1 /* 2 * linux/drivers/cpufreq/cpufreq.c 3 * 4 * Copyright (C) 2001 Russell King 5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 6 * 7 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 8 * Added handling for CPU hotplug 9 * Feb 2006 - Jacob Shin <jacob.shin@amd.com> 10 * Fix handling for CPU hotplug -- affected CPUs 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License version 2 as 14 * published by the Free Software Foundation. 15 * 16 */ 17 18 #include <linux/kernel.h> 19 #include <linux/module.h> 20 #include <linux/init.h> 21 #include <linux/notifier.h> 22 #include <linux/cpufreq.h> 23 #include <linux/delay.h> 24 #include <linux/interrupt.h> 25 #include <linux/spinlock.h> 26 #include <linux/device.h> 27 #include <linux/slab.h> 28 #include <linux/cpu.h> 29 #include <linux/completion.h> 30 #include <linux/mutex.h> 31 32 #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_CORE, \ 33 "cpufreq-core", msg) 34 35 /** 36 * The "cpufreq driver" - the arch- or hardware-dependent low 37 * level driver of CPUFreq support, and its spinlock. This lock 38 * also protects the cpufreq_cpu_data array. 39 */ 40 static struct cpufreq_driver *cpufreq_driver; 41 static struct cpufreq_policy *cpufreq_cpu_data[NR_CPUS]; 42 static DEFINE_SPINLOCK(cpufreq_driver_lock); 43 44 /* 45 * cpu_policy_rwsem is a per CPU reader-writer semaphore designed to cure 46 * all cpufreq/hotplug/workqueue/etc related lock issues. 47 * 48 * The rules for this semaphore: 49 * - Any routine that wants to read from the policy structure will 50 * do a down_read on this semaphore. 51 * - Any routine that will write to the policy structure and/or may take away 52 * the policy altogether (eg. CPU hotplug), will hold this lock in write 53 * mode before doing so. 54 * 55 * Additional rules: 56 * - All holders of the lock should check to make sure that the CPU they 57 * are concerned with are online after they get the lock. 58 * - Governor routines that can be called in cpufreq hotplug path should not 59 * take this sem as top level hotplug notifier handler takes this. 60 */ 61 static DEFINE_PER_CPU(int, policy_cpu); 62 static DEFINE_PER_CPU(struct rw_semaphore, cpu_policy_rwsem); 63 64 #define lock_policy_rwsem(mode, cpu) \ 65 int lock_policy_rwsem_##mode \ 66 (int cpu) \ 67 { \ 68 int policy_cpu = per_cpu(policy_cpu, cpu); \ 69 BUG_ON(policy_cpu == -1); \ 70 down_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu)); \ 71 if (unlikely(!cpu_online(cpu))) { \ 72 up_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu)); \ 73 return -1; \ 74 } \ 75 \ 76 return 0; \ 77 } 78 79 lock_policy_rwsem(read, cpu); 80 EXPORT_SYMBOL_GPL(lock_policy_rwsem_read); 81 82 lock_policy_rwsem(write, cpu); 83 EXPORT_SYMBOL_GPL(lock_policy_rwsem_write); 84 85 void unlock_policy_rwsem_read(int cpu) 86 { 87 int policy_cpu = per_cpu(policy_cpu, cpu); 88 BUG_ON(policy_cpu == -1); 89 up_read(&per_cpu(cpu_policy_rwsem, policy_cpu)); 90 } 91 EXPORT_SYMBOL_GPL(unlock_policy_rwsem_read); 92 93 void unlock_policy_rwsem_write(int cpu) 94 { 95 int policy_cpu = per_cpu(policy_cpu, cpu); 96 BUG_ON(policy_cpu == -1); 97 up_write(&per_cpu(cpu_policy_rwsem, policy_cpu)); 98 } 99 EXPORT_SYMBOL_GPL(unlock_policy_rwsem_write); 100 101 102 /* internal prototypes */ 103 static int __cpufreq_governor(struct cpufreq_policy *policy, unsigned int event); 104 static unsigned int __cpufreq_get(unsigned int cpu); 105 static void handle_update(struct work_struct *work); 106 107 /** 108 * Two notifier lists: the "policy" list is involved in the 109 * validation process for a new CPU frequency policy; the 110 * "transition" list for kernel code that needs to handle 111 * changes to devices when the CPU clock speed changes. 112 * The mutex locks both lists. 113 */ 114 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list); 115 static struct srcu_notifier_head cpufreq_transition_notifier_list; 116 117 static int __init init_cpufreq_transition_notifier_list(void) 118 { 119 srcu_init_notifier_head(&cpufreq_transition_notifier_list); 120 return 0; 121 } 122 pure_initcall(init_cpufreq_transition_notifier_list); 123 124 static LIST_HEAD(cpufreq_governor_list); 125 static DEFINE_MUTEX (cpufreq_governor_mutex); 126 127 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) 128 { 129 struct cpufreq_policy *data; 130 unsigned long flags; 131 132 if (cpu >= NR_CPUS) 133 goto err_out; 134 135 /* get the cpufreq driver */ 136 spin_lock_irqsave(&cpufreq_driver_lock, flags); 137 138 if (!cpufreq_driver) 139 goto err_out_unlock; 140 141 if (!try_module_get(cpufreq_driver->owner)) 142 goto err_out_unlock; 143 144 145 /* get the CPU */ 146 data = cpufreq_cpu_data[cpu]; 147 148 if (!data) 149 goto err_out_put_module; 150 151 if (!kobject_get(&data->kobj)) 152 goto err_out_put_module; 153 154 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 155 return data; 156 157 err_out_put_module: 158 module_put(cpufreq_driver->owner); 159 err_out_unlock: 160 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 161 err_out: 162 return NULL; 163 } 164 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 165 166 167 void cpufreq_cpu_put(struct cpufreq_policy *data) 168 { 169 kobject_put(&data->kobj); 170 module_put(cpufreq_driver->owner); 171 } 172 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 173 174 175 /********************************************************************* 176 * UNIFIED DEBUG HELPERS * 177 *********************************************************************/ 178 #ifdef CONFIG_CPU_FREQ_DEBUG 179 180 /* what part(s) of the CPUfreq subsystem are debugged? */ 181 static unsigned int debug; 182 183 /* is the debug output ratelimit'ed using printk_ratelimit? User can 184 * set or modify this value. 185 */ 186 static unsigned int debug_ratelimit = 1; 187 188 /* is the printk_ratelimit'ing enabled? It's enabled after a successful 189 * loading of a cpufreq driver, temporarily disabled when a new policy 190 * is set, and disabled upon cpufreq driver removal 191 */ 192 static unsigned int disable_ratelimit = 1; 193 static DEFINE_SPINLOCK(disable_ratelimit_lock); 194 195 static void cpufreq_debug_enable_ratelimit(void) 196 { 197 unsigned long flags; 198 199 spin_lock_irqsave(&disable_ratelimit_lock, flags); 200 if (disable_ratelimit) 201 disable_ratelimit--; 202 spin_unlock_irqrestore(&disable_ratelimit_lock, flags); 203 } 204 205 static void cpufreq_debug_disable_ratelimit(void) 206 { 207 unsigned long flags; 208 209 spin_lock_irqsave(&disable_ratelimit_lock, flags); 210 disable_ratelimit++; 211 spin_unlock_irqrestore(&disable_ratelimit_lock, flags); 212 } 213 214 void cpufreq_debug_printk(unsigned int type, const char *prefix, 215 const char *fmt, ...) 