1 /* 2 * linux/drivers/cpufreq/cpufreq.c 3 * 4 * Copyright (C) 2001 Russell King 5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 6 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org> 7 * 8 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 9 * Added handling for CPU hotplug 10 * Feb 2006 - Jacob Shin <jacob.shin@amd.com> 11 * Fix handling for CPU hotplug -- affected CPUs 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License version 2 as 15 * published by the Free Software Foundation. 16 */ 17 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/cpu.h> 21 #include <linux/cpufreq.h> 22 #include <linux/delay.h> 23 #include <linux/device.h> 24 #include <linux/init.h> 25 #include <linux/kernel_stat.h> 26 #include <linux/module.h> 27 #include <linux/mutex.h> 28 #include <linux/slab.h> 29 #include <linux/suspend.h> 30 #include <linux/tick.h> 31 #include <trace/events/power.h> 32 33 /** 34 * The "cpufreq driver" - the arch- or hardware-dependent low 35 * level driver of CPUFreq support, and its spinlock. This lock 36 * also protects the cpufreq_cpu_data array. 37 */ 38 static struct cpufreq_driver *cpufreq_driver; 39 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data); 40 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data_fallback); 41 static DEFINE_RWLOCK(cpufreq_driver_lock); 42 DEFINE_MUTEX(cpufreq_governor_lock); 43 static LIST_HEAD(cpufreq_policy_list); 44 45 /* This one keeps track of the previously set governor of a removed CPU */ 46 static DEFINE_PER_CPU(char[CPUFREQ_NAME_LEN], cpufreq_cpu_governor); 47 48 /* Flag to suspend/resume CPUFreq governors */ 49 static bool cpufreq_suspended; 50 51 static inline bool has_target(void) 52 { 53 return cpufreq_driver->target_index || cpufreq_driver->target; 54 } 55 56 /* 57 * rwsem to guarantee that cpufreq driver module doesn't unload during critical 58 * sections 59 */ 60 static DECLARE_RWSEM(cpufreq_rwsem); 61 62 /* internal prototypes */ 63 static int __cpufreq_governor(struct cpufreq_policy *policy, 64 unsigned int event); 65 static unsigned int __cpufreq_get(unsigned int cpu); 66 static void handle_update(struct work_struct *work); 67 68 /** 69 * Two notifier lists: the "policy" list is involved in the 70 * validation process for a new CPU frequency policy; the 71 * "transition" list for kernel code that needs to handle 72 * changes to devices when the CPU clock speed changes. 73 * The mutex locks both lists. 74 */ 75 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list); 76 static struct srcu_notifier_head cpufreq_transition_notifier_list; 77 78 static bool init_cpufreq_transition_notifier_list_called; 79 static int __init init_cpufreq_transition_notifier_list(void) 80 { 81 srcu_init_notifier_head(&cpufreq_transition_notifier_list); 82 init_cpufreq_transition_notifier_list_called = true; 83 return 0; 84 } 85 pure_initcall(init_cpufreq_transition_notifier_list); 86 87 static int off __read_mostly; 88 static int cpufreq_disabled(void) 89 { 90 return off; 91 } 92 void disable_cpufreq(void) 93 { 94 off = 1; 95 } 96 static LIST_HEAD(cpufreq_governor_list); 97 static DEFINE_MUTEX(cpufreq_governor_mutex); 98 99 bool have_governor_per_policy(void) 100 { 101 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY); 102 } 103 EXPORT_SYMBOL_GPL(have_governor_per_policy); 104 105 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy) 106 { 107 if (have_governor_per_policy()) 108 return &policy->kobj; 109 else 110 return cpufreq_global_kobject; 111 } 112 EXPORT_SYMBOL_GPL(get_governor_parent_kobj); 113 114 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) 115 { 116 u64 idle_time; 117 u64 cur_wall_time; 118 u64 busy_time; 119 120 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64()); 121 122 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER]; 123 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM]; 124 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ]; 125 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ]; 126 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL]; 127 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE]; 128 129 idle_time = cur_wall_time - busy_time; 130 if (wall) 131 *wall = cputime_to_usecs(cur_wall_time); 132 133 return cputime_to_usecs(idle_time); 134 } 135 136 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy) 137 { 138 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL); 139 140 if (idle_time == -1ULL) 141 return get_cpu_idle_time_jiffy(cpu, wall); 142 else if (!io_busy) 143 idle_time += get_cpu_iowait_time_us(cpu, wall); 144 145 return idle_time; 146 } 147 EXPORT_SYMBOL_GPL(get_cpu_idle_time); 148 149 /* 150 * This is a generic cpufreq init() routine which can be used by cpufreq 151 * drivers of SMP systems. It will do following: 152 * - validate & show freq table passed 153 * - set policies transition latency 154 * - policy->cpus with all possible CPUs 155 */ 156 int cpufreq_generic_init(struct cpufreq_policy *policy, 157 struct cpufreq_frequency_table *table, 158 unsigned int transition_latency) 159 { 160 int ret; 161 162 ret = cpufreq_table_validate_and_show(policy, table); 163 if (ret) { 164 pr_err("%s: invalid frequency table: %d\n", __func__, ret); 165 return ret; 166 } 167 168 policy->cpuinfo.transition_latency = transition_latency; 169 170 /* 171 * The driver only supports the SMP configuartion where all processors 172 * share the clock and voltage and clock. 173 */ 174 cpumask_setall(policy->cpus); 175 176 return 0; 177 } 178 EXPORT_SYMBOL_GPL(cpufreq_generic_init); 179 180 unsigned int cpufreq_generic_get(unsigned int cpu) 181 { 182 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 183 184 if (!policy || IS_ERR(policy->clk)) { 185 pr_err("%s: No %s associated to cpu: %d\n", 186 __func__, policy ? "clk" : "policy", cpu); 187 return 0; 188 } 189 190 return clk_get_rate(policy->clk) / 1000; 191 } 192 EXPORT_SYMBOL_GPL(cpufreq_generic_get); 193 194 /* Only for cpufreq core internal use */ 195 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu) 196 { 197 return per_cpu(cpufreq_cpu_data, cpu); 198 } 199 200 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) 201 { 202 struct cpufreq_policy *policy = NULL; 203 unsigned long flags; 204 205 if (cpufreq_disabled() || (cpu >= nr_cpu_ids)) 206 return NULL; 207 208 if (!down_read_trylock(&cpufreq_rwsem)) 209 return NULL; 210 211 /* get the cpufreq driver */ 212 read_lock_irqsave(&cpufreq_driver_lock, flags); 213 214 if (cpufreq_driver) { 215 /* get the CPU */ 216 policy = per_cpu(cpufreq_cpu_data, cpu); 217 if (policy) 218 kobject_get(&policy->kobj); 219 } 220 221 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 222 223 if (!policy) 224 up_read(&cpufreq_rwsem); 225 226 return policy; 227 } 228 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 229 230 void cpufreq_cpu_put(struct cpufreq_policy *policy) 231 { 232 if (cpufreq_disabled()) 233 return; 234 235 kobject_put(&policy->kobj); 236 up_read(&cpufreq_rwsem); 237 } 238 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 239 240 /********************************************************************* 241 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 242 *********************************************************************/ 243 244 /** 245 * adjust_jiffies - adjust the system "loops_per_jiffy" 246 * 247 * This function alters the system "loops_per_jiffy" for the clock 248 * speed change. Note that loops_per_jiffy cannot be updated on SMP 249 * systems as each CPU might be scaled differently. So, use the arch 250 * per-CPU loops_per_jiffy value wherever possible. 251 */ 252 #ifndef CONFIG_SMP 253 static unsigned long l_p_j_ref; 254 static unsigned int l_p_j_ref_freq; 255 256 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 257 { 258 if (ci->flags & CPUFREQ_CONST_LOOPS) 259 return; 260 261 if (!l_p_j_ref_freq) { 262 l_p_j_ref = loops_per_jiffy; 263 l_p_j_ref_freq = ci->old; 264 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n", 265 l_p_j_ref, l_p_j_ref_freq); 266 } 267 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) { 268 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, 269 ci->new); 270 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n", 271 loops_per_jiffy, ci->new); 272 } 273 } 274 #else 275 static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 276 { 277 return; 278 } 279 #endif 280 281 static void __cpufreq_notify_transition(struct cpufreq_policy *policy, 282 struct cpufreq_freqs *freqs, unsigned int state) 283 { 284 BUG_ON(irqs_disabled()); 285 286 if (cpufreq_disabled()) 287 return; 288 289 freqs->flags = cpufreq_driver->flags; 290 pr_debug("notification %u of frequency transition to %u kHz\n", 291 state, freqs->new); 292 293 switch (state) { 294 295 case CPUFREQ_PRECHANGE: 296 /* detect if the driver reported a value as "old frequency" 297 * which is not equal to what the cpufreq core thinks is 298 * "old frequency". 