xref: /linux/drivers/cpufreq/cpufreq.c (revision ba199dc909a20fe62270ae4e93f263987bb9d119)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/cpufreq/cpufreq.c
4  *
5  *  Copyright (C) 2001 Russell King
6  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8  *
9  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10  *	Added handling for CPU hotplug
11  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12  *	Fix handling for CPU hotplug -- affected CPUs
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_qos.h>
27 #include <linux/slab.h>
28 #include <linux/suspend.h>
29 #include <linux/syscore_ops.h>
30 #include <linux/tick.h>
31 #include <linux/units.h>
32 #include <trace/events/power.h>
33 
34 static LIST_HEAD(cpufreq_policy_list);
35 
36 /* Macros to iterate over CPU policies */
37 #define for_each_suitable_policy(__policy, __active)			 \
38 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
39 		if ((__active) == !policy_is_inactive(__policy))
40 
41 #define for_each_active_policy(__policy)		\
42 	for_each_suitable_policy(__policy, true)
43 #define for_each_inactive_policy(__policy)		\
44 	for_each_suitable_policy(__policy, false)
45 
46 /* Iterate over governors */
47 static LIST_HEAD(cpufreq_governor_list);
48 #define for_each_governor(__governor)				\
49 	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
50 
51 static char default_governor[CPUFREQ_NAME_LEN];
52 
53 /*
54  * The "cpufreq driver" - the arch- or hardware-dependent low
55  * level driver of CPUFreq support, and its spinlock. This lock
56  * also protects the cpufreq_cpu_data array.
57  */
58 static struct cpufreq_driver *cpufreq_driver;
59 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
60 static DEFINE_RWLOCK(cpufreq_driver_lock);
61 
62 static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance);
63 bool cpufreq_supports_freq_invariance(void)
64 {
65 	return static_branch_likely(&cpufreq_freq_invariance);
66 }
67 
68 /* Flag to suspend/resume CPUFreq governors */
69 static bool cpufreq_suspended;
70 
71 static inline bool has_target(void)
72 {
73 	return cpufreq_driver->target_index || cpufreq_driver->target;
74 }
75 
76 bool has_target_index(void)
77 {
78 	return !!cpufreq_driver->target_index;
79 }
80 
81 /* internal prototypes */
82 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
83 static int cpufreq_init_governor(struct cpufreq_policy *policy);
84 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
85 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
86 static int cpufreq_set_policy(struct cpufreq_policy *policy,
87 			      struct cpufreq_governor *new_gov,
88 			      unsigned int new_pol);
89 static bool cpufreq_boost_supported(void);
90 
91 /*
92  * Two notifier lists: the "policy" list is involved in the
93  * validation process for a new CPU frequency policy; the
94  * "transition" list for kernel code that needs to handle
95  * changes to devices when the CPU clock speed changes.
96  * The mutex locks both lists.
97  */
98 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
99 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
100 
101 static int off __read_mostly;
102 static int cpufreq_disabled(void)
103 {
104 	return off;
105 }
106 void disable_cpufreq(void)
107 {
108 	off = 1;
109 }
110 static DEFINE_MUTEX(cpufreq_governor_mutex);
111 
112 bool have_governor_per_policy(void)
113 {
114 	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
115 }
116 EXPORT_SYMBOL_GPL(have_governor_per_policy);
117 
118 static struct kobject *cpufreq_global_kobject;
119 
120 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
121 {
122 	if (have_governor_per_policy())
123 		return &policy->kobj;
124 	else
125 		return cpufreq_global_kobject;
126 }
127 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
128 
129 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
130 {
131 	struct kernel_cpustat kcpustat;
132 	u64 cur_wall_time;
133 	u64 idle_time;
134 	u64 busy_time;
135 
136 	cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
137 
138 	kcpustat_cpu_fetch(&kcpustat, cpu);
139 
140 	busy_time = kcpustat.cpustat[CPUTIME_USER];
141 	busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
142 	busy_time += kcpustat.cpustat[CPUTIME_IRQ];
143 	busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
144 	busy_time += kcpustat.cpustat[CPUTIME_STEAL];
145 	busy_time += kcpustat.cpustat[CPUTIME_NICE];
146 
147 	idle_time = cur_wall_time - busy_time;
148 	if (wall)
149 		*wall = div_u64(cur_wall_time, NSEC_PER_USEC);
150 
151 	return div_u64(idle_time, NSEC_PER_USEC);
152 }
153 
154 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
155 {
156 	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
157 
158 	if (idle_time == -1ULL)
159 		return get_cpu_idle_time_jiffy(cpu, wall);
160 	else if (!io_busy)
161 		idle_time += get_cpu_iowait_time_us(cpu, wall);
162 
163 	return idle_time;
164 }
165 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
166 
167 /*
168  * This is a generic cpufreq init() routine which can be used by cpufreq
169  * drivers of SMP systems. It will do following:
170  * - validate & show freq table passed
171  * - set policies transition latency
172  * - policy->cpus with all possible CPUs
173  */
174 void cpufreq_generic_init(struct cpufreq_policy *policy,
175 		struct cpufreq_frequency_table *table,
176 		unsigned int transition_latency)
177 {
178 	policy->freq_table = table;
179 	policy->cpuinfo.transition_latency = transition_latency;
180 
181 	/*
182 	 * The driver only supports the SMP configuration where all processors
183 	 * share the clock and voltage and clock.
184 	 */
185 	cpumask_setall(policy->cpus);
186 }
187 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
188 
189 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
190 {
191 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
192 
193 	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
194 }
195 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
196 
197 unsigned int cpufreq_generic_get(unsigned int cpu)
198 {
199 	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
200 
201 	if (!policy || IS_ERR(policy->clk)) {
202 		pr_err("%s: No %s associated to cpu: %d\n",
203 		       __func__, policy ? "clk" : "policy", cpu);
204 		return 0;
205 	}
206 
207 	return clk_get_rate(policy->clk) / 1000;
208 }
209 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
210 
211 /**
212  * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
213  * @cpu: CPU to find the policy for.
214  *
215  * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
216  * the kobject reference counter of that policy.  Return a valid policy on
217  * success or NULL on failure.
218  *
219  * The policy returned by this function has to be released with the help of
220  * cpufreq_cpu_put() to balance its kobject reference counter properly.
221  */
222 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
223 {
224 	struct cpufreq_policy *policy = NULL;
225 	unsigned long flags;
226 
227 	if (WARN_ON(cpu >= nr_cpu_ids))
228 		return NULL;
229 
230 	/* get the cpufreq driver */
231 	read_lock_irqsave(&cpufreq_driver_lock, flags);
232 
233 	if (cpufreq_driver) {
234 		/* get the CPU */
235 		policy = cpufreq_cpu_get_raw(cpu);
236 		if (policy)
237 			kobject_get(&policy->kobj);
238 	}
239 
240 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
241 
242 	return policy;
243 }
244 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
245 
246 /**
247  * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
248  * @policy: cpufreq policy returned by cpufreq_cpu_get().
249  */
250 void cpufreq_cpu_put(struct cpufreq_policy *policy)
251 {
252 	kobject_put(&policy->kobj);
253 }
254 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
255 
256 /**
257  * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
258  * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
259  */
260 void cpufreq_cpu_release(struct cpufreq_policy *policy)
261 {
262 	if (WARN_ON(!policy))
263 		return;
264 
265 	lockdep_assert_held(&policy->rwsem);
266 
267 	up_write(&policy->rwsem);
268 
269 	cpufreq_cpu_put(policy);
270 }
271 
272 /**
273  * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
274  * @cpu: CPU to find the policy for.
275  *
276  * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
277  * if the policy returned by it is not NULL, acquire its rwsem for writing.
278  * Return the policy if it is active or release it and return NULL otherwise.
279  *
280  * The policy returned by this function has to be released with the help of
281  * cpufreq_cpu_release() in order to release its rwsem and balance its usage
282  * counter properly.
283  */
284 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
285 {
286 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
287 
288 	if (!policy)
289 		return NULL;
290 
291 	down_write(&policy->rwsem);
292 
293 	if (policy_is_inactive(policy)) {
294 		cpufreq_cpu_release(policy);
295 		return NULL;
296 	}
297 
298 	return policy;
299 }
300 
301 /*********************************************************************
302  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
303  *********************************************************************/
304 
305 /**
306  * adjust_jiffies - Adjust the system "loops_per_jiffy".
307  * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
308  * @ci: Frequency change information.
309  *
310  * This function alters the system "loops_per_jiffy" for the clock
311  * speed change. Note that loops_per_jiffy cannot be updated on SMP
312  * systems as each CPU might be scaled differently. So, use the arch
313  * per-CPU loops_per_jiffy value wherever possible.
314  */
315 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
316 {
317 #ifndef CONFIG_SMP
318 	static unsigned long l_p_j_ref;
319 	static unsigned int l_p_j_ref_freq;
320 
321 	if (ci->flags & CPUFREQ_CONST_LOOPS)
322 		return;
323 
324 	if (!l_p_j_ref_freq) {
325 		l_p_j_ref = loops_per_jiffy;
326 		l_p_j_ref_freq = ci->old;
327 		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
328 			 l_p_j_ref, l_p_j_ref_freq);
329 	}
330 	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
331 		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
332 								ci->new);
333 		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
334 			 loops_per_jiffy, ci->new);
335 	}
336 #endif
337 }
338 
339 /**
340  * cpufreq_notify_transition - Notify frequency transition and adjust jiffies.
341  * @policy: cpufreq policy to enable fast frequency switching for.
342  * @freqs: contain details of the frequency update.
343  * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
344  *
345  * This function calls the transition notifiers and adjust_jiffies().
346  *
347  * It is called twice on all CPU frequency changes that have external effects.
348  */
349 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
350 				      struct cpufreq_freqs *freqs,
351 				      unsigned int state)
352 {
353 	int cpu;
354 
355 	BUG_ON(irqs_disabled());
356 
357 	if (cpufreq_disabled())
358 		return;
359 
360 	freqs->policy = policy;
361 	freqs->flags = cpufreq_driver->flags;
362 	pr_debug("notification %u of frequency transition to %u kHz\n",
363 		 state, freqs->new);
364 
365 	switch (state) {
366 	case CPUFREQ_PRECHANGE:
367 		/*
368 		 * Detect if the driver reported a value as "old frequency"
369 		 * which is not equal to what the cpufreq core thinks is
370 		 * "old frequency".
371 		 */
372 		if (policy->cur && policy->cur != freqs->old) {
373 			pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
374 				 freqs->old, policy->cur);
375 			freqs->old = policy->cur;
376 		}
377 
378 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
379 					 CPUFREQ_PRECHANGE, freqs);
380 
381 		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
382 		break;
383 
384 	case CPUFREQ_POSTCHANGE:
385 		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
386 		pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
387 			 cpumask_pr_args(policy->cpus));
388 
389 		for_each_cpu(cpu, policy->cpus)
390 			trace_cpu_frequency(freqs->new, cpu);
391 
392 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
393 					 CPUFREQ_POSTCHANGE, freqs);
394 
395 		cpufreq_stats_record_transition(policy, freqs->new);
396 		policy->cur = freqs->new;
397 	}
398 }
399 
400 /* Do post notifications when there are chances that transition has failed */
401 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
402 		struct cpufreq_freqs *freqs, int transition_failed)
403 {
404 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
405 	if (!transition_failed)
406 		return;
407 
408 	swap(freqs->old, freqs->new);
409 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
410 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
411 }
412 
413 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
414 		struct cpufreq_freqs *freqs)
415 {
416 
417 	/*
418 	 * Catch double invocations of _begin() which lead to self-deadlock.
419 	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
420 	 * doesn't invoke _begin() on their behalf, and hence the chances of
421 	 * double invocations are very low. Moreover, there are scenarios
422 	 * where these checks can emit false-positive warnings in these
423 	 * drivers; so we avoid that by skipping them altogether.
