2592 cpufreq_global_kobject = kobject_create(); 2593 BUG_ON(!cpufreq_global_kobject); 2594 2595 register_syscore_ops(&cpufreq_syscore_ops); 2596 2597 return 0; 2598 } 2599 core_initcall(cpufreq_core_init); 2600