299 */ 300 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 301 if ((policy) && (policy->cpu == freqs->cpu) && 302 (policy->cur) && (policy->cur != freqs->old)) { 303 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n", 304 freqs->old, policy->cur); 305 freqs->old = policy->cur; 306 } 307 } 308 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 309 CPUFREQ_PRECHANGE, freqs); 310 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 311 break; 312 313 case CPUFREQ_POSTCHANGE: 314 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 315 pr_debug("FREQ: %lu - CPU: %lu\n", 316 (unsigned long)freqs->new, (unsigned long)freqs->cpu); 317 trace_cpu_frequency(freqs->new, freqs->cpu); 318 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 319 CPUFREQ_POSTCHANGE, freqs); 320 if (likely(policy) && likely(policy->cpu == freqs->cpu)) 321 policy->cur = freqs->new; 322 break; 323 } 324 } 325 326 /** 327 * cpufreq_notify_transition - call notifier chain and adjust_jiffies 328 * on frequency transition. 329 * 330 * This function calls the transition notifiers and the "adjust_jiffies" 331 * function. It is called twice on all CPU frequency changes that have 332 * external effects. 333 */ 334 static void cpufreq_notify_transition(struct cpufreq_policy *policy, 335 struct cpufreq_freqs *freqs, unsigned int state) 336 { 337 for_each_cpu(freqs->cpu, policy->cpus) 338 __cpufreq_notify_transition(policy, freqs, state); 339 } 340 341 /* Do post notifications when there are chances that transition has failed */ 342 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy, 343 struct cpufreq_freqs *freqs, int transition_failed) 344 { 345 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 346 if (!transition_failed) 347 return; 348 349 swap(freqs->old, freqs->new); 350 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 351 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 352 } 353 354 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy, 355 struct cpufreq_freqs *freqs) 356 { 357 358 /* 359 * Catch double invocations of _begin() which lead to self-deadlock. 360 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core 361 * doesn't invoke _begin() on their behalf, and hence the chances of 362 * double invocations are very low. Moreover, there are scenarios 363 * where these checks can emit false-positive warnings in these 364 * drivers; so we avoid that by skipping them altogether. 365 */ 366 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION) 367 && current == policy->transition_task); 368 369 wait: 370 wait_event(policy->transition_wait, !policy->transition_ongoing); 371 372 spin_lock(&policy->transition_lock); 373 374 if (unlikely(policy->transition_ongoing)) { 375 spin_unlock(&policy->transition_lock); 376 goto wait; 377 } 378 379 policy->transition_ongoing = true; 380 policy->transition_task = current; 381 382 spin_unlock(&policy->transition_lock); 383 384 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 385 } 386 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin); 387 388 void cpufreq_freq_transition_end(struct cpufreq_policy *policy, 389 struct cpufreq_freqs *freqs, int transition_failed) 390 { 391 if (unlikely(WARN_ON(!policy->transition_ongoing))) 392 return; 393 394 cpufreq_notify_post_transition(policy, freqs, transition_failed); 395 396 policy->transition_ongoing = false; 397 policy->transition_task = NULL; 398 399 wake_up(&policy->transition_wait); 400 } 401 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end); 402 403 404 /********************************************************************* 405 * SYSFS INTERFACE * 406 *********************************************************************/ 407 static ssize_t show_boost(struct kobject *kobj, 408 struct attribute *attr, char *buf) 409 { 410 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled); 411 } 412 413 static ssize_t store_boost(struct kobject *kobj, struct attribute *attr, 414 const char *buf, size_t count) 415 { 416 int ret, enable; 417 418 ret = sscanf(buf, "%d", &enable); 419 if (ret != 1 || enable < 0 || enable > 1) 420 return -EINVAL; 421 422 if (cpufreq_boost_trigger_state(enable)) { 423 pr_err("%s: Cannot %s BOOST!\n", 424 __func__, enable ? "enable" : "disable"); 425 return -EINVAL; 426 } 427 428 pr_debug("%s: cpufreq BOOST %s\n", 429 __func__, enable ? "enabled" : "disabled"); 430 431 return count; 432 } 433 define_one_global_rw(boost); 434 435 static struct cpufreq_governor *__find_governor(const char *str_governor) 436 { 437 struct cpufreq_governor *t; 438 439 list_for_each_entry(t, &cpufreq_governor_list, governor_list) 440 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN)) 441 return t; 442 443 return NULL; 444 } 445 446 /** 447 * cpufreq_parse_governor - parse a governor string 448 */ 449 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy, 450 struct cpufreq_governor **governor) 451 { 452 int err = -EINVAL; 453 454 if (!cpufreq_driver) 455 goto out; 456 457 if (cpufreq_driver->setpolicy) { 458 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) { 459 *policy = CPUFREQ_POLICY_PERFORMANCE; 460 err = 0; 461 } else if (!strncasecmp(str_governor, "powersave", 462 CPUFREQ_NAME_LEN)) { 463 *policy = CPUFREQ_POLICY_POWERSAVE; 464 err = 0; 465 } 466 } else if (has_target()) { 467 struct cpufreq_governor *t; 468 469 mutex_lock(&cpufreq_governor_mutex); 470 471 t = __find_governor(str_governor); 472 473 if (t == NULL) { 474 int ret; 475 476 mutex_unlock(&cpufreq_governor_mutex); 477 ret = request_module("cpufreq_%s", str_governor); 478 mutex_lock(&cpufreq_governor_mutex); 479 480 if (ret == 0) 481 t = __find_governor(str_governor); 482 } 483 484 if (t != NULL) { 485 *governor = t; 486 err = 0; 487 } 488 489 mutex_unlock(&cpufreq_governor_mutex); 490 } 491 out: 492 return err; 493 } 494 495 /** 496 * cpufreq_per_cpu_attr_read() / show_##file_name() - 497 * print out cpufreq information 498 * 499 * Write out information from cpufreq_driver->policy[cpu]; object must be 500 * "unsigned int". 501 */ 502 503 #define show_one(file_name, object) \ 504 static ssize_t show_##file_name \ 505 (struct cpufreq_policy *policy, char *buf) \ 506 { \ 507 return sprintf(buf, "%u\n", policy->object); \ 508 } 509 510 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 511 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 512 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency); 513 show_one(scaling_min_freq, min); 514 show_one(scaling_max_freq, max); 515 516 static ssize_t show_scaling_cur_freq( 517 struct cpufreq_policy *policy, char *buf) 518 { 519 ssize_t ret; 520 521 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) 522 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu)); 523 else 524 ret = sprintf(buf, "%u\n", policy->cur); 525 return ret; 526 } 527 528 static int cpufreq_set_policy(struct cpufreq_policy *policy, 529 struct cpufreq_policy *new_policy); 530 531 /** 532 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 533 */ 534 #define store_one(file_name, object) \ 535 static ssize_t store_##file_name \ 536 (struct cpufreq_policy *policy, const char *buf, size_t count) \ 537 { \ 538 int ret, temp; \ 539 struct cpufreq_policy new_policy; \ 540 \ 541 ret = cpufreq_get_policy(&new_policy, policy->cpu); \ 542 if (ret) \ 543 return -EINVAL; \ 544 \ 545 ret = sscanf(buf, "%u", &new_policy.object); \ 546 if (ret != 1) \ 547 return -EINVAL; \ 548 \ 549 temp = new_policy.object; \ 550 ret = cpufreq_set_policy(policy, &new_policy); \ 551 if (!ret) \ 552 policy->user_policy.object = temp; \ 553 \ 554 return ret ? ret : count; \ 555 } 556 557 store_one(scaling_min_freq, min); 558 store_one(scaling_max_freq, max); 559 560 /** 561 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 562 */ 563 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy, 564 char *buf) 565 { 566 unsigned int cur_freq = __cpufreq_get(policy->cpu); 567 if (!cur_freq) 568 return sprintf(buf, "<unknown>"); 569 return sprintf(buf, "%u\n", cur_freq); 570 } 571 572 /** 573 * show_scaling_governor - show the current policy for the specified CPU 574 */ 575 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf) 576 { 577 if (policy->policy == CPUFREQ_POLICY_POWERSAVE) 578 return sprintf(buf, "powersave\n"); 579 