424 	 */
425 	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
426 				&& current == policy->transition_task);
427 
428 wait:
429 	wait_event(policy->transition_wait, !policy->transition_ongoing);
430 
431 	spin_lock(&policy->transition_lock);
432 
433 	if (unlikely(policy->transition_ongoing)) {
434 		spin_unlock(&policy->transition_lock);
435 		goto wait;
436 	}
437 
438 	policy->transition_ongoing = true;
439 	policy->transition_task = current;
440 
441 	spin_unlock(&policy->transition_lock);
442 
443 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
444 }
445 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
446 
447 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
448 		struct cpufreq_freqs *freqs, int transition_failed)
449 {
450 	if (WARN_ON(!policy->transition_ongoing))
451 		return;
452 
453 	cpufreq_notify_post_transition(policy, freqs, transition_failed);
454 
455 	arch_set_freq_scale(policy->related_cpus,
456 			    policy->cur,
457 			    arch_scale_freq_ref(policy->cpu));
458 
459 	spin_lock(&policy->transition_lock);
460 	policy->transition_ongoing = false;
461 	policy->transition_task = NULL;
462 	spin_unlock(&policy->transition_lock);
463 
464 	wake_up(&policy->transition_wait);
465 }
466 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
467 
468 /*
469  * Fast frequency switching status count.  Positive means "enabled", negative
470  * means "disabled" and 0 means "not decided yet".
471  */
472 static int cpufreq_fast_switch_count;
473 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
474 
475 static void cpufreq_list_transition_notifiers(void)
476 {
477 	struct notifier_block *nb;
478 
479 	pr_info("Registered transition notifiers:\n");
480 
481 	mutex_lock(&cpufreq_transition_notifier_list.mutex);
482 
483 	for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
484 		pr_info("%pS\n", nb->notifier_call);
485 
486 	mutex_unlock(&cpufreq_transition_notifier_list.mutex);
487 }
488 
489 /**
490  * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
491  * @policy: cpufreq policy to enable fast frequency switching for.
492  *
493  * Try to enable fast frequency switching for @policy.
494  *
495  * The attempt will fail if there is at least one transition notifier registered
496  * at this point, as fast frequency switching is quite fundamentally at odds
497  * with transition notifiers.  Thus if successful, it will make registration of
498  * transition notifiers fail going forward.
499  */
500 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
501 {
502 	lockdep_assert_held(&policy->rwsem);
503 
504 	if (!policy->fast_switch_possible)
505 		return;
506 
507 	mutex_lock(&cpufreq_fast_switch_lock);
508 	if (cpufreq_fast_switch_count >= 0) {
509 		cpufreq_fast_switch_count++;
510 		policy->fast_switch_enabled = true;
511 	} else {
512 		pr_warn("CPU%u: Fast frequency switching not enabled\n",
513 			policy->cpu);
514 		cpufreq_list_transition_notifiers();
515 	}
516 	mutex_unlock(&cpufreq_fast_switch_lock);
517 }
518 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
519 
520 /**
521  * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
522  * @policy: cpufreq policy to disable fast frequency switching for.
523  */
524 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
525 {
526 	mutex_lock(&cpufreq_fast_switch_lock);
527 	if (policy->fast_switch_enabled) {
528 		policy->fast_switch_enabled = false;
529 		if (!WARN_ON(cpufreq_fast_switch_count <= 0))
530 			cpufreq_fast_switch_count--;
531 	}
532 	mutex_unlock(&cpufreq_fast_switch_lock);
533 }
534 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
535 
536 static unsigned int __resolve_freq(struct cpufreq_policy *policy,
537 		unsigned int target_freq, unsigned int relation)
538 {
539 	unsigned int idx;
540 
541 	target_freq = clamp_val(target_freq, policy->min, policy->max);
542 
543 	if (!policy->freq_table)
544 		return target_freq;
545 
546 	idx = cpufreq_frequency_table_target(policy, target_freq, relation);
547 	policy->cached_resolved_idx = idx;
548 	policy->cached_target_freq = target_freq;
549 	return policy->freq_table[idx].frequency;
550 }
551 
552 /**
553  * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
554  * one.
555  * @policy: associated policy to interrogate
556  * @target_freq: target frequency to resolve.
557  *
558  * The target to driver frequency mapping is cached in the policy.
559  *
560  * Return: Lowest driver-supported frequency greater than or equal to the
561  * given target_freq, subject to policy (min/max) and driver limitations.
562  */
563 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
564 					 unsigned int target_freq)
565 {
566 	return __resolve_freq(policy, target_freq, CPUFREQ_RELATION_LE);
567 }
568 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
569 
570 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
571 {
572 	unsigned int latency;
573 
574 	if (policy->transition_delay_us)
575 		return policy->transition_delay_us;
576 
577 	latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
578 	if (latency) {
579 		unsigned int max_delay_us = 2 * MSEC_PER_SEC;
580 
581 		/*
582 		 * If the platform already has high transition_latency, use it
583 		 * as-is.
584 		 */
585 		if (latency > max_delay_us)
586 			return latency;
587 
588 		/*
589 		 * For platforms that can change the frequency very fast (< 2
590 		 * us), the above formula gives a decent transition delay. But
591 		 * for platforms where transition_latency is in milliseconds, it
592 		 * ends up giving unrealistic values.
593 		 *
594 		 * Cap the default transition delay to 2 ms, which seems to be
595 		 * a reasonable amount of time after which we should reevaluate
596 		 * the frequency.
597 		 */
598 		return min(latency * LATENCY_MULTIPLIER, max_delay_us);
599 	}
600 
601 	return LATENCY_MULTIPLIER;
602 }
603 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
604 
605 /*********************************************************************
606  *                          SYSFS INTERFACE                          *
607  *********************************************************************/
608 static ssize_t show_boost(struct kobject *kobj,
609 			  struct kobj_attribute *attr, char *buf)
610 {
611 	return sysfs_emit(buf, "%d\n", cpufreq_driver->boost_enabled);
612 }
613 
614 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
615 			   const char *buf, size_t count)
616 {
617 	bool enable;
618 
619 	if (kstrtobool(buf, &enable))
620 		return -EINVAL;
621 
622 	if (cpufreq_boost_trigger_state(enable)) {
623 		pr_err("%s: Cannot %s BOOST!\n",
624 		       __func__, enable ? "enable" : "disable");
625 		return -EINVAL;
626 	}
627 
628 	pr_debug("%s: cpufreq BOOST %s\n",
629 		 __func__, enable ? "enabled" : "disabled");
630 
631 	return count;
632 }
633 define_one_global_rw(boost);
634 
635 static ssize_t show_local_boost(struct cpufreq_policy *policy, char *buf)
636 {
637 	return sysfs_emit(buf, "%d\n", policy->boost_enabled);
638 }
639 
640 static ssize_t store_local_boost(struct cpufreq_policy *policy,
641 				 const char *buf, size_t count)
642 {
643 	int ret;
644 	bool enable;
645 
646 	if (kstrtobool(buf, &enable))
647 		return -EINVAL;
648 
649 	if (!cpufreq_driver->boost_enabled)
650 		return -EINVAL;
651 
652 	if (policy->boost_enabled == enable)
653 		return count;
654 
655 	policy->boost_enabled = enable;
656 
657 	cpus_read_lock();
658 	ret = cpufreq_driver->set_boost(policy, enable);
659 	cpus_read_unlock();
660 
661 	if (ret) {
662 		policy->boost_enabled = !policy->boost_enabled;
663 		return ret;
664 	}
665 
666 	return count;
667 }
668 
669 static struct freq_attr local_boost = __ATTR(boost, 0644, show_local_boost, store_local_boost);
670 
671 static struct cpufreq_governor *find_governor(const char *str_governor)
672 {
673 	struct cpufreq_governor *t;
674 
675 	for_each_governor(t)
676 		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
677 			return t;
678 
679 	return NULL;
680 }
681 
682 static struct cpufreq_governor *get_governor(const char *str_governor)
683 {
684 	struct cpufreq_governor *t;
685 
686 	mutex_lock(&cpufreq_governor_mutex);
687 	t = find_governor(str_governor);
688 	if (!t)
689 		goto unlock;
690 
691 	if (!try_module_get(t->owner))
692 		t = NULL;
693 
694 unlock:
695 	mutex_unlock(&cpufreq_governor_mutex);
696 
697 	return t;
698 }
699 
700 static unsigned int cpufreq_parse_policy(char *str_governor)
701 {
702 	if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
703 		return CPUFREQ_POLICY_PERFORMANCE;
704 
705 	if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
706 		return CPUFREQ_POLICY_POWERSAVE;
707 
708 	return CPUFREQ_POLICY_UNKNOWN;
709 }
710 
711 /**
712  * cpufreq_parse_governor - parse a governor string only for has_target()
713  * @str_governor: Governor name.
714  */
715 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
716 {
717 	struct cpufreq_governor *t;
718 
719 	t = get_governor(str_governor);
720 	if (t)
721 		return t;
722 
723 	if (request_module("cpufreq_%s", str_governor))
724 		return NULL;
725 
726 	return get_governor(str_governor);
727 }
728 
729 /*
730  * cpufreq_per_cpu_attr_read() / show_##file_name() -
731  * print out cpufreq information
732  *
733  * Write out information from cpufreq_driver->policy[cpu]; object must be
734  * "unsigned int".
