1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/cpufreq/cpufreq.c 4 * 5 * Copyright (C) 2001 Russell King 6 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 7 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org> 8 * 9 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 10 * Added handling for CPU hotplug 11 * Feb 2006 - Jacob Shin <jacob.shin@amd.com> 12 * Fix handling for CPU hotplug -- affected CPUs 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/cpu.h> 18 #include <linux/cpufreq.h> 19 #include <linux/cpu_cooling.h> 20 #include <linux/delay.h> 21 #include <linux/device.h> 22 #include <linux/init.h> 23 #include <linux/kernel_stat.h> 24 #include <linux/module.h> 25 #include <linux/mutex.h> 26 #include <linux/pm_qos.h> 27 #include <linux/slab.h> 28 #include <linux/suspend.h> 29 #include <linux/syscore_ops.h> 30 #include <linux/tick.h> 31 #include <trace/events/power.h> 32 33 static LIST_HEAD(cpufreq_policy_list); 34 35 /* Macros to iterate over CPU policies */ 36 #define for_each_suitable_policy(__policy, __active) \ 37 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \ 38 if ((__active) == !policy_is_inactive(__policy)) 39 40 #define for_each_active_policy(__policy) \ 41 for_each_suitable_policy(__policy, true) 42 #define for_each_inactive_policy(__policy) \ 43 for_each_suitable_policy(__policy, false) 44 45 /* Iterate over governors */ 46 static LIST_HEAD(cpufreq_governor_list); 47 #define for_each_governor(__governor) \ 48 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list) 49 50 static char default_governor[CPUFREQ_NAME_LEN]; 51 52 /* 53 * The "cpufreq driver" - the arch- or hardware-dependent low 54 * level driver of CPUFreq support, and its spinlock. This lock 55 * also protects the cpufreq_cpu_data array. 56 */ 57 static struct cpufreq_driver *cpufreq_driver; 58 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data); 59 static DEFINE_RWLOCK(cpufreq_driver_lock); 60 61 static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance); 62 bool cpufreq_supports_freq_invariance(void) 63 { 64 return static_branch_likely(&cpufreq_freq_invariance); 65 } 66 67 /* Flag to suspend/resume CPUFreq governors */ 68 static bool cpufreq_suspended; 69 70 static inline bool has_target(void) 71 { 72 return cpufreq_driver->target_index || cpufreq_driver->target; 73 } 74 75 /* internal prototypes */ 76 static unsigned int __cpufreq_get(struct cpufreq_policy *policy); 77 static int cpufreq_init_governor(struct cpufreq_policy *policy); 78 static void cpufreq_exit_governor(struct cpufreq_policy *policy); 79 static void cpufreq_governor_limits(struct cpufreq_policy *policy); 80 static int cpufreq_set_policy(struct cpufreq_policy *policy, 81 struct cpufreq_governor *new_gov, 82 unsigned int new_pol); 83 84 /* 85 * Two notifier lists: the "policy" list is involved in the 86 * validation process for a new CPU frequency policy; the 87 * "transition" list for kernel code that needs to handle 88 * changes to devices when the CPU clock speed changes. 89 * The mutex locks both lists. 90 */ 91 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list); 92 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list); 93 94 static int off __read_mostly; 95 static int cpufreq_disabled(void) 96 { 97 return off; 98 } 99 void disable_cpufreq(void) 100 { 101 off = 1; 102 } 103 static DEFINE_MUTEX(cpufreq_governor_mutex); 104 105 bool have_governor_per_policy(void) 106 { 107 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY); 108 } 109 EXPORT_SYMBOL_GPL(have_governor_per_policy); 110 111 static struct kobject *cpufreq_global_kobject; 112 113 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy) 114 { 115 if (have_governor_per_policy()) 116 return &policy->kobj; 117 else 118 return cpufreq_global_kobject; 119 } 120 EXPORT_SYMBOL_GPL(get_governor_parent_kobj); 121 122 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) 123 { 124 struct kernel_cpustat kcpustat; 125 u64 cur_wall_time; 126 u64 idle_time; 127 u64 busy_time; 128 129 cur_wall_time = jiffies64_to_nsecs(get_jiffies_64()); 130 131 kcpustat_cpu_fetch(&kcpustat, cpu); 132 133 busy_time = kcpustat.cpustat[CPUTIME_USER]; 134 busy_time += kcpustat.cpustat[CPUTIME_SYSTEM]; 135 busy_time += kcpustat.cpustat[CPUTIME_IRQ]; 136 busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ]; 137 busy_time += kcpustat.cpustat[CPUTIME_STEAL]; 138 busy_time += kcpustat.cpustat[CPUTIME_NICE]; 139 140 idle_time = cur_wall_time - busy_time; 141 if (wall) 142 *wall = div_u64(cur_wall_time, NSEC_PER_USEC); 143 144 return div_u64(idle_time, NSEC_PER_USEC); 145 } 146 147 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy) 148 { 149 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL); 150 151 if (idle_time == -1ULL) 152 return get_cpu_idle_time_jiffy(cpu, wall); 153 else if (!io_busy) 154 idle_time += get_cpu_iowait_time_us(cpu, wall); 155 156 return idle_time; 157 } 158 EXPORT_SYMBOL_GPL(get_cpu_idle_time); 159 160 /* 161 * This is a generic cpufreq init() routine which can be used by cpufreq 162 * drivers of SMP systems. It will do following: 163 * - validate & show freq table passed 164 * - set policies transition latency 165 * - policy->cpus with all possible CPUs 166 */ 167 void cpufreq_generic_init(struct cpufreq_policy *policy, 168 struct cpufreq_frequency_table *table, 169 unsigned int transition_latency) 170 { 171 policy->freq_table = table; 172 policy->cpuinfo.transition_latency = transition_latency; 173 174 /* 175 * The driver only supports the SMP configuration where all processors 176 * share the clock and voltage and clock. 177 */ 178 cpumask_setall(policy->cpus); 179 } 180 EXPORT_SYMBOL_GPL(cpufreq_generic_init); 181 182 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu) 183 { 184 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 185 186 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL; 187 } 188 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw); 189 190 unsigned int cpufreq_generic_get(unsigned int cpu) 191 { 192 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu); 193 194 if (!policy || IS_ERR(policy->clk)) { 195 pr_err("%s: No %s associated to cpu: %d\n", 196 __func__, policy ? "clk" : "policy", cpu); 197 return 0; 198 } 199 200 return clk_get_rate(policy->clk) / 1000; 201 } 202 EXPORT_SYMBOL_GPL(cpufreq_generic_get); 203 204 /** 205 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy. 206 * @cpu: CPU to find the policy for. 207 * 208 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment 209 * the kobject reference counter of that policy. Return a valid policy on 210 * success or NULL on failure. 211 * 212 * The policy returned by this function has to be released with the help of 213 * cpufreq_cpu_put() to balance its kobject reference counter properly. 214 */ 215 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) 216 { 217 struct cpufreq_policy *policy = NULL; 218 unsigned long flags; 219 220 if (WARN_ON(cpu >= nr_cpu_ids)) 221 return NULL; 222 223 /* get the cpufreq driver */ 224 read_lock_irqsave(&cpufreq_driver_lock, flags); 225 226 if (cpufreq_driver) { 227 /* get the CPU */ 228 policy = cpufreq_cpu_get_raw(cpu); 229 if (policy) 230 kobject_get(&policy->kobj); 231 } 232 233 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 234 235 return policy; 236 } 237 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 238 239 /** 240 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy. 241 * @policy: cpufreq policy returned by cpufreq_cpu_get(). 242 */ 243 void cpufreq_cpu_put(struct cpufreq_policy *policy) 244 { 245 kobject_put(&policy->kobj); 246 } 247 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 248 249 /** 250 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter. 251 * @policy: cpufreq policy returned by cpufreq_cpu_acquire(). 252 */ 253 void cpufreq_cpu_release(struct cpufreq_policy *policy) 254 { 255 if (WARN_ON(!policy)) 256 return; 257 258 lockdep_assert_held(&policy->rwsem); 259 260 up_write(&policy->rwsem); 261 262 cpufreq_cpu_put(policy); 263 } 264 265 /** 266 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it. 267 * @cpu: CPU to find the policy for. 268 * 269 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and 270 * if the policy returned by it is not NULL, acquire its rwsem for writing. 271 * Return the policy if it is active or release it and return NULL otherwise. 272 * 273 * The policy returned by this function has to be released with the help of 274 * cpufreq_cpu_release() in order to release its rwsem and balance its usage 275 * counter properly. 276 */ 277 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu) 278 { 279 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 280 281 if (!policy) 282 return NULL; 283 284 down_write(&policy->rwsem); 285 286 if (policy_is_inactive(policy)) { 287 cpufreq_cpu_release(policy); 288 return NULL; 289 } 290 291 return policy; 292 } 293 294 /********************************************************************* 295 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 296 *********************************************************************/ 297 298 /** 299 * adjust_jiffies - Adjust the system "loops_per_jiffy". 300 * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE. 301 * @ci: Frequency change information. 302 * 303 * This function alters the system "loops_per_jiffy" for the clock 304 * speed change. Note that loops_per_jiffy cannot be updated on SMP 305 * systems as each CPU might be scaled differently. So, use the arch 306 * per-CPU loops_per_jiffy value wherever possible. 307 */ 308 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 309 { 310 #ifndef CONFIG_SMP 311 static unsigned long l_p_j_ref; 312 static unsigned int l_p_j_ref_freq; 313 314 if (ci->flags & CPUFREQ_CONST_LOOPS) 315 return; 316 317 if (!l_p_j_ref_freq) { 318 l_p_j_ref = loops_per_jiffy; 319 l_p_j_ref_freq = ci->old; 320 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n", 321 l_p_j_ref, l_p_j_ref_freq); 322 } 323 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) { 324 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, 325 ci->new); 326 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n", 327 loops_per_jiffy, ci->new); 328 } 329 #endif 330 } 331 332 /** 333 * cpufreq_notify_transition - Notify frequency transition and adjust jiffies. 334 * @policy: cpufreq policy to enable fast frequency switching for. 335 * @freqs: contain details of the frequency update. 336 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE. 337 * 338 * This function calls the transition notifiers and adjust_jiffies(). 