1 /* 2 * linux/drivers/cpufreq/cpufreq.c 3 * 4 * Copyright (C) 2001 Russell King 5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 6 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org> 7 * 8 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 9 * Added handling for CPU hotplug 10 * Feb 2006 - Jacob Shin <jacob.shin@amd.com> 11 * Fix handling for CPU hotplug -- affected CPUs 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License version 2 as 15 * published by the Free Software Foundation. 16 */ 17 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/cpu.h> 21 #include <linux/cpufreq.h> 22 #include <linux/delay.h> 23 #include <linux/device.h> 24 #include <linux/init.h> 25 #include <linux/kernel_stat.h> 26 #include <linux/module.h> 27 #include <linux/mutex.h> 28 #include <linux/slab.h> 29 #include <linux/syscore_ops.h> 30 #include <linux/tick.h> 31 #include <trace/events/power.h> 32 33 /** 34 * The "cpufreq driver" - the arch- or hardware-dependent low 35 * level driver of CPUFreq support, and its spinlock. This lock 36 * also protects the cpufreq_cpu_data array. 37 */ 38 static struct cpufreq_driver *cpufreq_driver; 39 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data); 40 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data_fallback); 41 static DEFINE_RWLOCK(cpufreq_driver_lock); 42 static DEFINE_MUTEX(cpufreq_governor_lock); 43 static LIST_HEAD(cpufreq_policy_list); 44 45 #ifdef CONFIG_HOTPLUG_CPU 46 /* This one keeps track of the previously set governor of a removed CPU */ 47 static DEFINE_PER_CPU(char[CPUFREQ_NAME_LEN], cpufreq_cpu_governor); 48 #endif 49 50 /* 51 * cpu_policy_rwsem is a per CPU reader-writer semaphore designed to cure 52 * all cpufreq/hotplug/workqueue/etc related lock issues. 53 * 54 * The rules for this semaphore: 55 * - Any routine that wants to read from the policy structure will 56 * do a down_read on this semaphore. 57 * - Any routine that will write to the policy structure and/or may take away 58 * the policy altogether (eg. CPU hotplug), will hold this lock in write 59 * mode before doing so. 60 * 61 * Additional rules: 62 * - Governor routines that can be called in cpufreq hotplug path should not 63 * take this sem as top level hotplug notifier handler takes this. 64 * - Lock should not be held across 65 * __cpufreq_governor(data, CPUFREQ_GOV_STOP); 66 */ 67 static DEFINE_PER_CPU(struct rw_semaphore, cpu_policy_rwsem); 68 69 #define lock_policy_rwsem(mode, cpu) \ 70 static int lock_policy_rwsem_##mode(int cpu) \ 71 { \ 72 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); \ 73 BUG_ON(!policy); \ 74 down_##mode(&per_cpu(cpu_policy_rwsem, policy->cpu)); \ 75 \ 76 return 0; \ 77 } 78 79 lock_policy_rwsem(read, cpu); 80 lock_policy_rwsem(write, cpu); 81 82 #define unlock_policy_rwsem(mode, cpu) \ 83 static void unlock_policy_rwsem_##mode(int cpu) \ 84 { \ 85 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); \ 86 BUG_ON(!policy); \ 87 up_##mode(&per_cpu(cpu_policy_rwsem, policy->cpu)); \ 88 } 89 90 unlock_policy_rwsem(read, cpu); 91 unlock_policy_rwsem(write, cpu); 92 93 /* 94 * rwsem to guarantee that cpufreq driver module doesn't unload during critical 95 * sections 96 */ 97 static DECLARE_RWSEM(cpufreq_rwsem); 98 99 /* internal prototypes */ 100 static int __cpufreq_governor(struct cpufreq_policy *policy, 101 unsigned int event); 102 static unsigned int __cpufreq_get(unsigned int cpu); 103 static void handle_update(struct work_struct *work); 104 105 /** 106 * Two notifier lists: the "policy" list is involved in the 107 * validation process for a new CPU frequency policy; the 108 * "transition" list for kernel code that needs to handle 109 * changes to devices when the CPU clock speed changes. 110 * The mutex locks both lists. 111 */ 112 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list); 113 static struct srcu_notifier_head cpufreq_transition_notifier_list; 114 115 static bool init_cpufreq_transition_notifier_list_called; 116 static int __init init_cpufreq_transition_notifier_list(void) 117 { 118 srcu_init_notifier_head(&cpufreq_transition_notifier_list); 119 init_cpufreq_transition_notifier_list_called = true; 120 return 0; 121 } 122 pure_initcall(init_cpufreq_transition_notifier_list); 123 124 static int off __read_mostly; 125 static int cpufreq_disabled(void) 126 { 127 return off; 128 } 129 void disable_cpufreq(void) 130 { 131 off = 1; 132 } 133 static LIST_HEAD(cpufreq_governor_list); 134 static DEFINE_MUTEX(cpufreq_governor_mutex); 135 136 bool have_governor_per_policy(void) 137 { 138 return cpufreq_driver->have_governor_per_policy; 139 } 140 EXPORT_SYMBOL_GPL(have_governor_per_policy); 141 142 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy) 143 { 144 if (have_governor_per_policy()) 145 return &policy->kobj; 146 else 147 return cpufreq_global_kobject; 148 } 149 EXPORT_SYMBOL_GPL(get_governor_parent_kobj); 150 151 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) 152 { 153 u64 idle_time; 154 u64 cur_wall_time; 155 u64 busy_time; 156 157 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64()); 158 159 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER]; 160 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM]; 161 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ]; 162 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ]; 163 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL]; 164 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE]; 165 166 idle_time = cur_wall_time - busy_time; 167 if (wall) 168 *wall = cputime_to_usecs(cur_wall_time); 169 170 return cputime_to_usecs(idle_time); 171 } 172 173 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy) 174 { 175 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL); 176 177 if (idle_time == -1ULL) 178 return get_cpu_idle_time_jiffy(cpu, wall); 179 else if (!io_busy) 180 idle_time += get_cpu_iowait_time_us(cpu, wall); 181 182 return idle_time; 183 } 184 EXPORT_SYMBOL_GPL(get_cpu_idle_time); 185 186 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) 187 { 188 struct cpufreq_policy *policy = NULL; 189 unsigned long flags; 190 191 if (cpufreq_disabled() || (cpu >= nr_cpu_ids)) 192 return NULL; 193 194 if (!down_read_trylock(&cpufreq_rwsem)) 195 return NULL; 196 197 /* get the cpufreq driver */ 198 read_lock_irqsave(&cpufreq_driver_lock, flags); 199 200 if (cpufreq_driver) { 201 /* get the CPU */ 202 policy = per_cpu(cpufreq_cpu_data, cpu); 203 if (policy) 204 kobject_get(&policy->kobj); 205 } 206 207 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 208 209 if (!policy) 210 up_read(&cpufreq_rwsem); 211 212 return policy; 213 } 214 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 215 216 void cpufreq_cpu_put(struct cpufreq_policy *policy) 217 { 218 if (cpufreq_disabled()) 219 return; 220 221 kobject_put(&policy->kobj); 222 up_read(&cpufreq_rwsem); 223 } 224 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 225 226 /********************************************************************* 227 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 228 *********************************************************************/ 229 230 /** 231 * adjust_jiffies - adjust the system "loops_per_jiffy" 232 * 233 * This function alters the system "loops_per_jiffy" for the clock 234 * speed change. Note that loops_per_jiffy cannot be updated on SMP 235 * systems as each CPU might be scaled differently. So, use the arch 236 * per-CPU loops_per_jiffy value wherever possible. 