216 { 217 char s[256]; 218 va_list args; 219 unsigned int len; 220 unsigned long flags; 221 222 WARN_ON(!prefix); 223 if (type & debug) { 224 spin_lock_irqsave(&disable_ratelimit_lock, flags); 225 if (!disable_ratelimit && debug_ratelimit 226 && !printk_ratelimit()) { 227 spin_unlock_irqrestore(&disable_ratelimit_lock, flags); 228 return; 229 } 230 spin_unlock_irqrestore(&disable_ratelimit_lock, flags); 231 232 len = snprintf(s, 256, KERN_DEBUG "%s: ", prefix); 233 234 va_start(args, fmt); 235 len += vsnprintf(&s[len], (256 - len), fmt, args); 236 va_end(args); 237 238 printk(s); 239 240 WARN_ON(len < 5); 241 } 242 } 243 EXPORT_SYMBOL(cpufreq_debug_printk); 244 245 246 module_param(debug, uint, 0644); 247 MODULE_PARM_DESC(debug, "CPUfreq debugging: add 1 to debug core," 248 " 2 to debug drivers, and 4 to debug governors."); 249 250 module_param(debug_ratelimit, uint, 0644); 251 MODULE_PARM_DESC(debug_ratelimit, "CPUfreq debugging:" 252 " set to 0 to disable ratelimiting."); 253 254 #else /* !CONFIG_CPU_FREQ_DEBUG */ 255 256 static inline void cpufreq_debug_enable_ratelimit(void) { return; } 257 static inline void cpufreq_debug_disable_ratelimit(void) { return; } 258 259 #endif /* CONFIG_CPU_FREQ_DEBUG */ 260 261 262 /********************************************************************* 263 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 264 *********************************************************************/ 265 266 /** 267 * adjust_jiffies - adjust the system "loops_per_jiffy" 268 * 269 * This function alters the system "loops_per_jiffy" for the clock 270 * speed change. Note that loops_per_jiffy cannot be updated on SMP 271 * systems as each CPU might be scaled differently. So, use the arch 272 * per-CPU loops_per_jiffy value wherever possible. 273 */ 274 #ifndef CONFIG_SMP 275 static unsigned long l_p_j_ref; 276 static unsigned int l_p_j_ref_freq; 277 278 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 279 { 280 if (ci->flags & CPUFREQ_CONST_LOOPS) 281 return; 282 283 if (!l_p_j_ref_freq) { 284 l_p_j_ref = loops_per_jiffy; 285 l_p_j_ref_freq = ci->old; 286 dprintk("saving %lu as reference value for loops_per_jiffy;" 287 "freq is %u kHz\n", l_p_j_ref, l_p_j_ref_freq); 288 } 289 if ((val == CPUFREQ_PRECHANGE && ci->old < ci->new) || 290 (val == CPUFREQ_POSTCHANGE && ci->old > ci->new) || 291 (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) { 292 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, 293 ci->new); 294 dprintk("scaling loops_per_jiffy to %lu" 295 "for frequency %u kHz\n", loops_per_jiffy, ci->new); 296 } 297 } 298 #else 299 static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 300 { 301 return; 302 } 303 #endif 304 305 306 /** 307 * cpufreq_notify_transition - call notifier chain and adjust_jiffies 308 * on frequency transition. 309 * 310 * This function calls the transition notifiers and the "adjust_jiffies" 311 * function. It is called twice on all CPU frequency changes that have 312 * external effects. 313 */ 314 void cpufreq_notify_transition(struct cpufreq_freqs *freqs, unsigned int state) 315 { 316 struct cpufreq_policy *policy; 317 318 BUG_ON(irqs_disabled()); 319 320 freqs->flags = cpufreq_driver->flags; 321 dprintk("notification %u of frequency transition to %u kHz\n", 322 state, freqs->new); 323 324 policy = cpufreq_cpu_data[freqs->cpu]; 325 switch (state) { 326 327 case CPUFREQ_PRECHANGE: 328 /* detect if the driver reported a value as "old frequency" 329 * which is not equal to what the cpufreq core thinks is 330 * "old frequency". 331 */ 332 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 333 if ((policy) && (policy->cpu == freqs->cpu) && 334 (policy->cur) && (policy->cur != freqs->old)) { 335 dprintk("Warning: CPU frequency is" 336 " %u, cpufreq assumed %u kHz.\n", 337 freqs->old, policy->cur); 338 freqs->old = policy->cur; 339 } 340 } 341 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 342 CPUFREQ_PRECHANGE, freqs); 343 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 344 break; 345 346 case CPUFREQ_POSTCHANGE: 347 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 348 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 349 CPUFREQ_POSTCHANGE, freqs); 350 if (likely(policy) && likely(policy->cpu == freqs->cpu)) 351 policy->cur = freqs->new; 352 break; 353 } 354 } 355 EXPORT_SYMBOL_GPL(cpufreq_notify_transition); 356 357 358 359 /********************************************************************* 360 * SYSFS INTERFACE * 361 *********************************************************************/ 362 363 static struct cpufreq_governor *__find_governor(const char *str_governor) 364 { 365 struct cpufreq_governor *t; 366 367 list_for_each_entry(t, &cpufreq_governor_list, governor_list) 368 if (!strnicmp(str_governor,t->name,CPUFREQ_NAME_LEN)) 369 return t; 370 371 return NULL; 372 } 373 374 /** 375 * cpufreq_parse_governor - parse a governor string 376 */ 377 static int cpufreq_parse_governor (char *str_governor, unsigned int *policy, 378 struct cpufreq_governor **governor) 379 { 380 int err = -EINVAL; 381 382 if (!cpufreq_driver) 383 goto out; 384 385 if (cpufreq_driver->setpolicy) { 386 if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) { 387 *policy = CPUFREQ_POLICY_PERFORMANCE; 388 err = 0; 389 } else if (!strnicmp(str_governor, "powersave", 390 CPUFREQ_NAME_LEN)) { 391 *policy = CPUFREQ_POLICY_POWERSAVE; 392 err = 0; 393 } 394 } else if (cpufreq_driver->target) { 395 struct cpufreq_governor *t; 396 397 mutex_lock(&cpufreq_governor_mutex); 398 399 t = __find_governor(str_governor); 400 401 if (t == NULL) { 402 char *name = kasprintf(GFP_KERNEL, "cpufreq_%s", 403 str_governor); 404 405 if (name) { 406 int ret; 407 408 mutex_unlock(&cpufreq_governor_mutex); 409 ret = request_module(name); 410 mutex_lock(&cpufreq_governor_mutex); 411 412 if (ret == 0) 413 t = __find_governor(str_governor); 414 } 415 416 kfree(name); 417 } 418 419 if (t != NULL) { 420 *governor = t; 421 err = 0; 422 } 423 424 mutex_unlock(&cpufreq_governor_mutex); 425 } 426 out: 427 return err; 428 } 429 430 431 /* drivers/base/cpu.c */ 432 extern struct sysdev_class cpu_sysdev_class; 433 434 435 /** 436 * cpufreq_per_cpu_attr_read() / show_##file_name() - 437 * print out cpufreq information 438 * 439 * Write out information from cpufreq_driver->policy[cpu]; object must be 440 * "unsigned int". 