339 * 340 * It is called twice on all CPU frequency changes that have external effects. 341 */ 342 static void cpufreq_notify_transition(struct cpufreq_policy *policy, 343 struct cpufreq_freqs *freqs, 344 unsigned int state) 345 { 346 int cpu; 347 348 BUG_ON(irqs_disabled()); 349 350 if (cpufreq_disabled()) 351 return; 352 353 freqs->policy = policy; 354 freqs->flags = cpufreq_driver->flags; 355 pr_debug("notification %u of frequency transition to %u kHz\n", 356 state, freqs->new); 357 358 switch (state) { 359 case CPUFREQ_PRECHANGE: 360 /* 361 * Detect if the driver reported a value as "old frequency" 362 * which is not equal to what the cpufreq core thinks is 363 * "old frequency". 364 */ 365 if (policy->cur && policy->cur != freqs->old) { 366 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n", 367 freqs->old, policy->cur); 368 freqs->old = policy->cur; 369 } 370 371 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 372 CPUFREQ_PRECHANGE, freqs); 373 374 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 375 break; 376 377 case CPUFREQ_POSTCHANGE: 378 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 379 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new, 380 cpumask_pr_args(policy->cpus)); 381 382 for_each_cpu(cpu, policy->cpus) 383 trace_cpu_frequency(freqs->new, cpu); 384 385 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 386 CPUFREQ_POSTCHANGE, freqs); 387 388 cpufreq_stats_record_transition(policy, freqs->new); 389 policy->cur = freqs->new; 390 } 391 } 392 393 /* Do post notifications when there are chances that transition has failed */ 394 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy, 395 struct cpufreq_freqs *freqs, int transition_failed) 396 { 397 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 398 if (!transition_failed) 399 return; 400 401 swap(freqs->old, freqs->new); 402 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 403 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 404 } 405 406 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy, 407 struct cpufreq_freqs *freqs) 408 { 409 410 /* 411 * Catch double invocations of _begin() which lead to self-deadlock. 412 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core 413 * doesn't invoke _begin() on their behalf, and hence the chances of 414 * double invocations are very low. Moreover, there are scenarios 415 * where these checks can emit false-positive warnings in these 416 * drivers; so we avoid that by skipping them altogether. 417 */ 418 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION) 419 && current == policy->transition_task); 420 421 wait: 422 wait_event(policy->transition_wait, !policy->transition_ongoing); 423 424 spin_lock(&policy->transition_lock); 425 426 if (unlikely(policy->transition_ongoing)) { 427 spin_unlock(&policy->transition_lock); 428 goto wait; 429 } 430 431 policy->transition_ongoing = true; 432 policy->transition_task = current; 433 434 spin_unlock(&policy->transition_lock); 435 436 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 437 } 438 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin); 439 440 void cpufreq_freq_transition_end(struct cpufreq_policy *policy, 441 struct cpufreq_freqs *freqs, int transition_failed) 442 { 443 if (WARN_ON(!policy->transition_ongoing)) 444 return; 445 446 cpufreq_notify_post_transition(policy, freqs, transition_failed); 447 448 arch_set_freq_scale(policy->related_cpus, 449 policy->cur, 450 policy->cpuinfo.max_freq); 451 452 policy->transition_ongoing = false; 453 policy->transition_task = NULL; 454 455 wake_up(&policy->transition_wait); 456 } 457 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end); 458 459 /* 460 * Fast frequency switching status count. Positive means "enabled", negative 461 * means "disabled" and 0 means "not decided yet". 462 */ 463 static int cpufreq_fast_switch_count; 464 static DEFINE_MUTEX(cpufreq_fast_switch_lock); 465 466 static void cpufreq_list_transition_notifiers(void) 467 { 468 struct notifier_block *nb; 469 470 pr_info("Registered transition notifiers:\n"); 471 472 mutex_lock(&cpufreq_transition_notifier_list.mutex); 473 474 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next) 475 pr_info("%pS\n", nb->notifier_call); 476 477 mutex_unlock(&cpufreq_transition_notifier_list.mutex); 478 } 479 480 /** 481 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy. 482 * @policy: cpufreq policy to enable fast frequency switching for. 483 * 484 * Try to enable fast frequency switching for @policy. 485 * 486 * The attempt will fail if there is at least one transition notifier registered 487 * at this point, as fast frequency switching is quite fundamentally at odds 488 * with transition notifiers. Thus if successful, it will make registration of 489 * transition notifiers fail going forward. 490 */ 491 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy) 492 { 493 lockdep_assert_held(&policy->rwsem); 494 495 if (!policy->fast_switch_possible) 496 return; 497 498 mutex_lock(&cpufreq_fast_switch_lock); 499 if (cpufreq_fast_switch_count >= 0) { 500 cpufreq_fast_switch_count++; 501 policy->fast_switch_enabled = true; 502 } else { 503 pr_warn("CPU%u: Fast frequency switching not enabled\n", 504 policy->cpu); 505 cpufreq_list_transition_notifiers(); 506 } 507 mutex_unlock(&cpufreq_fast_switch_lock); 508 } 509 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch); 510 511 /** 512 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy. 513 * @policy: cpufreq policy to disable fast frequency switching for. 514 */ 515 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy) 516 { 517 mutex_lock(&cpufreq_fast_switch_lock); 518 if (policy->fast_switch_enabled) { 519 policy->fast_switch_enabled = false; 520 if (!WARN_ON(cpufreq_fast_switch_count <= 0)) 521 cpufreq_fast_switch_count--; 522 } 523 mutex_unlock(&cpufreq_fast_switch_lock); 524 } 525 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch); 526 527 /** 528 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported 529 * one. 530 * @policy: associated policy to interrogate 531 * @target_freq: target frequency to resolve. 532 * 533 * The target to driver frequency mapping is cached in the policy. 534 * 535 * Return: Lowest driver-supported frequency greater than or equal to the 536 * given target_freq, subject to policy (min/max) and driver limitations. 537 */ 538 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy, 539 unsigned int target_freq) 540 { 541 target_freq = clamp_val(target_freq, policy->min, policy->max); 542 policy->cached_target_freq = target_freq; 543 544 if (cpufreq_driver->target_index) { 545 unsigned int idx; 546 547 idx = cpufreq_frequency_table_target(policy, target_freq, 548 CPUFREQ_RELATION_L); 549 policy->cached_resolved_idx = idx; 550 return policy->freq_table[idx].frequency; 551 } 552 553 if (cpufreq_driver->resolve_freq) 554 return cpufreq_driver->resolve_freq(policy, target_freq); 555 556 return target_freq; 557 } 558 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq); 559 560 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy) 561 { 562 unsigned int latency; 563 564 if (policy->transition_delay_us) 565 return policy->transition_delay_us; 566 567 latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC; 568 if (latency) { 569 /* 570 * For platforms that can change the frequency very fast (< 10 571 * us), the above formula gives a decent transition delay. But 572 * for platforms where transition_latency is in milliseconds, it 573 * ends up giving unrealistic values. 574 * 575 * Cap the default transition delay to 10 ms, which seems to be 576 * a reasonable amount of time after which we should reevaluate 577 * the frequency. 578 */ 579 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000); 580 } 581 582 return LATENCY_MULTIPLIER; 583 } 584 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us); 585 586 /********************************************************************* 587 * SYSFS INTERFACE * 588 *********************************************************************/ 589 static ssize_t show_boost(struct kobject *kobj, 590 struct kobj_attribute *attr, char *buf) 591 { 592 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled); 593 } 594 595 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr, 596 const char *buf, size_t count) 597 { 598 int ret, enable; 599 600 ret = sscanf(buf, "%d", &enable); 601 if (ret != 1 || enable < 0 || enable > 1) 602 return -EINVAL; 603 604 if (cpufreq_boost_trigger_state(enable)) { 605 pr_err("%s: Cannot %s BOOST!\n", 606 __func__, enable ? "enable" : "disable"); 607 return -EINVAL; 608 } 609 610 pr_debug("%s: cpufreq BOOST %s\n", 611 __func__, enable ? "enabled" : "disabled"); 612 613 return count; 614 } 615 define_one_global_rw(boost); 616 617 static struct cpufreq_governor *find_governor(const char *str_governor) 618 { 619 struct cpufreq_governor *t; 620 621 for_each_governor(t) 622 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN)) 623 return t; 624 625 return NULL; 626 } 627 628 static struct cpufreq_governor *get_governor(const char *str_governor) 629 { 630 struct cpufreq_governor *t; 631 632 mutex_lock(&cpufreq_governor_mutex); 633 t = find_governor(str_governor); 634 if (!t) 635 goto unlock; 636 637 if (!try_module_get(t->owner)) 638 t = NULL; 639 640 unlock: 641 mutex_unlock(&cpufreq_governor_mutex); 642 643 return t; 644 } 645 646 static unsigned int cpufreq_parse_policy(char *str_governor) 647 { 648 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) 649 return CPUFREQ_POLICY_PERFORMANCE; 650 651 if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) 652 return CPUFREQ_POLICY_POWERSAVE; 653 654 return CPUFREQ_POLICY_UNKNOWN; 655 } 656 657 /** 658 * cpufreq_parse_governor - parse a governor string only for has_target() 659 * @str_governor: Governor name. 660 */ 661 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor) 662 { 663 struct cpufreq_governor *t; 664 665 t = get_governor(str_governor); 666 if (t) 667 return t; 668 669 if (request_module("cpufreq_%s", str_governor)) 670 return NULL; 671 672 return get_governor(str_governor); 673 } 674 675 /* 676 * cpufreq_per_cpu_attr_read() / show_##file_name() - 677 * print out cpufreq information 678 * 679 * Write out information from cpufreq_driver->policy[cpu]; object must be 680 * "unsigned int". 