237 */ 238 #ifndef CONFIG_SMP 239 static unsigned long l_p_j_ref; 240 static unsigned int l_p_j_ref_freq; 241 242 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 243 { 244 if (ci->flags & CPUFREQ_CONST_LOOPS) 245 return; 246 247 if (!l_p_j_ref_freq) { 248 l_p_j_ref = loops_per_jiffy; 249 l_p_j_ref_freq = ci->old; 250 pr_debug("saving %lu as reference value for loops_per_jiffy; " 251 "freq is %u kHz\n", l_p_j_ref, l_p_j_ref_freq); 252 } 253 if ((val == CPUFREQ_POSTCHANGE && ci->old != ci->new) || 254 (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) { 255 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, 256 ci->new); 257 pr_debug("scaling loops_per_jiffy to %lu " 258 "for frequency %u kHz\n", loops_per_jiffy, ci->new); 259 } 260 } 261 #else 262 static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 263 { 264 return; 265 } 266 #endif 267 268 static void __cpufreq_notify_transition(struct cpufreq_policy *policy, 269 struct cpufreq_freqs *freqs, unsigned int state) 270 { 271 BUG_ON(irqs_disabled()); 272 273 if (cpufreq_disabled()) 274 return; 275 276 freqs->flags = cpufreq_driver->flags; 277 pr_debug("notification %u of frequency transition to %u kHz\n", 278 state, freqs->new); 279 280 switch (state) { 281 282 case CPUFREQ_PRECHANGE: 283 /* detect if the driver reported a value as "old frequency" 284 * which is not equal to what the cpufreq core thinks is 285 * "old frequency". 286 */ 287 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 288 if ((policy) && (policy->cpu == freqs->cpu) && 289 (policy->cur) && (policy->cur != freqs->old)) { 290 pr_debug("Warning: CPU frequency is" 291 " %u, cpufreq assumed %u kHz.\n", 292 freqs->old, policy->cur); 293 freqs->old = policy->cur; 294 } 295 } 296 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 297 CPUFREQ_PRECHANGE, freqs); 298 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 299 break; 300 301 case CPUFREQ_POSTCHANGE: 302 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 303 pr_debug("FREQ: %lu - CPU: %lu", (unsigned long)freqs->new, 304 (unsigned long)freqs->cpu); 305 trace_cpu_frequency(freqs->new, freqs->cpu); 306 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 307 CPUFREQ_POSTCHANGE, freqs); 308 if (likely(policy) && likely(policy->cpu == freqs->cpu)) 309 policy->cur = freqs->new; 310 break; 311 } 312 } 313 314 /** 315 * cpufreq_notify_transition - call notifier chain and adjust_jiffies 316 * on frequency transition. 317 * 318 * This function calls the transition notifiers and the "adjust_jiffies" 319 * function. It is called twice on all CPU frequency changes that have 320 * external effects. 321 */ 322 void cpufreq_notify_transition(struct cpufreq_policy *policy, 323 struct cpufreq_freqs *freqs, unsigned int state) 324 { 325 for_each_cpu(freqs->cpu, policy->cpus) 326 __cpufreq_notify_transition(policy, freqs, state); 327 } 328 EXPORT_SYMBOL_GPL(cpufreq_notify_transition); 329 330 331 /********************************************************************* 332 * SYSFS INTERFACE * 333 *********************************************************************/ 334 335 static struct cpufreq_governor *__find_governor(const char *str_governor) 336 { 337 struct cpufreq_governor *t; 338 339 list_for_each_entry(t, &cpufreq_governor_list, governor_list) 340 if (!strnicmp(str_governor, t->name, CPUFREQ_NAME_LEN)) 341 return t; 342 343 return NULL; 344 } 345 346 /** 347 * cpufreq_parse_governor - parse a governor string 348 */ 349 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy, 350 struct cpufreq_governor **governor) 351 { 352 int err = -EINVAL; 353 354 if (!cpufreq_driver) 355 goto out; 356 357 if (cpufreq_driver->setpolicy) { 358 if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) { 359 *policy = CPUFREQ_POLICY_PERFORMANCE; 360 err = 0; 361 } else if (!strnicmp(str_governor, "powersave", 362 CPUFREQ_NAME_LEN)) { 363 *policy = CPUFREQ_POLICY_POWERSAVE; 364 err = 0; 365 } 366 } else if (cpufreq_driver->target) { 367 struct cpufreq_governor *t; 368 369 mutex_lock(&cpufreq_governor_mutex); 370 371 t = __find_governor(str_governor); 372 373 if (t == NULL) { 374 int ret; 375 376 mutex_unlock(&cpufreq_governor_mutex); 377 ret = request_module("cpufreq_%s", str_governor); 378 mutex_lock(&cpufreq_governor_mutex); 379 380 if (ret == 0) 381 t = __find_governor(str_governor); 382 } 383 384 if (t != NULL) { 385 *governor = t; 386 err = 0; 387 } 388 389 mutex_unlock(&cpufreq_governor_mutex); 390 } 391 out: 392 return err; 393 } 394 395 /** 396 * cpufreq_per_cpu_attr_read() / show_##file_name() - 397 * print out cpufreq information 398 * 399 * Write out information from cpufreq_driver->policy[cpu]; object must be 400 * "unsigned int". 401 */ 402 403 #define show_one(file_name, object) \ 404 static ssize_t show_##file_name \ 405 (struct cpufreq_policy *policy, char *buf) \ 406 { \ 407 return sprintf(buf, "%u\n", policy->object); \ 408 } 409 410 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 411 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 412 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency); 413 show_one(scaling_min_freq, min); 414 show_one(scaling_max_freq, max); 415 show_one(scaling_cur_freq, cur); 416 417 static int __cpufreq_set_policy(struct cpufreq_policy *policy, 418 struct cpufreq_policy *new_policy); 419 420 /** 421 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 422 */ 423 #define store_one(file_name, object) \ 424 static ssize_t store_##file_name \ 425 (struct cpufreq_policy *policy, const char *buf, size_t count) \ 426 { \ 427 int ret; \ 428 struct cpufreq_policy new_policy; \ 429 \ 430 ret = cpufreq_get_policy(&new_policy, policy->cpu); \ 431 if (ret) \ 432 return -EINVAL; \ 433 \ 434 ret = sscanf(buf, "%u", &new_policy.object); \ 435 if (ret != 1) \ 436 return -EINVAL; \ 437 \ 438 ret = __cpufreq_set_policy(policy, &new_policy); \ 439 policy->user_policy.object = policy->object; \ 440 \ 441 return ret ? ret : count; \ 442 } 443 444 store_one(scaling_min_freq, min); 445 store_one(scaling_max_freq, max); 446 447 /** 448 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 449 */ 450 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy, 451 char *buf) 452 { 453 unsigned int cur_freq = __cpufreq_get(policy->cpu); 454 if (!cur_freq) 455 return sprintf(buf, "<unknown>"); 456 return sprintf(buf, "%u\n", cur_freq); 457 } 458 459 /** 460 * show_scaling_governor - show the current policy for the specified CPU 461 */ 462 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf) 463 { 464 if (policy->policy == CPUFREQ_POLICY_POWERSAVE) 465 return sprintf(buf, "powersave\n"); 466 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 467 return sprintf(buf, "performance\n"); 468 else if (policy->governor) 469 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", 470 policy->governor->name); 471 return -EINVAL; 472 } 473 474 /** 475 * store_scaling_governor - store policy for the specified CPU 476 */ 477 static ssize_t store_scaling_governor(struct cpufreq_policy *policy, 478 const char *buf, size_t count) 479 { 480 int ret; 481 char str_governor[16]; 482 struct cpufreq_policy new_policy; 483 484 ret = cpufreq_get_policy(&new_policy, policy->cpu); 485 if (ret) 486 return ret; 487 488 ret = sscanf(buf, "%15s", str_governor); 489 if (ret != 1) 490 return -EINVAL; 491 492 if (cpufreq_parse_governor(str_governor, &new_policy.policy, 493 &new_policy.governor)) 494 return -EINVAL; 495 496 /* 497 * Do not use cpufreq_set_policy here or the user_policy.max 498 * will be wrongly overridden 499 */ 500 ret = __cpufreq_set_policy(policy, &new_policy); 501 502 policy->user_policy.policy = policy->policy; 503 policy->user_policy.governor = policy->governor; 504 505 if (ret) 506 return ret; 507 else 508 return count; 509 } 510 511 /** 512 * show_scaling_driver - show the cpufreq driver currently loaded 513 */ 514 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf) 515 { 516 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name); 517 } 518 519 /** 520 * show_scaling_available_governors - show