441 */ 442 443 #define show_one(file_name, object) \ 444 static ssize_t show_##file_name \ 445 (struct cpufreq_policy * policy, char *buf) \ 446 { \ 447 return sprintf (buf, "%u\n", policy->object); \ 448 } 449 450 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 451 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 452 show_one(scaling_min_freq, min); 453 show_one(scaling_max_freq, max); 454 show_one(scaling_cur_freq, cur); 455 456 static int __cpufreq_set_policy(struct cpufreq_policy *data, 457 struct cpufreq_policy *policy); 458 459 /** 460 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 461 */ 462 #define store_one(file_name, object) \ 463 static ssize_t store_##file_name \ 464 (struct cpufreq_policy * policy, const char *buf, size_t count) \ 465 { \ 466 unsigned int ret = -EINVAL; \ 467 struct cpufreq_policy new_policy; \ 468 \ 469 ret = cpufreq_get_policy(&new_policy, policy->cpu); \ 470 if (ret) \ 471 return -EINVAL; \ 472 \ 473 ret = sscanf (buf, "%u", &new_policy.object); \ 474 if (ret != 1) \ 475 return -EINVAL; \ 476 \ 477 ret = __cpufreq_set_policy(policy, &new_policy); \ 478 policy->user_policy.object = policy->object; \ 479 \ 480 return ret ? ret : count; \ 481 } 482 483 store_one(scaling_min_freq,min); 484 store_one(scaling_max_freq,max); 485 486 /** 487 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 488 */ 489 static ssize_t show_cpuinfo_cur_freq (struct cpufreq_policy * policy, 490 char *buf) 491 { 492 unsigned int cur_freq = __cpufreq_get(policy->cpu); 493 if (!cur_freq) 494 return sprintf(buf, "<unknown>"); 495 return sprintf(buf, "%u\n", cur_freq); 496 } 497 498 499 /** 500 * show_scaling_governor - show the current policy for the specified CPU 501 */ 502 static ssize_t show_scaling_governor (struct cpufreq_policy * policy, 503 char *buf) 504 { 505 if(policy->policy == CPUFREQ_POLICY_POWERSAVE) 506 return sprintf(buf, "powersave\n"); 507 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 508 return sprintf(buf, "performance\n"); 509 else if (policy->governor) 510 return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", policy->governor->name); 511 return -EINVAL; 512 } 513 514 515 /** 516 * store_scaling_governor - store policy for the specified CPU 517 */ 518 static ssize_t store_scaling_governor (struct cpufreq_policy * policy, 519 const char *buf, size_t count) 520 { 521 unsigned int ret = -EINVAL; 522 char str_governor[16]; 523 struct cpufreq_policy new_policy; 524 525 ret = cpufreq_get_policy(&new_policy, policy->cpu); 526 if (ret) 527 return ret; 528 529 ret = sscanf (buf, "%15s", str_governor); 530 if (ret != 1) 531 return -EINVAL; 532 533 if (cpufreq_parse_governor(str_governor, &new_policy.policy, 534 &new_policy.governor)) 535 return -EINVAL; 536 537 /* Do not use cpufreq_set_policy here or the user_policy.max 538 will be wrongly overridden */ 539 ret = __cpufreq_set_policy(policy, &new_policy); 540 541 policy->user_policy.policy = policy->policy; 542 policy->user_policy.governor = policy->governor; 543 544 if (ret) 545 return ret; 546 else 547 return count; 548 } 549 550 /** 551 * show_scaling_driver - show the cpufreq driver currently loaded 552 */ 553 static ssize_t show_scaling_driver (struct cpufreq_policy * policy, char *buf) 554 { 555 return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", cpufreq_driver->name); 556 } 557 558 /** 559 * show_scaling_available_governors - show the available CPUfreq governors 560 */ 561 static ssize_t show_scaling_available_governors (struct cpufreq_policy *policy, 562 char *buf) 563 { 564 ssize_t i = 0; 565 struct cpufreq_governor *t; 566 567 if (!cpufreq_driver->target) { 568 i += sprintf(buf, "performance powersave"); 569 goto out; 570 } 571 572 list_for_each_entry(t, &cpufreq_governor_list, governor_list) { 573 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) - (CPUFREQ_NAME_LEN + 2))) 574 goto out; 575 i += scnprintf(&buf[i], CPUFREQ_NAME_LEN, "%s ", t->name); 576 } 577 out: 578 i += sprintf(&buf[i], "\n"); 579 return i; 580 } 581 /** 582 * show_affected_cpus - show the CPUs affected by each transition 583 */ 584 static ssize_t show_affected_cpus (struct cpufreq_policy * policy, char *buf) 585 { 586 ssize_t i = 0; 587 unsigned int cpu; 588 589 for_each_cpu_mask(cpu, policy->cpus) { 590 if (i) 591 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " "); 592 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu); 593 if (i >= (PAGE_SIZE - 5)) 594 break; 595 } 596 i += sprintf(&buf[i], "\n"); 597 return i; 598 } 599 600 601 #define define_one_ro(_name) \ 602 static struct freq_attr _name = \ 603 __ATTR(_name, 0444, show_##_name, NULL) 604 605 #define define_one_ro0400(_name) \ 606 static struct freq_attr _name = \ 607 __ATTR(_name, 0400, show_##_name, NULL) 608 609 #define define_one_rw(_name) \ 610 static struct freq_attr _name = \ 611 __ATTR(_name, 0644, show_##_name, store_##_name) 612 613 define_one_ro0400(cpuinfo_cur_freq); 614 define_one_ro(cpuinfo_min_freq); 615 define_one_ro(cpuinfo_max_freq); 616 define_one_ro(scaling_available_governors); 617 define_one_ro(scaling_driver); 618 define_one_ro(scaling_cur_freq); 619 define_one_ro(affected_cpus); 620 define_one_rw(scaling_min_freq); 621 define_one_rw(scaling_max_freq); 622 define_one_rw(scaling_governor); 623 624 static struct attribute * default_attrs[] = { 625 &cpuinfo_min_freq.attr, 626 &cpuinfo_max_freq.attr, 627 &scaling_min_freq.attr, 628 &scaling_max_freq.attr, 629 &affected_cpus.attr, 630 &scaling_governor.attr, 631 &scaling_driver.attr, 632 &scaling_available_governors.attr, 633 NULL 634 }; 635 636 #define to_policy(k) container_of(k,struct cpufreq_policy,kobj) 637 #define to_attr(a) container_of(a,struct freq_attr,attr) 638 639 static ssize_t show(struct kobject * kobj, struct attribute * attr ,char * buf) 640 { 641 struct cpufreq_policy * policy = to_policy(kobj); 642 struct freq_attr * fattr = to_attr(attr); 643 ssize_t ret; 644 policy = cpufreq_cpu_get(policy->cpu); 645 if (!policy) 646 return -EINVAL; 647 648 if (lock_policy_rwsem_read(policy->cpu) < 0) 649 return -EINVAL; 650 651 if (fattr->show) 652 ret = fattr->show(policy, buf); 653 else 654 ret = -EIO; 655 656 unlock_policy_rwsem_read(policy->cpu); 657 658 cpufreq_cpu_put(policy); 659 return ret; 660 } 661 662 static ssize_t store(struct kobject * kobj, struct attribute * attr, 663 const char * buf, size_t count) 664 { 665 struct cpufreq_policy * policy = to_policy(kobj); 666 struct freq_attr * fattr = to_attr(attr); 667 ssize_t ret; 668 policy = cpufreq_cpu_get(policy->cpu); 669 if (!policy) 670 return -EINVAL; 671 672 if (lock_policy_rwsem_write(policy->cpu) < 0) 673 return -EINVAL; 674 675 if (fattr->store) 676 ret = fattr->store(policy, buf, count); 677 else 678 ret = -EIO; 679 680 unlock_policy_rwsem_write(policy->cpu); 681 682 cpufreq_cpu_put(policy); 683 return ret; 684 } 685 686 static void cpufreq_sysfs_release(struct kobject * kobj) 687 { 688 struct cpufreq_policy * policy = to_policy(kobj); 689 dprintk("last reference is dropped\n"); 690 complete(&policy->kobj_unregister); 691 } 692 693 static struct sysfs_ops sysfs_ops = { 694 .show = show, 695 .store = store, 696 }; 697 698 static struct kobj_type ktype_cpufreq = { 699 .sysfs_ops = &sysfs_ops, 700 .default_attrs = default_attrs, 701 .release = cpufreq_sysfs_release, 702 }; 703 704 705 /** 706 * cpufreq_add_dev - add a CPU device 707 * 708 * Adds the cpufreq interface for a CPU device. 