735  */
736 
737 #define show_one(file_name, object)			\
738 static ssize_t show_##file_name				\
739 (struct cpufreq_policy *policy, char *buf)		\
740 {							\
741 	return sysfs_emit(buf, "%u\n", policy->object);	\
742 }
743 
744 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
745 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
746 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
747 show_one(scaling_min_freq, min);
748 show_one(scaling_max_freq, max);
749 
750 __weak unsigned int arch_freq_get_on_cpu(int cpu)
751 {
752 	return 0;
753 }
754 
755 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
756 {
757 	ssize_t ret;
758 	unsigned int freq;
759 
760 	freq = arch_freq_get_on_cpu(policy->cpu);
761 	if (freq)
762 		ret = sysfs_emit(buf, "%u\n", freq);
763 	else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
764 		ret = sysfs_emit(buf, "%u\n", cpufreq_driver->get(policy->cpu));
765 	else
766 		ret = sysfs_emit(buf, "%u\n", policy->cur);
767 	return ret;
768 }
769 
770 /*
771  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
772  */
773 #define store_one(file_name, object)			\
774 static ssize_t store_##file_name					\
775 (struct cpufreq_policy *policy, const char *buf, size_t count)		\
776 {									\
777 	unsigned long val;						\
778 	int ret;							\
779 									\
780 	ret = kstrtoul(buf, 0, &val);					\
781 	if (ret)							\
782 		return ret;						\
783 									\
784 	ret = freq_qos_update_request(policy->object##_freq_req, val);\
785 	return ret >= 0 ? count : ret;					\
786 }
787 
788 store_one(scaling_min_freq, min);
789 store_one(scaling_max_freq, max);
790 
791 /*
792  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
793  */
794 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
795 					char *buf)
796 {
797 	unsigned int cur_freq = __cpufreq_get(policy);
798 
799 	if (cur_freq)
800 		return sysfs_emit(buf, "%u\n", cur_freq);
801 
802 	return sysfs_emit(buf, "<unknown>\n");
803 }
804 
805 /*
806  * show_scaling_governor - show the current policy for the specified CPU
807  */
808 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
809 {
810 	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
811 		return sysfs_emit(buf, "powersave\n");
812 	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
813 		return sysfs_emit(buf, "performance\n");
814 	else if (policy->governor)
815 		return sysfs_emit(buf, "%s\n", policy->governor->name);
816 	return -EINVAL;
817 }
818 
819 /*
820  * store_scaling_governor - store policy for the specified CPU
821  */
822 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
823 					const char *buf, size_t count)
824 {
825 	char str_governor[16];
826 	int ret;
827 
828 	ret = sscanf(buf, "%15s", str_governor);
829 	if (ret != 1)
830 		return -EINVAL;
831 
832 	if (cpufreq_driver->setpolicy) {
833 		unsigned int new_pol;
834 
835 		new_pol = cpufreq_parse_policy(str_governor);
836 		if (!new_pol)
837 			return -EINVAL;
838 
839 		ret = cpufreq_set_policy(policy, NULL, new_pol);
840 	} else {
841 		struct cpufreq_governor *new_gov;
842 
843 		new_gov = cpufreq_parse_governor(str_governor);
844 		if (!new_gov)
845 			return -EINVAL;
846 
847 		ret = cpufreq_set_policy(policy, new_gov,
848 					 CPUFREQ_POLICY_UNKNOWN);
849 
850 		module_put(new_gov->owner);
851 	}
852 
853 	return ret ? ret : count;
854 }
855 
856 /*
857  * show_scaling_driver - show the cpufreq driver currently loaded
858  */
859 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
860 {
861 	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
862 }
863 
864 /*
865  * show_scaling_available_governors - show the available CPUfreq governors
866  */
867 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
868 						char *buf)
869 {
870 	ssize_t i = 0;
871 	struct cpufreq_governor *t;
872 
873 	if (!has_target()) {
874 		i += sysfs_emit(buf, "performance powersave");
875 		goto out;
876 	}
877 
878 	mutex_lock(&cpufreq_governor_mutex);
879 	for_each_governor(t) {
880 		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
881 		    - (CPUFREQ_NAME_LEN + 2)))
882 			break;
883 		i += sysfs_emit_at(buf, i, "%s ", t->name);
884 	}
885 	mutex_unlock(&cpufreq_governor_mutex);
886 out:
887 	i += sysfs_emit_at(buf, i, "\n");
888 	return i;
889 }
890 
891 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
892 {
893 	ssize_t i = 0;
894 	unsigned int cpu;
895 
896 	for_each_cpu(cpu, mask) {
897 		i += sysfs_emit_at(buf, i, "%u ", cpu);
898 		if (i >= (PAGE_SIZE - 5))
899 			break;
900 	}
901 
902 	/* Remove the extra space at the end */
903 	i--;
904 
905 	i += sysfs_emit_at(buf, i, "\n");
906 	return i;
907 }
908 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
909 
910 /*
911  * show_related_cpus - show the CPUs affected by each transition even if
912  * hw coordination is in use
913  */
914 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
915 {
916 	return cpufreq_show_cpus(policy->related_cpus, buf);
917 }
918 
919 /*
920  * show_affected_cpus - show the CPUs affected by each transition
921  */
922 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
923 {
924 	return cpufreq_show_cpus(policy->cpus, buf);
925 }
926 
927 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
928 					const char *buf, size_t count)
929 {
930 	unsigned int freq = 0;
931 	unsigned int ret;
932 
933 	if (!policy->governor || !policy->governor->store_setspeed)
934 		return -EINVAL;
935 
936 	ret = sscanf(buf, "%u", &freq);
937 	if (ret != 1)
938 		return -EINVAL;
939 
940 	policy->governor->store_setspeed(policy, freq);
941 
942 	return count;
943 }
944 
945 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
946 {
947 	if (!policy->governor || !policy->governor->show_setspeed)
948 		return sysfs_emit(buf, "<unsupported>\n");
949 
950 	return policy->governor->show_setspeed(policy, buf);
951 }
952 
953 /*
954  * show_bios_limit - show the current cpufreq HW/BIOS limitation
955  */
956 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
957 {
958 	unsigned int limit;
959 	int ret;
960 	ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
961 	if (!ret)
962 		return sysfs_emit(buf, "%u\n", limit);
963 	return sysfs_emit(buf, "%u\n", policy->cpuinfo.max_freq);
964 }
965 
966 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
967 cpufreq_freq_attr_ro(cpuinfo_min_freq);
968 cpufreq_freq_attr_ro(cpuinfo_max_freq);
969 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
970 cpufreq_freq_attr_ro(scaling_available_governors);
971 cpufreq_freq_attr_ro(scaling_driver);
972 cpufreq_freq_attr_ro(scaling_cur_freq);
973 cpufreq_freq_attr_ro(bios_limit);
974 cpufreq_freq_attr_ro(related_cpus);
975 cpufreq_freq_attr_ro(affected_cpus);
976 cpufreq_freq_attr_rw(scaling_min_freq);
977 cpufreq_freq_attr_rw(scaling_max_freq);
978 cpufreq_freq_attr_rw(scaling_governor);
979 cpufreq_freq_attr_rw(scaling_setspeed);
980 
981 static struct attribute *cpufreq_attrs[] = {
982 	&cpuinfo_min_freq.attr,
983 	&cpuinfo_max_freq.attr,
984 	&cpuinfo_transition_latency.attr,
985 	&scaling_min_freq.attr,
986 	&scaling_max_freq.attr,
987 	&affected_cpus.attr,
988 	&related_cpus.attr,
989 	&scaling_governor.attr,
990 	&scaling_driver.attr,
991 	&scaling_available_governors.attr,
992 	&scaling_setspeed.attr,
993 	NULL
994 };
995 ATTRIBUTE_GROUPS(cpufreq);
996 
997 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
998 #define to_attr(a) container_of(a, struct freq_attr, attr)
999 
1000 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
1001 {
1002 	struct cpufreq_policy *policy = to_policy(kobj);
1003 	struct freq_attr *fattr = to_attr(attr);
1004 	ssize_t ret = -EBUSY;
1005 
1006 	if (!fattr->show)
1007 		return -EIO;
1008 
1009 	down_read(&policy->rwsem);
1010 	if (likely(!policy_is_inactive(policy)))
1011 		ret = fattr->show(policy, buf);
1012 	up_read(&policy->rwsem);
1013 
1014 	return ret;
1015 }
1016 
1017 static ssize_t store(struct kobject *kobj, struct attribute *attr,
1018 		     const char *buf, size_t count)
1019 {
1020 	struct cpufreq_policy *policy = to_policy(kobj);
1021 	struct freq_attr *fattr = to_attr(attr);
1022 	ssize_t ret = -EBUSY;
1023 
1024 	if (!fattr->store)
1025 		return -EIO;
1026 
1027 	down_write(&policy->rwsem);
1028 	if (likely(!policy_is_inactive(policy)))
1029 		ret = fattr->store(policy, buf, count);
1030 	up_write(&policy->rwsem);
1031 
1032 	return ret;
1033 }
1034 
1035 static void cpufreq_sysfs_release(struct kobject *kobj)
1036 {
1037 	struct cpufreq_policy *policy = to_policy(kobj);
1038 	pr_debug("last reference is dropped\n");
1039 	complete(&policy->kobj_unregister);
1040 }
1041 
1042 static const struct sysfs_ops sysfs_ops = {
1043 	.show	= show,
1044 	.store	= store,
1045 };
1046 
1047 static const struct kobj_type ktype_cpufreq = {
1048 	.sysfs_ops	= &sysfs_ops,
1049 	.default_groups	= cpufreq_groups,
1050 	.release	= cpufreq_sysfs_release,
1051 };
1052 
1053 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu,
1054 				struct device *dev)
1055 {
1056 	if (unlikely(!dev))
1057 		return;
1058 
1059 	if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1060 		return;
1061 
1062 	dev_dbg(dev, "%s: Adding symlink\n", __func__);
1063 	if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1064 		dev_err(dev, "cpufreq symlink creation failed\n");
1065 }
1066 
1067 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu,
1068 				   struct device *dev)
1069 {
1070 	dev_dbg(dev, "%s: Removing symlink\n", __func__);
1071 	sysfs_remove_link(&dev->kobj, "cpufreq");
1072 	cpumask_clear_cpu(cpu, policy->real_cpus);
1073 }
1074 
1075 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1076 {
1077 	struct freq_attr **drv_attr;
1078 	int ret = 0;
1079 
1080 	/* set up files for this cpu device */
1081 	drv_attr = cpufreq_driver->attr;
1082 	while (drv_attr && *drv_attr) {
1083 		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1084 		if (ret)
1085 			return ret;
1086 		drv_attr++;
1087 	}
1088 	if (cpufreq_driver->get) {
1089 		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1090 		if (ret)
1091 			return ret;
1092 	}
1093 
1094 	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1095 	if (ret)
1096 		return ret;
1097 
1098 	if (cpufreq_driver->bios_limit) {
1099 		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1100 		if (ret)
1101 			return ret;
1102 	}
1103 
1104 	if (cpufreq_boost_supported()) {
1105 		ret = sysfs_create_file(&policy->kobj, &local_boost.attr);
1106 		if (ret)
1107 			return ret;
1108 	}
1109 
1110 	return 0;
1111 }
1112 
1113 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1114 {
1115 	struct cpufreq_governor *gov = NULL;
1116 	unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1117 	int ret;
1118 
1119 	if (has_target()) {
1120 		/* Update policy governor to the one used before hotplug. */
1121 		gov = get_governor(policy->last_governor);
1122 		if (gov) {
1123 			pr_debug("Restoring governor %s for cpu %d\n",
1124 				 gov->name, policy->cpu);
1125 		} else {
1126 			gov = get_governor(default_governor);
1127 		}
1128 
1129 		if (!gov) {
1130 			gov = cpufreq_default_governor();
1131 			__module_get(gov->owner);
1132 		}
1133 
1134 	} else {
1135 
1136 		/* Use the default policy if there is no last_policy. */
1137 		if (policy->last_policy) {
1138 			pol = policy->last_policy;
1139 		} else {
1140 			pol = cpufreq_parse_policy(default_governor);
1141 			/*
1142 			 * In case the default governor is neither "performance"
1143 			 * nor "powersave", fall back to the initial policy
1144 			 * value set by the driver.
1145 			 */
1146 			if (pol == CPUFREQ_POLICY_UNKNOWN)
1147 				pol = policy->policy;
1148 		}
1149 		if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1150 		    pol != CPUFREQ_POLICY_POWERSAVE)
1151 			return -ENODATA;
1152 	}
1153 
1154 	ret = cpufreq_set_policy(policy, gov, pol);
1155 	if (gov)
1156 		module_put(gov->owner);
1157 
1158 	return ret;
1159 }
1160 
1161 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1162 {
1163 	int ret = 0;
1164 
1165 	/* Has this CPU been taken care of already? */
1166 	if (cpumask_test_cpu(cpu, policy->cpus))
1167 		return 0;
1168 
1169 	down_write(&policy->rwsem);
1170 	if (has_target())
1171 		cpufreq_stop_governor(policy);
1172 
1173 	cpumask_set_cpu(cpu, policy->cpus);
1174 
1175 	if (has_target()) {
1176 		ret = cpufreq_start_governor(policy);
1177 		if (ret)
1178 			pr_err("%s: Failed to start governor\n", __func__);
1179 	}
1180 	up_write(&policy->rwsem);
1181 	return ret;
1182 }
1183 
1184 void refresh_frequency_limits(struct cpufreq_policy *policy)
1185 {
1186 	if (!policy_is_inactive(policy)) {
1187 		pr_debug("updating policy for CPU %u\n", policy->cpu);
1188 
1189 		cpufreq_set_policy(policy, policy->governor, policy->policy);
1190 	}
1191 }
1192 EXPORT_SYMBOL(refresh_frequency_limits);
1193 
1194 static void handle_update(struct work_struct *work)
1195 {
1196 	struct cpufreq_policy *policy =
1197 		container_of(work, struct cpufreq_policy, update);
1198 
1199 	pr_debug("handle_update for cpu %u called\n", policy->cpu);
1200 	down_write(&policy->rwsem);
1201 	refresh_frequency_limits(policy);
1202 	up_write(&policy->rwsem);
1203 }
1204 
1205 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1206 				void *data)
1207 {
1208 	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1209 
1210 	schedule_work(&policy->update);
1211 	return 0;
1212 }
1213 
1214 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1215 				void *data)
1216 {
1217 	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1218 
1219 	schedule_work(&policy->update);
1220 	return 0;
1221 }
1222 
1223 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1224 {
1225 	struct kobject *kobj;
1226 	struct completion *cmp;
1227 
1228 	down_write(&policy->rwsem);
1229 	cpufreq_stats_free_table(policy);
1230 	kobj = &policy->kobj;
1231 	cmp = &policy->kobj_unregister;
1232 	up_write(&policy->rwsem);
1233 	kobject_put(kobj);
1234 
1235 	/*
1236 	 * We need to make sure that the underlying kobj is
1237 	 * actually not referenced anymore by anybody before we
1238 	 * proceed with unloading.