the available CPUfreq governors 521 */ 522 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy, 523 char *buf) 524 { 525 ssize_t i = 0; 526 struct cpufreq_governor *t; 527 528 if (!cpufreq_driver->target) { 529 i += sprintf(buf, "performance powersave"); 530 goto out; 531 } 532 533 list_for_each_entry(t, &cpufreq_governor_list, governor_list) { 534 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) 535 - (CPUFREQ_NAME_LEN + 2))) 536 goto out; 537 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name); 538 } 539 out: 540 i += sprintf(&buf[i], "\n"); 541 return i; 542 } 543 544 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf) 545 { 546 ssize_t i = 0; 547 unsigned int cpu; 548 549 for_each_cpu(cpu, mask) { 550 if (i) 551 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " "); 552 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu); 553 if (i >= (PAGE_SIZE - 5)) 554 break; 555 } 556 i += sprintf(&buf[i], "\n"); 557 return i; 558 } 559 EXPORT_SYMBOL_GPL(cpufreq_show_cpus); 560 561 /** 562 * show_related_cpus - show the CPUs affected by each transition even if 563 * hw coordination is in use 564 */ 565 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf) 566 { 567 return cpufreq_show_cpus(policy->related_cpus, buf); 568 } 569 570 /** 571 * show_affected_cpus - show the CPUs affected by each transition 572 */ 573 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf) 574 { 575 return cpufreq_show_cpus(policy->cpus, buf); 576 } 577 578 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy, 579 const char *buf, size_t count) 580 { 581 unsigned int freq = 0; 582 unsigned int ret; 583 584 if (!policy->governor || !policy->governor->store_setspeed) 585 return -EINVAL; 586 587 ret = sscanf(buf, "%u", &freq); 588 if (ret != 1) 589 return -EINVAL; 590 591 policy->governor->store_setspeed(policy, freq); 592 593 return count; 594 } 595 596 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf) 597 { 598 if (!policy->governor || !policy->governor->show_setspeed) 599 return sprintf(buf, "<unsupported>\n"); 600 601 return policy->governor->show_setspeed(policy, buf); 602 } 603 604 /** 605 * show_bios_limit - show the current cpufreq HW/BIOS limitation 606 */ 607 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf) 608 { 609 unsigned int limit; 610 int ret; 611 if (cpufreq_driver->bios_limit) { 612 ret = cpufreq_driver->bios_limit(policy->cpu, &limit); 613 if (!ret) 614 return sprintf(buf, "%u\n", limit); 615 } 616 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq); 617 } 618 619 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400); 620 cpufreq_freq_attr_ro(cpuinfo_min_freq); 621 cpufreq_freq_attr_ro(cpuinfo_max_freq); 622 cpufreq_freq_attr_ro(cpuinfo_transition_latency); 623 cpufreq_freq_attr_ro(scaling_available_governors); 624 cpufreq_freq_attr_ro(scaling_driver); 625 cpufreq_freq_attr_ro(scaling_cur_freq); 626 cpufreq_freq_attr_ro(bios_limit); 627 cpufreq_freq_attr_ro(related_cpus); 628 cpufreq_freq_attr_ro(affected_cpus); 629 cpufreq_freq_attr_rw(scaling_min_freq); 630 cpufreq_freq_attr_rw(scaling_max_freq); 631 cpufreq_freq_attr_rw(scaling_governor); 632 cpufreq_freq_attr_rw(scaling_setspeed); 633 634 static struct attribute *default_attrs[] = { 635 &cpuinfo_min_freq.attr, 636 &cpuinfo_max_freq.attr, 637 &cpuinfo_transition_latency.attr, 638 &scaling_min_freq.attr, 639 &scaling_max_freq.attr, 640 &affected_cpus.attr, 641 &related_cpus.attr, 642 &scaling_governor.attr, 643 &scaling_driver.attr, 644 &scaling_available_governors.attr, 645 &scaling_setspeed.attr, 646 NULL 647 }; 648 649 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj) 650 #define to_attr(a) container_of(a, struct freq_attr, attr) 651 652 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) 653 { 654 struct cpufreq_policy *policy = to_policy(kobj); 655 struct freq_attr *fattr = to_attr(attr); 656 ssize_t ret = -EINVAL; 657 658 if (!down_read_trylock(&cpufreq_rwsem)) 659 goto exit; 660 661 if (lock_policy_rwsem_read(policy->cpu) < 0) 662 goto up_read; 663 664 if (fattr->show) 665 ret = fattr->show(policy, buf); 666 else 667 ret = -EIO; 668 669 unlock_policy_rwsem_read(policy->cpu); 670 671 up_read: 672 up_read(&cpufreq_rwsem); 673 exit: 674 return ret; 675 } 676 677 static ssize_t store(struct kobject *kobj, struct attribute *attr, 678 const char *buf, size_t count) 679 { 680 struct cpufreq_policy *policy = to_policy(kobj); 681 struct freq_attr *fattr = to_attr(attr); 682 ssize_t ret = -EINVAL; 683 684 get_online_cpus(); 685 686 if (!cpu_online(policy->cpu)) 687 goto unlock; 688 689 if (!down_read_trylock(&cpufreq_rwsem)) 690 goto unlock; 691 692 if (lock_policy_rwsem_write(policy->cpu) < 0) 693 goto up_read; 694 695 if (fattr->store) 696 ret = fattr->store(policy, buf, count); 697 else 698 ret = -EIO; 699 700 unlock_policy_rwsem_write(policy->cpu); 701 702 up_read: 703 up_read(&cpufreq_rwsem); 704 unlock: 705 put_online_cpus(); 706 707 return ret; 708 } 709 710 static void cpufreq_sysfs_release(struct kobject *kobj) 711 { 712 struct cpufreq_policy *policy = to_policy(kobj); 713 pr_debug("last reference is dropped\n"); 714 complete(&policy->kobj_unregister); 715 } 716 717 static const struct sysfs_ops sysfs_ops = { 718 .show = show, 719 .store = store, 720 }; 721 722 static struct kobj_type ktype_cpufreq = { 723 .sysfs_ops = &sysfs_ops, 724 .default_attrs = default_attrs, 725 .release = cpufreq_sysfs_release, 726 }; 727 728 struct kobject *cpufreq_global_kobject; 729 EXPORT_SYMBOL(cpufreq_global_kobject); 730 731 static int cpufreq_global_kobject_usage; 732 733 int cpufreq_get_global_kobject(void) 734 { 735 if (!cpufreq_global_kobject_usage++) 736 return kobject_add(cpufreq_global_kobject, 737 &cpu_subsys.dev_root->kobj, "%s", "cpufreq"); 738 739 return 0; 740 } 741 EXPORT_SYMBOL(cpufreq_get_global_kobject); 742 743 void cpufreq_put_global_kobject(void) 744 { 745 if (!--cpufreq_global_kobject_usage) 746 kobject_del(cpufreq_global_kobject); 747 } 748 EXPORT_SYMBOL(cpufreq_put_global_kobject); 749 750 int cpufreq_sysfs_create_file(const struct attribute *attr) 751 { 752 int ret = cpufreq_get_global_kobject(); 753 754 if (!ret) { 755 ret = sysfs_create_file(cpufreq_global_kobject, attr); 756 if (ret) 757 cpufreq_put_global_kobject(); 758 } 759 760 return ret; 761 } 762 EXPORT_SYMBOL(cpufreq_sysfs_create_file); 763 764 void cpufreq_sysfs_remove_file(const struct attribute *attr) 765 { 766 sysfs_remove_file(cpufreq_global_kobject, attr); 767 cpufreq_put_global_kobject(); 768 } 769 EXPORT_SYMBOL(cpufreq_sysfs_remove_file); 770 771 /* symlink affected CPUs */ 772 static int cpufreq_add_dev_symlink(struct cpufreq_policy *policy) 773 { 774 unsigned int j; 775 int ret = 0; 776 777 for_each_cpu(j, policy->cpus) { 778 struct device *cpu_dev; 779 780 if (j == policy->cpu) 781 continue; 782 783 pr_debug("Adding link for CPU: %u\n", j); 784 cpu_dev = get_cpu_device(j); 785 ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj, 786 "cpufreq"); 787 if (ret) 788 break; 789 } 790 return ret; 791 } 792 793 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy, 794 struct device *dev) 795 { 796 struct freq_attr **drv_attr; 797 int ret = 0; 798 799 /* prepare interface data */ 800 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, 801 &dev->kobj, "cpufreq"); 802 if (ret) 803 return ret; 804 805 /* set up files for this cpu device */ 806 drv_attr = cpufreq_driver->attr; 807 while ((drv_attr) && (*drv_attr)) { 808 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 809 if (ret) 810 goto err_out_kobj_put; 811 drv_attr++; 812 } 813 if (cpufreq_driver->get) { 814 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 815 if (ret) 816 goto err_out_kobj_put; 817 } 818 if (cpufreq_driver->target) { 819 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 