709 */ 710 static int cpufreq_add_dev (struct sys_device * sys_dev) 711 { 712 unsigned int cpu = sys_dev->id; 713 int ret = 0; 714 struct cpufreq_policy new_policy; 715 struct cpufreq_policy *policy; 716 struct freq_attr **drv_attr; 717 struct sys_device *cpu_sys_dev; 718 unsigned long flags; 719 unsigned int j; 720 #ifdef CONFIG_SMP 721 struct cpufreq_policy *managed_policy; 722 #endif 723 724 if (cpu_is_offline(cpu)) 725 return 0; 726 727 cpufreq_debug_disable_ratelimit(); 728 dprintk("adding CPU %u\n", cpu); 729 730 #ifdef CONFIG_SMP 731 /* check whether a different CPU already registered this 732 * CPU because it is in the same boat. */ 733 policy = cpufreq_cpu_get(cpu); 734 if (unlikely(policy)) { 735 cpufreq_cpu_put(policy); 736 cpufreq_debug_enable_ratelimit(); 737 return 0; 738 } 739 #endif 740 741 if (!try_module_get(cpufreq_driver->owner)) { 742 ret = -EINVAL; 743 goto module_out; 744 } 745 746 policy = kzalloc(sizeof(struct cpufreq_policy), GFP_KERNEL); 747 if (!policy) { 748 ret = -ENOMEM; 749 goto nomem_out; 750 } 751 752 policy->cpu = cpu; 753 policy->cpus = cpumask_of_cpu(cpu); 754 755 /* Initially set CPU itself as the policy_cpu */ 756 per_cpu(policy_cpu, cpu) = cpu; 757 lock_policy_rwsem_write(cpu); 758 759 init_completion(&policy->kobj_unregister); 760 INIT_WORK(&policy->update, handle_update); 761 762 /* call driver. From then on the cpufreq must be able 763 * to accept all calls to ->verify and ->setpolicy for this CPU 764 */ 765 ret = cpufreq_driver->init(policy); 766 if (ret) { 767 dprintk("initialization failed\n"); 768 unlock_policy_rwsem_write(cpu); 769 goto err_out; 770 } 771 772 #ifdef CONFIG_SMP 773 for_each_cpu_mask(j, policy->cpus) { 774 if (cpu == j) 775 continue; 776 777 /* check for existing affected CPUs. They may not be aware 778 * of it due to CPU Hotplug. 779 */ 780 managed_policy = cpufreq_cpu_get(j); 781 if (unlikely(managed_policy)) { 782 783 /* Set proper policy_cpu */ 784 unlock_policy_rwsem_write(cpu); 785 per_cpu(policy_cpu, cpu) = managed_policy->cpu; 786 787 if (lock_policy_rwsem_write(cpu) < 0) 788 goto err_out_driver_exit; 789 790 spin_lock_irqsave(&cpufreq_driver_lock, flags); 791 managed_policy->cpus = policy->cpus; 792 cpufreq_cpu_data[cpu] = managed_policy; 793 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 794 795 dprintk("CPU already managed, adding link\n"); 796 ret = sysfs_create_link(&sys_dev->kobj, 797 &managed_policy->kobj, 798 "cpufreq"); 799 if (ret) { 800 unlock_policy_rwsem_write(cpu); 801 goto err_out_driver_exit; 802 } 803 804 cpufreq_debug_enable_ratelimit(); 805 ret = 0; 806 unlock_policy_rwsem_write(cpu); 807 goto err_out_driver_exit; /* call driver->exit() */ 808 } 809 } 810 #endif 811 memcpy(&new_policy, policy, sizeof(struct cpufreq_policy)); 812 813 /* prepare interface data */ 814 policy->kobj.parent = &sys_dev->kobj; 815 policy->kobj.ktype = &ktype_cpufreq; 816 strlcpy(policy->kobj.name, "cpufreq", KOBJ_NAME_LEN); 817 818 ret = kobject_register(&policy->kobj); 819 if (ret) { 820 unlock_policy_rwsem_write(cpu); 821 goto err_out_driver_exit; 822 } 823 /* set up files for this cpu device */ 824 drv_attr = cpufreq_driver->attr; 825 while ((drv_attr) && (*drv_attr)) { 826 sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 827 drv_attr++; 828 } 829 if (cpufreq_driver->get) 830 sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 831 if (cpufreq_driver->target) 832 sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 833 834 spin_lock_irqsave(&cpufreq_driver_lock, flags); 835 for_each_cpu_mask(j, policy->cpus) { 836 cpufreq_cpu_data[j] = policy; 837 per_cpu(policy_cpu, j) = policy->cpu; 838 } 839 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 840 841 /* symlink affected CPUs */ 842 for_each_cpu_mask(j, policy->cpus) { 843 if (j == cpu) 844 continue; 845 if (!cpu_online(j)) 846 continue; 847 848 dprintk("CPU %u already managed, adding link\n", j); 849 cpufreq_cpu_get(cpu); 850 cpu_sys_dev = get_cpu_sysdev(j); 851 ret = sysfs_create_link(&cpu_sys_dev->kobj, &policy->kobj, 852 "cpufreq"); 853 if (ret) { 854 unlock_policy_rwsem_write(cpu); 855 goto err_out_unregister; 856 } 857 } 858 859 policy->governor = NULL; /* to assure that the starting sequence is 860 * run in cpufreq_set_policy */ 861 unlock_policy_rwsem_write(cpu); 862 863 /* set default policy */ 864 ret = cpufreq_set_policy(&new_policy); 865 if (ret) { 866 dprintk("setting policy failed\n"); 867 goto err_out_unregister; 868 } 869 870 module_put(cpufreq_driver->owner); 871 dprintk("initialization complete\n"); 872 cpufreq_debug_enable_ratelimit(); 873 874 return 0; 875 876 877 err_out_unregister: 878 spin_lock_irqsave(&cpufreq_driver_lock, flags); 879 for_each_cpu_mask(j, policy->cpus) 880 cpufreq_cpu_data[j] = NULL; 881 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 882 883 kobject_unregister(&policy->kobj); 884 wait_for_completion(&policy->kobj_unregister); 885 886 err_out_driver_exit: 887 if (cpufreq_driver->exit) 888 cpufreq_driver->exit(policy); 889 890 err_out: 891 kfree(policy); 892 893 nomem_out: 894 module_put(cpufreq_driver->owner); 895 module_out: 896 cpufreq_debug_enable_ratelimit(); 897 return ret; 898 } 899 900 901 /** 902 * __cpufreq_remove_dev - remove a CPU device 903 * 904 * Removes the cpufreq interface for a CPU device. 905 * Caller should already have policy_rwsem in write mode for this CPU. 906 * This routine frees the rwsem before returning. 