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 580 return sprintf(buf, "performance\n"); 581 else if (policy->governor) 582 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", 583 policy->governor->name); 584 return -EINVAL; 585 } 586 587 /** 588 * store_scaling_governor - store policy for the specified CPU 589 */ 590 static ssize_t store_scaling_governor(struct cpufreq_policy *policy, 591 const char *buf, size_t count) 592 { 593 int ret; 594 char str_governor[16]; 595 struct cpufreq_policy new_policy; 596 597 ret = cpufreq_get_policy(&new_policy, policy->cpu); 598 if (ret) 599 return ret; 600 601 ret = sscanf(buf, "%15s", str_governor); 602 if (ret != 1) 603 return -EINVAL; 604 605 if (cpufreq_parse_governor(str_governor, &new_policy.policy, 606 &new_policy.governor)) 607 return -EINVAL; 608 609 ret = cpufreq_set_policy(policy, &new_policy); 610 611 policy->user_policy.policy = policy->policy; 612 policy->user_policy.governor = policy->governor; 613 614 if (ret) 615 return ret; 616 else 617 return count; 618 } 619 620 /** 621 * show_scaling_driver - show the cpufreq driver currently loaded 622 */ 623 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf) 624 { 625 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name); 626 } 627 628 /** 629 * show_scaling_available_governors - show the available CPUfreq governors 630 */ 631 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy, 632 char *buf) 633 { 634 ssize_t i = 0; 635 struct cpufreq_governor *t; 636 637 if (!has_target()) { 638 i += sprintf(buf, "performance powersave"); 639 goto out; 640 } 641 642 list_for_each_entry(t, &cpufreq_governor_list, governor_list) { 643 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) 644 - (CPUFREQ_NAME_LEN + 2))) 645 goto out; 646 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name); 647 } 648 out: 649 i += sprintf(&buf[i], "\n"); 650 return i; 651 } 652 653 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf) 654 { 655 ssize_t i = 0; 656 unsigned int cpu; 657 658 for_each_cpu(cpu, mask) { 659 if (i) 660 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " "); 661 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu); 662 if (i >= (PAGE_SIZE - 5)) 663 break; 664 } 665 i += sprintf(&buf[i], "\n"); 666 return i; 667 } 668 EXPORT_SYMBOL_GPL(cpufreq_show_cpus); 669 670 /** 671 * show_related_cpus - show the CPUs affected by each transition even if 672 * hw coordination is in use 673 */ 674 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf) 675 { 676 return cpufreq_show_cpus(policy->related_cpus, buf); 677 } 678 679 /** 680 * show_affected_cpus - show the CPUs affected by each transition 681 */ 682 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf) 683 { 684 return cpufreq_show_cpus(policy->cpus, buf); 685 } 686 687 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy, 688 const char *buf, size_t count) 689 { 690 unsigned int freq = 0; 691 unsigned int ret; 692 693 if (!policy->governor || !policy->governor->store_setspeed) 694 return -EINVAL; 695 696 ret = sscanf(buf, "%u", &freq); 697 if (ret != 1) 698 return -EINVAL; 699 700 policy->governor->store_setspeed(policy, freq); 701 702 return count; 703 } 704 705 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf) 706 { 707 if (!policy->governor || !policy->governor->show_setspeed) 708 return sprintf(buf, "<unsupported>\n"); 709 710 return policy->governor->show_setspeed(policy, buf); 711 } 712 713 /** 714 * show_bios_limit - show the current cpufreq HW/BIOS limitation 715 */ 716 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf) 717 { 718 unsigned int limit; 719 int ret; 720 if (cpufreq_driver->bios_limit) { 721 ret = cpufreq_driver->bios_limit(policy->cpu, &limit); 722 if (!ret) 723 return sprintf(buf, "%u\n", limit); 724 } 725 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq); 726 } 727 728 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400); 729 cpufreq_freq_attr_ro(cpuinfo_min_freq); 730 cpufreq_freq_attr_ro(cpuinfo_max_freq); 731 cpufreq_freq_attr_ro(cpuinfo_transition_latency); 732 cpufreq_freq_attr_ro(scaling_available_governors); 733 cpufreq_freq_attr_ro(scaling_driver); 734 cpufreq_freq_attr_ro(scaling_cur_freq); 735 cpufreq_freq_attr_ro(bios_limit); 736 cpufreq_freq_attr_ro(related_cpus); 737 cpufreq_freq_attr_ro(affected_cpus); 738 cpufreq_freq_attr_rw(scaling_min_freq); 739 cpufreq_freq_attr_rw(scaling_max_freq); 740 cpufreq_freq_attr_rw(scaling_governor); 741 cpufreq_freq_attr_rw(scaling_setspeed); 742 743 static struct attribute *default_attrs[] = { 744 &cpuinfo_min_freq.attr, 745 &cpuinfo_max_freq.attr, 746 &cpuinfo_transition_latency.attr, 747 &scaling_min_freq.attr, 748 &scaling_max_freq.attr, 749 &affected_cpus.attr, 750 &related_cpus.attr, 751 &scaling_governor.attr, 752 &scaling_driver.attr, 753 &scaling_available_governors.attr, 754 &scaling_setspeed.attr, 755 NULL 756 }; 757 758 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj) 759 #define to_attr(a) container_of(a, struct freq_attr, attr) 760 761 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) 762 { 763 struct cpufreq_policy *policy = to_policy(kobj); 764 struct freq_attr *fattr = to_attr(attr); 765 ssize_t ret; 766 767 if (!down_read_trylock(&cpufreq_rwsem)) 768 return -EINVAL; 769 770 down_read(&policy->rwsem); 771 772 if (fattr->show) 773 ret = fattr->show(policy, buf); 774 else 775 ret = -EIO; 776 777 up_read(&policy->rwsem); 778 up_read(&cpufreq_rwsem); 779 780 return ret; 781 } 782 783 static ssize_t store(struct kobject *kobj, struct attribute *attr, 784 const char *buf, size_t count) 785 { 786 struct cpufreq_policy *policy = to_policy(kobj); 787 struct freq_attr *fattr = to_attr(attr); 788 ssize_t ret = -EINVAL; 789 790 get_online_cpus(); 791 792 if (!cpu_online(policy->cpu)) 793 goto unlock; 794 795 if (!down_read_trylock(&cpufreq_rwsem)) 796 goto unlock; 797 798 down_write(&policy->rwsem); 799 800 if (fattr->store) 801 ret = fattr->store(policy, buf, count); 802 else 803 ret = -EIO; 804 805 up_write(&policy->rwsem); 806 807 up_read(&cpufreq_rwsem); 808 unlock: 809 put_online_cpus(); 810 811 return ret; 812 } 813 814 static void cpufreq_sysfs_release(struct kobject *kobj) 815 { 816 struct cpufreq_policy *policy = to_policy(kobj); 817 pr_debug("last reference is dropped\n"); 818 complete(&policy->kobj_unregister); 819 } 820 821 static const struct sysfs_ops sysfs_ops = { 822 .show = show, 823 .store = store, 824 }; 825 826 static struct kobj_type ktype_cpufreq = { 827 .sysfs_ops = &sysfs_ops, 828 .default_attrs = default_attrs, 829 .release = cpufreq_sysfs_release, 830 }; 831 832 struct kobject *cpufreq_global_kobject; 833 EXPORT_SYMBOL(cpufreq_global_kobject); 834 835 static int cpufreq_global_kobject_usage; 836 837 int cpufreq_get_global_kobject(void) 838 { 839 if (!cpufreq_global_kobject_usage++) 840 return kobject_add(cpufreq_global_kobject, 841 &cpu_subsys.dev_root->kobj, "%s", "cpufreq"); 842 843 return 0; 844 } 845 EXPORT_SYMBOL(cpufreq_get_global_kobject); 846 847 void cpufreq_put_global_kobject(void) 848 { 849 if (!--cpufreq_global_kobject_usage) 850 kobject_del(cpufreq_global_kobject); 851 } 852 EXPORT_SYMBOL(cpufreq_put_global_kobject); 853 854 int cpufreq_sysfs_create_file(const struct attribute *attr) 855 { 856 int ret = cpufreq_get_global_kobject(); 857 858 if (!ret) { 859 ret = sysfs_create_file(cpufreq_global_kobject, attr); 860 if (ret) 861 cpufreq_put_global_kobject(); 862 } 863 864 return ret; 865 } 866 EXPORT_SYMBOL(cpufreq_sysfs_create_file); 867 868 void cpufreq_sysfs_remove_file(const struct attribute *attr) 869 { 870 sysfs_remove_file(cpufreq_global_kobject, attr); 871 cpufreq_put_global_kobject(); 872 } 873 EXPORT_SYMBOL(cpufreq_sysfs_remove_file); 874 875 /* symlink affected CPUs */ 876 static int cpufreq_add_dev_symlink(struct cpufreq_policy *policy) 877 { 878 unsigned int j; 879 int ret = 0; 880 881 for_each_cpu(j, policy->cpus) { 882 struct device *cpu_dev; 883 884 if (j == policy->cpu) 885 continue; 886 887 pr_debug("Adding link for CPU: %u\n", j); 888 cpu_dev = get_cpu_device(j); 889 ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj, 890 "cpufreq"); 891 if (ret) 892 break; 893 } 894 return ret; 895 } 896 897 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy, 898 struct device *dev) 899 { 900 struct freq_attr **drv_attr; 901 int ret = 0; 902 903 /* set up files for this cpu device */ 904 drv_attr = cpufreq_driver->attr; 905 while ((drv_attr) && (*drv_attr)) { 906 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 907 if (ret) 908 return ret; 909 drv_attr++; 910 } 911 if (cpufreq_driver->get) { 912 