681 */ 682 683 #define show_one(file_name, object) \ 684 static ssize_t show_##file_name \ 685 (struct cpufreq_policy *policy, char *buf) \ 686 { \ 687 return sprintf(buf, "%u\n", policy->object); \ 688 } 689 690 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 691 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 692 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency); 693 show_one(scaling_min_freq, min); 694 show_one(scaling_max_freq, max); 695 696 __weak unsigned int arch_freq_get_on_cpu(int cpu) 697 { 698 return 0; 699 } 700 701 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf) 702 { 703 ssize_t ret; 704 unsigned int freq; 705 706 freq = arch_freq_get_on_cpu(policy->cpu); 707 if (freq) 708 ret = sprintf(buf, "%u\n", freq); 709 else if (cpufreq_driver->setpolicy && cpufreq_driver->get) 710 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu)); 711 else 712 ret = sprintf(buf, "%u\n", policy->cur); 713 return ret; 714 } 715 716 /* 717 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 718 */ 719 #define store_one(file_name, object) \ 720 static ssize_t store_##file_name \ 721 (struct cpufreq_policy *policy, const char *buf, size_t count) \ 722 { \ 723 unsigned long val; \ 724 int ret; \ 725 \ 726 ret = sscanf(buf, "%lu", &val); \ 727 if (ret != 1) \ 728 return -EINVAL; \ 729 \ 730 ret = freq_qos_update_request(policy->object##_freq_req, val);\ 731 return ret >= 0 ? count : ret; \ 732 } 733 734 store_one(scaling_min_freq, min); 735 store_one(scaling_max_freq, max); 736 737 /* 738 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 739 */ 740 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy, 741 char *buf) 742 { 743 unsigned int cur_freq = __cpufreq_get(policy); 744 745 if (cur_freq) 746 return sprintf(buf, "%u\n", cur_freq); 747 748 return sprintf(buf, "<unknown>\n"); 749 } 750 751 /* 752 * show_scaling_governor - show the current policy for the specified CPU 753 */ 754 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf) 755 { 756 if (policy->policy == CPUFREQ_POLICY_POWERSAVE) 757 return sprintf(buf, "powersave\n"); 758 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 759 return sprintf(buf, "performance\n"); 760 else if (policy->governor) 761 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", 762 policy->governor->name); 763 return -EINVAL; 764 } 765 766 /* 767 * store_scaling_governor - store policy for the specified CPU 768 */ 769 static ssize_t store_scaling_governor(struct cpufreq_policy *policy, 770 const char *buf, size_t count) 771 { 772 char str_governor[16]; 773 int ret; 774 775 ret = sscanf(buf, "%15s", str_governor); 776 if (ret != 1) 777 return -EINVAL; 778 779 if (cpufreq_driver->setpolicy) { 780 unsigned int new_pol; 781 782 new_pol = cpufreq_parse_policy(str_governor); 783 if (!new_pol) 784 return -EINVAL; 785 786 ret = cpufreq_set_policy(policy, NULL, new_pol); 787 } else { 788 struct cpufreq_governor *new_gov; 789 790 new_gov = cpufreq_parse_governor(str_governor); 791 if (!new_gov) 792 return -EINVAL; 793 794 ret = cpufreq_set_policy(policy, new_gov, 795 CPUFREQ_POLICY_UNKNOWN); 796 797 module_put(new_gov->owner); 798 } 799 800 return ret ? ret : count; 801 } 802 803 /* 804 * show_scaling_driver - show the cpufreq driver currently loaded 805 */ 806 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf) 807 { 808 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name); 809 } 810 811 /* 812 * show_scaling_available_governors - show the available CPUfreq governors 813 */ 814 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy, 815 char *buf) 816 { 817 ssize_t i = 0; 818 struct cpufreq_governor *t; 819 820 if (!has_target()) { 821 i += sprintf(buf, "performance powersave"); 822 goto out; 823 } 824 825 mutex_lock(&cpufreq_governor_mutex); 826 for_each_governor(t) { 827 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) 828 - (CPUFREQ_NAME_LEN + 2))) 829 break; 830 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name); 831 } 832 mutex_unlock(&cpufreq_governor_mutex); 833 out: 834 i += sprintf(&buf[i], "\n"); 835 return i; 836 } 837 838 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf) 839 { 840 ssize_t i = 0; 841 unsigned int cpu; 842 843 for_each_cpu(cpu, mask) { 844 if (i) 845 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " "); 846 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu); 847 if (i >= (PAGE_SIZE - 5)) 848 break; 849 } 850 i += sprintf(&buf[i], "\n"); 851 return i; 852 } 853 EXPORT_SYMBOL_GPL(cpufreq_show_cpus); 854 855 /* 856 * show_related_cpus - show the CPUs affected by each transition even if 857 * hw coordination is in use 858 */ 859 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf) 860 { 861 return cpufreq_show_cpus(policy->related_cpus, buf); 862 } 863 864 /* 865 * show_affected_cpus - show the CPUs affected by each transition 866 */ 867 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf) 868 { 869 return cpufreq_show_cpus(policy->cpus, buf); 870 } 871 872 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy, 873 const char *buf, size_t count) 874 { 875 unsigned int freq = 0; 876 unsigned int ret; 877 878 if (!policy->governor || !policy->governor->store_setspeed) 879 return -EINVAL; 880 881 ret = sscanf(buf, "%u", &freq); 882 if (ret != 1) 883 return -EINVAL; 884 885 policy->governor->store_setspeed(policy, freq); 886 887 return count; 888 } 889 890 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf) 891 { 892 if (!policy->governor || !policy->governor->show_setspeed) 893 return sprintf(buf, "<unsupported>\n"); 894 895 return policy->governor->show_setspeed(policy, buf); 896 } 897 898 /* 899 * show_bios_limit - show the current cpufreq HW/BIOS limitation 900 */ 901 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf) 902 { 903 unsigned int limit; 904 int ret; 905 ret = cpufreq_driver->bios_limit(policy->cpu, &limit); 906 if (!ret) 907 return sprintf(buf, "%u\n", limit); 908 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq); 909 } 910 911 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400); 912 cpufreq_freq_attr_ro(cpuinfo_min_freq); 913 cpufreq_freq_attr_ro(cpuinfo_max_freq); 914 cpufreq_freq_attr_ro(cpuinfo_transition_latency); 915 cpufreq_freq_attr_ro(scaling_available_governors); 916 cpufreq_freq_attr_ro(scaling_driver); 917 cpufreq_freq_attr_ro(scaling_cur_freq); 918 cpufreq_freq_attr_ro(bios_limit); 919 cpufreq_freq_attr_ro(related_cpus); 920 cpufreq_freq_attr_ro(affected_cpus); 921 cpufreq_freq_attr_rw(scaling_min_freq); 922 cpufreq_freq_attr_rw(scaling_max_freq); 923 cpufreq_freq_attr_rw(scaling_governor); 924 cpufreq_freq_attr_rw(scaling_setspeed); 925 926 static struct attribute *default_attrs[] = { 927 &cpuinfo_min_freq.attr, 928 &cpuinfo_max_freq.attr, 929 &cpuinfo_transition_latency.attr, 930 &scaling_min_freq.attr, 931 &scaling_max_freq.attr, 932 &affected_cpus.attr, 933 &related_cpus.attr, 934 &scaling_governor.attr, 935 &scaling_driver.attr, 936 &scaling_available_governors.attr, 937 &scaling_setspeed.attr, 938 NULL 939 }; 940 941 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj) 942 #define to_attr(a) container_of(a, struct freq_attr, attr) 943 944 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) 945 { 946 struct cpufreq_policy *policy = to_policy(kobj); 947 struct freq_attr *fattr = to_attr(attr); 948 ssize_t ret; 949 950 if (!fattr->show) 951 return -EIO; 952 953 down_read(&policy->rwsem); 954 ret = fattr->show(policy, buf); 955 up_read(&policy->rwsem); 956 957 return ret; 958 } 959 960 static ssize_t store(struct kobject *kobj, struct attribute *attr, 961 const char *buf, size_t count) 962 { 963 struct cpufreq_policy *policy = to_policy(kobj); 964 struct freq_attr *fattr = to_attr(attr); 965 ssize_t ret = -EINVAL; 966 967 if (!fattr->store) 968 return -EIO; 969 970 /* 971 * cpus_read_trylock() is used here to work around a circular lock 972 * dependency problem with respect to the cpufreq_register_driver(). 973 */ 974 if (!cpus_read_trylock()) 975 return -EBUSY; 976 977 if (cpu_online(policy->cpu)) { 978 down_write(&policy->rwsem); 979 ret = fattr->store(policy, buf, count); 980 up_write(&policy->rwsem); 981 } 982 983 cpus_read_unlock(); 984 985 return ret; 986 } 987 988 static void cpufreq_sysfs_release(struct kobject *kobj) 989 { 990 struct cpufreq_policy *policy = to_policy(kobj); 991 pr_debug("last reference is dropped\n"); 992 complete(&policy->kobj_unregister); 993 } 994 995 static const struct sysfs_ops sysfs_ops = { 996 .show = show, 997 .store = store, 998 }; 999 1000 static struct kobj_type ktype_cpufreq = { 1001 .sysfs_ops = &sysfs_ops, 1002 .default_attrs = default_attrs, 1003 .release = cpufreq_sysfs_release, 1004 }; 1005 1006 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu) 1007 { 1008 struct device *dev = get_cpu_device(cpu); 1009 1010 if (unlikely(!dev)) 1011 return; 1012 1013 if (cpumask_test_and_set_cpu(cpu, policy->real_cpus)) 1014 return; 1015 1016 dev_dbg(dev, "%s: Adding symlink\n", __func__); 1017 if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq")) 1018 dev_err(dev, "cpufreq symlink creation failed\n"); 1019 } 1020 1021 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, 1022 struct device *dev) 1023 { 1024 dev_dbg(dev, "%s: Removing symlink\n", __func__); 1025 sysfs_remove_link(&dev->kobj, "cpufreq"); 1026 } 1027 1028 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy) 1029 { 1030 struct freq_attr **drv_attr; 1031 int ret = 0; 1032 1033 /* set up files for this cpu device */ 1034 drv_attr = cpufreq_driver->attr; 1035 while (drv_attr && *drv_attr) { 1036 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 1037 if (ret) 1038 return ret; 1039 drv_attr++; 1040 } 1041 if (cpufreq_driver->get) { 1042 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 1043 if (ret) 1044 return ret; 1045 } 1046 1047 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 1048 if (ret) 1049 return ret; 1050 1051 if (cpufreq_driver->bios_limit) { 1052 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr); 1053 if (ret) 1054 return ret; 1055 } 1056 1057 return 0; 1058 } 1059 1060 static int cpufreq_init_policy(struct cpufreq_policy *policy) 1061 { 1062 struct cpufreq_governor *gov = NULL; 1063 unsigned int pol = CPUFREQ_POLICY_UNKNOWN; 1064 int ret; 1065 1066 if (has_target()) { 1067 /* Update policy governor to the one used before hotplug. */ 1068 gov = get_governor(policy->last_governor); 1069 if (gov) { 1070 pr_debug("Restoring governor %s for cpu %d\n", 1071 gov->name, policy->cpu); 1072 } else { 1073 gov = get_governor(default_governor); 1074 } 1075 1076 if (!gov) { 1077 gov = cpufreq_default_governor(); 1078 __module_get(gov->owner); 1079 } 1080 1081 } else { 1082 1083 /* Use the default policy if there is no last_policy. */ 1084 if (policy->last_policy) { 1085 pol = policy->last_policy; 1086 } else { 1087 pol = cpufreq_parse_policy(default_governor); 1088 /* 1089 * In case the default governor is neither "performance" 1090 * nor "powersave", fall back to the initial policy 1091 * value set by the driver. 