1239 	 */
1240 	pr_debug("waiting for dropping of refcount\n");
1241 	wait_for_completion(cmp);
1242 	pr_debug("wait complete\n");
1243 }
1244 
1245 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1246 {
1247 	struct cpufreq_policy *policy;
1248 	struct device *dev = get_cpu_device(cpu);
1249 	int ret;
1250 
1251 	if (!dev)
1252 		return NULL;
1253 
1254 	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1255 	if (!policy)
1256 		return NULL;
1257 
1258 	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1259 		goto err_free_policy;
1260 
1261 	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1262 		goto err_free_cpumask;
1263 
1264 	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1265 		goto err_free_rcpumask;
1266 
1267 	init_completion(&policy->kobj_unregister);
1268 	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1269 				   cpufreq_global_kobject, "policy%u", cpu);
1270 	if (ret) {
1271 		dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1272 		/*
1273 		 * The entire policy object will be freed below, but the extra
1274 		 * memory allocated for the kobject name needs to be freed by
1275 		 * releasing the kobject.
1276 		 */
1277 		kobject_put(&policy->kobj);
1278 		goto err_free_real_cpus;
1279 	}
1280 
1281 	freq_constraints_init(&policy->constraints);
1282 
1283 	policy->nb_min.notifier_call = cpufreq_notifier_min;
1284 	policy->nb_max.notifier_call = cpufreq_notifier_max;
1285 
1286 	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1287 				    &policy->nb_min);
1288 	if (ret) {
1289 		dev_err(dev, "Failed to register MIN QoS notifier: %d (CPU%u)\n",
1290 			ret, cpu);
1291 		goto err_kobj_remove;
1292 	}
1293 
1294 	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1295 				    &policy->nb_max);
1296 	if (ret) {
1297 		dev_err(dev, "Failed to register MAX QoS notifier: %d (CPU%u)\n",
1298 			ret, cpu);
1299 		goto err_min_qos_notifier;
1300 	}
1301 
1302 	INIT_LIST_HEAD(&policy->policy_list);
1303 	init_rwsem(&policy->rwsem);
1304 	spin_lock_init(&policy->transition_lock);
1305 	init_waitqueue_head(&policy->transition_wait);
1306 	INIT_WORK(&policy->update, handle_update);
1307 
1308 	policy->cpu = cpu;
1309 	return policy;
1310 
1311 err_min_qos_notifier:
1312 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1313 				 &policy->nb_min);
1314 err_kobj_remove:
1315 	cpufreq_policy_put_kobj(policy);
1316 err_free_real_cpus:
1317 	free_cpumask_var(policy->real_cpus);
1318 err_free_rcpumask:
1319 	free_cpumask_var(policy->related_cpus);
1320 err_free_cpumask:
1321 	free_cpumask_var(policy->cpus);
1322 err_free_policy:
1323 	kfree(policy);
1324 
1325 	return NULL;
1326 }
1327 
1328 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1329 {
1330 	unsigned long flags;
1331 	int cpu;
1332 
1333 	/*
1334 	 * The callers must ensure the policy is inactive by now, to avoid any
1335 	 * races with show()/store() callbacks.
1336 	 */
1337 	if (unlikely(!policy_is_inactive(policy)))
1338 		pr_warn("%s: Freeing active policy\n", __func__);
1339 
1340 	/* Remove policy from list */
1341 	write_lock_irqsave(&cpufreq_driver_lock, flags);
1342 	list_del(&policy->policy_list);
1343 
1344 	for_each_cpu(cpu, policy->related_cpus)
1345 		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1346 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1347 
1348 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1349 				 &policy->nb_max);
1350 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1351 				 &policy->nb_min);
1352 
1353 	/* Cancel any pending policy->update work before freeing the policy. */
1354 	cancel_work_sync(&policy->update);
1355 
1356 	if (policy->max_freq_req) {
1357 		/*
1358 		 * Remove max_freq_req after sending CPUFREQ_REMOVE_POLICY
1359 		 * notification, since CPUFREQ_CREATE_POLICY notification was
1360 		 * sent after adding max_freq_req earlier.
1361 		 */
1362 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1363 					     CPUFREQ_REMOVE_POLICY, policy);
1364 		freq_qos_remove_request(policy->max_freq_req);
1365 	}
1366 
1367 	freq_qos_remove_request(policy->min_freq_req);
1368 	kfree(policy->min_freq_req);
1369 
1370 	cpufreq_policy_put_kobj(policy);
1371 	free_cpumask_var(policy->real_cpus);
1372 	free_cpumask_var(policy->related_cpus);
1373 	free_cpumask_var(policy->cpus);
1374 	kfree(policy);
1375 }
1376 
1377 static int cpufreq_online(unsigned int cpu)
1378 {
1379 	struct cpufreq_policy *policy;
1380 	bool new_policy;
1381 	unsigned long flags;
1382 	unsigned int j;
1383 	int ret;
1384 
1385 	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1386 
1387 	/* Check if this CPU already has a policy to manage it */
1388 	policy = per_cpu(cpufreq_cpu_data, cpu);
1389 	if (policy) {
1390 		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1391 		if (!policy_is_inactive(policy))
1392 			return cpufreq_add_policy_cpu(policy, cpu);
1393 
1394 		/* This is the only online CPU for the policy.  Start over. */
1395 		new_policy = false;
1396 		down_write(&policy->rwsem);
1397 		policy->cpu = cpu;
1398 		policy->governor = NULL;
1399 	} else {
1400 		new_policy = true;
1401 		policy = cpufreq_policy_alloc(cpu);
1402 		if (!policy)
1403 			return -ENOMEM;
1404 		down_write(&policy->rwsem);
1405 	}
1406 
1407 	if (!new_policy && cpufreq_driver->online) {
1408 		/* Recover policy->cpus using related_cpus */
1409 		cpumask_copy(policy->cpus, policy->related_cpus);
1410 
1411 		ret = cpufreq_driver->online(policy);
1412 		if (ret) {
1413 			pr_debug("%s: %d: initialization failed\n", __func__,
1414 				 __LINE__);
1415 			goto out_exit_policy;
1416 		}
1417 	} else {
1418 		cpumask_copy(policy->cpus, cpumask_of(cpu));
1419 
1420 		/*
1421 		 * Call driver. From then on the cpufreq must be able
1422 		 * to accept all calls to ->verify and ->setpolicy for this CPU.
1423 		 */
1424 		ret = cpufreq_driver->init(policy);
1425 		if (ret) {
1426 			pr_debug("%s: %d: initialization failed\n", __func__,
1427 				 __LINE__);
1428 			goto out_free_policy;
1429 		}
1430 
1431 		/* Let the per-policy boost flag mirror the cpufreq_driver boost during init */
1432 		if (cpufreq_boost_enabled() && policy_has_boost_freq(policy))
1433 			policy->boost_enabled = true;
1434 
1435 		/*
1436 		 * The initialization has succeeded and the policy is online.
1437 		 * If there is a problem with its frequency table, take it
1438 		 * offline and drop it.
1439 		 */
1440 		ret = cpufreq_table_validate_and_sort(policy);
1441 		if (ret)
1442 			goto out_offline_policy;
1443 
1444 		/* related_cpus should at least include policy->cpus. */
1445 		cpumask_copy(policy->related_cpus, policy->cpus);
1446 	}
1447 
1448 	/*
1449 	 * affected cpus must always be the one, which are online. We aren't
1450 	 * managing offline cpus here.
1451 	 */
1452 	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1453 
1454 	if (new_policy) {
1455 		for_each_cpu(j, policy->related_cpus) {
1456 			per_cpu(cpufreq_cpu_data, j) = policy;
1457 			add_cpu_dev_symlink(policy, j, get_cpu_device(j));
1458 		}
1459 
1460 		policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1461 					       GFP_KERNEL);
1462 		if (!policy->min_freq_req) {
1463 			ret = -ENOMEM;
1464 			goto out_destroy_policy;
1465 		}
1466 
1467 		ret = freq_qos_add_request(&policy->constraints,
1468 					   policy->min_freq_req, FREQ_QOS_MIN,
1469 					   FREQ_QOS_MIN_DEFAULT_VALUE);
1470 		if (ret < 0) {
1471 			/*
1472 			 * So we don't call freq_qos_remove_request() for an
1473 			 * uninitialized request.
1474 			 */
1475 			kfree(policy->min_freq_req);
1476 			policy->min_freq_req = NULL;
1477 			goto out_destroy_policy;
1478 		}
1479 
1480 		/*
1481 		 * This must be initialized right here to avoid calling
1482 		 * freq_qos_remove_request() on uninitialized request in case
1483 		 * of errors.
1484 		 */
1485 		policy->max_freq_req = policy->min_freq_req + 1;
1486 
1487 		ret = freq_qos_add_request(&policy->constraints,
1488 					   policy->max_freq_req, FREQ_QOS_MAX,
1489 					   FREQ_QOS_MAX_DEFAULT_VALUE);
1490 		if (ret < 0) {
1491 			policy->max_freq_req = NULL;
1492 			goto out_destroy_policy;
1493 		}
1494 
1495 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1496 				CPUFREQ_CREATE_POLICY, policy);
1497 	}
1498 
1499 	if (cpufreq_driver->get && has_target()) {
1500 		policy->cur = cpufreq_driver->get(policy->cpu);
1501 		if (!policy->cur) {
1502 			ret = -EIO;
1503 			pr_err("%s: ->get() failed\n", __func__);
1504 			goto out_destroy_policy;
1505 		}
1506 	}
1507 
1508 	/*
1509 	 * Sometimes boot loaders set CPU frequency to a value outside of
1510 	 * frequency table present with cpufreq core. In such cases CPU might be
1511 	 * unstable if it has to run on that frequency for long duration of time
1512 	 * and so its better to set it to a frequency which is specified in
1513 	 * freq-table. This also makes cpufreq stats inconsistent as
1514 	 * cpufreq-stats would fail to register because current frequency of CPU
1515 	 * isn't found in freq-table.
1516 	 *
1517 	 * Because we don't want this change to effect boot process badly, we go
1518 	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1519 	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1520 	 * is initialized to zero).
1521 	 *
1522 	 * We are passing target-freq as "policy->cur - 1" otherwise
1523 	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1524 	 * equal to target-freq.
1525 	 */
1526 	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1527 	    && has_target()) {
1528 		unsigned int old_freq = policy->cur;
1529 
1530 		/* Are we running at unknown frequency ? */
1531 		ret = cpufreq_frequency_table_get_index(policy, old_freq);
1532 		if (ret == -EINVAL) {
1533 			ret = __cpufreq_driver_target(policy, old_freq - 1,
1534 						      CPUFREQ_RELATION_L);
1535 
1536 			/*
1537 			 * Reaching here after boot in a few seconds may not
1538 			 * mean that system will remain stable at "unknown"
1539 			 * frequency for longer duration. Hence, a BUG_ON().
1540 			 */
1541 			BUG_ON(ret);
1542 			pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n",
1543 				__func__, policy->cpu, old_freq, policy->cur);
1544 		}
1545 	}
1546 
1547 	if (new_policy) {
1548 		ret = cpufreq_add_dev_interface(policy);
1549 		if (ret)
1550 			goto out_destroy_policy;
1551 
1552 		cpufreq_stats_create_table(policy);
1553 
1554 		write_lock_irqsave(&cpufreq_driver_lock, flags);
1555 		list_add(&policy->policy_list, &cpufreq_policy_list);
1556 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1557 
1558 		/*
1559 		 * Register with the energy model before
1560 		 * sugov_eas_rebuild_sd() is called, which will result
1561 		 * in rebuilding of the sched domains, which should only be done
1562 		 * once the energy model is properly initialized for the policy
1563 		 * first.