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 913 if (ret) 914 return ret; 915 } 916 917 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 918 if (ret) 919 return ret; 920 921 if (cpufreq_driver->bios_limit) { 922 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr); 923 if (ret) 924 return ret; 925 } 926 927 return cpufreq_add_dev_symlink(policy); 928 } 929 930 static void cpufreq_init_policy(struct cpufreq_policy *policy) 931 { 932 struct cpufreq_governor *gov = NULL; 933 struct cpufreq_policy new_policy; 934 int ret = 0; 935 936 memcpy(&new_policy, policy, sizeof(*policy)); 937 938 /* Update governor of new_policy to the governor used before hotplug */ 939 gov = __find_governor(per_cpu(cpufreq_cpu_governor, policy->cpu)); 940 if (gov) 941 pr_debug("Restoring governor %s for cpu %d\n", 942 policy->governor->name, policy->cpu); 943 else 944 gov = CPUFREQ_DEFAULT_GOVERNOR; 945 946 new_policy.governor = gov; 947 948 /* Use the default policy if its valid. */ 949 if (cpufreq_driver->setpolicy) 950 cpufreq_parse_governor(gov->name, &new_policy.policy, NULL); 951 952 /* set default policy */ 953 ret = cpufreq_set_policy(policy, &new_policy); 954 if (ret) { 955 pr_debug("setting policy failed\n"); 956 if (cpufreq_driver->exit) 957 cpufreq_driver->exit(policy); 958 } 959 } 960 961 #ifdef CONFIG_HOTPLUG_CPU 962 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, 963 unsigned int cpu, struct device *dev) 964 { 965 int ret = 0; 966 unsigned long flags; 967 968 if (has_target()) { 969 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP); 970 if (ret) { 971 pr_err("%s: Failed to stop governor\n", __func__); 972 return ret; 973 } 974 } 975 976 down_write(&policy->rwsem); 977 978 write_lock_irqsave(&cpufreq_driver_lock, flags); 979 980 cpumask_set_cpu(cpu, policy->cpus); 981 per_cpu(cpufreq_cpu_data, cpu) = policy; 982 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 983 984 up_write(&policy->rwsem); 985 986 if (has_target()) { 987 ret = __cpufreq_governor(policy, CPUFREQ_GOV_START); 988 if (!ret) 989 ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); 990 991 if (ret) { 992 pr_err("%s: Failed to start governor\n", __func__); 993 return ret; 994 } 995 } 996 997 return sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"); 998 } 999 #endif 1000 1001 static struct cpufreq_policy *cpufreq_policy_restore(unsigned int cpu) 1002 { 1003 struct cpufreq_policy *policy; 1004 unsigned long flags; 1005 1006 read_lock_irqsave(&cpufreq_driver_lock, flags); 1007 1008 policy = per_cpu(cpufreq_cpu_data_fallback, cpu); 1009 1010 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1011 1012 if (policy) 1013 policy->governor = NULL; 1014 1015 return policy; 1016 } 1017 1018 static struct cpufreq_policy *cpufreq_policy_alloc(void) 1019 { 1020 struct cpufreq_policy *policy; 1021 1022 policy = kzalloc(sizeof(*policy), GFP_KERNEL); 1023 if (!policy) 1024 return NULL; 1025 1026 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) 1027 goto err_free_policy; 1028 1029 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) 1030 goto err_free_cpumask; 1031 1032 INIT_LIST_HEAD(&policy->policy_list); 1033 init_rwsem(&policy->rwsem); 1034 spin_lock_init(&policy->transition_lock); 1035 init_waitqueue_head(&policy->transition_wait); 1036 1037 return policy; 1038 1039 err_free_cpumask: 1040 free_cpumask_var(policy->cpus); 1041 err_free_policy: 1042 kfree(policy); 1043 1044 return NULL; 1045 } 1046 1047 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy) 1048 { 1049 struct kobject *kobj; 1050 struct completion *cmp; 1051 1052 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1053 CPUFREQ_REMOVE_POLICY, policy); 1054 1055 down_read(&policy->rwsem); 1056 kobj = &policy->kobj; 1057 cmp = &policy->kobj_unregister; 1058 up_read(&policy->rwsem); 1059 kobject_put(kobj); 1060 1061 /* 1062 * We need to make sure that the underlying kobj is 1063 * actually not referenced anymore by anybody before we 1064 * proceed with unloading. 1065 */ 1066 pr_debug("waiting for dropping of refcount\n"); 1067 wait_for_completion(cmp); 1068 pr_debug("wait complete\n"); 1069 } 1070 1071 static void cpufreq_policy_free(struct cpufreq_policy *policy) 1072 { 1073 free_cpumask_var(policy->related_cpus); 1074 free_cpumask_var(policy->cpus); 1075 kfree(policy); 1076 } 1077 1078 static int update_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu, 1079 struct device *cpu_dev) 1080 { 1081 int ret; 1082 1083 if (WARN_ON(cpu == policy->cpu)) 1084 return 0; 1085 1086 /* Move kobject to the new policy->cpu */ 1087 ret = kobject_move(&policy->kobj, &cpu_dev->kobj); 1088 if (ret) { 1089 pr_err("%s: Failed to move kobj: %d\n", __func__, ret); 1090 return ret; 1091 } 1092 1093 down_write(&policy->rwsem); 1094 1095 policy->last_cpu = policy->cpu; 1096 policy->cpu = cpu; 1097 1098 up_write(&policy->rwsem); 1099 1100 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1101 CPUFREQ_UPDATE_POLICY_CPU, policy); 1102 1103 return 0; 1104 } 1105 1106 static int __cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 1107 { 1108 unsigned int j, cpu = dev->id; 1109 int ret = -ENOMEM; 1110 struct cpufreq_policy *policy; 1111 unsigned long flags; 1112 bool recover_policy = cpufreq_suspended; 1113 #ifdef CONFIG_HOTPLUG_CPU 1114 struct cpufreq_policy *tpolicy; 1115 #endif 1116 1117 if (cpu_is_offline(cpu)) 1118 return 0; 1119 1120 pr_debug("adding CPU %u\n", cpu); 1121 1122 #ifdef CONFIG_SMP 1123 /* check whether a different CPU already registered this 1124 * CPU because it is in the same boat. */ 1125 policy = cpufreq_cpu_get(cpu); 1126 if (unlikely(policy)) { 1127 cpufreq_cpu_put(policy); 1128 return 0; 1129 } 1130 #endif 1131 1132 if (!down_read_trylock(&cpufreq_rwsem)) 1133 return 0; 1134 1135 #ifdef CONFIG_HOTPLUG_CPU 1136 /* Check if this cpu was hot-unplugged earlier and has siblings */ 1137 read_lock_irqsave(&cpufreq_driver_lock, flags); 1138 list_for_each_entry(tpolicy, &cpufreq_policy_list, policy_list) { 1139 if (cpumask_test_cpu(cpu, tpolicy->related_cpus)) { 1140 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1141 ret = cpufreq_add_policy_cpu(tpolicy, cpu, dev); 1142 up_read(&cpufreq_rwsem); 1143 return ret; 1144 } 1145 } 1146 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1147 #endif 1148 1149 /* 1150 * Restore the saved policy when doing light-weight init and fall back 1151 * to the full init if that fails. 1152 */ 1153 policy = recover_policy ? cpufreq_policy_restore(cpu) : NULL; 1154 if (!policy) { 1155 recover_policy = false; 1156 policy = cpufreq_policy_alloc(); 1157 if (!policy) 1158 goto nomem_out; 1159 } 1160 1161 /* 1162 * In the resume path, since we restore a saved policy, the assignment 1163 * to policy->cpu is like an update of the existing policy, rather than 1164 * the creation of a brand new one. So we need to perform this update 1165 * by invoking update_policy_cpu(). 1166 */ 1167 if (recover_policy && cpu != policy->cpu) 1168 WARN_ON(update_policy_cpu(policy, cpu, dev)); 1169 else 1170 policy->cpu = cpu; 1171 1172 cpumask_copy(policy->cpus, cpumask_of(cpu)); 1173 1174 init_completion(&policy->kobj_unregister); 1175 INIT_WORK(&policy->update, handle_update); 1176 1177 /* call driver. From then on the cpufreq must be able 1178 * to accept all calls to ->verify and ->setpolicy for this CPU 1179 */ 1180 ret = cpufreq_driver->init(policy); 1181 if (ret) { 1182 pr_debug("initialization failed\n"); 1183 goto err_set_policy_cpu; 1184 } 1185 1186 down_write(&policy->rwsem); 1187 1188 /* related cpus should atleast have policy->cpus */ 1189 cpumask_or(policy->related_cpus, policy->related_cpus, policy->cpus); 1190 1191 /* 1192 * affected cpus must always be the one, which are online. We aren't 1193 * managing offline cpus here. 1194 */ 1195 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask); 1196 1197 if (!recover_policy) { 1198 policy->user_policy.min = policy->min; 1199 policy->user_policy.max = policy->max; 1200 1201 /* prepare interface data */ 1202 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, 1203 &dev->kobj, "cpufreq"); 1204 if (ret) { 1205 pr_err("%s: failed to init policy->kobj: %d\n", 1206 __func__, ret); 1207 goto err_init_policy_kobj; 1208 } 1209 } 1210 1211 write_lock_irqsave(&cpufreq_driver_lock, flags); 1212 for_each_cpu(j, policy->cpus) 1213 per_cpu(cpufreq_cpu_data, j) = policy; 1214 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1215 1216 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) { 1217 policy->cur = cpufreq_driver->get(policy->cpu); 1218 if (!policy->cur) { 1219 pr_err("%s: ->get() failed\n", __func__); 1220 goto err_get_freq; 1221 } 1222 } 1223 1224 /* 1225 * Sometimes boot loaders set CPU frequency to a value outside of 1226 * frequency table present with cpufreq core. In such cases CPU might be 1227 * unstable if it has to run on that frequency for long duration of time 1228 * and so its better to set it to a frequency which is specified in 1229 * freq-table. This also makes cpufreq stats inconsistent as 1230 * cpufreq-stats would fail to register because current frequency of CPU 1231 * isn't found in freq-table. 