1092 */ 1093 if (pol == CPUFREQ_POLICY_UNKNOWN) 1094 pol = policy->policy; 1095 } 1096 if (pol != CPUFREQ_POLICY_PERFORMANCE && 1097 pol != CPUFREQ_POLICY_POWERSAVE) 1098 return -ENODATA; 1099 } 1100 1101 ret = cpufreq_set_policy(policy, gov, pol); 1102 if (gov) 1103 module_put(gov->owner); 1104 1105 return ret; 1106 } 1107 1108 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu) 1109 { 1110 int ret = 0; 1111 1112 /* Has this CPU been taken care of already? */ 1113 if (cpumask_test_cpu(cpu, policy->cpus)) 1114 return 0; 1115 1116 down_write(&policy->rwsem); 1117 if (has_target()) 1118 cpufreq_stop_governor(policy); 1119 1120 cpumask_set_cpu(cpu, policy->cpus); 1121 1122 if (has_target()) { 1123 ret = cpufreq_start_governor(policy); 1124 if (ret) 1125 pr_err("%s: Failed to start governor\n", __func__); 1126 } 1127 up_write(&policy->rwsem); 1128 return ret; 1129 } 1130 1131 void refresh_frequency_limits(struct cpufreq_policy *policy) 1132 { 1133 if (!policy_is_inactive(policy)) { 1134 pr_debug("updating policy for CPU %u\n", policy->cpu); 1135 1136 cpufreq_set_policy(policy, policy->governor, policy->policy); 1137 } 1138 } 1139 EXPORT_SYMBOL(refresh_frequency_limits); 1140 1141 static void handle_update(struct work_struct *work) 1142 { 1143 struct cpufreq_policy *policy = 1144 container_of(work, struct cpufreq_policy, update); 1145 1146 pr_debug("handle_update for cpu %u called\n", policy->cpu); 1147 down_write(&policy->rwsem); 1148 refresh_frequency_limits(policy); 1149 up_write(&policy->rwsem); 1150 } 1151 1152 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq, 1153 void *data) 1154 { 1155 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min); 1156 1157 schedule_work(&policy->update); 1158 return 0; 1159 } 1160 1161 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq, 1162 void *data) 1163 { 1164 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max); 1165 1166 schedule_work(&policy->update); 1167 return 0; 1168 } 1169 1170 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy) 1171 { 1172 struct kobject *kobj; 1173 struct completion *cmp; 1174 1175 down_write(&policy->rwsem); 1176 cpufreq_stats_free_table(policy); 1177 kobj = &policy->kobj; 1178 cmp = &policy->kobj_unregister; 1179 up_write(&policy->rwsem); 1180 kobject_put(kobj); 1181 1182 /* 1183 * We need to make sure that the underlying kobj is 1184 * actually not referenced anymore by anybody before we 1185 * proceed with unloading. 1186 */ 1187 pr_debug("waiting for dropping of refcount\n"); 1188 wait_for_completion(cmp); 1189 pr_debug("wait complete\n"); 1190 } 1191 1192 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu) 1193 { 1194 struct cpufreq_policy *policy; 1195 struct device *dev = get_cpu_device(cpu); 1196 int ret; 1197 1198 if (!dev) 1199 return NULL; 1200 1201 policy = kzalloc(sizeof(*policy), GFP_KERNEL); 1202 if (!policy) 1203 return NULL; 1204 1205 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) 1206 goto err_free_policy; 1207 1208 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) 1209 goto err_free_cpumask; 1210 1211 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL)) 1212 goto err_free_rcpumask; 1213 1214 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, 1215 cpufreq_global_kobject, "policy%u", cpu); 1216 if (ret) { 1217 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret); 1218 /* 1219 * The entire policy object will be freed below, but the extra 1220 * memory allocated for the kobject name needs to be freed by 1221 * releasing the kobject. 1222 */ 1223 kobject_put(&policy->kobj); 1224 goto err_free_real_cpus; 1225 } 1226 1227 freq_constraints_init(&policy->constraints); 1228 1229 policy->nb_min.notifier_call = cpufreq_notifier_min; 1230 policy->nb_max.notifier_call = cpufreq_notifier_max; 1231 1232 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN, 1233 &policy->nb_min); 1234 if (ret) { 1235 dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n", 1236 ret, cpumask_pr_args(policy->cpus)); 1237 goto err_kobj_remove; 1238 } 1239 1240 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX, 1241 &policy->nb_max); 1242 if (ret) { 1243 dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n", 1244 ret, cpumask_pr_args(policy->cpus)); 1245 goto err_min_qos_notifier; 1246 } 1247 1248 INIT_LIST_HEAD(&policy->policy_list); 1249 init_rwsem(&policy->rwsem); 1250 spin_lock_init(&policy->transition_lock); 1251 init_waitqueue_head(&policy->transition_wait); 1252 init_completion(&policy->kobj_unregister); 1253 INIT_WORK(&policy->update, handle_update); 1254 1255 policy->cpu = cpu; 1256 return policy; 1257 1258 err_min_qos_notifier: 1259 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN, 1260 &policy->nb_min); 1261 err_kobj_remove: 1262 cpufreq_policy_put_kobj(policy); 1263 err_free_real_cpus: 1264 free_cpumask_var(policy->real_cpus); 1265 err_free_rcpumask: 1266 free_cpumask_var(policy->related_cpus); 1267 err_free_cpumask: 1268 free_cpumask_var(policy->cpus); 1269 err_free_policy: 1270 kfree(policy); 1271 1272 return NULL; 1273 } 1274 1275 static void cpufreq_policy_free(struct cpufreq_policy *policy) 1276 { 1277 unsigned long flags; 1278 int cpu; 1279 1280 /* Remove policy from list */ 1281 write_lock_irqsave(&cpufreq_driver_lock, flags); 1282 list_del(&policy->policy_list); 1283 1284 for_each_cpu(cpu, policy->related_cpus) 1285 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1286 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1287 1288 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX, 1289 &policy->nb_max); 1290 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN, 1291 &policy->nb_min); 1292 1293 /* Cancel any pending policy->update work before freeing the policy. */ 1294 cancel_work_sync(&policy->update); 1295 1296 if (policy->max_freq_req) { 1297 /* 1298 * CPUFREQ_CREATE_POLICY notification is sent only after 1299 * successfully adding max_freq_req request. 1300 */ 1301 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1302 CPUFREQ_REMOVE_POLICY, policy); 1303 freq_qos_remove_request(policy->max_freq_req); 1304 } 1305 1306 freq_qos_remove_request(policy->min_freq_req); 1307 kfree(policy->min_freq_req); 1308 1309 cpufreq_policy_put_kobj(policy); 1310 free_cpumask_var(policy->real_cpus); 1311 free_cpumask_var(policy->related_cpus); 1312 free_cpumask_var(policy->cpus); 1313 kfree(policy); 1314 } 1315 1316 static int cpufreq_online(unsigned int cpu) 1317 { 1318 struct cpufreq_policy *policy; 1319 bool new_policy; 1320 unsigned long flags; 1321 unsigned int j; 1322 int ret; 1323 1324 pr_debug("%s: bringing CPU%u online\n", __func__, cpu); 1325 1326 /* Check if this CPU already has a policy to manage it */ 1327 policy = per_cpu(cpufreq_cpu_data, cpu); 1328 if (policy) { 1329 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus)); 1330 if (!policy_is_inactive(policy)) 1331 return cpufreq_add_policy_cpu(policy, cpu); 1332 1333 /* This is the only online CPU for the policy. Start over. */ 1334 new_policy = false; 1335 down_write(&policy->rwsem); 1336 policy->cpu = cpu; 1337 policy->governor = NULL; 1338 up_write(&policy->rwsem); 1339 } else { 1340 new_policy = true; 1341 policy = cpufreq_policy_alloc(cpu); 1342 if (!policy) 1343 return -ENOMEM; 1344 } 1345 1346 if (!new_policy && cpufreq_driver->online) { 1347 ret = cpufreq_driver->online(policy); 1348 if (ret) { 1349 pr_debug("%s: %d: initialization failed\n", __func__, 1350 __LINE__); 1351 goto out_exit_policy; 1352 } 1353 1354 /* Recover policy->cpus using related_cpus */ 1355 cpumask_copy(policy->cpus, policy->related_cpus); 1356 } else { 1357 cpumask_copy(policy->cpus, cpumask_of(cpu)); 1358 1359 /* 1360 * Call driver. From then on the cpufreq must be able 1361 * to accept all calls to ->verify and ->setpolicy for this CPU. 1362 */ 1363 ret = cpufreq_driver->init(policy); 1364 if (ret) { 1365 pr_debug("%s: %d: initialization failed\n", __func__, 1366 __LINE__); 1367 goto out_free_policy; 1368 } 1369 1370 ret = cpufreq_table_validate_and_sort(policy); 1371 if (ret) 1372 goto out_exit_policy; 1373 1374 /* related_cpus should at least include policy->cpus. */ 1375 cpumask_copy(policy->related_cpus, policy->cpus); 1376 } 1377 1378 down_write(&policy->rwsem); 1379 /* 1380 * affected cpus must always be the one, which are online. We aren't 1381 * managing offline cpus here. 1382 */ 1383 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask); 1384 1385 if (new_policy) { 1386 for_each_cpu(j, policy->related_cpus) { 1387 per_cpu(cpufreq_cpu_data, j) = policy; 1388 add_cpu_dev_symlink(policy, j); 1389 } 1390 1391 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req), 1392 GFP_KERNEL); 1393 if (!policy->min_freq_req) { 1394 ret = -ENOMEM; 1395 goto out_destroy_policy; 1396 } 1397 1398 ret = freq_qos_add_request(&policy->constraints, 1399 policy->min_freq_req, FREQ_QOS_MIN, 1400 policy->min); 1401 if (ret < 0) { 1402 /* 1403 * So we don't call freq_qos_remove_request() for an 1404 * uninitialized request. 1405 */ 1406 kfree(policy->min_freq_req); 1407 policy->min_freq_req = NULL; 1408 goto out_destroy_policy; 1409 } 1410 1411 /* 1412 * This must be initialized right here to avoid calling 1413 * freq_qos_remove_request() on uninitialized request in case 1414 * of errors. 1415 */ 1416 policy->max_freq_req = policy->min_freq_req + 1; 1417 1418 ret = freq_qos_add_request(&policy->constraints, 1419 policy->max_freq_req, FREQ_QOS_MAX, 1420 policy->max); 1421 if (ret < 0) { 1422 policy->max_freq_req = NULL; 1423 goto out_destroy_policy; 1424 } 1425 1426 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1427 CPUFREQ_CREATE_POLICY, policy); 1428 } 1429 1430 if (cpufreq_driver->get && has_target()) { 1431 policy->cur = cpufreq_driver->get(policy->cpu); 1432 if (!policy->cur) { 1433 ret = -EIO; 1434 pr_err("%s: ->get() failed\n", __func__); 1435 goto out_destroy_policy; 1436 } 1437 } 1438 1439 /* 1440 * Sometimes boot loaders set CPU frequency to a value outside of 1441 * frequency table present with cpufreq core. In such cases CPU might be 1442 * unstable if it has to run on that frequency for long duration of time 1443 * and so its better to set it to a frequency which is specified in 1444 * freq-table. This also makes cpufreq stats inconsistent as 1445 * cpufreq-stats would fail to register because current frequency of CPU 1446 * isn't found in freq-table. 