907 */ 908 static int __cpufreq_remove_dev (struct sys_device * sys_dev) 909 { 910 unsigned int cpu = sys_dev->id; 911 unsigned long flags; 912 struct cpufreq_policy *data; 913 #ifdef CONFIG_SMP 914 struct sys_device *cpu_sys_dev; 915 unsigned int j; 916 #endif 917 918 cpufreq_debug_disable_ratelimit(); 919 dprintk("unregistering CPU %u\n", cpu); 920 921 spin_lock_irqsave(&cpufreq_driver_lock, flags); 922 data = cpufreq_cpu_data[cpu]; 923 924 if (!data) { 925 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 926 cpufreq_debug_enable_ratelimit(); 927 unlock_policy_rwsem_write(cpu); 928 return -EINVAL; 929 } 930 cpufreq_cpu_data[cpu] = NULL; 931 932 933 #ifdef CONFIG_SMP 934 /* if this isn't the CPU which is the parent of the kobj, we 935 * only need to unlink, put and exit 936 */ 937 if (unlikely(cpu != data->cpu)) { 938 dprintk("removing link\n"); 939 cpu_clear(cpu, data->cpus); 940 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 941 sysfs_remove_link(&sys_dev->kobj, "cpufreq"); 942 cpufreq_cpu_put(data); 943 cpufreq_debug_enable_ratelimit(); 944 unlock_policy_rwsem_write(cpu); 945 return 0; 946 } 947 #endif 948 949 950 if (!kobject_get(&data->kobj)) { 951 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 952 cpufreq_debug_enable_ratelimit(); 953 unlock_policy_rwsem_write(cpu); 954 return -EFAULT; 955 } 956 957 #ifdef CONFIG_SMP 958 /* if we have other CPUs still registered, we need to unlink them, 959 * or else wait_for_completion below will lock up. Clean the 960 * cpufreq_cpu_data[] while holding the lock, and remove the sysfs 961 * links afterwards. 962 */ 963 if (unlikely(cpus_weight(data->cpus) > 1)) { 964 for_each_cpu_mask(j, data->cpus) { 965 if (j == cpu) 966 continue; 967 cpufreq_cpu_data[j] = NULL; 968 } 969 } 970 971 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 972 973 if (unlikely(cpus_weight(data->cpus) > 1)) { 974 for_each_cpu_mask(j, data->cpus) { 975 if (j == cpu) 976 continue; 977 dprintk("removing link for cpu %u\n", j); 978 cpu_sys_dev = get_cpu_sysdev(j); 979 sysfs_remove_link(&cpu_sys_dev->kobj, "cpufreq"); 980 cpufreq_cpu_put(data); 981 } 982 } 983 #else 984 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 985 #endif 986 987 if (cpufreq_driver->target) 988 __cpufreq_governor(data, CPUFREQ_GOV_STOP); 989 990 unlock_policy_rwsem_write(cpu); 991 992 kobject_unregister(&data->kobj); 993 994 kobject_put(&data->kobj); 995 996 /* we need to make sure that the underlying kobj is actually 997 * not referenced anymore by anybody before we proceed with 998 * unloading. 999 */ 1000 dprintk("waiting for dropping of refcount\n"); 1001 wait_for_completion(&data->kobj_unregister); 1002 dprintk("wait complete\n"); 1003 1004 if (cpufreq_driver->exit) 1005 cpufreq_driver->exit(data); 1006 1007 kfree(data); 1008 1009 cpufreq_debug_enable_ratelimit(); 1010 return 0; 1011 } 1012 1013 1014 static int cpufreq_remove_dev (struct sys_device * sys_dev) 1015 { 1016 unsigned int cpu = sys_dev->id; 1017 int retval; 1018 1019 if (cpu_is_offline(cpu)) 1020 return 0; 1021 1022 if (unlikely(lock_policy_rwsem_write(cpu))) 1023 BUG(); 1024 1025 retval = __cpufreq_remove_dev(sys_dev); 1026 return retval; 1027 } 1028 1029 1030 static void handle_update(struct work_struct *work) 1031 { 1032 struct cpufreq_policy *policy = 1033 container_of(work, struct cpufreq_policy, update); 1034 unsigned int cpu = policy->cpu; 1035 dprintk("handle_update for cpu %u called\n", cpu); 1036 cpufreq_update_policy(cpu); 1037 } 1038 1039 /** 1040 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're in deep trouble. 1041 * @cpu: cpu number 1042 * @old_freq: CPU frequency the kernel thinks the CPU runs at 1043 * @new_freq: CPU frequency the CPU actually runs at 1044 * 1045 * We adjust to current frequency first, and need to clean up later. So either call 1046 * to cpufreq_update_policy() or schedule handle_update()). 1047 */ 1048 static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq, 1049 unsigned int new_freq) 1050 { 1051 struct cpufreq_freqs freqs; 1052 1053 dprintk("Warning: CPU frequency out of sync: cpufreq and timing " 1054 "core thinks of %u, is %u kHz.\n", old_freq, new_freq); 1055 1056 freqs.cpu = cpu; 1057 freqs.old = old_freq; 1058 freqs.new = new_freq; 1059 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); 1060 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); 1061 } 1062 1063 1064 /** 1065 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur 1066 * @cpu: CPU number 1067 * 1068 * This is the last known freq, without actually getting it from the driver. 1069 * Return value will be same as what is shown in scaling_cur_freq in sysfs. 1070 */ 1071 unsigned int cpufreq_quick_get(unsigned int cpu) 1072 { 1073 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1074 unsigned int ret_freq = 0; 1075 1076 if (policy) { 1077 if (unlikely(lock_policy_rwsem_read(cpu))) 1078 return ret_freq; 1079 1080 ret_freq = policy->cur; 1081 1082 unlock_policy_rwsem_read(cpu); 1083 cpufreq_cpu_put(policy); 1084 } 1085 1086 return (ret_freq); 1087 } 1088 EXPORT_SYMBOL(cpufreq_quick_get); 1089 1090 1091 static unsigned int __cpufreq_get(unsigned int cpu) 1092 { 1093 struct cpufreq_policy *policy = cpufreq_cpu_data[cpu]; 1094 unsigned int ret_freq = 0; 1095 1096 if (!cpufreq_driver->get) 1097 return (ret_freq); 1098 1099 ret_freq = cpufreq_driver->get(cpu); 1100 1101 if (ret_freq && policy->cur && 1102 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 1103 /* verify no discrepancy between actual and 1104 saved value exists */ 1105 if (unlikely(ret_freq != policy->cur)) { 1106 cpufreq_out_of_sync(cpu, policy->cur, ret_freq); 1107 schedule_work(&policy->update); 1108 } 1109 } 1110 1111 return (ret_freq); 1112 } 1113 1114 /** 1115 * cpufreq_get - get the current CPU frequency (in kHz) 1116 * @cpu: CPU number 1117 * 1118 * Get the CPU current (static) CPU frequency 1119 */ 1120 unsigned int cpufreq_get(unsigned int cpu) 1121 { 1122 unsigned int ret_freq = 0; 1123 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1124 1125 if (!policy) 1126 goto out; 1127 1128 if (unlikely(lock_policy_rwsem_read(cpu))) 1129 goto out_policy; 1130 1131 ret_freq = __cpufreq_get(cpu); 1132 1133 unlock_policy_rwsem_read(cpu); 1134 1135 out_policy: 1136 cpufreq_cpu_put(policy); 1137 out: 1138 return (ret_freq); 1139 } 1140 EXPORT_SYMBOL(cpufreq_get); 1141 1142 1143 /** 1144 * cpufreq_suspend - let the low level driver prepare for suspend 1145 */ 1146 1147 static int cpufreq_suspend(struct sys_device * sysdev, pm_message_t pmsg) 1148 { 1149 int cpu = sysdev->id; 1150 int ret = 0; 1151 unsigned int cur_freq = 0; 1152 struct cpufreq_policy *cpu_policy; 1153 1154 dprintk("suspending cpu %u\n", cpu); 1155 1156 if (!cpu_online(cpu)) 1157 return 0; 1158 1159 /* we may be lax here as interrupts are off. Nonetheless 1160 * we need to grab the correct cpu policy, as to check 1161 * whether we really run on this CPU. 1162 */ 1163 1164 cpu_policy = cpufreq_cpu_get(cpu); 1165 if (!cpu_policy) 1166 return -EINVAL; 1167 1168 /* only handle each CPU group once */ 1169 if (unlikely(cpu_policy->cpu != cpu)) { 1170 cpufreq_cpu_put(cpu_policy); 1171 return 0; 1172 } 1173 1174 if (cpufreq_driver->suspend) { 1175 ret = cpufreq_driver->suspend(cpu_policy, pmsg); 1176 if (ret) { 1177 printk(KERN_ERR "cpufreq: suspend failed in ->suspend " 1178 "step on CPU %u\n", cpu_policy->cpu); 1179 cpufreq_cpu_put(cpu_policy); 1180 return ret; 1181 } 1182 } 1183 1184 1185 if (cpufreq_driver->flags & CPUFREQ_CONST_LOOPS) 1186 goto out; 1187 1188 if (cpufreq_driver->get) 1189 cur_freq = cpufreq_driver->get(cpu_policy->cpu); 1190 1191 if (!cur_freq || !cpu_policy->cur) { 1192 printk(KERN_ERR "cpufreq: suspend failed to assert current " 1193 "frequency is what timing core thinks it is.