1232 * 1233 * Because we don't want this change to effect boot process badly, we go 1234 * for the next freq which is >= policy->cur ('cur' must be set by now, 1235 * otherwise we will end up setting freq to lowest of the table as 'cur' 1236 * is initialized to zero). 1237 * 1238 * We are passing target-freq as "policy->cur - 1" otherwise 1239 * __cpufreq_driver_target() would simply fail, as policy->cur will be 1240 * equal to target-freq. 1241 */ 1242 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK) 1243 && has_target()) { 1244 /* Are we running at unknown frequency ? */ 1245 ret = cpufreq_frequency_table_get_index(policy, policy->cur); 1246 if (ret == -EINVAL) { 1247 /* Warn user and fix it */ 1248 pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n", 1249 __func__, policy->cpu, policy->cur); 1250 ret = __cpufreq_driver_target(policy, policy->cur - 1, 1251 CPUFREQ_RELATION_L); 1252 1253 /* 1254 * Reaching here after boot in a few seconds may not 1255 * mean that system will remain stable at "unknown" 1256 * frequency for longer duration. Hence, a BUG_ON(). 1257 */ 1258 BUG_ON(ret); 1259 pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n", 1260 __func__, policy->cpu, policy->cur); 1261 } 1262 } 1263 1264 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1265 CPUFREQ_START, policy); 1266 1267 if (!recover_policy) { 1268 ret = cpufreq_add_dev_interface(policy, dev); 1269 if (ret) 1270 goto err_out_unregister; 1271 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1272 CPUFREQ_CREATE_POLICY, policy); 1273 } 1274 1275 write_lock_irqsave(&cpufreq_driver_lock, flags); 1276 list_add(&policy->policy_list, &cpufreq_policy_list); 1277 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1278 1279 cpufreq_init_policy(policy); 1280 1281 if (!recover_policy) { 1282 policy->user_policy.policy = policy->policy; 1283 policy->user_policy.governor = policy->governor; 1284 } 1285 up_write(&policy->rwsem); 1286 1287 kobject_uevent(&policy->kobj, KOBJ_ADD); 1288 1289 up_read(&cpufreq_rwsem); 1290 1291 /* Callback for handling stuff after policy is ready */ 1292 if (cpufreq_driver->ready) 1293 cpufreq_driver->ready(policy); 1294 1295 pr_debug("initialization complete\n"); 1296 1297 return 0; 1298 1299 err_out_unregister: 1300 err_get_freq: 1301 write_lock_irqsave(&cpufreq_driver_lock, flags); 1302 for_each_cpu(j, policy->cpus) 1303 per_cpu(cpufreq_cpu_data, j) = NULL; 1304 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1305 1306 if (!recover_policy) { 1307 kobject_put(&policy->kobj); 1308 wait_for_completion(&policy->kobj_unregister); 1309 } 1310 err_init_policy_kobj: 1311 up_write(&policy->rwsem); 1312 1313 if (cpufreq_driver->exit) 1314 cpufreq_driver->exit(policy); 1315 err_set_policy_cpu: 1316 if (recover_policy) { 1317 /* Do not leave stale fallback data behind. */ 1318 per_cpu(cpufreq_cpu_data_fallback, cpu) = NULL; 1319 cpufreq_policy_put_kobj(policy); 1320 } 1321 cpufreq_policy_free(policy); 1322 1323 nomem_out: 1324 up_read(&cpufreq_rwsem); 1325 1326 return ret; 1327 } 1328 1329 /** 1330 * cpufreq_add_dev - add a CPU device 1331 * 1332 * Adds the cpufreq interface for a CPU device. 1333 * 1334 * The Oracle says: try running cpufreq registration/unregistration concurrently 1335 * with with cpu hotplugging and all hell will break loose. Tried to clean this 1336 * mess up, but more thorough testing is needed. - Mathieu 1337 */ 1338 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 1339 { 1340 return __cpufreq_add_dev(dev, sif); 1341 } 1342 1343 static int __cpufreq_remove_dev_prepare(struct device *dev, 1344 struct subsys_interface *sif) 1345 { 1346 unsigned int cpu = dev->id, cpus; 1347 int ret; 1348 unsigned long flags; 1349 struct cpufreq_policy *policy; 1350 1351 pr_debug("%s: unregistering CPU %u\n", __func__, cpu); 1352 1353 write_lock_irqsave(&cpufreq_driver_lock, flags); 1354 1355 policy = per_cpu(cpufreq_cpu_data, cpu); 1356 1357 /* Save the policy somewhere when doing a light-weight tear-down */ 1358 if (cpufreq_suspended) 1359 per_cpu(cpufreq_cpu_data_fallback, cpu) = policy; 1360 1361 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1362 1363 if (!policy) { 1364 pr_debug("%s: No cpu_data found\n", __func__); 1365 return -EINVAL; 1366 } 1367 1368 if (has_target()) { 1369 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP); 1370 if (ret) { 1371 pr_err("%s: Failed to stop governor\n", __func__); 1372 return ret; 1373 } 1374 } 1375 1376 if (!cpufreq_driver->setpolicy) 1377 strncpy(per_cpu(cpufreq_cpu_governor, cpu), 1378 policy->governor->name, CPUFREQ_NAME_LEN); 1379 1380 down_read(&policy->rwsem); 1381 cpus = cpumask_weight(policy->cpus); 1382 up_read(&policy->rwsem); 1383 1384 if (cpu != policy->cpu) { 1385 sysfs_remove_link(&dev->kobj, "cpufreq"); 1386 } else if (cpus > 1) { 1387 /* Nominate new CPU */ 1388 int new_cpu = cpumask_any_but(policy->cpus, cpu); 1389 struct device *cpu_dev = get_cpu_device(new_cpu); 1390 1391 sysfs_remove_link(&cpu_dev->kobj, "cpufreq"); 1392 ret = update_policy_cpu(policy, new_cpu, cpu_dev); 1393 if (ret) { 1394 if (sysfs_create_link(&cpu_dev->kobj, &policy->kobj, 1395 "cpufreq")) 1396 pr_err("%s: Failed to restore kobj link to cpu:%d\n", 1397 __func__, cpu_dev->id); 1398 return ret; 1399 } 1400 1401 if (!cpufreq_suspended) 1402 pr_debug("%s: policy Kobject moved to cpu: %d from: %d\n", 1403 __func__, new_cpu, cpu); 1404 } else if (cpufreq_driver->stop_cpu) { 1405 cpufreq_driver->stop_cpu(policy); 1406 } 1407 1408 return 0; 1409 } 1410 1411 static int __cpufreq_remove_dev_finish(struct device *dev, 1412 struct subsys_interface *sif) 1413 { 1414 unsigned int cpu = dev->id, cpus; 1415 int ret; 1416 unsigned long flags; 1417 struct cpufreq_policy *policy; 1418 1419 read_lock_irqsave(&cpufreq_driver_lock, flags); 1420 policy = per_cpu(cpufreq_cpu_data, cpu); 1421 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1422 1423 if (!policy) { 1424 pr_debug("%s: No cpu_data found\n", __func__); 1425 return -EINVAL; 1426 } 1427 1428 down_write(&policy->rwsem); 1429 cpus = cpumask_weight(policy->cpus); 1430 1431 if (cpus > 1) 1432 cpumask_clear_cpu(cpu, policy->cpus); 1433 up_write(&policy->rwsem); 1434 1435 /* If cpu is last user of policy, free policy */ 1436 if (cpus == 1) { 1437 if (has_target()) { 1438 ret = __cpufreq_governor(policy, 1439 CPUFREQ_GOV_POLICY_EXIT); 1440 if (ret) { 1441 pr_err("%s: Failed to exit governor\n", 1442 __func__); 1443 return ret; 1444 } 1445 } 1446 1447 if (!cpufreq_suspended) 1448 cpufreq_policy_put_kobj(policy); 1449 1450 /* 1451 * Perform the ->exit() even during light-weight tear-down, 1452 * since this is a core component, and is essential for the 1453 * subsequent light-weight ->init() to succeed. 1454 */ 1455 if (cpufreq_driver->exit) 1456 cpufreq_driver->exit(policy); 1457 1458 /* Remove policy from list of active policies */ 1459 write_lock_irqsave(&cpufreq_driver_lock, flags); 1460 list_del(&policy->policy_list); 1461 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1462 1463 if (!cpufreq_suspended) 1464 cpufreq_policy_free(policy); 1465 } else if (has_target()) { 1466 ret = __cpufreq_governor(policy, CPUFREQ_GOV_START); 1467 if (!ret) 1468 ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); 1469 1470 if (ret) { 1471 pr_err("%s: Failed to start governor\n", __func__); 1472 return ret; 1473 } 1474 } 1475 1476 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1477 return 0; 1478 } 1479 1480 /** 1481 * cpufreq_remove_dev - remove a CPU device 1482 * 1483 * Removes the cpufreq interface for a CPU device. 1484 */ 1485 static int cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif) 1486 { 1487 unsigned int cpu = dev->id; 1488 int ret; 1489 1490 if (cpu_is_offline(cpu)) 1491 return 0; 1492 1493 ret = __cpufreq_remove_dev_prepare(dev, sif); 1494 1495 if (!ret) 1496 ret = __cpufreq_remove_dev_finish(dev, sif); 1497 1498 return ret; 1499 } 1500 1501 static void handle_update(struct work_struct *work) 1502 { 1503 struct cpufreq_policy *policy = 1504 container_of(work, struct cpufreq_policy, update); 1505 unsigned int cpu = policy->cpu; 1506 pr_debug("handle_update for cpu %u called\n", cpu); 1507 cpufreq_update_policy(cpu); 1508 } 1509 1510 /** 1511 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're 1512 * in deep trouble. 