1447 * 1448 * Because we don't want this change to effect boot process badly, we go 1449 * for the next freq which is >= policy->cur ('cur' must be set by now, 1450 * otherwise we will end up setting freq to lowest of the table as 'cur' 1451 * is initialized to zero). 1452 * 1453 * We are passing target-freq as "policy->cur - 1" otherwise 1454 * __cpufreq_driver_target() would simply fail, as policy->cur will be 1455 * equal to target-freq. 1456 */ 1457 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK) 1458 && has_target()) { 1459 unsigned int old_freq = policy->cur; 1460 1461 /* Are we running at unknown frequency ? */ 1462 ret = cpufreq_frequency_table_get_index(policy, old_freq); 1463 if (ret == -EINVAL) { 1464 ret = __cpufreq_driver_target(policy, old_freq - 1, 1465 CPUFREQ_RELATION_L); 1466 1467 /* 1468 * Reaching here after boot in a few seconds may not 1469 * mean that system will remain stable at "unknown" 1470 * frequency for longer duration. Hence, a BUG_ON(). 1471 */ 1472 BUG_ON(ret); 1473 pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n", 1474 __func__, policy->cpu, old_freq, policy->cur); 1475 } 1476 } 1477 1478 if (new_policy) { 1479 ret = cpufreq_add_dev_interface(policy); 1480 if (ret) 1481 goto out_destroy_policy; 1482 1483 cpufreq_stats_create_table(policy); 1484 1485 write_lock_irqsave(&cpufreq_driver_lock, flags); 1486 list_add(&policy->policy_list, &cpufreq_policy_list); 1487 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1488 } 1489 1490 ret = cpufreq_init_policy(policy); 1491 if (ret) { 1492 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n", 1493 __func__, cpu, ret); 1494 goto out_destroy_policy; 1495 } 1496 1497 up_write(&policy->rwsem); 1498 1499 kobject_uevent(&policy->kobj, KOBJ_ADD); 1500 1501 /* Callback for handling stuff after policy is ready */ 1502 if (cpufreq_driver->ready) 1503 cpufreq_driver->ready(policy); 1504 1505 if (cpufreq_thermal_control_enabled(cpufreq_driver)) 1506 policy->cdev = of_cpufreq_cooling_register(policy); 1507 1508 pr_debug("initialization complete\n"); 1509 1510 return 0; 1511 1512 out_destroy_policy: 1513 for_each_cpu(j, policy->real_cpus) 1514 remove_cpu_dev_symlink(policy, get_cpu_device(j)); 1515 1516 up_write(&policy->rwsem); 1517 1518 out_exit_policy: 1519 if (cpufreq_driver->exit) 1520 cpufreq_driver->exit(policy); 1521 1522 out_free_policy: 1523 cpufreq_policy_free(policy); 1524 return ret; 1525 } 1526 1527 /** 1528 * cpufreq_add_dev - the cpufreq interface for a CPU device. 1529 * @dev: CPU device. 1530 * @sif: Subsystem interface structure pointer (not used) 1531 */ 1532 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 1533 { 1534 struct cpufreq_policy *policy; 1535 unsigned cpu = dev->id; 1536 int ret; 1537 1538 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu); 1539 1540 if (cpu_online(cpu)) { 1541 ret = cpufreq_online(cpu); 1542 if (ret) 1543 return ret; 1544 } 1545 1546 /* Create sysfs link on CPU registration */ 1547 policy = per_cpu(cpufreq_cpu_data, cpu); 1548 if (policy) 1549 add_cpu_dev_symlink(policy, cpu); 1550 1551 return 0; 1552 } 1553 1554 static int cpufreq_offline(unsigned int cpu) 1555 { 1556 struct cpufreq_policy *policy; 1557 int ret; 1558 1559 pr_debug("%s: unregistering CPU %u\n", __func__, cpu); 1560 1561 policy = cpufreq_cpu_get_raw(cpu); 1562 if (!policy) { 1563 pr_debug("%s: No cpu_data found\n", __func__); 1564 return 0; 1565 } 1566 1567 down_write(&policy->rwsem); 1568 if (has_target()) 1569 cpufreq_stop_governor(policy); 1570 1571 cpumask_clear_cpu(cpu, policy->cpus); 1572 1573 if (policy_is_inactive(policy)) { 1574 if (has_target()) 1575 strncpy(policy->last_governor, policy->governor->name, 1576 CPUFREQ_NAME_LEN); 1577 else 1578 policy->last_policy = policy->policy; 1579 } else if (cpu == policy->cpu) { 1580 /* Nominate new CPU */ 1581 policy->cpu = cpumask_any(policy->cpus); 1582 } 1583 1584 /* Start governor again for active policy */ 1585 if (!policy_is_inactive(policy)) { 1586 if (has_target()) { 1587 ret = cpufreq_start_governor(policy); 1588 if (ret) 1589 pr_err("%s: Failed to start governor\n", __func__); 1590 } 1591 1592 goto unlock; 1593 } 1594 1595 if (cpufreq_thermal_control_enabled(cpufreq_driver)) { 1596 cpufreq_cooling_unregister(policy->cdev); 1597 policy->cdev = NULL; 1598 } 1599 1600 if (cpufreq_driver->stop_cpu) 1601 cpufreq_driver->stop_cpu(policy); 1602 1603 if (has_target()) 1604 cpufreq_exit_governor(policy); 1605 1606 /* 1607 * Perform the ->offline() during light-weight tear-down, as 1608 * that allows fast recovery when the CPU comes back. 1609 */ 1610 if (cpufreq_driver->offline) { 1611 cpufreq_driver->offline(policy); 1612 } else if (cpufreq_driver->exit) { 1613 cpufreq_driver->exit(policy); 1614 policy->freq_table = NULL; 1615 } 1616 1617 unlock: 1618 up_write(&policy->rwsem); 1619 return 0; 1620 } 1621 1622 /* 1623 * cpufreq_remove_dev - remove a CPU device 1624 * 1625 * Removes the cpufreq interface for a CPU device. 1626 */ 1627 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif) 1628 { 1629 unsigned int cpu = dev->id; 1630 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1631 1632 if (!policy) 1633 return; 1634 1635 if (cpu_online(cpu)) 1636 cpufreq_offline(cpu); 1637 1638 cpumask_clear_cpu(cpu, policy->real_cpus); 1639 remove_cpu_dev_symlink(policy, dev); 1640 1641 if (cpumask_empty(policy->real_cpus)) { 1642 /* We did light-weight exit earlier, do full tear down now */ 1643 if (cpufreq_driver->offline) 1644 cpufreq_driver->exit(policy); 1645 1646 cpufreq_policy_free(policy); 1647 } 1648 } 1649 1650 /** 1651 * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference. 1652 * @policy: Policy managing CPUs. 1653 * @new_freq: New CPU frequency. 1654 * 1655 * Adjust to the current frequency first and clean up later by either calling 1656 * cpufreq_update_policy(), or scheduling handle_update(). 1657 */ 1658 static void cpufreq_out_of_sync(struct cpufreq_policy *policy, 1659 unsigned int new_freq) 1660 { 1661 struct cpufreq_freqs freqs; 1662 1663 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n", 1664 policy->cur, new_freq); 1665 1666 freqs.old = policy->cur; 1667 freqs.new = new_freq; 1668 1669 cpufreq_freq_transition_begin(policy, &freqs); 1670 cpufreq_freq_transition_end(policy, &freqs, 0); 1671 } 1672 1673 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update) 1674 { 1675 unsigned int new_freq; 1676 1677 new_freq = cpufreq_driver->get(policy->cpu); 1678 if (!new_freq) 1679 return 0; 1680 1681 /* 1682 * If fast frequency switching is used with the given policy, the check 1683 * against policy->cur is pointless, so skip it in that case. 1684 */ 1685 if (policy->fast_switch_enabled || !has_target()) 1686 return new_freq; 1687 1688 if (policy->cur != new_freq) { 1689 cpufreq_out_of_sync(policy, new_freq); 1690 if (update) 1691 schedule_work(&policy->update); 1692 } 1693 1694 return new_freq; 1695 } 1696 1697 /** 1698 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur 1699 * @cpu: CPU number 1700 * 1701 * This is the last known freq, without actually getting it from the driver. 1702 * Return value will be same as what is shown in scaling_cur_freq in sysfs. 1703 */ 1704 unsigned int cpufreq_quick_get(unsigned int cpu) 1705 { 1706 struct cpufreq_policy *policy; 1707 unsigned int ret_freq = 0; 1708 unsigned long flags; 1709 1710 read_lock_irqsave(&cpufreq_driver_lock, flags); 1711 1712 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) { 1713 ret_freq = cpufreq_driver->get(cpu); 1714 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1715 return ret_freq; 1716 } 1717 1718 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1719 1720 policy = cpufreq_cpu_get(cpu); 1721 if (policy) { 1722 ret_freq = policy->cur; 1723 cpufreq_cpu_put(policy); 1724 } 1725 1726 return ret_freq; 1727 } 1728 EXPORT_SYMBOL(cpufreq_quick_get); 1729 1730 /** 1731 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU 1732 * @cpu: CPU number 1733 * 1734 * Just return the max possible frequency for a given CPU. 1735 */ 1736 unsigned int cpufreq_quick_get_max(unsigned int cpu) 1737 { 1738 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1739 unsigned int ret_freq = 0; 1740 1741 if (policy) { 1742 ret_freq = policy->max; 1743 cpufreq_cpu_put(policy); 1744 } 1745 1746 return ret_freq; 1747 } 1748 EXPORT_SYMBOL(cpufreq_quick_get_max); 1749 1750 /** 1751 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU 1752 * @cpu: CPU number 1753 * 1754 * The default return value is the max_freq field of cpuinfo. 1755 */ 1756 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu) 1757 { 1758 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1759 unsigned int ret_freq = 0; 1760 1761 if (policy) { 1762 ret_freq = policy->cpuinfo.max_freq; 1763 cpufreq_cpu_put(policy); 1764 } 1765 1766 return ret_freq; 1767 } 1768 EXPORT_SYMBOL(cpufreq_get_hw_max_freq); 1769 1770 static unsigned int __cpufreq_get(struct cpufreq_policy *policy) 1771 { 1772 if (unlikely(policy_is_inactive(policy))) 1773 return 0; 1774 1775 return cpufreq_verify_current_freq(policy, true); 1776 } 1777 1778 /** 1779 * cpufreq_get - get the current CPU frequency (in kHz) 1780 * @cpu: CPU number 1781 * 1782 * Get the CPU current (static) CPU frequency 1783 */ 1784 unsigned int cpufreq_get(unsigned int cpu) 1785 { 1786 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1787 unsigned int ret_freq = 0; 1788 1789 if (policy) { 1790 down_read(&policy->rwsem); 1791 if (cpufreq_driver->get) 1792 ret_freq = __cpufreq_get(policy); 1793 up_read(&policy->rwsem); 1794 1795 cpufreq_cpu_put(policy); 1796 } 1797 1798 return ret_freq; 1799 } 1800 EXPORT_SYMBOL(cpufreq_get); 1801 1802 static struct subsys_interface cpufreq_interface = { 1803 .name = "cpufreq", 1804 .subsys = &cpu_subsys, 1805 .add_dev = cpufreq_add_dev, 1806 .remove_dev = cpufreq_remove_dev, 1807 }; 1808 1809 /* 1810 * In case platform wants some specific frequency to be configured 1811 * during suspend.. 1812 */ 1813 int cpufreq_generic_suspend(struct cpufreq_policy *policy) 1814 { 1815 int ret; 1816 1817 if (!policy->suspend_freq) { 1818 pr_debug("%s: suspend_freq not defined\n", __func__); 1819 return 0; 1820 } 1821 1822 pr_debug("%s: Setting suspend-freq: %u\n", __func__, 1823 policy->suspend_freq); 1824 1825 ret = __cpufreq_driver_target(policy, policy->suspend_freq, 1826 CPUFREQ_RELATION_H); 1827 if (ret) 1828 pr_err("%s: unable to set suspend-freq: %u. err: %d\n", 1829 __func__, policy->suspend_freq, ret); 1830 1831 return ret; 1832 } 1833 EXPORT_SYMBOL(cpufreq_generic_suspend); 1834 1835 /** 1836 * cpufreq_suspend() - Suspend CPUFreq governors. 