820 if (ret) 821 goto err_out_kobj_put; 822 } 823 if (cpufreq_driver->bios_limit) { 824 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr); 825 if (ret) 826 goto err_out_kobj_put; 827 } 828 829 ret = cpufreq_add_dev_symlink(policy); 830 if (ret) 831 goto err_out_kobj_put; 832 833 return ret; 834 835 err_out_kobj_put: 836 kobject_put(&policy->kobj); 837 wait_for_completion(&policy->kobj_unregister); 838 return ret; 839 } 840 841 static void cpufreq_init_policy(struct cpufreq_policy *policy) 842 { 843 struct cpufreq_policy new_policy; 844 int ret = 0; 845 846 memcpy(&new_policy, policy, sizeof(*policy)); 847 /* assure that the starting sequence is run in __cpufreq_set_policy */ 848 policy->governor = NULL; 849 850 /* set default policy */ 851 ret = __cpufreq_set_policy(policy, &new_policy); 852 policy->user_policy.policy = policy->policy; 853 policy->user_policy.governor = policy->governor; 854 855 if (ret) { 856 pr_debug("setting policy failed\n"); 857 if (cpufreq_driver->exit) 858 cpufreq_driver->exit(policy); 859 } 860 } 861 862 #ifdef CONFIG_HOTPLUG_CPU 863 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, 864 unsigned int cpu, struct device *dev, 865 bool frozen) 866 { 867 int ret = 0, has_target = !!cpufreq_driver->target; 868 unsigned long flags; 869 870 if (has_target) { 871 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP); 872 if (ret) { 873 pr_err("%s: Failed to stop governor\n", __func__); 874 return ret; 875 } 876 } 877 878 lock_policy_rwsem_write(policy->cpu); 879 880 write_lock_irqsave(&cpufreq_driver_lock, flags); 881 882 cpumask_set_cpu(cpu, policy->cpus); 883 per_cpu(cpufreq_cpu_data, cpu) = policy; 884 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 885 886 unlock_policy_rwsem_write(policy->cpu); 887 888 if (has_target) { 889 if ((ret = __cpufreq_governor(policy, CPUFREQ_GOV_START)) || 890 (ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS))) { 891 pr_err("%s: Failed to start governor\n", __func__); 892 return ret; 893 } 894 } 895 896 /* Don't touch sysfs links during light-weight init */ 897 if (!frozen) 898 ret = sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"); 899 900 return ret; 901 } 902 #endif 903 904 static struct cpufreq_policy *cpufreq_policy_restore(unsigned int cpu) 905 { 906 struct cpufreq_policy *policy; 907 unsigned long flags; 908 909 read_lock_irqsave(&cpufreq_driver_lock, flags); 910 911 policy = per_cpu(cpufreq_cpu_data_fallback, cpu); 912 913 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 914 915 return policy; 916 } 917 918 static struct cpufreq_policy *cpufreq_policy_alloc(void) 919 { 920 struct cpufreq_policy *policy; 921 922 policy = kzalloc(sizeof(*policy), GFP_KERNEL); 923 if (!policy) 924 return NULL; 925 926 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) 927 goto err_free_policy; 928 929 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) 930 goto err_free_cpumask; 931 932 INIT_LIST_HEAD(&policy->policy_list); 933 return policy; 934 935 err_free_cpumask: 936 free_cpumask_var(policy->cpus); 937 err_free_policy: 938 kfree(policy); 939 940 return NULL; 941 } 942 943 static void cpufreq_policy_free(struct cpufreq_policy *policy) 944 { 945 free_cpumask_var(policy->related_cpus); 946 free_cpumask_var(policy->cpus); 947 kfree(policy); 948 } 949 950 static void update_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu) 951 { 952 if (cpu == policy->cpu) 953 return; 954 955 policy->last_cpu = policy->cpu; 956 policy->cpu = cpu; 957 958 #ifdef CONFIG_CPU_FREQ_TABLE 959 cpufreq_frequency_table_update_policy_cpu(policy); 960 #endif 961 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 962 CPUFREQ_UPDATE_POLICY_CPU, policy); 963 } 964 965 static int __cpufreq_add_dev(struct device *dev, struct subsys_interface *sif, 966 bool frozen) 967 { 968 unsigned int j, cpu = dev->id; 969 int ret = -ENOMEM; 970 struct cpufreq_policy *policy; 971 unsigned long flags; 972 #ifdef CONFIG_HOTPLUG_CPU 973 struct cpufreq_policy *tpolicy; 974 struct cpufreq_governor *gov; 975 #endif 976 977 if (cpu_is_offline(cpu)) 978 return 0; 979 980 pr_debug("adding CPU %u\n", cpu); 981 982 #ifdef CONFIG_SMP 983 /* check whether a different CPU already registered this 984 * CPU because it is in the same boat. */ 985 policy = cpufreq_cpu_get(cpu); 986 if (unlikely(policy)) { 987 cpufreq_cpu_put(policy); 988 return 0; 989 } 990 #endif 991 992 if (!down_read_trylock(&cpufreq_rwsem)) 993 return 0; 994 995 #ifdef CONFIG_HOTPLUG_CPU 996 /* Check if this cpu was hot-unplugged earlier and has siblings */ 997 read_lock_irqsave(&cpufreq_driver_lock, flags); 998 list_for_each_entry(tpolicy, &cpufreq_policy_list, policy_list) { 999 if (cpumask_test_cpu(cpu, tpolicy->related_cpus)) { 1000 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1001 ret = cpufreq_add_policy_cpu(tpolicy, cpu, dev, frozen); 1002 up_read(&cpufreq_rwsem); 1003 return ret; 1004 } 1005 } 1006 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1007 #endif 1008 1009 if (frozen) 1010 /* Restore the saved policy when doing light-weight init */ 1011 policy = cpufreq_policy_restore(cpu); 1012 else 1013 policy = cpufreq_policy_alloc(); 1014 1015 if (!policy) 1016 goto nomem_out; 1017 1018 1019 /* 1020 * In the resume path, since we restore a saved policy, the assignment 1021 * to policy->cpu is like an update of the existing policy, rather than 1022 * the creation of a brand new one. So we need to perform this update 1023 * by invoking update_policy_cpu(). 1024 */ 1025 if (frozen && cpu != policy->cpu) 1026 update_policy_cpu(policy, cpu); 1027 else 1028 policy->cpu = cpu; 1029 1030 policy->governor = CPUFREQ_DEFAULT_GOVERNOR; 1031 cpumask_copy(policy->cpus, cpumask_of(cpu)); 1032 1033 init_completion(&policy->kobj_unregister); 1034 INIT_WORK(&policy->update, handle_update); 1035 1036 /* call driver. From then on the cpufreq must be able 1037 * to accept all calls to ->verify and ->setpolicy for this CPU 1038 */ 1039 ret = cpufreq_driver->init(policy); 1040 if (ret) { 1041 pr_debug("initialization failed\n"); 1042 goto err_set_policy_cpu; 1043 } 1044 1045 /* related cpus should atleast have policy->cpus */ 1046 cpumask_or(policy->related_cpus, policy->related_cpus, policy->cpus); 1047 1048 /* 1049 * affected cpus must always be the one, which are online. We aren't 1050 * managing offline cpus here. 1051 */ 1052 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask); 1053 1054 policy->user_policy.min = policy->min; 1055 policy->user_policy.max = policy->max; 1056 1057 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1058 CPUFREQ_START, policy); 1059 1060 #ifdef CONFIG_HOTPLUG_CPU 1061 gov = __find_governor(per_cpu(cpufreq_cpu_governor, cpu)); 1062 if (gov) { 1063 policy->governor = gov; 1064 pr_debug("Restoring governor %s for cpu %d\n", 1065 policy->governor->name, cpu); 1066 } 1067 #endif 1068 1069 write_lock_irqsave(&cpufreq_driver_lock, flags); 1070 for_each_cpu(j, policy->cpus) 1071 per_cpu(cpufreq_cpu_data, j) = policy; 1072 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1073 1074 if (!frozen) { 1075 ret = cpufreq_add_dev_interface(policy, dev); 1076 if (ret) 1077 goto err_out_unregister; 1078 } 1079 1080 write_lock_irqsave(&cpufreq_driver_lock, flags); 1081 list_add(&policy->policy_list, &cpufreq_policy_list); 1082 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1083 1084 cpufreq_init_policy(policy); 1085 1086 kobject_uevent(&policy->kobj, KOBJ_ADD); 1087 up_read(&cpufreq_rwsem); 1088 1089 pr_debug("initialization complete\n"); 1090 1091 return 0; 1092 1093 err_out_unregister: 1094 write_lock_irqsave(&cpufreq_driver_lock, flags); 1095 for_each_cpu(j, policy->cpus) 1096 per_cpu(cpufreq_cpu_data, j) = NULL; 1097 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1098 1099 err_set_policy_cpu: 1100 cpufreq_policy_free(policy); 1101 nomem_out: 1102 up_read(&cpufreq_rwsem); 1103 1104 return ret; 1105 } 1106 1107 /** 1108 * cpufreq_add_dev - add a CPU device 1109 * 1110 * Adds the cpufreq interface for a CPU device. 