1513 * @cpu: cpu number 1514 * @old_freq: CPU frequency the kernel thinks the CPU runs at 1515 * @new_freq: CPU frequency the CPU actually runs at 1516 * 1517 * We adjust to current frequency first, and need to clean up later. 1518 * So either call to cpufreq_update_policy() or schedule handle_update()). 1519 */ 1520 static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq, 1521 unsigned int new_freq) 1522 { 1523 struct cpufreq_policy *policy; 1524 struct cpufreq_freqs freqs; 1525 unsigned long flags; 1526 1527 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n", 1528 old_freq, new_freq); 1529 1530 freqs.old = old_freq; 1531 freqs.new = new_freq; 1532 1533 read_lock_irqsave(&cpufreq_driver_lock, flags); 1534 policy = per_cpu(cpufreq_cpu_data, cpu); 1535 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1536 1537 cpufreq_freq_transition_begin(policy, &freqs); 1538 cpufreq_freq_transition_end(policy, &freqs, 0); 1539 } 1540 1541 /** 1542 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur 1543 * @cpu: CPU number 1544 * 1545 * This is the last known freq, without actually getting it from the driver. 1546 * Return value will be same as what is shown in scaling_cur_freq in sysfs. 1547 */ 1548 unsigned int cpufreq_quick_get(unsigned int cpu) 1549 { 1550 struct cpufreq_policy *policy; 1551 unsigned int ret_freq = 0; 1552 1553 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) 1554 return cpufreq_driver->get(cpu); 1555 1556 policy = cpufreq_cpu_get(cpu); 1557 if (policy) { 1558 ret_freq = policy->cur; 1559 cpufreq_cpu_put(policy); 1560 } 1561 1562 return ret_freq; 1563 } 1564 EXPORT_SYMBOL(cpufreq_quick_get); 1565 1566 /** 1567 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU 1568 * @cpu: CPU number 1569 * 1570 * Just return the max possible frequency for a given CPU. 1571 */ 1572 unsigned int cpufreq_quick_get_max(unsigned int cpu) 1573 { 1574 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1575 unsigned int ret_freq = 0; 1576 1577 if (policy) { 1578 ret_freq = policy->max; 1579 cpufreq_cpu_put(policy); 1580 } 1581 1582 return ret_freq; 1583 } 1584 EXPORT_SYMBOL(cpufreq_quick_get_max); 1585 1586 static unsigned int __cpufreq_get(unsigned int cpu) 1587 { 1588 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1589 unsigned int ret_freq = 0; 1590 1591 if (!cpufreq_driver->get) 1592 return ret_freq; 1593 1594 ret_freq = cpufreq_driver->get(cpu); 1595 1596 if (ret_freq && policy->cur && 1597 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 1598 /* verify no discrepancy between actual and 1599 saved value exists */ 1600 if (unlikely(ret_freq != policy->cur)) { 1601 cpufreq_out_of_sync(cpu, policy->cur, ret_freq); 1602 schedule_work(&policy->update); 1603 } 1604 } 1605 1606 return ret_freq; 1607 } 1608 1609 /** 1610 * cpufreq_get - get the current CPU frequency (in kHz) 1611 * @cpu: CPU number 1612 * 1613 * Get the CPU current (static) CPU frequency 1614 */ 1615 unsigned int cpufreq_get(unsigned int cpu) 1616 { 1617 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1618 unsigned int ret_freq = 0; 1619 1620 if (policy) { 1621 down_read(&policy->rwsem); 1622 ret_freq = __cpufreq_get(cpu); 1623 up_read(&policy->rwsem); 1624 1625 cpufreq_cpu_put(policy); 1626 } 1627 1628 return ret_freq; 1629 } 1630 EXPORT_SYMBOL(cpufreq_get); 1631 1632 static struct subsys_interface cpufreq_interface = { 1633 .name = "cpufreq", 1634 .subsys = &cpu_subsys, 1635 .add_dev = cpufreq_add_dev, 1636 .remove_dev = cpufreq_remove_dev, 1637 }; 1638 1639 /* 1640 * In case platform wants some specific frequency to be configured 1641 * during suspend.. 1642 */ 1643 int cpufreq_generic_suspend(struct cpufreq_policy *policy) 1644 { 1645 int ret; 1646 1647 if (!policy->suspend_freq) { 1648 pr_err("%s: suspend_freq can't be zero\n", __func__); 1649 return -EINVAL; 1650 } 1651 1652 pr_debug("%s: Setting suspend-freq: %u\n", __func__, 1653 policy->suspend_freq); 1654 1655 ret = __cpufreq_driver_target(policy, policy->suspend_freq, 1656 CPUFREQ_RELATION_H); 1657 if (ret) 1658 pr_err("%s: unable to set suspend-freq: %u. err: %d\n", 1659 __func__, policy->suspend_freq, ret); 1660 1661 return ret; 1662 } 1663 EXPORT_SYMBOL(cpufreq_generic_suspend); 1664 1665 /** 1666 * cpufreq_suspend() - Suspend CPUFreq governors 1667 * 1668 * Called during system wide Suspend/Hibernate cycles for suspending governors 1669 * as some platforms can't change frequency after this point in suspend cycle. 1670 * Because some of the devices (like: i2c, regulators, etc) they use for 1671 * changing frequency are suspended quickly after this point. 1672 */ 1673 void cpufreq_suspend(void) 1674 { 1675 struct cpufreq_policy *policy; 1676 1677 if (!cpufreq_driver) 1678 return; 1679 1680 if (!has_target()) 1681 goto suspend; 1682 1683 pr_debug("%s: Suspending Governors\n", __func__); 1684 1685 list_for_each_entry(policy, &cpufreq_policy_list, policy_list) { 1686 if (__cpufreq_governor(policy, CPUFREQ_GOV_STOP)) 1687 pr_err("%s: Failed to stop governor for policy: %p\n", 1688 __func__, policy); 1689 else if (cpufreq_driver->suspend 1690 && cpufreq_driver->suspend(policy)) 1691 pr_err("%s: Failed to suspend driver: %p\n", __func__, 1692 policy); 1693 } 1694 1695 suspend: 1696 cpufreq_suspended = true; 1697 } 1698 1699 /** 1700 * cpufreq_resume() - Resume CPUFreq governors 1701 * 1702 * Called during system wide Suspend/Hibernate cycle for resuming governors that 1703 * are suspended with cpufreq_suspend(). 1704 */ 1705 void cpufreq_resume(void) 1706 { 1707 struct cpufreq_policy *policy; 1708 1709 if (!cpufreq_driver) 1710 return; 1711 1712 cpufreq_suspended = false; 1713 1714 if (!has_target()) 1715 return; 1716 1717 pr_debug("%s: Resuming Governors\n", __func__); 1718 1719 list_for_each_entry(policy, &cpufreq_policy_list, policy_list) { 1720 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) 1721 pr_err("%s: Failed to resume driver: %p\n", __func__, 1722 policy); 1723 else if (__cpufreq_governor(policy, CPUFREQ_GOV_START) 1724 || __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS)) 1725 pr_err("%s: Failed to start governor for policy: %p\n", 1726 __func__, policy); 1727 1728 /* 1729 * schedule call cpufreq_update_policy() for boot CPU, i.e. last 1730 * policy in list. It will verify that the current freq is in 1731 * sync with what we believe it to be. 1732 */ 1733 if (list_is_last(&policy->policy_list, &cpufreq_policy_list)) 1734 schedule_work(&policy->update); 1735 } 1736 } 1737 1738 /** 1739 * cpufreq_get_current_driver - return current driver's name 1740 * 1741 * Return the name string of the currently loaded cpufreq driver 1742 * or NULL, if none. 1743 */ 1744 const char *cpufreq_get_current_driver(void) 1745 { 1746 if (cpufreq_driver) 1747 return cpufreq_driver->name; 1748 1749 return NULL; 1750 } 1751 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver); 1752 1753 /** 1754 * cpufreq_get_driver_data - return current driver data 1755 * 1756 * Return the private data of the currently loaded cpufreq 1757 * driver, or NULL if no cpufreq driver is loaded. 1758 */ 1759 void *cpufreq_get_driver_data(void) 1760 { 1761 if (cpufreq_driver) 1762 return cpufreq_driver->driver_data; 1763 1764 return NULL; 1765 } 1766 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data); 1767 1768 /********************************************************************* 1769 * NOTIFIER LISTS INTERFACE * 1770 *********************************************************************/ 1771 1772 /** 1773 * cpufreq_register_notifier - register a driver with cpufreq 1774 * @nb: notifier function to register 1775 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1776 * 1777 * Add a driver to one of two lists: either a list of drivers that 1778 * are notified about clock rate changes (once before and once after 1779 * the transition), or a list of drivers that are notified about 1780 * changes in cpufreq policy. 1781 * 1782 * This function may sleep, and has the same return conditions as 1783 * blocking_notifier_chain_register. 