1837 * 1838 * Called during system wide Suspend/Hibernate cycles for suspending governors 1839 * as some platforms can't change frequency after this point in suspend cycle. 1840 * Because some of the devices (like: i2c, regulators, etc) they use for 1841 * changing frequency are suspended quickly after this point. 1842 */ 1843 void cpufreq_suspend(void) 1844 { 1845 struct cpufreq_policy *policy; 1846 1847 if (!cpufreq_driver) 1848 return; 1849 1850 if (!has_target() && !cpufreq_driver->suspend) 1851 goto suspend; 1852 1853 pr_debug("%s: Suspending Governors\n", __func__); 1854 1855 for_each_active_policy(policy) { 1856 if (has_target()) { 1857 down_write(&policy->rwsem); 1858 cpufreq_stop_governor(policy); 1859 up_write(&policy->rwsem); 1860 } 1861 1862 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy)) 1863 pr_err("%s: Failed to suspend driver: %s\n", __func__, 1864 cpufreq_driver->name); 1865 } 1866 1867 suspend: 1868 cpufreq_suspended = true; 1869 } 1870 1871 /** 1872 * cpufreq_resume() - Resume CPUFreq governors. 1873 * 1874 * Called during system wide Suspend/Hibernate cycle for resuming governors that 1875 * are suspended with cpufreq_suspend(). 1876 */ 1877 void cpufreq_resume(void) 1878 { 1879 struct cpufreq_policy *policy; 1880 int ret; 1881 1882 if (!cpufreq_driver) 1883 return; 1884 1885 if (unlikely(!cpufreq_suspended)) 1886 return; 1887 1888 cpufreq_suspended = false; 1889 1890 if (!has_target() && !cpufreq_driver->resume) 1891 return; 1892 1893 pr_debug("%s: Resuming Governors\n", __func__); 1894 1895 for_each_active_policy(policy) { 1896 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) { 1897 pr_err("%s: Failed to resume driver: %p\n", __func__, 1898 policy); 1899 } else if (has_target()) { 1900 down_write(&policy->rwsem); 1901 ret = cpufreq_start_governor(policy); 1902 up_write(&policy->rwsem); 1903 1904 if (ret) 1905 pr_err("%s: Failed to start governor for policy: %p\n", 1906 __func__, policy); 1907 } 1908 } 1909 } 1910 1911 /** 1912 * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones. 1913 * @flags: Flags to test against the current cpufreq driver's flags. 1914 * 1915 * Assumes that the driver is there, so callers must ensure that this is the 1916 * case. 1917 */ 1918 bool cpufreq_driver_test_flags(u16 flags) 1919 { 1920 return !!(cpufreq_driver->flags & flags); 1921 } 1922 1923 /** 1924 * cpufreq_get_current_driver - Return the current driver's name. 1925 * 1926 * Return the name string of the currently registered cpufreq driver or NULL if 1927 * none. 1928 */ 1929 const char *cpufreq_get_current_driver(void) 1930 { 1931 if (cpufreq_driver) 1932 return cpufreq_driver->name; 1933 1934 return NULL; 1935 } 1936 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver); 1937 1938 /** 1939 * cpufreq_get_driver_data - Return current driver data. 1940 * 1941 * Return the private data of the currently registered cpufreq driver, or NULL 1942 * if no cpufreq driver has been registered. 1943 */ 1944 void *cpufreq_get_driver_data(void) 1945 { 1946 if (cpufreq_driver) 1947 return cpufreq_driver->driver_data; 1948 1949 return NULL; 1950 } 1951 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data); 1952 1953 /********************************************************************* 1954 * NOTIFIER LISTS INTERFACE * 1955 *********************************************************************/ 1956 1957 /** 1958 * cpufreq_register_notifier - Register a notifier with cpufreq. 1959 * @nb: notifier function to register. 1960 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER. 1961 * 1962 * Add a notifier to one of two lists: either a list of notifiers that run on 1963 * clock rate changes (once before and once after every transition), or a list 1964 * of notifiers that ron on cpufreq policy changes. 1965 * 1966 * This function may sleep and it has the same return values as 1967 * blocking_notifier_chain_register(). 1968 */ 1969 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 1970 { 1971 int ret; 1972 1973 if (cpufreq_disabled()) 1974 return -EINVAL; 1975 1976 switch (list) { 1977 case CPUFREQ_TRANSITION_NOTIFIER: 1978 mutex_lock(&cpufreq_fast_switch_lock); 1979 1980 if (cpufreq_fast_switch_count > 0) { 1981 mutex_unlock(&cpufreq_fast_switch_lock); 1982 return -EBUSY; 1983 } 1984 ret = srcu_notifier_chain_register( 1985 &cpufreq_transition_notifier_list, nb); 1986 if (!ret) 1987 cpufreq_fast_switch_count--; 1988 1989 mutex_unlock(&cpufreq_fast_switch_lock); 1990 break; 1991 case CPUFREQ_POLICY_NOTIFIER: 1992 ret = blocking_notifier_chain_register( 1993 &cpufreq_policy_notifier_list, nb); 1994 break; 1995 default: 1996 ret = -EINVAL; 1997 } 1998 1999 return ret; 2000 } 2001 EXPORT_SYMBOL(cpufreq_register_notifier); 2002 2003 /** 2004 * cpufreq_unregister_notifier - Unregister a notifier from cpufreq. 2005 * @nb: notifier block to be unregistered. 2006 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER. 2007 * 2008 * Remove a notifier from one of the cpufreq notifier lists. 2009 * 2010 * This function may sleep and it has the same return values as 2011 * blocking_notifier_chain_unregister(). 2012 */ 2013 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 2014 { 2015 int ret; 2016 2017 if (cpufreq_disabled()) 2018 return -EINVAL; 2019 2020 switch (list) { 2021 case CPUFREQ_TRANSITION_NOTIFIER: 2022 mutex_lock(&cpufreq_fast_switch_lock); 2023 2024 ret = srcu_notifier_chain_unregister( 2025 &cpufreq_transition_notifier_list, nb); 2026 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0)) 2027 cpufreq_fast_switch_count++; 2028 2029 mutex_unlock(&cpufreq_fast_switch_lock); 2030 break; 2031 case CPUFREQ_POLICY_NOTIFIER: 2032 ret = blocking_notifier_chain_unregister( 2033 &cpufreq_policy_notifier_list, nb); 2034 break; 2035 default: 2036 ret = -EINVAL; 2037 } 2038 2039 return ret; 2040 } 2041 EXPORT_SYMBOL(cpufreq_unregister_notifier); 2042 2043 2044 /********************************************************************* 2045 * GOVERNORS * 2046 *********************************************************************/ 2047 2048 /** 2049 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch. 2050 * @policy: cpufreq policy to switch the frequency for. 2051 * @target_freq: New frequency to set (may be approximate). 2052 * 2053 * Carry out a fast frequency switch without sleeping. 2054 * 2055 * The driver's ->fast_switch() callback invoked by this function must be 2056 * suitable for being called from within RCU-sched read-side critical sections 2057 * and it is expected to select the minimum available frequency greater than or 2058 * equal to @target_freq (CPUFREQ_RELATION_L). 2059 * 2060 * This function must not be called if policy->fast_switch_enabled is unset. 2061 * 2062 * Governors calling this function must guarantee that it will never be invoked 2063 * twice in parallel for the same policy and that it will never be called in 2064 * parallel with either ->target() or ->target_index() for the same policy. 2065 * 2066 * Returns the actual frequency set for the CPU. 2067 * 2068 * If 0 is returned by the driver's ->fast_switch() callback to indicate an 2069 * error condition, the hardware configuration must be preserved. 2070 */ 2071 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy, 2072 unsigned int target_freq) 2073 { 2074 unsigned int freq; 2075 int cpu; 2076 2077 target_freq = clamp_val(target_freq, policy->min, policy->max); 2078 freq = cpufreq_driver->fast_switch(policy, target_freq); 2079 2080 if (!freq) 2081 return 0; 2082 2083 policy->cur = freq; 2084 arch_set_freq_scale(policy->related_cpus, freq, 2085 policy->cpuinfo.max_freq); 2086 cpufreq_stats_record_transition(policy, freq); 2087 2088 if (trace_cpu_frequency_enabled()) { 2089 for_each_cpu(cpu, policy->cpus) 2090 trace_cpu_frequency(freq, cpu); 2091 } 2092 2093 return freq; 2094 } 2095 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch); 2096 2097 /** 2098 * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go. 2099 * @cpu: Target CPU. 2100 * @min_perf: Minimum (required) performance level (units of @capacity). 2101 * @target_perf: Target (desired) performance level (units of @capacity). 2102 * @capacity: Capacity of the target CPU. 2103 * 2104 * Carry out a fast performance level switch of @cpu without sleeping. 2105 * 2106 * The driver's ->adjust_perf() callback invoked by this function must be 2107 * suitable for being called from within RCU-sched read-side critical sections 2108 * and it is expected to select a suitable performance level equal to or above 2109 * @min_perf and preferably equal to or below @target_perf. 2110 * 2111 * This function must not be called if policy->fast_switch_enabled is unset. 2112 * 2113 * Governors calling this function must guarantee that it will never be invoked 2114 * twice in parallel for the same CPU and that it will never be called in 2115 * parallel with either ->target() or ->target_index() or ->fast_switch() for 2116 * the same CPU. 2117 */ 2118 void cpufreq_driver_adjust_perf(unsigned int cpu, 2119 unsigned long min_perf, 2120 unsigned long target_perf, 2121 unsigned long capacity) 2122 { 2123 cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity); 2124 } 2125 2126 /** 2127 * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback. 2128 * 2129 * Return 'true' if the ->adjust_perf callback is present for the 2130 * current driver or 'false' otherwise. 