1111 * 1112 * The Oracle says: try running cpufreq registration/unregistration concurrently 1113 * with with cpu hotplugging and all hell will break loose. Tried to clean this 1114 * mess up, but more thorough testing is needed. - Mathieu 1115 */ 1116 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 1117 { 1118 return __cpufreq_add_dev(dev, sif, false); 1119 } 1120 1121 static int cpufreq_nominate_new_policy_cpu(struct cpufreq_policy *policy, 1122 unsigned int old_cpu, bool frozen) 1123 { 1124 struct device *cpu_dev; 1125 int ret; 1126 1127 /* first sibling now owns the new sysfs dir */ 1128 cpu_dev = get_cpu_device(cpumask_first(policy->cpus)); 1129 1130 /* Don't touch sysfs files during light-weight tear-down */ 1131 if (frozen) 1132 return cpu_dev->id; 1133 1134 sysfs_remove_link(&cpu_dev->kobj, "cpufreq"); 1135 ret = kobject_move(&policy->kobj, &cpu_dev->kobj); 1136 if (ret) { 1137 pr_err("%s: Failed to move kobj: %d", __func__, ret); 1138 1139 WARN_ON(lock_policy_rwsem_write(old_cpu)); 1140 cpumask_set_cpu(old_cpu, policy->cpus); 1141 unlock_policy_rwsem_write(old_cpu); 1142 1143 ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj, 1144 "cpufreq"); 1145 1146 return -EINVAL; 1147 } 1148 1149 return cpu_dev->id; 1150 } 1151 1152 static int __cpufreq_remove_dev_prepare(struct device *dev, 1153 struct subsys_interface *sif, 1154 bool frozen) 1155 { 1156 unsigned int cpu = dev->id, cpus; 1157 int new_cpu, ret; 1158 unsigned long flags; 1159 struct cpufreq_policy *policy; 1160 1161 pr_debug("%s: unregistering CPU %u\n", __func__, cpu); 1162 1163 write_lock_irqsave(&cpufreq_driver_lock, flags); 1164 1165 policy = per_cpu(cpufreq_cpu_data, cpu); 1166 1167 /* Save the policy somewhere when doing a light-weight tear-down */ 1168 if (frozen) 1169 per_cpu(cpufreq_cpu_data_fallback, cpu) = policy; 1170 1171 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1172 1173 if (!policy) { 1174 pr_debug("%s: No cpu_data found\n", __func__); 1175 return -EINVAL; 1176 } 1177 1178 if (cpufreq_driver->target) { 1179 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP); 1180 if (ret) { 1181 pr_err("%s: Failed to stop governor\n", __func__); 1182 return ret; 1183 } 1184 } 1185 1186 #ifdef CONFIG_HOTPLUG_CPU 1187 if (!cpufreq_driver->setpolicy) 1188 strncpy(per_cpu(cpufreq_cpu_governor, cpu), 1189 policy->governor->name, CPUFREQ_NAME_LEN); 1190 #endif 1191 1192 WARN_ON(lock_policy_rwsem_write(cpu)); 1193 cpus = cpumask_weight(policy->cpus); 1194 1195 if (cpus > 1) 1196 cpumask_clear_cpu(cpu, policy->cpus); 1197 unlock_policy_rwsem_write(cpu); 1198 1199 if (cpu != policy->cpu) { 1200 if (!frozen) 1201 sysfs_remove_link(&dev->kobj, "cpufreq"); 1202 } else if (cpus > 1) { 1203 1204 new_cpu = cpufreq_nominate_new_policy_cpu(policy, cpu, frozen); 1205 if (new_cpu >= 0) { 1206 WARN_ON(lock_policy_rwsem_write(cpu)); 1207 update_policy_cpu(policy, new_cpu); 1208 unlock_policy_rwsem_write(cpu); 1209 1210 if (!frozen) { 1211 pr_debug("%s: policy Kobject moved to cpu: %d " 1212 "from: %d\n",__func__, new_cpu, cpu); 1213 } 1214 } 1215 } 1216 1217 return 0; 1218 } 1219 1220 static int __cpufreq_remove_dev_finish(struct device *dev, 1221 struct subsys_interface *sif, 1222 bool frozen) 1223 { 1224 unsigned int cpu = dev->id, cpus; 1225 int ret; 1226 unsigned long flags; 1227 struct cpufreq_policy *policy; 1228 struct kobject *kobj; 1229 struct completion *cmp; 1230 1231 read_lock_irqsave(&cpufreq_driver_lock, flags); 1232 policy = per_cpu(cpufreq_cpu_data, cpu); 1233 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1234 1235 if (!policy) { 1236 pr_debug("%s: No cpu_data found\n", __func__); 1237 return -EINVAL; 1238 } 1239 1240 lock_policy_rwsem_read(cpu); 1241 cpus = cpumask_weight(policy->cpus); 1242 unlock_policy_rwsem_read(cpu); 1243 1244 /* If cpu is last user of policy, free policy */ 1245 if (cpus == 1) { 1246 if (cpufreq_driver->target) { 1247 ret = __cpufreq_governor(policy, 1248 CPUFREQ_GOV_POLICY_EXIT); 1249 if (ret) { 1250 pr_err("%s: Failed to exit governor\n", 1251 __func__); 1252 return ret; 1253 } 1254 } 1255 1256 if (!frozen) { 1257 lock_policy_rwsem_read(cpu); 1258 kobj = &policy->kobj; 1259 cmp = &policy->kobj_unregister; 1260 unlock_policy_rwsem_read(cpu); 1261 kobject_put(kobj); 1262 1263 /* 1264 * We need to make sure that the underlying kobj is 1265 * actually not referenced anymore by anybody before we 1266 * proceed with unloading. 1267 */ 1268 pr_debug("waiting for dropping of refcount\n"); 1269 wait_for_completion(cmp); 1270 pr_debug("wait complete\n"); 1271 } 1272 1273 /* 1274 * Perform the ->exit() even during light-weight tear-down, 1275 * since this is a core component, and is essential for the 1276 * subsequent light-weight ->init() to succeed. 1277 */ 1278 if (cpufreq_driver->exit) 1279 cpufreq_driver->exit(policy); 1280 1281 /* Remove policy from list of active policies */ 1282 write_lock_irqsave(&cpufreq_driver_lock, flags); 1283 list_del(&policy->policy_list); 1284 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1285 1286 if (!frozen) 1287 cpufreq_policy_free(policy); 1288 } else { 1289 if (cpufreq_driver->target) { 1290 if ((ret = __cpufreq_governor(policy, CPUFREQ_GOV_START)) || 1291 (ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS))) { 1292 pr_err("%s: Failed to start governor\n", 1293 __func__); 1294 return ret; 1295 } 1296 } 1297 } 1298 1299 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1300 return 0; 1301 } 1302 1303 /** 1304 * __cpufreq_remove_dev - remove a CPU device 1305 * 1306 * Removes the cpufreq interface for a CPU device. 1307 * Caller should already have policy_rwsem in write mode for this CPU. 1308 * This routine frees the rwsem before returning. 1309 */ 1310 static inline int __cpufreq_remove_dev(struct device *dev, 1311 struct subsys_interface *sif, 1312 bool frozen) 1313 { 1314 int ret; 1315 1316 ret = __cpufreq_remove_dev_prepare(dev, sif, frozen); 1317 1318 if (!ret) 1319 ret = __cpufreq_remove_dev_finish(dev, sif, frozen); 1320 1321 return ret; 1322 } 1323 1324 static int cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif) 1325 { 1326 unsigned int cpu = dev->id; 1327 int retval; 1328 1329 if (cpu_is_offline(cpu)) 1330 return 0; 1331 1332 retval = __cpufreq_remove_dev(dev, sif, false); 1333 return retval; 1334 } 1335 1336 static void handle_update(struct work_struct *work) 1337 { 1338 struct cpufreq_policy *policy = 1339 container_of(work, struct cpufreq_policy, update); 1340 unsigned int cpu = policy->cpu; 1341 pr_debug("handle_update for cpu %u called\n", cpu); 1342 cpufreq_update_policy(cpu); 1343 } 1344 1345 /** 1346 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're 1347 * in deep trouble. 1348 * @cpu: cpu number 1349 * @old_freq: CPU frequency the kernel thinks the CPU runs at 1350 * @new_freq: CPU frequency the CPU actually runs at 1351 * 1352 * We adjust to current frequency first, and need to clean up later. 1353 * So either call to cpufreq_update_policy() or schedule handle_update()). 1354 */ 1355 static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq, 1356 unsigned int new_freq) 1357 { 1358 struct cpufreq_policy *policy; 1359 struct cpufreq_freqs freqs; 1360 unsigned long flags; 1361 1362 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing " 1363 "core thinks of %u, is %u kHz.