1784 */ 1785 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 1786 { 1787 int ret; 1788 1789 if (cpufreq_disabled()) 1790 return -EINVAL; 1791 1792 WARN_ON(!init_cpufreq_transition_notifier_list_called); 1793 1794 switch (list) { 1795 case CPUFREQ_TRANSITION_NOTIFIER: 1796 ret = srcu_notifier_chain_register( 1797 &cpufreq_transition_notifier_list, nb); 1798 break; 1799 case CPUFREQ_POLICY_NOTIFIER: 1800 ret = blocking_notifier_chain_register( 1801 &cpufreq_policy_notifier_list, nb); 1802 break; 1803 default: 1804 ret = -EINVAL; 1805 } 1806 1807 return ret; 1808 } 1809 EXPORT_SYMBOL(cpufreq_register_notifier); 1810 1811 /** 1812 * cpufreq_unregister_notifier - unregister a driver with cpufreq 1813 * @nb: notifier block to be unregistered 1814 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1815 * 1816 * Remove a driver from the CPU frequency notifier list. 1817 * 1818 * This function may sleep, and has the same return conditions as 1819 * blocking_notifier_chain_unregister. 1820 */ 1821 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 1822 { 1823 int ret; 1824 1825 if (cpufreq_disabled()) 1826 return -EINVAL; 1827 1828 switch (list) { 1829 case CPUFREQ_TRANSITION_NOTIFIER: 1830 ret = srcu_notifier_chain_unregister( 1831 &cpufreq_transition_notifier_list, nb); 1832 break; 1833 case CPUFREQ_POLICY_NOTIFIER: 1834 ret = blocking_notifier_chain_unregister( 1835 &cpufreq_policy_notifier_list, nb); 1836 break; 1837 default: 1838 ret = -EINVAL; 1839 } 1840 1841 return ret; 1842 } 1843 EXPORT_SYMBOL(cpufreq_unregister_notifier); 1844 1845 1846 /********************************************************************* 1847 * GOVERNORS * 1848 *********************************************************************/ 1849 1850 /* Must set freqs->new to intermediate frequency */ 1851 static int __target_intermediate(struct cpufreq_policy *policy, 1852 struct cpufreq_freqs *freqs, int index) 1853 { 1854 int ret; 1855 1856 freqs->new = cpufreq_driver->get_intermediate(policy, index); 1857 1858 /* We don't need to switch to intermediate freq */ 1859 if (!freqs->new) 1860 return 0; 1861 1862 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n", 1863 __func__, policy->cpu, freqs->old, freqs->new); 1864 1865 cpufreq_freq_transition_begin(policy, freqs); 1866 ret = cpufreq_driver->target_intermediate(policy, index); 1867 cpufreq_freq_transition_end(policy, freqs, ret); 1868 1869 if (ret) 1870 pr_err("%s: Failed to change to intermediate frequency: %d\n", 1871 __func__, ret); 1872 1873 return ret; 1874 } 1875 1876 static int __target_index(struct cpufreq_policy *policy, 1877 struct cpufreq_frequency_table *freq_table, int index) 1878 { 1879 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0}; 1880 unsigned int intermediate_freq = 0; 1881 int retval = -EINVAL; 1882 bool notify; 1883 1884 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION); 1885 if (notify) { 1886 /* Handle switching to intermediate frequency */ 1887 if (cpufreq_driver->get_intermediate) { 1888 retval = __target_intermediate(policy, &freqs, index); 1889 if (retval) 1890 return retval; 1891 1892 intermediate_freq = freqs.new; 1893 /* Set old freq to intermediate */ 1894 if (intermediate_freq) 1895 freqs.old = freqs.new; 1896 } 1897 1898 freqs.new = freq_table[index].frequency; 1899 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n", 1900 __func__, policy->cpu, freqs.old, freqs.new); 1901 1902 cpufreq_freq_transition_begin(policy, &freqs); 1903 } 1904 1905 retval = cpufreq_driver->target_index(policy, index); 1906 if (retval) 1907 pr_err("%s: Failed to change cpu frequency: %d\n", __func__, 1908 retval); 1909 1910 if (notify) { 1911 cpufreq_freq_transition_end(policy, &freqs, retval); 1912 1913 /* 1914 * Failed after setting to intermediate freq? Driver should have 1915 * reverted back to initial frequency and so should we. Check 1916 * here for intermediate_freq instead of get_intermediate, in 1917 * case we have't switched to intermediate freq at all. 1918 */ 1919 if (unlikely(retval && intermediate_freq)) { 1920 freqs.old = intermediate_freq; 1921 freqs.new = policy->restore_freq; 1922 cpufreq_freq_transition_begin(policy, &freqs); 1923 cpufreq_freq_transition_end(policy, &freqs, 0); 1924 } 1925 } 1926 1927 return retval; 1928 } 1929 1930 int __cpufreq_driver_target(struct cpufreq_policy *policy, 1931 unsigned int target_freq, 1932 unsigned int relation) 1933 { 1934 unsigned int old_target_freq = target_freq; 1935 int retval = -EINVAL; 1936 1937 if (cpufreq_disabled()) 1938 return -ENODEV; 1939 1940 /* Make sure that target_freq is within supported range */ 1941 if (target_freq > policy->max) 1942 target_freq = policy->max; 1943 if (target_freq < policy->min) 1944 target_freq = policy->min; 1945 1946 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n", 1947 policy->cpu, target_freq, relation, old_target_freq); 1948 1949 /* 1950 * This might look like a redundant call as we are checking it again 1951 * after finding index. But it is left intentionally for cases where 1952 * exactly same freq is called again and so we can save on few function 1953 * calls. 1954 */ 1955 if (target_freq == policy->cur) 1956 return 0; 1957 1958 /* Save last value to restore later on errors */ 1959 policy->restore_freq = policy->cur; 1960 1961 if (cpufreq_driver->target) 1962 retval = cpufreq_driver->target(policy, target_freq, relation); 1963 else if (cpufreq_driver->target_index) { 1964 struct cpufreq_frequency_table *freq_table; 1965 int index; 1966 1967 freq_table = cpufreq_frequency_get_table(policy->cpu); 1968 if (unlikely(!freq_table)) { 1969 pr_err("%s: Unable to find freq_table\n", __func__); 1970 goto out; 1971 } 1972 1973 retval = cpufreq_frequency_table_target(policy, freq_table, 1974 target_freq, relation, &index); 1975 if (unlikely(retval)) { 1976 pr_err("%s: Unable to find matching freq\n", __func__); 1977 goto out; 1978 } 1979 1980 if (freq_table[index].frequency == policy->cur) { 1981 retval = 0; 1982 goto out; 1983 } 1984 1985 retval = __target_index(policy, freq_table, index); 1986 } 1987 1988 out: 1989 return retval; 1990 } 1991 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 1992 1993 int cpufreq_driver_target(struct cpufreq_policy *policy, 1994 unsigned int target_freq, 1995 unsigned int relation) 1996 { 1997 int ret = -EINVAL; 1998 1999 down_write(&policy->rwsem); 2000 2001 ret = __cpufreq_driver_target(policy, target_freq, relation); 2002 2003 up_write(&policy->rwsem); 2004 2005 return ret; 2006 } 2007 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 2008 2009 /* 2010 * when "event" is CPUFREQ_GOV_LIMITS 2011 */ 2012 2013 static int __cpufreq_governor(struct cpufreq_policy *policy, 2014 unsigned int event) 2015 { 2016 int ret; 2017 2018 /* Only must be defined when default governor is known to have latency 2019 restrictions, like e.g. conservative or ondemand. 2020 That this is the case is already ensured in Kconfig 2021 */ 2022 #ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE 2023 struct cpufreq_governor *gov = &cpufreq_gov_performance; 2024 #else 2025 struct cpufreq_governor *gov = NULL; 2026 #endif 2027 2028 /* Don't start any governor operations if we are entering suspend */ 2029 if (cpufreq_suspended) 2030 return 0; 2031 /* 2032 * Governor might not be initiated here if ACPI _PPC changed 2033 * notification happened, so check it. 2034 */ 2035 if (!policy->governor) 2036 return -EINVAL; 2037 2038 if (policy->governor->max_transition_latency && 2039 policy->cpuinfo.transition_latency > 2040 policy->governor->max_transition_latency) { 2041 if (!gov) 2042 return -EINVAL; 2043 else { 2044 pr_warn("%s governor failed, too long transition latency of HW, fallback to %s governor\n", 2045 policy->governor->name, gov->name); 2046 policy->governor = gov; 2047 } 2048 } 2049 2050 if (event == CPUFREQ_GOV_POLICY_INIT) 2051 if (!try_module_get(policy->governor->owner)) 2052 return -EINVAL; 2053 2054 pr_debug("__cpufreq_governor for CPU %u, event %u\n", 2055 policy->cpu, event); 2056 2057 mutex_lock(&cpufreq_governor_lock); 2058 if ((policy->governor_enabled && event == CPUFREQ_GOV_START) 2059 || (!policy->governor_enabled 2060 && (event == CPUFREQ_GOV_LIMITS || event == CPUFREQ_GOV_STOP))) { 2061 mutex_unlock(&cpufreq_governor_lock); 2062 return -EBUSY; 2063 } 2064 2065 if (event == CPUFREQ_GOV_STOP) 2066 policy->governor_enabled = false; 2067 else if (event == CPUFREQ_GOV_START) 2068 policy->governor_enabled = true; 2069 2070 mutex_unlock(&cpufreq_governor_lock); 2071 2072 ret = policy->governor->governor(policy, event); 2073 2074 if (!ret) { 2075 if (event == CPUFREQ_GOV_POLICY_INIT) 2076 policy->governor->initialized++; 2077 else if (event == CPUFREQ_GOV_POLICY_EXIT) 2078 policy->governor->initialized--; 2079 } else { 2080 /* Restore original values */ 2081 mutex_lock(&cpufreq_governor_lock); 2082 if (event == CPUFREQ_GOV_STOP) 