2131 */ 2132 bool cpufreq_driver_has_adjust_perf(void) 2133 { 2134 return !!cpufreq_driver->adjust_perf; 2135 } 2136 2137 /* Must set freqs->new to intermediate frequency */ 2138 static int __target_intermediate(struct cpufreq_policy *policy, 2139 struct cpufreq_freqs *freqs, int index) 2140 { 2141 int ret; 2142 2143 freqs->new = cpufreq_driver->get_intermediate(policy, index); 2144 2145 /* We don't need to switch to intermediate freq */ 2146 if (!freqs->new) 2147 return 0; 2148 2149 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n", 2150 __func__, policy->cpu, freqs->old, freqs->new); 2151 2152 cpufreq_freq_transition_begin(policy, freqs); 2153 ret = cpufreq_driver->target_intermediate(policy, index); 2154 cpufreq_freq_transition_end(policy, freqs, ret); 2155 2156 if (ret) 2157 pr_err("%s: Failed to change to intermediate frequency: %d\n", 2158 __func__, ret); 2159 2160 return ret; 2161 } 2162 2163 static int __target_index(struct cpufreq_policy *policy, int index) 2164 { 2165 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0}; 2166 unsigned int restore_freq, intermediate_freq = 0; 2167 unsigned int newfreq = policy->freq_table[index].frequency; 2168 int retval = -EINVAL; 2169 bool notify; 2170 2171 if (newfreq == policy->cur) 2172 return 0; 2173 2174 /* Save last value to restore later on errors */ 2175 restore_freq = policy->cur; 2176 2177 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION); 2178 if (notify) { 2179 /* Handle switching to intermediate frequency */ 2180 if (cpufreq_driver->get_intermediate) { 2181 retval = __target_intermediate(policy, &freqs, index); 2182 if (retval) 2183 return retval; 2184 2185 intermediate_freq = freqs.new; 2186 /* Set old freq to intermediate */ 2187 if (intermediate_freq) 2188 freqs.old = freqs.new; 2189 } 2190 2191 freqs.new = newfreq; 2192 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n", 2193 __func__, policy->cpu, freqs.old, freqs.new); 2194 2195 cpufreq_freq_transition_begin(policy, &freqs); 2196 } 2197 2198 retval = cpufreq_driver->target_index(policy, index); 2199 if (retval) 2200 pr_err("%s: Failed to change cpu frequency: %d\n", __func__, 2201 retval); 2202 2203 if (notify) { 2204 cpufreq_freq_transition_end(policy, &freqs, retval); 2205 2206 /* 2207 * Failed after setting to intermediate freq? Driver should have 2208 * reverted back to initial frequency and so should we. Check 2209 * here for intermediate_freq instead of get_intermediate, in 2210 * case we haven't switched to intermediate freq at all. 2211 */ 2212 if (unlikely(retval && intermediate_freq)) { 2213 freqs.old = intermediate_freq; 2214 freqs.new = restore_freq; 2215 cpufreq_freq_transition_begin(policy, &freqs); 2216 cpufreq_freq_transition_end(policy, &freqs, 0); 2217 } 2218 } 2219 2220 return retval; 2221 } 2222 2223 int __cpufreq_driver_target(struct cpufreq_policy *policy, 2224 unsigned int target_freq, 2225 unsigned int relation) 2226 { 2227 unsigned int old_target_freq = target_freq; 2228 int index; 2229 2230 if (cpufreq_disabled()) 2231 return -ENODEV; 2232 2233 /* Make sure that target_freq is within supported range */ 2234 target_freq = clamp_val(target_freq, policy->min, policy->max); 2235 2236 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n", 2237 policy->cpu, target_freq, relation, old_target_freq); 2238 2239 /* 2240 * This might look like a redundant call as we are checking it again 2241 * after finding index. But it is left intentionally for cases where 2242 * exactly same freq is called again and so we can save on few function 2243 * calls. 2244 */ 2245 if (target_freq == policy->cur && 2246 !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS)) 2247 return 0; 2248 2249 if (cpufreq_driver->target) 2250 return cpufreq_driver->target(policy, target_freq, relation); 2251 2252 if (!cpufreq_driver->target_index) 2253 return -EINVAL; 2254 2255 index = cpufreq_frequency_table_target(policy, target_freq, relation); 2256 2257 return __target_index(policy, index); 2258 } 2259 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 2260 2261 int cpufreq_driver_target(struct cpufreq_policy *policy, 2262 unsigned int target_freq, 2263 unsigned int relation) 2264 { 2265 int ret; 2266 2267 down_write(&policy->rwsem); 2268 2269 ret = __cpufreq_driver_target(policy, target_freq, relation); 2270 2271 up_write(&policy->rwsem); 2272 2273 return ret; 2274 } 2275 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 2276 2277 __weak struct cpufreq_governor *cpufreq_fallback_governor(void) 2278 { 2279 return NULL; 2280 } 2281 2282 static int cpufreq_init_governor(struct cpufreq_policy *policy) 2283 { 2284 int ret; 2285 2286 /* Don't start any governor operations if we are entering suspend */ 2287 if (cpufreq_suspended) 2288 return 0; 2289 /* 2290 * Governor might not be initiated here if ACPI _PPC changed 2291 * notification happened, so check it. 2292 */ 2293 if (!policy->governor) 2294 return -EINVAL; 2295 2296 /* Platform doesn't want dynamic frequency switching ? */ 2297 if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING && 2298 cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) { 2299 struct cpufreq_governor *gov = cpufreq_fallback_governor(); 2300 2301 if (gov) { 2302 pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n", 2303 policy->governor->name, gov->name); 2304 policy->governor = gov; 2305 } else { 2306 return -EINVAL; 2307 } 2308 } 2309 2310 if (!try_module_get(policy->governor->owner)) 2311 return -EINVAL; 2312 2313 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2314 2315 if (policy->governor->init) { 2316 ret = policy->governor->init(policy); 2317 if (ret) { 2318 module_put(policy->governor->owner); 2319 return ret; 2320 } 2321 } 2322 2323 policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET); 2324 2325 return 0; 2326 } 2327 2328 static void cpufreq_exit_governor(struct cpufreq_policy *policy) 2329 { 2330 if (cpufreq_suspended || !policy->governor) 2331 return; 2332 2333 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2334 2335 if (policy->governor->exit) 2336 policy->governor->exit(policy); 2337 2338 module_put(policy->governor->owner); 2339 } 2340 2341 int cpufreq_start_governor(struct cpufreq_policy *policy) 2342 { 2343 int ret; 2344 2345 if (cpufreq_suspended) 2346 return 0; 2347 2348 if (!policy->governor) 2349 return -EINVAL; 2350 2351 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2352 2353 if (cpufreq_driver->get) 2354 cpufreq_verify_current_freq(policy, false); 2355 2356 if (policy->governor->start) { 2357 ret = policy->governor->start(policy); 2358 if (ret) 2359 return ret; 2360 } 2361 2362 if (policy->governor->limits) 2363 policy->governor->limits(policy); 2364 2365 return 0; 2366 } 2367 2368 void cpufreq_stop_governor(struct cpufreq_policy *policy) 2369 { 2370 if (cpufreq_suspended || !policy->governor) 2371 return; 2372 2373 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2374 2375 if (policy->governor->stop) 2376 policy->governor->stop(policy); 2377 } 2378 2379 static void cpufreq_governor_limits(struct cpufreq_policy *policy) 2380 { 2381 if (cpufreq_suspended || !policy->governor) 2382 return; 2383 2384 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2385 2386 if (policy->governor->limits) 2387 policy->governor->limits(policy); 2388 } 2389 2390 int cpufreq_register_governor(struct cpufreq_governor *governor) 2391 { 2392 int err; 2393 2394 if (!governor) 2395 return -EINVAL; 2396 2397 if (cpufreq_disabled()) 2398 return -ENODEV; 2399 2400 mutex_lock(&cpufreq_governor_mutex); 2401 2402 err = -EBUSY; 2403 if (!find_governor(governor->name)) { 2404 err = 0; 2405 list_add(&governor->governor_list, &cpufreq_governor_list); 2406 } 2407 2408 mutex_unlock(&cpufreq_governor_mutex); 2409 return err; 2410 } 2411 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 2412 2413 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 2414 { 2415 struct cpufreq_policy *policy; 2416 unsigned long flags; 2417 2418 if (!governor) 2419 return; 2420 2421 if (cpufreq_disabled()) 2422 return; 2423 2424 /* clear last_governor for all inactive policies */ 2425 read_lock_irqsave(&cpufreq_driver_lock, flags); 2426 for_each_inactive_policy(policy) { 2427 if (!strcmp(policy->last_governor, governor->name)) { 2428 policy->governor = NULL; 2429 strcpy(policy->last_governor, "\0"); 2430 } 2431 } 2432 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 2433 2434 mutex_lock(&cpufreq_governor_mutex); 2435 list_del(&governor->governor_list); 2436 mutex_unlock(&cpufreq_governor_mutex); 2437 } 2438 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 2439 2440 2441 /********************************************************************* 2442 * POLICY INTERFACE * 2443 *********************************************************************/ 2444 2445 /** 2446 * cpufreq_get_policy - get the current cpufreq_policy 2447 * @policy: struct cpufreq_policy into which the current cpufreq_policy 2448 * is written 2449 * @cpu: CPU to find the policy for 2450 * 2451 * Reads the current cpufreq policy. 2452 */ 2453 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 2454 { 2455 struct cpufreq_policy *cpu_policy; 2456 if (!policy) 2457 return -EINVAL; 2458 2459 cpu_policy = cpufreq_cpu_get(cpu); 2460 if (!cpu_policy) 2461 return -EINVAL; 2462 2463 memcpy(policy, cpu_policy, sizeof(*policy)); 2464 2465 cpufreq_cpu_put(cpu_policy); 2466 return 0; 2467 } 2468 EXPORT_SYMBOL(cpufreq_get_policy); 2469 2470 /** 2471 * cpufreq_set_policy - Modify cpufreq policy parameters. 2472 * @policy: Policy object to modify. 2473 * @new_gov: Policy governor pointer. 2474 * @new_pol: Policy value (for drivers with built-in governors). 2475 * 2476 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency 2477 * limits to be set for the policy, update @policy with the verified limits 2478 * values and either invoke the driver's ->setpolicy() callback (if present) or 2479 * carry out a governor update for @policy. That is, run the current governor's 2480 * ->limits() callback (if @new_gov points to the same object as the one in 2481 * @policy) or replace the governor for @policy with @new_gov. 2482 * 2483 * The cpuinfo part of @policy is not updated by this function. 2484 */ 2485 static int cpufreq_set_policy(struct cpufreq_policy *policy, 2486 struct cpufreq_governor *new_gov, 2487 unsigned int new_pol) 2488 { 2489 struct cpufreq_policy_data new_data; 2490 struct cpufreq_governor *old_gov; 2491 int ret; 2492 2493 memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo)); 2494 new_data.freq_table = policy->freq_table; 2495 new_data.cpu = policy->cpu; 2496 /* 2497 * PM QoS framework collects all the requests from users and provide us 2498 * the final aggregated value here. 2499 */ 2500 new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN); 2501 new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX); 2502 2503 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", 2504 new_data.cpu, new_data.min, new_data.max); 2505 2506 /* 2507 * Verify that the CPU speed can be set within these limits and make sure 2508 * that min <= max. 2509 */ 2510 ret = cpufreq_driver->verify(&new_data); 2511 if (ret) 2512 return ret; 2513 2514 policy->min = new_data.min; 2515 policy->max = new_data.max; 2516 trace_cpu_frequency_limits(policy); 2517 2518 policy->cached_target_freq = UINT_MAX; 2519 2520 pr_debug("new min and max freqs are %u - %u kHz\n", 2521 policy->min, policy->max); 2522 2523 if (cpufreq_driver->setpolicy) { 2524 policy->policy = new_pol; 2525 pr_debug("setting range\n"); 2526 return cpufreq_driver->setpolicy(policy); 2527 } 2528 2529 if (new_gov == policy->governor) { 2530 pr_debug("governor limits update\n"); 2531 cpufreq_governor_limits(policy); 2532 return 0; 2533 } 2534 2535 pr_debug("governor switch\n"); 2536 2537 /* save old, working values */ 2538 old_gov = policy->governor; 2539 /* end old governor */ 2540 if (old_gov) { 2541 cpufreq_stop_governor(policy); 2542 cpufreq_exit_governor(policy); 2543 } 2544 2545 /* start new governor */ 2546 policy->governor = new_gov; 2547 ret = cpufreq_init_governor(policy); 2548 if (!ret) { 2549 ret = cpufreq_start_governor(policy); 2550 if (!ret) { 2551 pr_debug("governor change\n"); 2552 sched_cpufreq_governor_change(policy, old_gov); 2553 return 0; 2554 } 2555 cpufreq_exit_governor(policy); 2556 } 2557 2558 /* new governor failed, so re-start old one */ 2559 pr_debug("starting governor %s failed\n", policy->governor->name); 2560 if (old_gov) { 2561 policy->governor = old_gov; 2562 if (cpufreq_init_governor(policy)) 2563 policy->governor = NULL; 2564 else 2565 cpufreq_start_governor(policy); 2566 } 2567 2568 return ret; 2569 } 2570 2571 /** 2572 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy. 2573 * @cpu: CPU to re-evaluate the policy for. 2574 * 2575 * Update the current frequency for the cpufreq policy of @cpu and use 2576 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the 2577 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback 2578 * for the policy in question, among other things. 