\n", old_freq, new_freq); 1364 1365 freqs.old = old_freq; 1366 freqs.new = new_freq; 1367 1368 read_lock_irqsave(&cpufreq_driver_lock, flags); 1369 policy = per_cpu(cpufreq_cpu_data, cpu); 1370 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1371 1372 cpufreq_notify_transition(policy, &freqs, CPUFREQ_PRECHANGE); 1373 cpufreq_notify_transition(policy, &freqs, CPUFREQ_POSTCHANGE); 1374 } 1375 1376 /** 1377 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur 1378 * @cpu: CPU number 1379 * 1380 * This is the last known freq, without actually getting it from the driver. 1381 * Return value will be same as what is shown in scaling_cur_freq in sysfs. 1382 */ 1383 unsigned int cpufreq_quick_get(unsigned int cpu) 1384 { 1385 struct cpufreq_policy *policy; 1386 unsigned int ret_freq = 0; 1387 1388 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) 1389 return cpufreq_driver->get(cpu); 1390 1391 policy = cpufreq_cpu_get(cpu); 1392 if (policy) { 1393 ret_freq = policy->cur; 1394 cpufreq_cpu_put(policy); 1395 } 1396 1397 return ret_freq; 1398 } 1399 EXPORT_SYMBOL(cpufreq_quick_get); 1400 1401 /** 1402 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU 1403 * @cpu: CPU number 1404 * 1405 * Just return the max possible frequency for a given CPU. 1406 */ 1407 unsigned int cpufreq_quick_get_max(unsigned int cpu) 1408 { 1409 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1410 unsigned int ret_freq = 0; 1411 1412 if (policy) { 1413 ret_freq = policy->max; 1414 cpufreq_cpu_put(policy); 1415 } 1416 1417 return ret_freq; 1418 } 1419 EXPORT_SYMBOL(cpufreq_quick_get_max); 1420 1421 static unsigned int __cpufreq_get(unsigned int cpu) 1422 { 1423 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1424 unsigned int ret_freq = 0; 1425 1426 if (!cpufreq_driver->get) 1427 return ret_freq; 1428 1429 ret_freq = cpufreq_driver->get(cpu); 1430 1431 if (ret_freq && policy->cur && 1432 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 1433 /* verify no discrepancy between actual and 1434 saved value exists */ 1435 if (unlikely(ret_freq != policy->cur)) { 1436 cpufreq_out_of_sync(cpu, policy->cur, ret_freq); 1437 schedule_work(&policy->update); 1438 } 1439 } 1440 1441 return ret_freq; 1442 } 1443 1444 /** 1445 * cpufreq_get - get the current CPU frequency (in kHz) 1446 * @cpu: CPU number 1447 * 1448 * Get the CPU current (static) CPU frequency 1449 */ 1450 unsigned int cpufreq_get(unsigned int cpu) 1451 { 1452 unsigned int ret_freq = 0; 1453 1454 if (!down_read_trylock(&cpufreq_rwsem)) 1455 return 0; 1456 1457 if (unlikely(lock_policy_rwsem_read(cpu))) 1458 goto out_policy; 1459 1460 ret_freq = __cpufreq_get(cpu); 1461 1462 unlock_policy_rwsem_read(cpu); 1463 1464 out_policy: 1465 up_read(&cpufreq_rwsem); 1466 1467 return ret_freq; 1468 } 1469 EXPORT_SYMBOL(cpufreq_get); 1470 1471 static struct subsys_interface cpufreq_interface = { 1472 .name = "cpufreq", 1473 .subsys = &cpu_subsys, 1474 .add_dev = cpufreq_add_dev, 1475 .remove_dev = cpufreq_remove_dev, 1476 }; 1477 1478 /** 1479 * cpufreq_bp_suspend - Prepare the boot CPU for system suspend. 1480 * 1481 * This function is only executed for the boot processor. The other CPUs 1482 * have been put offline by means of CPU hotplug. 1483 */ 1484 static int cpufreq_bp_suspend(void) 1485 { 1486 int ret = 0; 1487 1488 int cpu = smp_processor_id(); 1489 struct cpufreq_policy *policy; 1490 1491 pr_debug("suspending cpu %u\n", cpu); 1492 1493 /* If there's no policy for the boot CPU, we have nothing to do. */ 1494 policy = cpufreq_cpu_get(cpu); 1495 if (!policy) 1496 return 0; 1497 1498 if (cpufreq_driver->suspend) { 1499 ret = cpufreq_driver->suspend(policy); 1500 if (ret) 1501 printk(KERN_ERR "cpufreq: suspend failed in ->suspend " 1502 "step on CPU %u\n", policy->cpu); 1503 } 1504 1505 cpufreq_cpu_put(policy); 1506 return ret; 1507 } 1508 1509 /** 1510 * cpufreq_bp_resume - Restore proper frequency handling of the boot CPU. 1511 * 1512 * 1.) resume CPUfreq hardware support (cpufreq_driver->resume()) 1513 * 2.) schedule call cpufreq_update_policy() ASAP as interrupts are 1514 * restored. It will verify that the current freq is in sync with 1515 * what we believe it to be. This is a bit later than when it 1516 * should be, but nonethteless it's better than calling 1517 * cpufreq_driver->get() here which might re-enable interrupts... 1518 * 1519 * This function is only executed for the boot CPU. The other CPUs have not 1520 * been turned on yet. 1521 */ 1522 static void cpufreq_bp_resume(void) 1523 { 1524 int ret = 0; 1525 1526 int cpu = smp_processor_id(); 1527 struct cpufreq_policy *policy; 1528 1529 pr_debug("resuming cpu %u\n", cpu); 1530 1531 /* If there's no policy for the boot CPU, we have nothing to do. */ 1532 policy = cpufreq_cpu_get(cpu); 1533 if (!policy) 1534 return; 1535 1536 if (cpufreq_driver->resume) { 1537 ret = cpufreq_driver->resume(policy); 1538 if (ret) { 1539 printk(KERN_ERR "cpufreq: resume failed in ->resume " 1540 "step on CPU %u\n", policy->cpu); 1541 goto fail; 1542 } 1543 } 1544 1545 schedule_work(&policy->update); 1546 1547 fail: 1548 cpufreq_cpu_put(policy); 1549 } 1550 1551 static struct syscore_ops cpufreq_syscore_ops = { 1552 .suspend = cpufreq_bp_suspend, 1553 .resume = cpufreq_bp_resume, 1554 }; 1555 1556 /** 1557 * cpufreq_get_current_driver - return current driver's name 1558 * 1559 * Return the name string of the currently loaded cpufreq driver 1560 * or NULL, if none. 1561 */ 1562 const char *cpufreq_get_current_driver(void) 1563 { 1564 if (cpufreq_driver) 1565 return cpufreq_driver->name; 1566 1567 return NULL; 1568 } 1569 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver); 1570 1571 /********************************************************************* 1572 * NOTIFIER LISTS INTERFACE * 1573 *********************************************************************/ 1574 1575 /** 1576 * cpufreq_register_notifier - register a driver with cpufreq 1577 * @nb: notifier function to register 1578 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1579 * 1580 * Add a driver to one of two lists: either a list of drivers that 1581 * are notified about clock rate changes (once before and once after 1582 * the transition), or a list of drivers that are notified about 1583 * changes in cpufreq policy. 1584 * 1585 * This function may sleep, and has the same return conditions as 1586 * blocking_notifier_chain_register. 1587 */ 1588 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 1589 { 1590 int ret; 1591 1592 if (cpufreq_disabled()) 1593 return -EINVAL; 1594 1595 WARN_ON(!init_cpufreq_transition_notifier_list_called); 1596 1597 switch (list) { 1598 case CPUFREQ_TRANSITION_NOTIFIER: 1599 ret = srcu_notifier_chain_register( 1600 &cpufreq_transition_notifier_list, nb); 1601 break; 1602 case CPUFREQ_POLICY_NOTIFIER: 1603 ret = blocking_notifier_chain_register( 1604 &cpufreq_policy_notifier_list, nb); 1605 break; 1606 default: 1607 ret = -EINVAL; 1608 } 1609 1610 return ret; 1611 } 1612 EXPORT_SYMBOL(cpufreq_register_notifier); 1613 1614 /** 1615 * cpufreq_unregister_notifier - unregister a driver with cpufreq 1616 * @nb: notifier block to be unregistered 1617 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1618 * 1619 * Remove a driver from the CPU frequency notifier list. 1620 * 1621 * This function may sleep, and has the same return conditions as 1622 * blocking_notifier_chain_unregister. 