1564 		 *
1565 		 * Also, this should be called before the policy is registered
1566 		 * with cooling framework.
1567 		 */
1568 		if (cpufreq_driver->register_em)
1569 			cpufreq_driver->register_em(policy);
1570 	}
1571 
1572 	ret = cpufreq_init_policy(policy);
1573 	if (ret) {
1574 		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1575 		       __func__, cpu, ret);
1576 		goto out_destroy_policy;
1577 	}
1578 
1579 	up_write(&policy->rwsem);
1580 
1581 	kobject_uevent(&policy->kobj, KOBJ_ADD);
1582 
1583 	/* Callback for handling stuff after policy is ready */
1584 	if (cpufreq_driver->ready)
1585 		cpufreq_driver->ready(policy);
1586 
1587 	/* Register cpufreq cooling only for a new policy */
1588 	if (new_policy && cpufreq_thermal_control_enabled(cpufreq_driver))
1589 		policy->cdev = of_cpufreq_cooling_register(policy);
1590 
1591 	pr_debug("initialization complete\n");
1592 
1593 	return 0;
1594 
1595 out_destroy_policy:
1596 	for_each_cpu(j, policy->real_cpus)
1597 		remove_cpu_dev_symlink(policy, j, get_cpu_device(j));
1598 
1599 out_offline_policy:
1600 	if (cpufreq_driver->offline)
1601 		cpufreq_driver->offline(policy);
1602 
1603 out_exit_policy:
1604 	if (cpufreq_driver->exit)
1605 		cpufreq_driver->exit(policy);
1606 
1607 out_free_policy:
1608 	cpumask_clear(policy->cpus);
1609 	up_write(&policy->rwsem);
1610 
1611 	cpufreq_policy_free(policy);
1612 	return ret;
1613 }
1614 
1615 /**
1616  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1617  * @dev: CPU device.
1618  * @sif: Subsystem interface structure pointer (not used)
1619  */
1620 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1621 {
1622 	struct cpufreq_policy *policy;
1623 	unsigned cpu = dev->id;
1624 	int ret;
1625 
1626 	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1627 
1628 	if (cpu_online(cpu)) {
1629 		ret = cpufreq_online(cpu);
1630 		if (ret)
1631 			return ret;
1632 	}
1633 
1634 	/* Create sysfs link on CPU registration */
1635 	policy = per_cpu(cpufreq_cpu_data, cpu);
1636 	if (policy)
1637 		add_cpu_dev_symlink(policy, cpu, dev);
1638 
1639 	return 0;
1640 }
1641 
1642 static void __cpufreq_offline(unsigned int cpu, struct cpufreq_policy *policy)
1643 {
1644 	int ret;
1645 
1646 	if (has_target())
1647 		cpufreq_stop_governor(policy);
1648 
1649 	cpumask_clear_cpu(cpu, policy->cpus);
1650 
1651 	if (!policy_is_inactive(policy)) {
1652 		/* Nominate a new CPU if necessary. */
1653 		if (cpu == policy->cpu)
1654 			policy->cpu = cpumask_any(policy->cpus);
1655 
1656 		/* Start the governor again for the active policy. */
1657 		if (has_target()) {
1658 			ret = cpufreq_start_governor(policy);
1659 			if (ret)
1660 				pr_err("%s: Failed to start governor\n", __func__);
1661 		}
1662 
1663 		return;
1664 	}
1665 
1666 	if (has_target())
1667 		strscpy(policy->last_governor, policy->governor->name,
1668 			CPUFREQ_NAME_LEN);
1669 	else
1670 		policy->last_policy = policy->policy;
1671 
1672 	if (has_target())
1673 		cpufreq_exit_governor(policy);
1674 
1675 	/*
1676 	 * Perform the ->offline() during light-weight tear-down, as
1677 	 * that allows fast recovery when the CPU comes back.
1678 	 */
1679 	if (cpufreq_driver->offline) {
1680 		cpufreq_driver->offline(policy);
1681 		return;
1682 	}
1683 
1684 	if (cpufreq_driver->exit)
1685 		cpufreq_driver->exit(policy);
1686 
1687 	policy->freq_table = NULL;
1688 }
1689 
1690 static int cpufreq_offline(unsigned int cpu)
1691 {
1692 	struct cpufreq_policy *policy;
1693 
1694 	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1695 
1696 	policy = cpufreq_cpu_get_raw(cpu);
1697 	if (!policy) {
1698 		pr_debug("%s: No cpu_data found\n", __func__);
1699 		return 0;
1700 	}
1701 
1702 	down_write(&policy->rwsem);
1703 
1704 	__cpufreq_offline(cpu, policy);
1705 
1706 	up_write(&policy->rwsem);
1707 	return 0;
1708 }
1709 
1710 /*
1711  * cpufreq_remove_dev - remove a CPU device
1712  *
1713  * Removes the cpufreq interface for a CPU device.
1714  */
1715 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1716 {
1717 	unsigned int cpu = dev->id;
1718 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1719 
1720 	if (!policy)
1721 		return;
1722 
1723 	down_write(&policy->rwsem);
1724 
1725 	if (cpu_online(cpu))
1726 		__cpufreq_offline(cpu, policy);
1727 
1728 	remove_cpu_dev_symlink(policy, cpu, dev);
1729 
1730 	if (!cpumask_empty(policy->real_cpus)) {
1731 		up_write(&policy->rwsem);
1732 		return;
1733 	}
1734 
1735 	/*
1736 	 * Unregister cpufreq cooling once all the CPUs of the policy are
1737 	 * removed.
1738 	 */
1739 	if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1740 		cpufreq_cooling_unregister(policy->cdev);
1741 		policy->cdev = NULL;
1742 	}
1743 
1744 	/* We did light-weight exit earlier, do full tear down now */
1745 	if (cpufreq_driver->offline && cpufreq_driver->exit)
1746 		cpufreq_driver->exit(policy);
1747 
1748 	up_write(&policy->rwsem);
1749 
1750 	cpufreq_policy_free(policy);
1751 }
1752 
1753 /**
1754  * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference.
1755  * @policy: Policy managing CPUs.
1756  * @new_freq: New CPU frequency.
1757  *
1758  * Adjust to the current frequency first and clean up later by either calling
1759  * cpufreq_update_policy(), or scheduling handle_update().
1760  */
1761 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1762 				unsigned int new_freq)
1763 {
1764 	struct cpufreq_freqs freqs;
1765 
1766 	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1767 		 policy->cur, new_freq);
1768 
1769 	freqs.old = policy->cur;
1770 	freqs.new = new_freq;
1771 
1772 	cpufreq_freq_transition_begin(policy, &freqs);
1773 	cpufreq_freq_transition_end(policy, &freqs, 0);
1774 }
1775 
1776 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1777 {
1778 	unsigned int new_freq;
1779 
1780 	new_freq = cpufreq_driver->get(policy->cpu);
1781 	if (!new_freq)
1782 		return 0;
1783 
1784 	/*
1785 	 * If fast frequency switching is used with the given policy, the check
1786 	 * against policy->cur is pointless, so skip it in that case.
1787 	 */
1788 	if (policy->fast_switch_enabled || !has_target())
1789 		return new_freq;
1790 
1791 	if (policy->cur != new_freq) {
1792 		/*
1793 		 * For some platforms, the frequency returned by hardware may be
1794 		 * slightly different from what is provided in the frequency
1795 		 * table, for example hardware may return 499 MHz instead of 500
1796 		 * MHz. In such cases it is better to avoid getting into
1797 		 * unnecessary frequency updates.
1798 		 */
1799 		if (abs(policy->cur - new_freq) < KHZ_PER_MHZ)
1800 			return policy->cur;
1801 
1802 		cpufreq_out_of_sync(policy, new_freq);
1803 		if (update)
1804 			schedule_work(&policy->update);
1805 	}
1806 
1807 	return new_freq;
1808 }
1809 
1810 /**
1811  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1812  * @cpu: CPU number
1813  *
1814  * This is the last known freq, without actually getting it from the driver.
1815  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1816  */
1817 unsigned int cpufreq_quick_get(unsigned int cpu)
1818 {
1819 	struct cpufreq_policy *policy;
1820 	unsigned int ret_freq = 0;
1821 	unsigned long flags;
1822 
1823 	read_lock_irqsave(&cpufreq_driver_lock, flags);
1824 
1825 	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1826 		ret_freq = cpufreq_driver->get(cpu);
1827 		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1828 		return ret_freq;
1829 	}
1830 
1831 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1832 
1833 	policy = cpufreq_cpu_get(cpu);
1834 	if (policy) {
1835 		ret_freq = policy->cur;
1836 		cpufreq_cpu_put(policy);
1837 	}
1838 
1839 	return ret_freq;
1840 }
1841 EXPORT_SYMBOL(cpufreq_quick_get);
1842 
1843 /**
1844  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1845  * @cpu: CPU number
1846  *
1847  * Just return the max possible frequency for a given CPU.
1848  */
1849 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1850 {
1851 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1852 	unsigned int ret_freq = 0;
1853 
1854 	if (policy) {
1855 		ret_freq = policy->max;
1856 		cpufreq_cpu_put(policy);
1857 	}
1858 
1859 	return ret_freq;
1860 }
1861 EXPORT_SYMBOL(cpufreq_quick_get_max);
1862 
1863 /**
1864  * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1865  * @cpu: CPU number
1866  *
1867  * The default return value is the max_freq field of cpuinfo.
1868  */
1869 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1870 {
1871 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1872 	unsigned int ret_freq = 0;
1873 
1874 	if (policy) {
1875 		ret_freq = policy->cpuinfo.max_freq;
1876 		cpufreq_cpu_put(policy);
1877 	}
1878 
1879 	return ret_freq;
1880 }
1881 EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1882 
1883 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1884 {
1885 	if (unlikely(policy_is_inactive(policy)))
1886 		return 0;
1887 
1888 	return cpufreq_verify_current_freq(policy, true);
1889 }
1890 
1891 /**
1892  * cpufreq_get - get the current CPU frequency (in kHz)
1893  * @cpu: CPU number
1894  *
1895  * Get the CPU current (static) CPU frequency
1896  */
1897 unsigned int cpufreq_get(unsigned int cpu)
1898 {
1899 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1900 	unsigned int ret_freq = 0;
1901 
1902 	if (policy) {
1903 		down_read(&policy->rwsem);
1904 		if (cpufreq_driver->get)
1905 			ret_freq = __cpufreq_get(policy);
1906 		up_read(&policy->rwsem);
1907 
1908 		cpufreq_cpu_put(policy);
1909 	}
1910 
1911 	return ret_freq;
1912 }
1913 EXPORT_SYMBOL(cpufreq_get);
1914 
1915 static struct subsys_interface cpufreq_interface = {
1916 	.name		= "cpufreq",
1917 	.subsys		= &cpu_subsys,
1918 	.add_dev	= cpufreq_add_dev,
1919 	.remove_dev	= cpufreq_remove_dev,
1920 };
1921 
1922 /*
1923  * In case platform wants some specific frequency to be configured
1924  * during suspend..
1925  */
1926 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1927 {
1928 	int ret;
1929 
1930 	if (!policy->suspend_freq) {
1931 		pr_debug("%s: suspend_freq not defined\n", __func__);
1932 		return 0;
1933 	}
1934 
1935 	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1936 			policy->suspend_freq);
1937 
1938 	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1939 			CPUFREQ_RELATION_H);
1940 	if (ret)
1941 		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1942 				__func__, policy->suspend_freq, ret);
1943 
1944 	return ret;
1945 }
1946 EXPORT_SYMBOL(cpufreq_generic_suspend);
1947 
1948 /**
1949  * cpufreq_suspend() - Suspend CPUFreq governors.