2579 */ 2580 void cpufreq_update_policy(unsigned int cpu) 2581 { 2582 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu); 2583 2584 if (!policy) 2585 return; 2586 2587 /* 2588 * BIOS might change freq behind our back 2589 * -> ask driver for current freq and notify governors about a change 2590 */ 2591 if (cpufreq_driver->get && has_target() && 2592 (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false)))) 2593 goto unlock; 2594 2595 refresh_frequency_limits(policy); 2596 2597 unlock: 2598 cpufreq_cpu_release(policy); 2599 } 2600 EXPORT_SYMBOL(cpufreq_update_policy); 2601 2602 /** 2603 * cpufreq_update_limits - Update policy limits for a given CPU. 2604 * @cpu: CPU to update the policy limits for. 2605 * 2606 * Invoke the driver's ->update_limits callback if present or call 2607 * cpufreq_update_policy() for @cpu. 2608 */ 2609 void cpufreq_update_limits(unsigned int cpu) 2610 { 2611 if (cpufreq_driver->update_limits) 2612 cpufreq_driver->update_limits(cpu); 2613 else 2614 cpufreq_update_policy(cpu); 2615 } 2616 EXPORT_SYMBOL_GPL(cpufreq_update_limits); 2617 2618 /********************************************************************* 2619 * BOOST * 2620 *********************************************************************/ 2621 static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state) 2622 { 2623 int ret; 2624 2625 if (!policy->freq_table) 2626 return -ENXIO; 2627 2628 ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table); 2629 if (ret) { 2630 pr_err("%s: Policy frequency update failed\n", __func__); 2631 return ret; 2632 } 2633 2634 ret = freq_qos_update_request(policy->max_freq_req, policy->max); 2635 if (ret < 0) 2636 return ret; 2637 2638 return 0; 2639 } 2640 2641 int cpufreq_boost_trigger_state(int state) 2642 { 2643 struct cpufreq_policy *policy; 2644 unsigned long flags; 2645 int ret = 0; 2646 2647 if (cpufreq_driver->boost_enabled == state) 2648 return 0; 2649 2650 write_lock_irqsave(&cpufreq_driver_lock, flags); 2651 cpufreq_driver->boost_enabled = state; 2652 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2653 2654 get_online_cpus(); 2655 for_each_active_policy(policy) { 2656 ret = cpufreq_driver->set_boost(policy, state); 2657 if (ret) 2658 goto err_reset_state; 2659 } 2660 put_online_cpus(); 2661 2662 return 0; 2663 2664 err_reset_state: 2665 put_online_cpus(); 2666 2667 write_lock_irqsave(&cpufreq_driver_lock, flags); 2668 cpufreq_driver->boost_enabled = !state; 2669 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2670 2671 pr_err("%s: Cannot %s BOOST\n", 2672 __func__, state ? "enable" : "disable"); 2673 2674 return ret; 2675 } 2676 2677 static bool cpufreq_boost_supported(void) 2678 { 2679 return cpufreq_driver->set_boost; 2680 } 2681 2682 static int create_boost_sysfs_file(void) 2683 { 2684 int ret; 2685 2686 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr); 2687 if (ret) 2688 pr_err("%s: cannot register global BOOST sysfs file\n", 2689 __func__); 2690 2691 return ret; 2692 } 2693 2694 static void remove_boost_sysfs_file(void) 2695 { 2696 if (cpufreq_boost_supported()) 2697 sysfs_remove_file(cpufreq_global_kobject, &boost.attr); 2698 } 2699 2700 int cpufreq_enable_boost_support(void) 2701 { 2702 if (!cpufreq_driver) 2703 return -EINVAL; 2704 2705 if (cpufreq_boost_supported()) 2706 return 0; 2707 2708 cpufreq_driver->set_boost = cpufreq_boost_set_sw; 2709 2710 /* This will get removed on driver unregister */ 2711 return create_boost_sysfs_file(); 2712 } 2713 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support); 2714 2715 int cpufreq_boost_enabled(void) 2716 { 2717 return cpufreq_driver->boost_enabled; 2718 } 2719 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled); 2720 2721 /********************************************************************* 2722 * REGISTER / UNREGISTER CPUFREQ DRIVER * 2723 *********************************************************************/ 2724 static enum cpuhp_state hp_online; 2725 2726 static int cpuhp_cpufreq_online(unsigned int cpu) 2727 { 2728 cpufreq_online(cpu); 2729 2730 return 0; 2731 } 2732 2733 static int cpuhp_cpufreq_offline(unsigned int cpu) 2734 { 2735 cpufreq_offline(cpu); 2736 2737 return 0; 2738 } 2739 2740 /** 2741 * cpufreq_register_driver - register a CPU Frequency driver 2742 * @driver_data: A struct cpufreq_driver containing the values# 2743 * submitted by the CPU Frequency driver. 2744 * 2745 * Registers a CPU Frequency driver to this core code. This code 2746 * returns zero on success, -EEXIST when another driver got here first 2747 * (and isn't unregistered in the meantime). 2748 * 2749 */ 2750 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 2751 { 2752 unsigned long flags; 2753 int ret; 2754 2755 if (cpufreq_disabled()) 2756 return -ENODEV; 2757 2758 /* 2759 * The cpufreq core depends heavily on the availability of device 2760 * structure, make sure they are available before proceeding further. 2761 */ 2762 if (!get_cpu_device(0)) 2763 return -EPROBE_DEFER; 2764 2765 if (!driver_data || !driver_data->verify || !driver_data->init || 2766 !(driver_data->setpolicy || driver_data->target_index || 2767 driver_data->target) || 2768 (driver_data->setpolicy && (driver_data->target_index || 2769 driver_data->target)) || 2770 (!driver_data->get_intermediate != !driver_data->target_intermediate) || 2771 (!driver_data->online != !driver_data->offline)) 2772 return -EINVAL; 2773 2774 pr_debug("trying to register driver %s\n", driver_data->name); 2775 2776 /* Protect against concurrent CPU online/offline. */ 2777 cpus_read_lock(); 2778 2779 write_lock_irqsave(&cpufreq_driver_lock, flags); 2780 if (cpufreq_driver) { 2781 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2782 ret = -EEXIST; 2783 goto out; 2784 } 2785 cpufreq_driver = driver_data; 2786 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2787 2788 /* 2789 * Mark support for the scheduler's frequency invariance engine for 2790 * drivers that implement target(), target_index() or fast_switch(). 2791 */ 2792 if (!cpufreq_driver->setpolicy) { 2793 static_branch_enable_cpuslocked(&cpufreq_freq_invariance); 2794 pr_debug("supports frequency invariance"); 2795 } 2796 2797 if (driver_data->setpolicy) 2798 driver_data->flags |= CPUFREQ_CONST_LOOPS; 2799 2800 if (cpufreq_boost_supported()) { 2801 ret = create_boost_sysfs_file(); 2802 if (ret) 2803 goto err_null_driver; 2804 } 2805 2806 ret = subsys_interface_register(&cpufreq_interface); 2807 if (ret) 2808 goto err_boost_unreg; 2809 2810 if (unlikely(list_empty(&cpufreq_policy_list))) { 2811 /* if all ->init() calls failed, unregister */ 2812 ret = -ENODEV; 2813 pr_debug("%s: No CPU initialized for driver %s\n", __func__, 2814 driver_data->name); 2815 goto err_if_unreg; 2816 } 2817 2818 ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN, 2819 "cpufreq:online", 2820 cpuhp_cpufreq_online, 2821 cpuhp_cpufreq_offline); 2822 if (ret < 0) 2823 goto err_if_unreg; 2824 hp_online = ret; 2825 ret = 0; 2826 2827 pr_debug("driver %s up and running\n", driver_data->name); 2828 goto out; 2829 2830 err_if_unreg: 2831 subsys_interface_unregister(&cpufreq_interface); 2832 err_boost_unreg: 2833 remove_boost_sysfs_file(); 2834 err_null_driver: 2835 write_lock_irqsave(&cpufreq_driver_lock, flags); 2836 cpufreq_driver = NULL; 2837 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2838 out: 2839 cpus_read_unlock(); 2840 return ret; 2841 } 2842 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 2843 2844 /* 2845 * cpufreq_unregister_driver - unregister the current CPUFreq driver 2846 * 2847 * Unregister the current CPUFreq driver. Only call this if you have 2848 * the right to do so, i.e. if you have succeeded in initialising before! 2849 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 2850 * currently not initialised. 2851 */ 2852 int cpufreq_unregister_driver(struct cpufreq_driver *driver) 2853 { 2854 unsigned long flags; 2855 2856 if (!cpufreq_driver || (driver != cpufreq_driver)) 2857 return -EINVAL; 2858 2859 pr_debug("unregistering driver %s\n", driver->name); 2860 2861 /* Protect against concurrent cpu hotplug */ 2862 cpus_read_lock(); 2863 subsys_interface_unregister(&cpufreq_interface); 2864 remove_boost_sysfs_file(); 2865 static_branch_disable_cpuslocked(&cpufreq_freq_invariance); 2866 cpuhp_remove_state_nocalls_cpuslocked(hp_online); 2867 2868 write_lock_irqsave(&cpufreq_driver_lock, flags); 2869 2870 cpufreq_driver = NULL; 2871 2872 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2873 cpus_read_unlock(); 2874 2875 return 0; 2876 } 2877 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 2878 2879 static int __init cpufreq_core_init(void) 2880 { 2881 struct cpufreq_governor *gov = cpufreq_default_governor(); 2882 2883 if (cpufreq_disabled()) 2884 return -ENODEV; 2885 2886 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj); 2887 BUG_ON(!cpufreq_global_kobject); 2888 2889 if (!strlen(default_governor)) 2890 strncpy(default_governor, gov->name, CPUFREQ_NAME_LEN); 2891 2892 return 0; 2893 } 2894 module_param(off, int, 0444); 2895 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444); 2896 core_initcall(cpufreq_core_init); 2897