1623 */ 1624 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 1625 { 1626 int ret; 1627 1628 if (cpufreq_disabled()) 1629 return -EINVAL; 1630 1631 switch (list) { 1632 case CPUFREQ_TRANSITION_NOTIFIER: 1633 ret = srcu_notifier_chain_unregister( 1634 &cpufreq_transition_notifier_list, nb); 1635 break; 1636 case CPUFREQ_POLICY_NOTIFIER: 1637 ret = blocking_notifier_chain_unregister( 1638 &cpufreq_policy_notifier_list, nb); 1639 break; 1640 default: 1641 ret = -EINVAL; 1642 } 1643 1644 return ret; 1645 } 1646 EXPORT_SYMBOL(cpufreq_unregister_notifier); 1647 1648 1649 /********************************************************************* 1650 * GOVERNORS * 1651 *********************************************************************/ 1652 1653 int __cpufreq_driver_target(struct cpufreq_policy *policy, 1654 unsigned int target_freq, 1655 unsigned int relation) 1656 { 1657 int retval = -EINVAL; 1658 unsigned int old_target_freq = target_freq; 1659 1660 if (cpufreq_disabled()) 1661 return -ENODEV; 1662 1663 /* Make sure that target_freq is within supported range */ 1664 if (target_freq > policy->max) 1665 target_freq = policy->max; 1666 if (target_freq < policy->min) 1667 target_freq = policy->min; 1668 1669 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n", 1670 policy->cpu, target_freq, relation, old_target_freq); 1671 1672 if (target_freq == policy->cur) 1673 return 0; 1674 1675 if (cpufreq_driver->target) 1676 retval = cpufreq_driver->target(policy, target_freq, relation); 1677 1678 return retval; 1679 } 1680 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 1681 1682 int cpufreq_driver_target(struct cpufreq_policy *policy, 1683 unsigned int target_freq, 1684 unsigned int relation) 1685 { 1686 int ret = -EINVAL; 1687 1688 if (unlikely(lock_policy_rwsem_write(policy->cpu))) 1689 goto fail; 1690 1691 ret = __cpufreq_driver_target(policy, target_freq, relation); 1692 1693 unlock_policy_rwsem_write(policy->cpu); 1694 1695 fail: 1696 return ret; 1697 } 1698 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 1699 1700 /* 1701 * when "event" is CPUFREQ_GOV_LIMITS 1702 */ 1703 1704 static int __cpufreq_governor(struct cpufreq_policy *policy, 1705 unsigned int event) 1706 { 1707 int ret; 1708 1709 /* Only must be defined when default governor is known to have latency 1710 restrictions, like e.g. conservative or ondemand. 1711 That this is the case is already ensured in Kconfig 1712 */ 1713 #ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE 1714 struct cpufreq_governor *gov = &cpufreq_gov_performance; 1715 #else 1716 struct cpufreq_governor *gov = NULL; 1717 #endif 1718 1719 if (policy->governor->max_transition_latency && 1720 policy->cpuinfo.transition_latency > 1721 policy->governor->max_transition_latency) { 1722 if (!gov) 1723 return -EINVAL; 1724 else { 1725 printk(KERN_WARNING "%s governor failed, too long" 1726 " transition latency of HW, fallback" 1727 " to %s governor\n", 1728 policy->governor->name, 1729 gov->name); 1730 policy->governor = gov; 1731 } 1732 } 1733 1734 if (event == CPUFREQ_GOV_POLICY_INIT) 1735 if (!try_module_get(policy->governor->owner)) 1736 return -EINVAL; 1737 1738 pr_debug("__cpufreq_governor for CPU %u, event %u\n", 1739 policy->cpu, event); 1740 1741 mutex_lock(&cpufreq_governor_lock); 1742 if ((policy->governor_enabled && event == CPUFREQ_GOV_START) 1743 || (!policy->governor_enabled 1744 && (event == CPUFREQ_GOV_LIMITS || event == CPUFREQ_GOV_STOP))) { 1745 mutex_unlock(&cpufreq_governor_lock); 1746 return -EBUSY; 1747 } 1748 1749 if (event == CPUFREQ_GOV_STOP) 1750 policy->governor_enabled = false; 1751 else if (event == CPUFREQ_GOV_START) 1752 policy->governor_enabled = true; 1753 1754 mutex_unlock(&cpufreq_governor_lock); 1755 1756 ret = policy->governor->governor(policy, event); 1757 1758 if (!ret) { 1759 if (event == CPUFREQ_GOV_POLICY_INIT) 1760 policy->governor->initialized++; 1761 else if (event == CPUFREQ_GOV_POLICY_EXIT) 1762 policy->governor->initialized--; 1763 } else { 1764 /* Restore original values */ 1765 mutex_lock(&cpufreq_governor_lock); 1766 if (event == CPUFREQ_GOV_STOP) 1767 policy->governor_enabled = true; 1768 else if (event == CPUFREQ_GOV_START) 1769 policy->governor_enabled = false; 1770 mutex_unlock(&cpufreq_governor_lock); 1771 } 1772 1773 if (((event == CPUFREQ_GOV_POLICY_INIT) && ret) || 1774 ((event == CPUFREQ_GOV_POLICY_EXIT) && !ret)) 1775 module_put(policy->governor->owner); 1776 1777 return ret; 1778 } 1779 1780 int cpufreq_register_governor(struct cpufreq_governor *governor) 1781 { 1782 int err; 1783 1784 if (!governor) 1785 return -EINVAL; 1786 1787 if (cpufreq_disabled()) 1788 return -ENODEV; 1789 1790 mutex_lock(&cpufreq_governor_mutex); 1791 1792 governor->initialized = 0; 1793 err = -EBUSY; 1794 if (__find_governor(governor->name) == NULL) { 1795 err = 0; 1796 list_add(&governor->governor_list, &cpufreq_governor_list); 1797 } 1798 1799 mutex_unlock(&cpufreq_governor_mutex); 1800 return err; 1801 } 1802 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 1803 1804 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 1805 { 1806 #ifdef CONFIG_HOTPLUG_CPU 1807 int cpu; 1808 #endif 1809 1810 if (!governor) 1811 return; 1812 1813 if (cpufreq_disabled()) 1814 return; 1815 1816 #ifdef CONFIG_HOTPLUG_CPU 1817 for_each_present_cpu(cpu) { 1818 if (cpu_online(cpu)) 1819 continue; 1820 if (!strcmp(per_cpu(cpufreq_cpu_governor, cpu), governor->name)) 1821 strcpy(per_cpu(cpufreq_cpu_governor, cpu), "\0"); 1822 } 1823 #endif 1824 1825 mutex_lock(&cpufreq_governor_mutex); 1826 list_del(&governor->governor_list); 1827 mutex_unlock(&cpufreq_governor_mutex); 1828 return; 1829 } 1830 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 1831 1832 1833 /********************************************************************* 1834 * POLICY INTERFACE * 1835 *********************************************************************/ 1836 1837 /** 1838 * cpufreq_get_policy - get the current cpufreq_policy 1839 * @policy: struct cpufreq_policy into which the current cpufreq_policy 1840 * is written 1841 * 1842 * Reads the current cpufreq policy. 1843 */ 1844 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 1845 { 1846 struct cpufreq_policy *cpu_policy; 1847 if (!policy) 1848 return -EINVAL; 1849 1850 cpu_policy = cpufreq_cpu_get(cpu); 1851 if (!cpu_policy) 1852 return -EINVAL; 1853 1854 memcpy(policy, cpu_policy, sizeof(*policy)); 1855 1856 cpufreq_cpu_put(cpu_policy); 1857 return 0; 1858 } 1859 EXPORT_SYMBOL(cpufreq_get_policy); 1860 1861 /* 1862 * data : current policy. 1863 * policy : policy to be set. 1864 */ 1865 static int __cpufreq_set_policy(struct cpufreq_policy *policy, 1866 struct cpufreq_policy *new_policy) 1867 { 1868 int ret = 0, failed = 1; 1869 1870 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", new_policy->cpu, 1871 new_policy->min, new_policy->max); 1872 1873 memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo)); 1874 1875 if (new_policy->min > policy->max || new_policy->max < policy->min) { 1876 ret = -EINVAL; 1877 goto error_out; 1878 } 1879 1880 /* verify the cpu speed can be set within this limit */ 1881 ret = cpufreq_driver->verify(new_policy); 1882 if (ret) 1883 goto error_out; 1884 1885 /* adjust if necessary - all reasons */ 1886 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1887 CPUFREQ_ADJUST, new_policy); 1888 1889 /* adjust if necessary - hardware incompatibility*/ 1890 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1891 CPUFREQ_INCOMPATIBLE, new_policy); 1892 1893 /* 1894 * verify the cpu speed can be set within this limit, which might be 1895 * different to the first one 1896 */ 1897 ret = cpufreq_driver->verify(new_policy); 1898 if (ret) 1899 goto error_out; 1900 1901 /* notification of the new policy */ 1902 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1903 CPUFREQ_NOTIFY, new_policy); 1904 1905 policy->min = new_policy->min; 1906 policy->max = new_policy->max; 1907 1908 pr_debug("new min and max freqs are %u - %u kHz\n", 1909 policy->min, policy->max); 1910 1911 if (cpufreq_driver->setpolicy) { 1912 policy->policy = new_policy->policy; 1913 pr_debug("setting range\n"); 1914 ret = cpufreq_driver->setpolicy(new_policy); 1915 } else { 1916 if (new_policy->governor != policy->governor) { 1917 /* save old, working values */ 1918 struct cpufreq_governor *old_gov = policy->governor; 1919 1920 pr_debug("governor switch\n"); 1921 1922 /* end old governor */ 1923 if (policy->governor) { 1924 __cpufreq_governor(policy, CPUFREQ_GOV_STOP); 1925 unlock_policy_rwsem_write(new_policy->cpu); 1926 __cpufreq_governor(policy, 1927 CPUFREQ_GOV_POLICY_EXIT); 1928 lock_policy_rwsem_write(new_policy->cpu); 1929 } 1930 1931 /* start new governor */ 1932 policy->governor = new_policy->governor; 1933 if (!