1950  *
1951  * Called during system wide Suspend/Hibernate cycles for suspending governors
1952  * as some platforms can't change frequency after this point in suspend cycle.
1953  * Because some of the devices (like: i2c, regulators, etc) they use for
1954  * changing frequency are suspended quickly after this point.
1955  */
1956 void cpufreq_suspend(void)
1957 {
1958 	struct cpufreq_policy *policy;
1959 
1960 	if (!cpufreq_driver)
1961 		return;
1962 
1963 	if (!has_target() && !cpufreq_driver->suspend)
1964 		goto suspend;
1965 
1966 	pr_debug("%s: Suspending Governors\n", __func__);
1967 
1968 	for_each_active_policy(policy) {
1969 		if (has_target()) {
1970 			down_write(&policy->rwsem);
1971 			cpufreq_stop_governor(policy);
1972 			up_write(&policy->rwsem);
1973 		}
1974 
1975 		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1976 			pr_err("%s: Failed to suspend driver: %s\n", __func__,
1977 				cpufreq_driver->name);
1978 	}
1979 
1980 suspend:
1981 	cpufreq_suspended = true;
1982 }
1983 
1984 /**
1985  * cpufreq_resume() - Resume CPUFreq governors.
1986  *
1987  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1988  * are suspended with cpufreq_suspend().
1989  */
1990 void cpufreq_resume(void)
1991 {
1992 	struct cpufreq_policy *policy;
1993 	int ret;
1994 
1995 	if (!cpufreq_driver)
1996 		return;
1997 
1998 	if (unlikely(!cpufreq_suspended))
1999 		return;
2000 
2001 	cpufreq_suspended = false;
2002 
2003 	if (!has_target() && !cpufreq_driver->resume)
2004 		return;
2005 
2006 	pr_debug("%s: Resuming Governors\n", __func__);
2007 
2008 	for_each_active_policy(policy) {
2009 		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
2010 			pr_err("%s: Failed to resume driver: %s\n", __func__,
2011 				cpufreq_driver->name);
2012 		} else if (has_target()) {
2013 			down_write(&policy->rwsem);
2014 			ret = cpufreq_start_governor(policy);
2015 			up_write(&policy->rwsem);
2016 
2017 			if (ret)
2018 				pr_err("%s: Failed to start governor for CPU%u's policy\n",
2019 				       __func__, policy->cpu);
2020 		}
2021 	}
2022 }
2023 
2024 /**
2025  * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones.
2026  * @flags: Flags to test against the current cpufreq driver's flags.
2027  *
2028  * Assumes that the driver is there, so callers must ensure that this is the
2029  * case.
2030  */
2031 bool cpufreq_driver_test_flags(u16 flags)
2032 {
2033 	return !!(cpufreq_driver->flags & flags);
2034 }
2035 
2036 /**
2037  * cpufreq_get_current_driver - Return the current driver's name.
2038  *
2039  * Return the name string of the currently registered cpufreq driver or NULL if
2040  * none.
2041  */
2042 const char *cpufreq_get_current_driver(void)
2043 {
2044 	if (cpufreq_driver)
2045 		return cpufreq_driver->name;
2046 
2047 	return NULL;
2048 }
2049 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
2050 
2051 /**
2052  * cpufreq_get_driver_data - Return current driver data.
2053  *
2054  * Return the private data of the currently registered cpufreq driver, or NULL
2055  * if no cpufreq driver has been registered.
2056  */
2057 void *cpufreq_get_driver_data(void)
2058 {
2059 	if (cpufreq_driver)
2060 		return cpufreq_driver->driver_data;
2061 
2062 	return NULL;
2063 }
2064 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
2065 
2066 /*********************************************************************
2067  *                     NOTIFIER LISTS INTERFACE                      *
2068  *********************************************************************/
2069 
2070 /**
2071  * cpufreq_register_notifier - Register a notifier with cpufreq.
2072  * @nb: notifier function to register.
2073  * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2074  *
2075  * Add a notifier to one of two lists: either a list of notifiers that run on
2076  * clock rate changes (once before and once after every transition), or a list
2077  * of notifiers that ron on cpufreq policy changes.
2078  *
2079  * This function may sleep and it has the same return values as
2080  * blocking_notifier_chain_register().
2081  */
2082 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
2083 {
2084 	int ret;
2085 
2086 	if (cpufreq_disabled())
2087 		return -EINVAL;
2088 
2089 	switch (list) {
2090 	case CPUFREQ_TRANSITION_NOTIFIER:
2091 		mutex_lock(&cpufreq_fast_switch_lock);
2092 
2093 		if (cpufreq_fast_switch_count > 0) {
2094 			mutex_unlock(&cpufreq_fast_switch_lock);
2095 			return -EBUSY;
2096 		}
2097 		ret = srcu_notifier_chain_register(
2098 				&cpufreq_transition_notifier_list, nb);
2099 		if (!ret)
2100 			cpufreq_fast_switch_count--;
2101 
2102 		mutex_unlock(&cpufreq_fast_switch_lock);
2103 		break;
2104 	case CPUFREQ_POLICY_NOTIFIER:
2105 		ret = blocking_notifier_chain_register(
2106 				&cpufreq_policy_notifier_list, nb);
2107 		break;
2108 	default:
2109 		ret = -EINVAL;
2110 	}
2111 
2112 	return ret;
2113 }
2114 EXPORT_SYMBOL(cpufreq_register_notifier);
2115 
2116 /**
2117  * cpufreq_unregister_notifier - Unregister a notifier from cpufreq.
2118  * @nb: notifier block to be unregistered.
2119  * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2120  *
2121  * Remove a notifier from one of the cpufreq notifier lists.
2122  *
2123  * This function may sleep and it has the same return values as
2124  * blocking_notifier_chain_unregister().
2125  */
2126 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2127 {
2128 	int ret;
2129 
2130 	if (cpufreq_disabled())
2131 		return -EINVAL;
2132 
2133 	switch (list) {
2134 	case CPUFREQ_TRANSITION_NOTIFIER:
2135 		mutex_lock(&cpufreq_fast_switch_lock);
2136 
2137 		ret = srcu_notifier_chain_unregister(
2138 				&cpufreq_transition_notifier_list, nb);
2139 		if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2140 			cpufreq_fast_switch_count++;
2141 
2142 		mutex_unlock(&cpufreq_fast_switch_lock);
2143 		break;
2144 	case CPUFREQ_POLICY_NOTIFIER:
2145 		ret = blocking_notifier_chain_unregister(
2146 				&cpufreq_policy_notifier_list, nb);
2147 		break;
2148 	default:
2149 		ret = -EINVAL;
2150 	}
2151 
2152 	return ret;
2153 }
2154 EXPORT_SYMBOL(cpufreq_unregister_notifier);
2155 
2156 
2157 /*********************************************************************
2158  *                              GOVERNORS                            *
2159  *********************************************************************/
2160 
2161 /**
2162  * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2163  * @policy: cpufreq policy to switch the frequency for.
2164  * @target_freq: New frequency to set (may be approximate).
2165  *
2166  * Carry out a fast frequency switch without sleeping.
2167  *
2168  * The driver's ->fast_switch() callback invoked by this function must be
2169  * suitable for being called from within RCU-sched read-side critical sections
2170  * and it is expected to select the minimum available frequency greater than or
2171  * equal to @target_freq (CPUFREQ_RELATION_L).
2172  *
2173  * This function must not be called if policy->fast_switch_enabled is unset.
2174  *
2175  * Governors calling this function must guarantee that it will never be invoked
2176  * twice in parallel for the same policy and that it will never be called in
2177  * parallel with either ->target() or ->target_index() for the same policy.
2178  *
2179  * Returns the actual frequency set for the CPU.
2180  *
2181  * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2182  * error condition, the hardware configuration must be preserved.
2183  */
2184 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2185 					unsigned int target_freq)
2186 {
2187 	unsigned int freq;
2188 	int cpu;
2189 
2190 	target_freq = clamp_val(target_freq, policy->min, policy->max);
2191 	freq = cpufreq_driver->fast_switch(policy, target_freq);
2192 
2193 	if (!freq)
2194 		return 0;
2195 
2196 	policy->cur = freq;
2197 	arch_set_freq_scale(policy->related_cpus, freq,
2198 			    arch_scale_freq_ref(policy->cpu));
2199 	cpufreq_stats_record_transition(policy, freq);
2200 
2201 	if (trace_cpu_frequency_enabled()) {
2202 		for_each_cpu(cpu, policy->cpus)
2203 			trace_cpu_frequency(freq, cpu);
2204 	}
2205 
2206 	return freq;
2207 }
2208 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2209 
2210 /**
2211  * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go.
2212  * @cpu: Target CPU.
2213  * @min_perf: Minimum (required) performance level (units of @capacity).
2214  * @target_perf: Target (desired) performance level (units of @capacity).
2215  * @capacity: Capacity of the target CPU.
2216  *
2217  * Carry out a fast performance level switch of @cpu without sleeping.
2218  *
2219  * The driver's ->adjust_perf() callback invoked by this function must be
2220  * suitable for being called from within RCU-sched read-side critical sections
2221  * and it is expected to select a suitable performance level equal to or above
2222  * @min_perf and preferably equal to or below @target_perf.
2223  *
2224  * This function must not be called if policy->fast_switch_enabled is unset.
2225  *
2226  * Governors calling this function must guarantee that it will never be invoked
2227  * twice in parallel for the same CPU and that it will never be called in
2228  * parallel with either ->target() or ->target_index() or ->fast_switch() for
2229  * the same CPU.
2230  */
2231 void cpufreq_driver_adjust_perf(unsigned int cpu,
2232 				 unsigned long min_perf,
2233 				 unsigned long target_perf,
2234 				 unsigned long capacity)
2235 {
2236 	cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity);
2237 }
2238 
2239 /**
2240  * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback.
2241  *
2242  * Return 'true' if the ->adjust_perf callback is present for the
2243  * current driver or 'false' otherwise.
2244  */
2245 bool cpufreq_driver_has_adjust_perf(void)
2246 {
2247 	return !!cpufreq_driver->adjust_perf;
2248 }
2249 
2250 /* Must set freqs->new to intermediate frequency */
2251 static int __target_intermediate(struct cpufreq_policy *policy,
2252 				 struct cpufreq_freqs *freqs, int index)
2253 {
2254 	int ret;
2255 
2256 	freqs->new = cpufreq_driver->get_intermediate(policy, index);
2257 
2258 	/* We don't need to switch to intermediate freq */
2259 	if (!freqs->new)
2260 		return 0;
2261 
2262 	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2263 		 __func__, policy->cpu, freqs->old, freqs->new);
2264 
2265 	cpufreq_freq_transition_begin(policy, freqs);
2266 	ret = cpufreq_driver->target_intermediate(policy, index);
2267 	cpufreq_freq_transition_end(policy, freqs, ret);
2268 
2269 	if (ret)
2270 		pr_err("%s: Failed to change to intermediate frequency: %d\n",
2271 		       __func__, ret);
2272 
2273 	return ret;
2274 }
2275 
2276 static int __target_index(struct cpufreq_policy *policy, int index)
2277 {
2278 	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2279 	unsigned int restore_freq, intermediate_freq = 0;
2280 	unsigned int newfreq = policy->freq_table[index].frequency;
2281 	int retval = -EINVAL;
2282 	bool notify;
2283 
2284 	if (newfreq == policy->cur)
2285 		return 0;
2286 
2287 	/* Save last value to restore later on errors */
2288 	restore_freq = policy->cur;
2289 
2290 	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2291 	if (notify) {
2292 		/* Handle switching to intermediate frequency */
2293 		if (cpufreq_driver->get_intermediate) {
2294 			retval = __target_intermediate(policy, &freqs, index);
2295 			if (retval)
2296 				return retval;
2297 
2298 			intermediate_freq = freqs.new;
2299 			/* Set old freq to intermediate */
2300 			if (intermediate_freq)
2301 				freqs.old = freqs.new;
2302 		}
2303 
2304 		freqs.new = newfreq;
2305 		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2306 			 __func__, policy->cpu, freqs.old, freqs.new);
2307 
2308 		cpufreq_freq_transition_begin(policy, &freqs);
2309 	}
2310 
2311 	retval = cpufreq_driver->target_index(policy, index);
2312 	if (retval)
2313 		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2314 		       retval);
2315 
2316 	if (notify) {
2317 		cpufreq_freq_transition_end(policy, &freqs, retval);
2318 
2319 		/*
2320 		 * Failed after setting to intermediate freq? Driver should have
2321 		 * reverted back to initial frequency and so should we. Check
2322 		 * here for intermediate_freq instead of get_intermediate, in
2323 		 * case we haven't switched to intermediate freq at all.