\n"); 1194 goto out; 1195 } 1196 1197 if (unlikely(cur_freq != cpu_policy->cur)) { 1198 struct cpufreq_freqs freqs; 1199 1200 if (!(cpufreq_driver->flags & CPUFREQ_PM_NO_WARN)) 1201 dprintk("Warning: CPU frequency is %u, " 1202 "cpufreq assumed %u kHz.\n", 1203 cur_freq, cpu_policy->cur); 1204 1205 freqs.cpu = cpu; 1206 freqs.old = cpu_policy->cur; 1207 freqs.new = cur_freq; 1208 1209 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 1210 CPUFREQ_SUSPENDCHANGE, &freqs); 1211 adjust_jiffies(CPUFREQ_SUSPENDCHANGE, &freqs); 1212 1213 cpu_policy->cur = cur_freq; 1214 } 1215 1216 out: 1217 cpufreq_cpu_put(cpu_policy); 1218 return 0; 1219 } 1220 1221 /** 1222 * cpufreq_resume - restore proper CPU frequency handling after resume 1223 * 1224 * 1.) resume CPUfreq hardware support (cpufreq_driver->resume()) 1225 * 2.) if ->target and !CPUFREQ_CONST_LOOPS: verify we're in sync 1226 * 3.) schedule call cpufreq_update_policy() ASAP as interrupts are 1227 * restored. 1228 */ 1229 static int cpufreq_resume(struct sys_device * sysdev) 1230 { 1231 int cpu = sysdev->id; 1232 int ret = 0; 1233 struct cpufreq_policy *cpu_policy; 1234 1235 dprintk("resuming cpu %u\n", cpu); 1236 1237 if (!cpu_online(cpu)) 1238 return 0; 1239 1240 /* we may be lax here as interrupts are off. Nonetheless 1241 * we need to grab the correct cpu policy, as to check 1242 * whether we really run on this CPU. 1243 */ 1244 1245 cpu_policy = cpufreq_cpu_get(cpu); 1246 if (!cpu_policy) 1247 return -EINVAL; 1248 1249 /* only handle each CPU group once */ 1250 if (unlikely(cpu_policy->cpu != cpu)) { 1251 cpufreq_cpu_put(cpu_policy); 1252 return 0; 1253 } 1254 1255 if (cpufreq_driver->resume) { 1256 ret = cpufreq_driver->resume(cpu_policy); 1257 if (ret) { 1258 printk(KERN_ERR "cpufreq: resume failed in ->resume " 1259 "step on CPU %u\n", cpu_policy->cpu); 1260 cpufreq_cpu_put(cpu_policy); 1261 return ret; 1262 } 1263 } 1264 1265 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 1266 unsigned int cur_freq = 0; 1267 1268 if (cpufreq_driver->get) 1269 cur_freq = cpufreq_driver->get(cpu_policy->cpu); 1270 1271 if (!cur_freq || !cpu_policy->cur) { 1272 printk(KERN_ERR "cpufreq: resume failed to assert " 1273 "current frequency is what timing core " 1274 "thinks it is.\n"); 1275 goto out; 1276 } 1277 1278 if (unlikely(cur_freq != cpu_policy->cur)) { 1279 struct cpufreq_freqs freqs; 1280 1281 if (!(cpufreq_driver->flags & CPUFREQ_PM_NO_WARN)) 1282 dprintk("Warning: CPU frequency" 1283 "is %u, cpufreq assumed %u kHz.\n", 1284 cur_freq, cpu_policy->cur); 1285 1286 freqs.cpu = cpu; 1287 freqs.old = cpu_policy->cur; 1288 freqs.new = cur_freq; 1289 1290 srcu_notifier_call_chain( 1291 &cpufreq_transition_notifier_list, 1292 CPUFREQ_RESUMECHANGE, &freqs); 1293 adjust_jiffies(CPUFREQ_RESUMECHANGE, &freqs); 1294 1295 cpu_policy->cur = cur_freq; 1296 } 1297 } 1298 1299 out: 1300 schedule_work(&cpu_policy->update); 1301 cpufreq_cpu_put(cpu_policy); 1302 return ret; 1303 } 1304 1305 static struct sysdev_driver cpufreq_sysdev_driver = { 1306 .add = cpufreq_add_dev, 1307 .remove = cpufreq_remove_dev, 1308 .suspend = cpufreq_suspend, 1309 .resume = cpufreq_resume, 1310 }; 1311 1312 1313 /********************************************************************* 1314 * NOTIFIER LISTS INTERFACE * 1315 *********************************************************************/ 1316 1317 /** 1318 * cpufreq_register_notifier - register a driver with cpufreq 1319 * @nb: notifier function to register 1320 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1321 * 1322 * Add a driver to one of two lists: either a list of drivers that 1323 * are notified about clock rate changes (once before and once after 1324 * the transition), or a list of drivers that are notified about 1325 * changes in cpufreq policy. 1326 * 1327 * This function may sleep, and has the same return conditions as 1328 * blocking_notifier_chain_register. 1329 */ 1330 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 1331 { 1332 int ret; 1333 1334 switch (list) { 1335 case CPUFREQ_TRANSITION_NOTIFIER: 1336 ret = srcu_notifier_chain_register( 1337 &cpufreq_transition_notifier_list, nb); 1338 break; 1339 case CPUFREQ_POLICY_NOTIFIER: 1340 ret = blocking_notifier_chain_register( 1341 &cpufreq_policy_notifier_list, nb); 1342 break; 1343 default: 1344 ret = -EINVAL; 1345 } 1346 1347 return ret; 1348 } 1349 EXPORT_SYMBOL(cpufreq_register_notifier); 1350 1351 1352 /** 1353 * cpufreq_unregister_notifier - unregister a driver with cpufreq 1354 * @nb: notifier block to be unregistered 1355 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1356 * 1357 * Remove a driver from the CPU frequency notifier list. 1358 * 1359 * This function may sleep, and has the same return conditions as 1360 * blocking_notifier_chain_unregister. 