__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT)) { 1934 if (!__cpufreq_governor(policy, CPUFREQ_GOV_START)) { 1935 failed = 0; 1936 } else { 1937 unlock_policy_rwsem_write(new_policy->cpu); 1938 __cpufreq_governor(policy, 1939 CPUFREQ_GOV_POLICY_EXIT); 1940 lock_policy_rwsem_write(new_policy->cpu); 1941 } 1942 } 1943 1944 if (failed) { 1945 /* new governor failed, so re-start old one */ 1946 pr_debug("starting governor %s failed\n", 1947 policy->governor->name); 1948 if (old_gov) { 1949 policy->governor = old_gov; 1950 __cpufreq_governor(policy, 1951 CPUFREQ_GOV_POLICY_INIT); 1952 __cpufreq_governor(policy, 1953 CPUFREQ_GOV_START); 1954 } 1955 ret = -EINVAL; 1956 goto error_out; 1957 } 1958 /* might be a policy change, too, so fall through */ 1959 } 1960 pr_debug("governor: change or update limits\n"); 1961 ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); 1962 } 1963 1964 error_out: 1965 return ret; 1966 } 1967 1968 /** 1969 * cpufreq_update_policy - re-evaluate an existing cpufreq policy 1970 * @cpu: CPU which shall be re-evaluated 1971 * 1972 * Useful for policy notifiers which have different necessities 1973 * at different times. 1974 */ 1975 int cpufreq_update_policy(unsigned int cpu) 1976 { 1977 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1978 struct cpufreq_policy new_policy; 1979 int ret; 1980 1981 if (!policy) { 1982 ret = -ENODEV; 1983 goto no_policy; 1984 } 1985 1986 if (unlikely(lock_policy_rwsem_write(cpu))) { 1987 ret = -EINVAL; 1988 goto fail; 1989 } 1990 1991 pr_debug("updating policy for CPU %u\n", cpu); 1992 memcpy(&new_policy, policy, sizeof(*policy)); 1993 new_policy.min = policy->user_policy.min; 1994 new_policy.max = policy->user_policy.max; 1995 new_policy.policy = policy->user_policy.policy; 1996 new_policy.governor = policy->user_policy.governor; 1997 1998 /* 1999 * BIOS might change freq behind our back 2000 * -> ask driver for current freq and notify governors about a change 2001 */ 2002 if (cpufreq_driver->get) { 2003 new_policy.cur = cpufreq_driver->get(cpu); 2004 if (!policy->cur) { 2005 pr_debug("Driver did not initialize current freq"); 2006 policy->cur = new_policy.cur; 2007 } else { 2008 if (policy->cur != new_policy.cur && cpufreq_driver->target) 2009 cpufreq_out_of_sync(cpu, policy->cur, 2010 new_policy.cur); 2011 } 2012 } 2013 2014 ret = __cpufreq_set_policy(policy, &new_policy); 2015 2016 unlock_policy_rwsem_write(cpu); 2017 2018 fail: 2019 cpufreq_cpu_put(policy); 2020 no_policy: 2021 return ret; 2022 } 2023 EXPORT_SYMBOL(cpufreq_update_policy); 2024 2025 static int cpufreq_cpu_callback(struct notifier_block *nfb, 2026 unsigned long action, void *hcpu) 2027 { 2028 unsigned int cpu = (unsigned long)hcpu; 2029 struct device *dev; 2030 bool frozen = false; 2031 2032 dev = get_cpu_device(cpu); 2033 if (dev) { 2034 2035 if (action & CPU_TASKS_FROZEN) 2036 frozen = true; 2037 2038 switch (action & ~CPU_TASKS_FROZEN) { 2039 case CPU_ONLINE: 2040 __cpufreq_add_dev(dev, NULL, frozen); 2041 cpufreq_update_policy(cpu); 2042 break; 2043 2044 case CPU_DOWN_PREPARE: 2045 __cpufreq_remove_dev_prepare(dev, NULL, frozen); 2046 break; 2047 2048 case CPU_POST_DEAD: 2049 __cpufreq_remove_dev_finish(dev, NULL, frozen); 2050 break; 2051 2052 case CPU_DOWN_FAILED: 2053 __cpufreq_add_dev(dev, NULL, frozen); 2054 break; 2055 } 2056 } 2057 return NOTIFY_OK; 2058 } 2059 2060 static struct notifier_block __refdata cpufreq_cpu_notifier = { 2061 .notifier_call = cpufreq_cpu_callback, 2062 }; 2063 2064 /********************************************************************* 2065 * REGISTER / UNREGISTER CPUFREQ DRIVER * 2066 *********************************************************************/ 2067 2068 /** 2069 * cpufreq_register_driver - register a CPU Frequency driver 2070 * @driver_data: A struct cpufreq_driver containing the values# 2071 * submitted by the CPU Frequency driver. 2072 * 2073 * Registers a CPU Frequency driver to this core code. This code 2074 * returns zero on success, -EBUSY when another driver got here first 2075 * (and isn't unregistered in the meantime). 2076 * 2077 */ 2078 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 2079 { 2080 unsigned long flags; 2081 int ret; 2082 2083 if (cpufreq_disabled()) 2084 return -ENODEV; 2085 2086 if (!driver_data || !driver_data->verify || !driver_data->init || 2087 ((!driver_data->setpolicy) && (!driver_data->target))) 2088 return -EINVAL; 2089 2090 pr_debug("trying to register driver %s\n", driver_data->name); 2091 2092 if (driver_data->setpolicy) 2093 driver_data->flags |= CPUFREQ_CONST_LOOPS; 2094 2095 write_lock_irqsave(&cpufreq_driver_lock, flags); 2096 if (cpufreq_driver) { 2097 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2098 return -EBUSY; 2099 } 2100 cpufreq_driver = driver_data; 2101 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2102 2103 ret = subsys_interface_register(&cpufreq_interface); 2104 if (ret) 2105 goto err_null_driver; 2106 2107 if (!(cpufreq_driver->flags & CPUFREQ_STICKY)) { 2108 int i; 2109 ret = -ENODEV; 2110 2111 /* check for at least one working CPU */ 2112 for (i = 0; i < nr_cpu_ids; i++) 2113 if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) { 2114 ret = 0; 2115 break; 2116 } 2117 2118 /* if all ->init() calls failed, unregister */ 2119 if (ret) { 2120 pr_debug("no CPU initialized for driver %s\n", 2121 driver_data->name); 2122 goto err_if_unreg; 2123 } 2124 } 2125 2126 register_hotcpu_notifier(&cpufreq_cpu_notifier); 2127 pr_debug("driver %s up and running\n", driver_data->name); 2128 2129 return 0; 2130 err_if_unreg: 2131 subsys_interface_unregister(&cpufreq_interface); 2132 err_null_driver: 2133 write_lock_irqsave(&cpufreq_driver_lock, flags); 2134 cpufreq_driver = NULL; 2135 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2136 return ret; 2137 } 2138 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 2139 2140 /** 2141 * cpufreq_unregister_driver - unregister the current CPUFreq driver 2142 * 2143 * Unregister the current CPUFreq driver. Only call this if you have 2144 * the right to do so, i.e. if you have succeeded in initialising before! 2145 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 2146 * currently not initialised. 2147 */ 2148 int cpufreq_unregister_driver(struct cpufreq_driver *driver) 2149 { 2150 unsigned long flags; 2151 2152 if (!cpufreq_driver || (driver != cpufreq_driver)) 2153 return -EINVAL; 2154 2155 pr_debug("unregistering driver %s\n", driver->name); 2156 2157 subsys_interface_unregister(&cpufreq_interface); 2158 unregister_hotcpu_notifier(&cpufreq_cpu_notifier); 2159 2160 down_write(&cpufreq_rwsem); 2161 write_lock_irqsave(&cpufreq_driver_lock, flags); 2162 2163 cpufreq_driver = NULL; 2164 2165 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2166 up_write(&cpufreq_rwsem); 2167 2168 return 0; 2169 } 2170 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 2171 2172 static int __init cpufreq_core_init(void) 2173 { 2174 int cpu; 2175 2176 if (cpufreq_disabled()) 2177 return -ENODEV; 2178 2179 for_each_possible_cpu(cpu) 2180 init_rwsem(&per_cpu(cpu_policy_rwsem, cpu)); 2181 2182 cpufreq_global_kobject = kobject_create(); 2183 BUG_ON(!cpufreq_global_kobject); 2184 register_syscore_ops(&cpufreq_syscore_ops); 2185 2186 return 0; 2187 } 2188 core_initcall(cpufreq_core_init); 2189