2324 		 */
2325 		if (unlikely(retval && intermediate_freq)) {
2326 			freqs.old = intermediate_freq;
2327 			freqs.new = restore_freq;
2328 			cpufreq_freq_transition_begin(policy, &freqs);
2329 			cpufreq_freq_transition_end(policy, &freqs, 0);
2330 		}
2331 	}
2332 
2333 	return retval;
2334 }
2335 
2336 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2337 			    unsigned int target_freq,
2338 			    unsigned int relation)
2339 {
2340 	unsigned int old_target_freq = target_freq;
2341 
2342 	if (cpufreq_disabled())
2343 		return -ENODEV;
2344 
2345 	target_freq = __resolve_freq(policy, target_freq, relation);
2346 
2347 	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2348 		 policy->cpu, target_freq, relation, old_target_freq);
2349 
2350 	/*
2351 	 * This might look like a redundant call as we are checking it again
2352 	 * after finding index. But it is left intentionally for cases where
2353 	 * exactly same freq is called again and so we can save on few function
2354 	 * calls.
2355 	 */
2356 	if (target_freq == policy->cur &&
2357 	    !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS))
2358 		return 0;
2359 
2360 	if (cpufreq_driver->target) {
2361 		/*
2362 		 * If the driver hasn't setup a single inefficient frequency,
2363 		 * it's unlikely it knows how to decode CPUFREQ_RELATION_E.
2364 		 */
2365 		if (!policy->efficiencies_available)
2366 			relation &= ~CPUFREQ_RELATION_E;
2367 
2368 		return cpufreq_driver->target(policy, target_freq, relation);
2369 	}
2370 
2371 	if (!cpufreq_driver->target_index)
2372 		return -EINVAL;
2373 
2374 	return __target_index(policy, policy->cached_resolved_idx);
2375 }
2376 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2377 
2378 int cpufreq_driver_target(struct cpufreq_policy *policy,
2379 			  unsigned int target_freq,
2380 			  unsigned int relation)
2381 {
2382 	int ret;
2383 
2384 	down_write(&policy->rwsem);
2385 
2386 	ret = __cpufreq_driver_target(policy, target_freq, relation);
2387 
2388 	up_write(&policy->rwsem);
2389 
2390 	return ret;
2391 }
2392 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2393 
2394 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2395 {
2396 	return NULL;
2397 }
2398 
2399 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2400 {
2401 	int ret;
2402 
2403 	/* Don't start any governor operations if we are entering suspend */
2404 	if (cpufreq_suspended)
2405 		return 0;
2406 	/*
2407 	 * Governor might not be initiated here if ACPI _PPC changed
2408 	 * notification happened, so check it.
2409 	 */
2410 	if (!policy->governor)
2411 		return -EINVAL;
2412 
2413 	/* Platform doesn't want dynamic frequency switching ? */
2414 	if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING &&
2415 	    cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2416 		struct cpufreq_governor *gov = cpufreq_fallback_governor();
2417 
2418 		if (gov) {
2419 			pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2420 				policy->governor->name, gov->name);
2421 			policy->governor = gov;
2422 		} else {
2423 			return -EINVAL;
2424 		}
2425 	}
2426 
2427 	if (!try_module_get(policy->governor->owner))
2428 		return -EINVAL;
2429 
2430 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2431 
2432 	if (policy->governor->init) {
2433 		ret = policy->governor->init(policy);
2434 		if (ret) {
2435 			module_put(policy->governor->owner);
2436 			return ret;
2437 		}
2438 	}
2439 
2440 	policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET);
2441 
2442 	return 0;
2443 }
2444 
2445 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2446 {
2447 	if (cpufreq_suspended || !policy->governor)
2448 		return;
2449 
2450 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2451 
2452 	if (policy->governor->exit)
2453 		policy->governor->exit(policy);
2454 
2455 	module_put(policy->governor->owner);
2456 }
2457 
2458 int cpufreq_start_governor(struct cpufreq_policy *policy)
2459 {
2460 	int ret;
2461 
2462 	if (cpufreq_suspended)
2463 		return 0;
2464 
2465 	if (!policy->governor)
2466 		return -EINVAL;
2467 
2468 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2469 
2470 	if (cpufreq_driver->get)
2471 		cpufreq_verify_current_freq(policy, false);
2472 
2473 	if (policy->governor->start) {
2474 		ret = policy->governor->start(policy);
2475 		if (ret)
2476 			return ret;
2477 	}
2478 
2479 	if (policy->governor->limits)
2480 		policy->governor->limits(policy);
2481 
2482 	return 0;
2483 }
2484 
2485 void cpufreq_stop_governor(struct cpufreq_policy *policy)
2486 {
2487 	if (cpufreq_suspended || !policy->governor)
2488 		return;
2489 
2490 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2491 
2492 	if (policy->governor->stop)
2493 		policy->governor->stop(policy);
2494 }
2495 
2496 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2497 {
2498 	if (cpufreq_suspended || !policy->governor)
2499 		return;
2500 
2501 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2502 
2503 	if (policy->governor->limits)
2504 		policy->governor->limits(policy);
2505 }
2506 
2507 int cpufreq_register_governor(struct cpufreq_governor *governor)
2508 {
2509 	int err;
2510 
2511 	if (!governor)
2512 		return -EINVAL;
2513 
2514 	if (cpufreq_disabled())
2515 		return -ENODEV;
2516 
2517 	mutex_lock(&cpufreq_governor_mutex);
2518 
2519 	err = -EBUSY;
2520 	if (!find_governor(governor->name)) {
2521 		err = 0;
2522 		list_add(&governor->governor_list, &cpufreq_governor_list);
2523 	}
2524 
2525 	mutex_unlock(&cpufreq_governor_mutex);
2526 	return err;
2527 }
2528 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2529 
2530 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2531 {
2532 	struct cpufreq_policy *policy;
2533 	unsigned long flags;
2534 
2535 	if (!governor)
2536 		return;
2537 
2538 	if (cpufreq_disabled())
2539 		return;
2540 
2541 	/* clear last_governor for all inactive policies */
2542 	read_lock_irqsave(&cpufreq_driver_lock, flags);
2543 	for_each_inactive_policy(policy) {
2544 		if (!strcmp(policy->last_governor, governor->name)) {
2545 			policy->governor = NULL;
2546 			strcpy(policy->last_governor, "\0");
2547 		}
2548 	}
2549 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2550 
2551 	mutex_lock(&cpufreq_governor_mutex);
2552 	list_del(&governor->governor_list);
2553 	mutex_unlock(&cpufreq_governor_mutex);
2554 }
2555 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2556 
2557 
2558 /*********************************************************************
2559  *                          POLICY INTERFACE                         *
2560  *********************************************************************/
2561 
2562 /**
2563  * cpufreq_get_policy - get the current cpufreq_policy
2564  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2565  *	is written
2566  * @cpu: CPU to find the policy for
2567  *
2568  * Reads the current cpufreq policy.
2569  */
2570 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2571 {
2572 	struct cpufreq_policy *cpu_policy;
2573 	if (!policy)
2574 		return -EINVAL;
2575 
2576 	cpu_policy = cpufreq_cpu_get(cpu);
2577 	if (!cpu_policy)
2578 		return -EINVAL;
2579 
2580 	memcpy(policy, cpu_policy, sizeof(*policy));
2581 
2582 	cpufreq_cpu_put(cpu_policy);
2583 	return 0;
2584 }
2585 EXPORT_SYMBOL(cpufreq_get_policy);
2586 
2587 DEFINE_PER_CPU(unsigned long, cpufreq_pressure);
2588 
2589 /**
2590  * cpufreq_update_pressure() - Update cpufreq pressure for CPUs
2591  * @policy: cpufreq policy of the CPUs.
2592  *
2593  * Update the value of cpufreq pressure for all @cpus in the policy.
2594  */
2595 static void cpufreq_update_pressure(struct cpufreq_policy *policy)
2596 {
2597 	unsigned long max_capacity, capped_freq, pressure;
2598 	u32 max_freq;
2599 	int cpu;
2600 
2601 	cpu = cpumask_first(policy->related_cpus);
2602 	max_freq = arch_scale_freq_ref(cpu);
2603 	capped_freq = policy->max;
2604 
2605 	/*
2606 	 * Handle properly the boost frequencies, which should simply clean
2607 	 * the cpufreq pressure value.
2608 	 */
2609 	if (max_freq <= capped_freq) {
2610 		pressure = 0;
2611 	} else {
2612 		max_capacity = arch_scale_cpu_capacity(cpu);
2613 		pressure = max_capacity -
2614 			   mult_frac(max_capacity, capped_freq, max_freq);
2615 	}
2616 
2617 	for_each_cpu(cpu, policy->related_cpus)
2618 		WRITE_ONCE(per_cpu(cpufreq_pressure, cpu), pressure);
2619 }
2620 
2621 /**
2622  * cpufreq_set_policy - Modify cpufreq policy parameters.
2623  * @policy: Policy object to modify.
2624  * @new_gov: Policy governor pointer.
2625  * @new_pol: Policy value (for drivers with built-in governors).
2626  *
2627  * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2628  * limits to be set for the policy, update @policy with the verified limits
2629  * values and either invoke the driver's ->setpolicy() callback (if present) or
2630  * carry out a governor update for @policy.  That is, run the current governor's
2631  * ->limits() callback (if @new_gov points to the same object as the one in
2632  * @policy) or replace the governor for @policy with @new_gov.
2633  *
2634  * The cpuinfo part of @policy is not updated by this function.
2635  */
2636 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2637 			      struct cpufreq_governor *new_gov,
2638 			      unsigned int new_pol)
2639 {
2640 	struct cpufreq_policy_data new_data;
2641 	struct cpufreq_governor *old_gov;
2642 	int ret;
2643 
2644 	memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2645 	new_data.freq_table = policy->freq_table;
2646 	new_data.cpu = policy->cpu;
2647 	/*
2648 	 * PM QoS framework collects all the requests from users and provide us
2649 	 * the final aggregated value here.
2650 	 */
2651 	new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2652 	new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2653 
2654 	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2655 		 new_data.cpu, new_data.min, new_data.max);
2656 
2657 	/*
2658 	 * Verify that the CPU speed can be set within these limits and make sure
2659 	 * that min <= max.
2660 	 */
2661 	ret = cpufreq_driver->verify(&new_data);
2662 	if (ret)
2663 		return ret;
2664 
2665 	/*
2666 	 * Resolve policy min/max to available frequencies. It ensures
2667 	 * no frequency resolution will neither overshoot the requested maximum
2668 	 * nor undershoot the requested minimum.