1361 */ 1362 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 1363 { 1364 int ret; 1365 1366 switch (list) { 1367 case CPUFREQ_TRANSITION_NOTIFIER: 1368 ret = srcu_notifier_chain_unregister( 1369 &cpufreq_transition_notifier_list, nb); 1370 break; 1371 case CPUFREQ_POLICY_NOTIFIER: 1372 ret = blocking_notifier_chain_unregister( 1373 &cpufreq_policy_notifier_list, nb); 1374 break; 1375 default: 1376 ret = -EINVAL; 1377 } 1378 1379 return ret; 1380 } 1381 EXPORT_SYMBOL(cpufreq_unregister_notifier); 1382 1383 1384 /********************************************************************* 1385 * GOVERNORS * 1386 *********************************************************************/ 1387 1388 1389 int __cpufreq_driver_target(struct cpufreq_policy *policy, 1390 unsigned int target_freq, 1391 unsigned int relation) 1392 { 1393 int retval = -EINVAL; 1394 1395 dprintk("target for CPU %u: %u kHz, relation %u\n", policy->cpu, 1396 target_freq, relation); 1397 if (cpu_online(policy->cpu) && cpufreq_driver->target) 1398 retval = cpufreq_driver->target(policy, target_freq, relation); 1399 1400 return retval; 1401 } 1402 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 1403 1404 int cpufreq_driver_target(struct cpufreq_policy *policy, 1405 unsigned int target_freq, 1406 unsigned int relation) 1407 { 1408 int ret; 1409 1410 policy = cpufreq_cpu_get(policy->cpu); 1411 if (!policy) 1412 return -EINVAL; 1413 1414 if (unlikely(lock_policy_rwsem_write(policy->cpu))) 1415 return -EINVAL; 1416 1417 ret = __cpufreq_driver_target(policy, target_freq, relation); 1418 1419 unlock_policy_rwsem_write(policy->cpu); 1420 1421 cpufreq_cpu_put(policy); 1422 return ret; 1423 } 1424 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 1425 1426 int __cpufreq_driver_getavg(struct cpufreq_policy *policy) 1427 { 1428 int ret = 0; 1429 1430 policy = cpufreq_cpu_get(policy->cpu); 1431 if (!policy) 1432 return -EINVAL; 1433 1434 if (cpu_online(policy->cpu) && cpufreq_driver->getavg) 1435 ret = cpufreq_driver->getavg(policy->cpu); 1436 1437 cpufreq_cpu_put(policy); 1438 return ret; 1439 } 1440 EXPORT_SYMBOL_GPL(__cpufreq_driver_getavg); 1441 1442 /* 1443 * when "event" is CPUFREQ_GOV_LIMITS 1444 */ 1445 1446 static int __cpufreq_governor(struct cpufreq_policy *policy, 1447 unsigned int event) 1448 { 1449 int ret; 1450 1451 if (!try_module_get(policy->governor->owner)) 1452 return -EINVAL; 1453 1454 dprintk("__cpufreq_governor for CPU %u, event %u\n", 1455 policy->cpu, event); 1456 ret = policy->governor->governor(policy, event); 1457 1458 /* we keep one module reference alive for 1459 each CPU governed by this CPU */ 1460 if ((event != CPUFREQ_GOV_START) || ret) 1461 module_put(policy->governor->owner); 1462 if ((event == CPUFREQ_GOV_STOP) && !ret) 1463 module_put(policy->governor->owner); 1464 1465 return ret; 1466 } 1467 1468 1469 int cpufreq_register_governor(struct cpufreq_governor *governor) 1470 { 1471 int err; 1472 1473 if (!governor) 1474 return -EINVAL; 1475 1476 mutex_lock(&cpufreq_governor_mutex); 1477 1478 err = -EBUSY; 1479 if (__find_governor(governor->name) == NULL) { 1480 err = 0; 1481 list_add(&governor->governor_list, &cpufreq_governor_list); 1482 } 1483 1484 mutex_unlock(&cpufreq_governor_mutex); 1485 return err; 1486 } 1487 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 1488 1489 1490 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 1491 { 1492 if (!governor) 1493 return; 1494 1495 mutex_lock(&cpufreq_governor_mutex); 1496 list_del(&governor->governor_list); 1497 mutex_unlock(&cpufreq_governor_mutex); 1498 return; 1499 } 1500 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 1501 1502 1503 1504 /********************************************************************* 1505 * POLICY INTERFACE * 1506 *********************************************************************/ 1507 1508 /** 1509 * cpufreq_get_policy - get the current cpufreq_policy 1510 * @policy: struct cpufreq_policy into which the current cpufreq_policy is written 1511 * 1512 * Reads the current cpufreq policy. 1513 */ 1514 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 1515 { 1516 struct cpufreq_policy *cpu_policy; 1517 if (!policy) 1518 return -EINVAL; 1519 1520 cpu_policy = cpufreq_cpu_get(cpu); 1521 if (!cpu_policy) 1522 return -EINVAL; 1523 1524 memcpy(policy, cpu_policy, sizeof(struct cpufreq_policy)); 1525 1526 cpufreq_cpu_put(cpu_policy); 1527 return 0; 1528 } 1529 EXPORT_SYMBOL(cpufreq_get_policy); 1530 1531 1532 /* 1533 * data : current policy. 1534 * policy : policy to be set. 1535 */ 1536 static int __cpufreq_set_policy(struct cpufreq_policy *data, 1537 struct cpufreq_policy *policy) 1538 { 1539 int ret = 0; 1540 1541 cpufreq_debug_disable_ratelimit(); 1542 dprintk("setting new policy for CPU %u: %u - %u kHz\n", policy->cpu, 1543 policy->min, policy->max); 1544 1545 memcpy(&policy->cpuinfo, &data->cpuinfo, 1546 sizeof(struct cpufreq_cpuinfo)); 1547 1548 if (policy->min > data->min && policy->min > policy->max) { 1549 ret = -EINVAL; 1550 goto error_out; 1551 } 1552 1553 /* verify the cpu speed can be set within this limit */ 1554 ret = cpufreq_driver->verify(policy); 1555 if (ret) 1556 goto error_out; 1557 1558 /* adjust if necessary - all reasons */ 1559 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1560 CPUFREQ_ADJUST, policy); 1561 1562 /* adjust if necessary - hardware incompatibility*/ 1563 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1564 CPUFREQ_INCOMPATIBLE, policy); 1565 1566 /* verify the cpu speed can be set within this limit, 1567 which might be different to the first one */ 1568 ret = cpufreq_driver->verify(policy); 1569 if (ret) 1570 goto error_out; 1571 1572 /* notification of the new policy */ 1573 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1574 CPUFREQ_NOTIFY, policy); 1575 1576 data->min = policy->min; 1577 data->max = policy->max; 1578 1579 dprintk("new min and max freqs are %u - %u kHz\n", 1580 data->min, data->max); 1581 1582 if (cpufreq_driver->setpolicy) { 1583 data->policy = policy->policy; 1584 dprintk("setting range\n"); 1585 ret = cpufreq_driver->setpolicy(policy); 1586 } else { 1587 if (policy->governor != data->governor) { 1588 /* save old, working values */ 1589 struct cpufreq_governor *old_gov = data->governor; 1590 1591 dprintk("governor switch\n"); 1592 1593 /* end old governor */ 1594 if (data->governor) 1595 __cpufreq_governor(data, CPUFREQ_GOV_STOP); 1596 1597 /* start new governor */ 1598 data->governor = policy->governor; 1599 if (__cpufreq_governor(data, CPUFREQ_GOV_START)) { 1600 /* new governor failed, so re-start old one */ 1601 dprintk("starting governor %s failed\n", 1602 data->governor->name); 1603 if (old_gov) { 1604 data->governor = old_gov; 1605 __cpufreq_governor(data, 1606 CPUFREQ_GOV_START); 1607 } 1608 ret = -EINVAL; 1609 goto error_out; 1610 } 1611 /* might be a policy change, too, so fall through */ 1612 } 1613 dprintk("governor: change or update limits\n"); 1614 __cpufreq_governor(data, CPUFREQ_GOV_LIMITS); 1615 } 1616 1617 error_out: 1618 cpufreq_debug_enable_ratelimit(); 1619 return ret; 1620 } 1621 1622 /** 1623 * cpufreq_set_policy - set a new CPUFreq policy 1624 * @policy: policy to be set. 1625 * 1626 * Sets a new CPU frequency and voltage scaling policy. 