2669 	 */
2670 	policy->min = new_data.min;
2671 	policy->max = new_data.max;
2672 	policy->min = __resolve_freq(policy, policy->min, CPUFREQ_RELATION_L);
2673 	policy->max = __resolve_freq(policy, policy->max, CPUFREQ_RELATION_H);
2674 	trace_cpu_frequency_limits(policy);
2675 
2676 	cpufreq_update_pressure(policy);
2677 
2678 	policy->cached_target_freq = UINT_MAX;
2679 
2680 	pr_debug("new min and max freqs are %u - %u kHz\n",
2681 		 policy->min, policy->max);
2682 
2683 	if (cpufreq_driver->setpolicy) {
2684 		policy->policy = new_pol;
2685 		pr_debug("setting range\n");
2686 		return cpufreq_driver->setpolicy(policy);
2687 	}
2688 
2689 	if (new_gov == policy->governor) {
2690 		pr_debug("governor limits update\n");
2691 		cpufreq_governor_limits(policy);
2692 		return 0;
2693 	}
2694 
2695 	pr_debug("governor switch\n");
2696 
2697 	/* save old, working values */
2698 	old_gov = policy->governor;
2699 	/* end old governor */
2700 	if (old_gov) {
2701 		cpufreq_stop_governor(policy);
2702 		cpufreq_exit_governor(policy);
2703 	}
2704 
2705 	/* start new governor */
2706 	policy->governor = new_gov;
2707 	ret = cpufreq_init_governor(policy);
2708 	if (!ret) {
2709 		ret = cpufreq_start_governor(policy);
2710 		if (!ret) {
2711 			pr_debug("governor change\n");
2712 			return 0;
2713 		}
2714 		cpufreq_exit_governor(policy);
2715 	}
2716 
2717 	/* new governor failed, so re-start old one */
2718 	pr_debug("starting governor %s failed\n", policy->governor->name);
2719 	if (old_gov) {
2720 		policy->governor = old_gov;
2721 		if (cpufreq_init_governor(policy))
2722 			policy->governor = NULL;
2723 		else
2724 			cpufreq_start_governor(policy);
2725 	}
2726 
2727 	return ret;
2728 }
2729 
2730 /**
2731  * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2732  * @cpu: CPU to re-evaluate the policy for.
2733  *
2734  * Update the current frequency for the cpufreq policy of @cpu and use
2735  * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2736  * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2737  * for the policy in question, among other things.
2738  */
2739 void cpufreq_update_policy(unsigned int cpu)
2740 {
2741 	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2742 
2743 	if (!policy)
2744 		return;
2745 
2746 	/*
2747 	 * BIOS might change freq behind our back
2748 	 * -> ask driver for current freq and notify governors about a change
2749 	 */
2750 	if (cpufreq_driver->get && has_target() &&
2751 	    (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2752 		goto unlock;
2753 
2754 	refresh_frequency_limits(policy);
2755 
2756 unlock:
2757 	cpufreq_cpu_release(policy);
2758 }
2759 EXPORT_SYMBOL(cpufreq_update_policy);
2760 
2761 /**
2762  * cpufreq_update_limits - Update policy limits for a given CPU.
2763  * @cpu: CPU to update the policy limits for.
2764  *
2765  * Invoke the driver's ->update_limits callback if present or call
2766  * cpufreq_update_policy() for @cpu.
2767  */
2768 void cpufreq_update_limits(unsigned int cpu)
2769 {
2770 	if (cpufreq_driver->update_limits)
2771 		cpufreq_driver->update_limits(cpu);
2772 	else
2773 		cpufreq_update_policy(cpu);
2774 }
2775 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2776 
2777 /*********************************************************************
2778  *               BOOST						     *
2779  *********************************************************************/
2780 static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2781 {
2782 	int ret;
2783 
2784 	if (!policy->freq_table)
2785 		return -ENXIO;
2786 
2787 	ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2788 	if (ret) {
2789 		pr_err("%s: Policy frequency update failed\n", __func__);
2790 		return ret;
2791 	}
2792 
2793 	ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2794 	if (ret < 0)
2795 		return ret;
2796 
2797 	return 0;
2798 }
2799 
2800 int cpufreq_boost_trigger_state(int state)
2801 {
2802 	struct cpufreq_policy *policy;
2803 	unsigned long flags;
2804 	int ret = 0;
2805 
2806 	if (cpufreq_driver->boost_enabled == state)
2807 		return 0;
2808 
2809 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2810 	cpufreq_driver->boost_enabled = state;
2811 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2812 
2813 	cpus_read_lock();
2814 	for_each_active_policy(policy) {
2815 		policy->boost_enabled = state;
2816 		ret = cpufreq_driver->set_boost(policy, state);
2817 		if (ret) {
2818 			policy->boost_enabled = !policy->boost_enabled;
2819 			goto err_reset_state;
2820 		}
2821 	}
2822 	cpus_read_unlock();
2823 
2824 	return 0;
2825 
2826 err_reset_state:
2827 	cpus_read_unlock();
2828 
2829 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2830 	cpufreq_driver->boost_enabled = !state;
2831 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2832 
2833 	pr_err("%s: Cannot %s BOOST\n",
2834 	       __func__, state ? "enable" : "disable");
2835 
2836 	return ret;
2837 }
2838 
2839 static bool cpufreq_boost_supported(void)
2840 {
2841 	return cpufreq_driver->set_boost;
2842 }
2843 
2844 static int create_boost_sysfs_file(void)
2845 {
2846 	int ret;
2847 
2848 	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2849 	if (ret)
2850 		pr_err("%s: cannot register global BOOST sysfs file\n",
2851 		       __func__);
2852 
2853 	return ret;
2854 }
2855 
2856 static void remove_boost_sysfs_file(void)
2857 {
2858 	if (cpufreq_boost_supported())
2859 		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2860 }
2861 
2862 int cpufreq_enable_boost_support(void)
2863 {
2864 	if (!cpufreq_driver)
2865 		return -EINVAL;
2866 
2867 	if (cpufreq_boost_supported())
2868 		return 0;
2869 
2870 	cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2871 
2872 	/* This will get removed on driver unregister */
2873 	return create_boost_sysfs_file();
2874 }
2875 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2876 
2877 bool cpufreq_boost_enabled(void)
2878 {
2879 	return cpufreq_driver->boost_enabled;
2880 }
2881 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2882 
2883 /*********************************************************************
2884  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2885  *********************************************************************/
2886 static enum cpuhp_state hp_online;
2887 
2888 static int cpuhp_cpufreq_online(unsigned int cpu)
2889 {
2890 	cpufreq_online(cpu);
2891 
2892 	return 0;
2893 }
2894 
2895 static int cpuhp_cpufreq_offline(unsigned int cpu)
2896 {
2897 	cpufreq_offline(cpu);
2898 
2899 	return 0;
2900 }
2901 
2902 /**
2903  * cpufreq_register_driver - register a CPU Frequency driver
2904  * @driver_data: A struct cpufreq_driver containing the values#
2905  * submitted by the CPU Frequency driver.
2906  *
2907  * Registers a CPU Frequency driver to this core code. This code
2908  * returns zero on success, -EEXIST when another driver got here first
2909  * (and isn't unregistered in the meantime).
2910  *
2911  */
2912 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2913 {
2914 	unsigned long flags;
2915 	int ret;
2916 
2917 	if (cpufreq_disabled())
2918 		return -ENODEV;
2919 
2920 	/*
2921 	 * The cpufreq core depends heavily on the availability of device
2922 	 * structure, make sure they are available before proceeding further.
2923 	 */
2924 	if (!get_cpu_device(0))
2925 		return -EPROBE_DEFER;
2926 
2927 	if (!driver_data || !driver_data->verify || !driver_data->init ||
2928 	    !(driver_data->setpolicy || driver_data->target_index ||
2929 		    driver_data->target) ||
2930 	     (driver_data->setpolicy && (driver_data->target_index ||
2931 		    driver_data->target)) ||
2932 	     (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2933 	     (!driver_data->online != !driver_data->offline) ||
2934 		 (driver_data->adjust_perf && !driver_data->fast_switch))
2935 		return -EINVAL;
2936 
2937 	pr_debug("trying to register driver %s\n", driver_data->name);
2938 
2939 	/* Protect against concurrent CPU online/offline. */
2940 	cpus_read_lock();
2941 
2942 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2943 	if (cpufreq_driver) {
2944 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2945 		ret = -EEXIST;
2946 		goto out;
2947 	}
2948 	cpufreq_driver = driver_data;
2949 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2950 
2951 	/*
2952 	 * Mark support for the scheduler's frequency invariance engine for
2953 	 * drivers that implement target(), target_index() or fast_switch().
2954 	 */
2955 	if (!cpufreq_driver->setpolicy) {
2956 		static_branch_enable_cpuslocked(&cpufreq_freq_invariance);
2957 		pr_debug("supports frequency invariance");
2958 	}
2959 
2960 	if (driver_data->setpolicy)
2961 		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2962 
2963 	if (cpufreq_boost_supported()) {
2964 		ret = create_boost_sysfs_file();
2965 		if (ret)
2966 			goto err_null_driver;
2967 	}
2968 
2969 	ret = subsys_interface_register(&cpufreq_interface);
2970 	if (ret)
2971 		goto err_boost_unreg;
2972 
2973 	if (unlikely(list_empty(&cpufreq_policy_list))) {
2974 		/* if all ->init() calls failed, unregister */
2975 		ret = -ENODEV;
2976 		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2977 			 driver_data->name);
2978 		goto err_if_unreg;
2979 	}
2980 
2981 	ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2982 						   "cpufreq:online",
2983 						   cpuhp_cpufreq_online,
2984 						   cpuhp_cpufreq_offline);
2985 	if (ret < 0)
2986 		goto err_if_unreg;
2987 	hp_online = ret;
2988 	ret = 0;
2989 
2990 	pr_debug("driver %s up and running\n", driver_data->name);
2991 	goto out;
2992 
2993 err_if_unreg:
2994 	subsys_interface_unregister(&cpufreq_interface);
2995 err_boost_unreg:
2996 	remove_boost_sysfs_file();
2997 err_null_driver:
2998 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2999 	cpufreq_driver = NULL;
3000 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
3001 out:
3002 	cpus_read_unlock();
3003 	return ret;
3004 }
3005 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
3006 
3007 /*
3008  * cpufreq_unregister_driver - unregister the current CPUFreq driver
3009  *
3010  * Unregister the current CPUFreq driver. Only call this if you have
3011  * the right to do so, i.e. if you have succeeded in initialising before!
3012  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
3013  * currently not initialised.
3014  */
3015 void cpufreq_unregister_driver(struct cpufreq_driver *driver)
3016 {
3017 	unsigned long flags;
3018 
3019 	if (WARN_ON(!cpufreq_driver || (driver != cpufreq_driver)))
3020 		return;
3021 
3022 	pr_debug("unregistering driver %s\n", driver->name);
3023 
3024 	/* Protect against concurrent cpu hotplug */
3025 	cpus_read_lock();
3026 	subsys_interface_unregister(&cpufreq_interface);
3027 	remove_boost_sysfs_file();
3028 	static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
3029 	cpuhp_remove_state_nocalls_cpuslocked(hp_online);
3030 
3031 	write_lock_irqsave(&cpufreq_driver_lock, flags);
3032 
3033 	cpufreq_driver = NULL;
3034 
3035 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
3036 	cpus_read_unlock();
3037 }
3038 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
3039 
3040 static int __init cpufreq_core_init(void)
3041 {
3042 	struct cpufreq_governor *gov = cpufreq_default_governor();
3043 	struct device *dev_root;
3044 
3045 	if (cpufreq_disabled())
3046 		return -ENODEV;
3047 
3048 	dev_root = bus_get_dev_root(&cpu_subsys);
3049 	if (dev_root) {
3050 		cpufreq_global_kobject = kobject_create_and_add("cpufreq", &dev_root->kobj);
3051 		put_device(dev_root);
3052 	}
3053 	BUG_ON(!cpufreq_global_kobject);
3054 
3055 	if (!strlen(default_governor))
3056 		strscpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
3057 
3058 	return 0;
3059 }
3060 module_param(off, int, 0444);
3061 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
3062 core_initcall(cpufreq_core_init);
3063