1627 */ 1628 int cpufreq_set_policy(struct cpufreq_policy *policy) 1629 { 1630 int ret = 0; 1631 struct cpufreq_policy *data; 1632 1633 if (!policy) 1634 return -EINVAL; 1635 1636 data = cpufreq_cpu_get(policy->cpu); 1637 if (!data) 1638 return -EINVAL; 1639 1640 if (unlikely(lock_policy_rwsem_write(policy->cpu))) 1641 return -EINVAL; 1642 1643 1644 ret = __cpufreq_set_policy(data, policy); 1645 data->user_policy.min = data->min; 1646 data->user_policy.max = data->max; 1647 data->user_policy.policy = data->policy; 1648 data->user_policy.governor = data->governor; 1649 1650 unlock_policy_rwsem_write(policy->cpu); 1651 1652 cpufreq_cpu_put(data); 1653 1654 return ret; 1655 } 1656 EXPORT_SYMBOL(cpufreq_set_policy); 1657 1658 1659 /** 1660 * cpufreq_update_policy - re-evaluate an existing cpufreq policy 1661 * @cpu: CPU which shall be re-evaluated 1662 * 1663 * Usefull for policy notifiers which have different necessities 1664 * at different times. 1665 */ 1666 int cpufreq_update_policy(unsigned int cpu) 1667 { 1668 struct cpufreq_policy *data = cpufreq_cpu_get(cpu); 1669 struct cpufreq_policy policy; 1670 int ret = 0; 1671 1672 if (!data) 1673 return -ENODEV; 1674 1675 if (unlikely(lock_policy_rwsem_write(cpu))) 1676 return -EINVAL; 1677 1678 dprintk("updating policy for CPU %u\n", cpu); 1679 memcpy(&policy, data, sizeof(struct cpufreq_policy)); 1680 policy.min = data->user_policy.min; 1681 policy.max = data->user_policy.max; 1682 policy.policy = data->user_policy.policy; 1683 policy.governor = data->user_policy.governor; 1684 1685 /* BIOS might change freq behind our back 1686 -> ask driver for current freq and notify governors about a change */ 1687 if (cpufreq_driver->get) { 1688 policy.cur = cpufreq_driver->get(cpu); 1689 if (!data->cur) { 1690 dprintk("Driver did not initialize current freq"); 1691 data->cur = policy.cur; 1692 } else { 1693 if (data->cur != policy.cur) 1694 cpufreq_out_of_sync(cpu, data->cur, 1695 policy.cur); 1696 } 1697 } 1698 1699 ret = __cpufreq_set_policy(data, &policy); 1700 1701 unlock_policy_rwsem_write(cpu); 1702 1703 cpufreq_cpu_put(data); 1704 return ret; 1705 } 1706 EXPORT_SYMBOL(cpufreq_update_policy); 1707 1708 static int cpufreq_cpu_callback(struct notifier_block *nfb, 1709 unsigned long action, void *hcpu) 1710 { 1711 unsigned int cpu = (unsigned long)hcpu; 1712 struct sys_device *sys_dev; 1713 struct cpufreq_policy *policy; 1714 1715 sys_dev = get_cpu_sysdev(cpu); 1716 if (sys_dev) { 1717 switch (action) { 1718 case CPU_ONLINE: 1719 cpufreq_add_dev(sys_dev); 1720 break; 1721 case CPU_DOWN_PREPARE: 1722 if (unlikely(lock_policy_rwsem_write(cpu))) 1723 BUG(); 1724 1725 policy = cpufreq_cpu_data[cpu]; 1726 if (policy) { 1727 __cpufreq_driver_target(policy, policy->min, 1728 CPUFREQ_RELATION_H); 1729 } 1730 __cpufreq_remove_dev(sys_dev); 1731 break; 1732 case CPU_DOWN_FAILED: 1733 cpufreq_add_dev(sys_dev); 1734 break; 1735 } 1736 } 1737 return NOTIFY_OK; 1738 } 1739 1740 static struct notifier_block __cpuinitdata cpufreq_cpu_notifier = 1741 { 1742 .notifier_call = cpufreq_cpu_callback, 1743 }; 1744 1745 /********************************************************************* 1746 * REGISTER / UNREGISTER CPUFREQ DRIVER * 1747 *********************************************************************/ 1748 1749 /** 1750 * cpufreq_register_driver - register a CPU Frequency driver 1751 * @driver_data: A struct cpufreq_driver containing the values# 1752 * submitted by the CPU Frequency driver. 1753 * 1754 * Registers a CPU Frequency driver to this core code. This code 1755 * returns zero on success, -EBUSY when another driver got here first 1756 * (and isn't unregistered in the meantime). 1757 * 1758 */ 1759 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 1760 { 1761 unsigned long flags; 1762 int ret; 1763 1764 if (!driver_data || !driver_data->verify || !driver_data->init || 1765 ((!driver_data->setpolicy) && (!driver_data->target))) 1766 return -EINVAL; 1767 1768 dprintk("trying to register driver %s\n", driver_data->name); 1769 1770 if (driver_data->setpolicy) 1771 driver_data->flags |= CPUFREQ_CONST_LOOPS; 1772 1773 spin_lock_irqsave(&cpufreq_driver_lock, flags); 1774 if (cpufreq_driver) { 1775 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 1776 return -EBUSY; 1777 } 1778 cpufreq_driver = driver_data; 1779 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 1780 1781 ret = sysdev_driver_register(&cpu_sysdev_class,&cpufreq_sysdev_driver); 1782 1783 if ((!ret) && !(cpufreq_driver->flags & CPUFREQ_STICKY)) { 1784 int i; 1785 ret = -ENODEV; 1786 1787 /* check for at least one working CPU */ 1788 for (i=0; i<NR_CPUS; i++) 1789 if (cpufreq_cpu_data[i]) 1790 ret = 0; 1791 1792 /* if all ->init() calls failed, unregister */ 1793 if (ret) { 1794 dprintk("no CPU initialized for driver %s\n", 1795 driver_data->name); 1796 sysdev_driver_unregister(&cpu_sysdev_class, 1797 &cpufreq_sysdev_driver); 1798 1799 spin_lock_irqsave(&cpufreq_driver_lock, flags); 1800 cpufreq_driver = NULL; 1801 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 1802 } 1803 } 1804 1805 if (!ret) { 1806 register_hotcpu_notifier(&cpufreq_cpu_notifier); 1807 dprintk("driver %s up and running\n", driver_data->name); 1808 cpufreq_debug_enable_ratelimit(); 1809 } 1810 1811 return (ret); 1812 } 1813 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 1814 1815 1816 /** 1817 * cpufreq_unregister_driver - unregister the current CPUFreq driver 1818 * 1819 * Unregister the current CPUFreq driver. Only call this if you have 1820 * the right to do so, i.e. if you have succeeded in initialising before! 1821 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 1822 * currently not initialised. 1823 */ 1824 int cpufreq_unregister_driver(struct cpufreq_driver *driver) 1825 { 1826 unsigned long flags; 1827 1828 cpufreq_debug_disable_ratelimit(); 1829 1830 if (!cpufreq_driver || (driver != cpufreq_driver)) { 1831 cpufreq_debug_enable_ratelimit(); 1832 return -EINVAL; 1833 } 1834 1835 dprintk("unregistering driver %s\n", driver->name); 1836 1837 sysdev_driver_unregister(&cpu_sysdev_class, &cpufreq_sysdev_driver); 1838 unregister_hotcpu_notifier(&cpufreq_cpu_notifier); 1839 1840 spin_lock_irqsave(&cpufreq_driver_lock, flags); 1841 cpufreq_driver = NULL; 1842 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 1843 1844 return 0; 1845 } 1846 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 1847 1848 static int __init cpufreq_core_init(void) 1849 { 1850 int cpu; 1851 1852 for_each_possible_cpu(cpu) { 1853 per_cpu(policy_cpu, cpu) = -1; 1854 init_rwsem(&per_cpu(cpu_policy_rwsem, cpu)); 1855 } 1856 return 0; 1857 } 1858 1859 core_initcall(cpufreq_core_init); 1860