2083 policy->governor_enabled = true; 2084 else if (event == CPUFREQ_GOV_START) 2085 policy->governor_enabled = false; 2086 mutex_unlock(&cpufreq_governor_lock); 2087 } 2088 2089 if (((event == CPUFREQ_GOV_POLICY_INIT) && ret) || 2090 ((event == CPUFREQ_GOV_POLICY_EXIT) && !ret)) 2091 module_put(policy->governor->owner); 2092 2093 return ret; 2094 } 2095 2096 int cpufreq_register_governor(struct cpufreq_governor *governor) 2097 { 2098 int err; 2099 2100 if (!governor) 2101 return -EINVAL; 2102 2103 if (cpufreq_disabled()) 2104 return -ENODEV; 2105 2106 mutex_lock(&cpufreq_governor_mutex); 2107 2108 governor->initialized = 0; 2109 err = -EBUSY; 2110 if (__find_governor(governor->name) == NULL) { 2111 err = 0; 2112 list_add(&governor->governor_list, &cpufreq_governor_list); 2113 } 2114 2115 mutex_unlock(&cpufreq_governor_mutex); 2116 return err; 2117 } 2118 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 2119 2120 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 2121 { 2122 int cpu; 2123 2124 if (!governor) 2125 return; 2126 2127 if (cpufreq_disabled()) 2128 return; 2129 2130 for_each_present_cpu(cpu) { 2131 if (cpu_online(cpu)) 2132 continue; 2133 if (!strcmp(per_cpu(cpufreq_cpu_governor, cpu), governor->name)) 2134 strcpy(per_cpu(cpufreq_cpu_governor, cpu), "\0"); 2135 } 2136 2137 mutex_lock(&cpufreq_governor_mutex); 2138 list_del(&governor->governor_list); 2139 mutex_unlock(&cpufreq_governor_mutex); 2140 return; 2141 } 2142 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 2143 2144 2145 /********************************************************************* 2146 * POLICY INTERFACE * 2147 *********************************************************************/ 2148 2149 /** 2150 * cpufreq_get_policy - get the current cpufreq_policy 2151 * @policy: struct cpufreq_policy into which the current cpufreq_policy 2152 * is written 2153 * 2154 * Reads the current cpufreq policy. 2155 */ 2156 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 2157 { 2158 struct cpufreq_policy *cpu_policy; 2159 if (!policy) 2160 return -EINVAL; 2161 2162 cpu_policy = cpufreq_cpu_get(cpu); 2163 if (!cpu_policy) 2164 return -EINVAL; 2165 2166 memcpy(policy, cpu_policy, sizeof(*policy)); 2167 2168 cpufreq_cpu_put(cpu_policy); 2169 return 0; 2170 } 2171 EXPORT_SYMBOL(cpufreq_get_policy); 2172 2173 /* 2174 * policy : current policy. 2175 * new_policy: policy to be set. 2176 */ 2177 static int cpufreq_set_policy(struct cpufreq_policy *policy, 2178 struct cpufreq_policy *new_policy) 2179 { 2180 struct cpufreq_governor *old_gov; 2181 int ret; 2182 2183 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", 2184 new_policy->cpu, new_policy->min, new_policy->max); 2185 2186 memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo)); 2187 2188 if (new_policy->min > policy->max || new_policy->max < policy->min) 2189 return -EINVAL; 2190 2191 /* verify the cpu speed can be set within this limit */ 2192 ret = cpufreq_driver->verify(new_policy); 2193 if (ret) 2194 return ret; 2195 2196 /* adjust if necessary - all reasons */ 2197 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 2198 CPUFREQ_ADJUST, new_policy); 2199 2200 /* adjust if necessary - hardware incompatibility*/ 2201 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 2202 CPUFREQ_INCOMPATIBLE, new_policy); 2203 2204 /* 2205 * verify the cpu speed can be set within this limit, which might be 2206 * different to the first one 2207 */ 2208 ret = cpufreq_driver->verify(new_policy); 2209 if (ret) 2210 return ret; 2211 2212 /* notification of the new policy */ 2213 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 2214 CPUFREQ_NOTIFY, new_policy); 2215 2216 policy->min = new_policy->min; 2217 policy->max = new_policy->max; 2218 2219 pr_debug("new min and max freqs are %u - %u kHz\n", 2220 policy->min, policy->max); 2221 2222 if (cpufreq_driver->setpolicy) { 2223 policy->policy = new_policy->policy; 2224 pr_debug("setting range\n"); 2225 return cpufreq_driver->setpolicy(new_policy); 2226 } 2227 2228 if (new_policy->governor == policy->governor) 2229 goto out; 2230 2231 pr_debug("governor switch\n"); 2232 2233 /* save old, working values */ 2234 old_gov = policy->governor; 2235 /* end old governor */ 2236 if (old_gov) { 2237 __cpufreq_governor(policy, CPUFREQ_GOV_STOP); 2238 up_write(&policy->rwsem); 2239 __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT); 2240 down_write(&policy->rwsem); 2241 } 2242 2243 /* start new governor */ 2244 policy->governor = new_policy->governor; 2245 if (!__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT)) { 2246 if (!__cpufreq_governor(policy, CPUFREQ_GOV_START)) 2247 goto out; 2248 2249 up_write(&policy->rwsem); 2250 __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT); 2251 down_write(&policy->rwsem); 2252 } 2253 2254 /* new governor failed, so re-start old one */ 2255 pr_debug("starting governor %s failed\n", policy->governor->name); 2256 if (old_gov) { 2257 policy->governor = old_gov; 2258 __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT); 2259 __cpufreq_governor(policy, CPUFREQ_GOV_START); 2260 } 2261 2262 return -EINVAL; 2263 2264 out: 2265 pr_debug("governor: change or update limits\n"); 2266 return __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); 2267 } 2268 2269 /** 2270 * cpufreq_update_policy - re-evaluate an existing cpufreq policy 2271 * @cpu: CPU which shall be re-evaluated 2272 * 2273 * Useful for policy notifiers which have different necessities 2274 * at different times. 2275 */ 2276 int cpufreq_update_policy(unsigned int cpu) 2277 { 2278 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 2279 struct cpufreq_policy new_policy; 2280 int ret; 2281 2282 if (!policy) 2283 return -ENODEV; 2284 2285 down_write(&policy->rwsem); 2286 2287 pr_debug("updating policy for CPU %u\n", cpu); 2288 memcpy(&new_policy, policy, sizeof(*policy)); 2289 new_policy.min = policy->user_policy.min; 2290 new_policy.max = policy->user_policy.max; 2291 new_policy.policy = policy->user_policy.policy; 2292 new_policy.governor = policy->user_policy.governor; 2293 2294 /* 2295 * BIOS might change freq behind our back 2296 * -> ask driver for current freq and notify governors about a change 2297 */ 2298 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) { 2299 new_policy.cur = cpufreq_driver->get(cpu); 2300 if (WARN_ON(!new_policy.cur)) { 2301 ret = -EIO; 2302 goto unlock; 2303 } 2304 2305 if (!policy->cur) { 2306 pr_debug("Driver did not initialize current freq\n"); 2307 policy->cur = new_policy.cur; 2308 } else { 2309 if (policy->cur != new_policy.cur && has_target()) 2310 cpufreq_out_of_sync(cpu, policy->cur, 2311 new_policy.cur); 2312 } 2313 } 2314 2315 ret = cpufreq_set_policy(policy, &new_policy); 2316 2317 unlock: 2318 up_write(&policy->rwsem); 2319 2320 cpufreq_cpu_put(policy); 2321 return ret; 2322 } 2323 EXPORT_SYMBOL(cpufreq_update_policy); 2324 2325 static int cpufreq_cpu_callback(struct notifier_block *nfb, 2326 unsigned long action, void *hcpu) 2327 { 2328 unsigned int cpu = (unsigned long)hcpu; 2329 struct device *dev; 2330 2331 dev = get_cpu_device(cpu); 2332 if (dev) { 2333 switch (action & ~CPU_TASKS_FROZEN) { 2334 case CPU_ONLINE: 2335 __cpufreq_add_dev(dev, NULL); 2336 break; 2337 2338 case CPU_DOWN_PREPARE: 2339 __cpufreq_remove_dev_prepare(dev, NULL); 2340 break; 2341 2342 case CPU_POST_DEAD: 2343 __cpufreq_remove_dev_finish(dev, NULL); 2344 break; 2345 2346 case CPU_DOWN_FAILED: 2347 __cpufreq_add_dev(dev, NULL); 2348 break; 2349 } 2350 } 2351 return NOTIFY_OK; 2352 } 2353 2354 static struct notifier_block __refdata cpufreq_cpu_notifier = { 2355 .notifier_call = cpufreq_cpu_callback, 2356 }; 2357 2358 /********************************************************************* 2359 * BOOST * 2360 *********************************************************************/ 2361 static int cpufreq_boost_set_sw(int state) 2362 { 2363 struct cpufreq_frequency_table *freq_table; 2364 struct cpufreq_policy *policy; 2365 int ret = -EINVAL; 2366 2367 list_for_each_entry(policy, &cpufreq_policy_list, policy_list) { 2368 freq_table = cpufreq_frequency_get_table(policy->cpu); 2369 if (freq_table) { 2370 ret = cpufreq_frequency_table_cpuinfo(policy, 2371 freq_table); 2372 if (ret) { 2373 pr_err("%s: Policy frequency update failed\n", 2374 __func__); 2375 break; 2376 } 2377 policy->user_policy.max = policy->max; 2378 __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); 2379 } 2380 } 2381 2382 return ret; 2383 } 2384 2385 int cpufreq_boost_trigger_state(int state) 2386 { 2387 unsigned long flags; 2388 int ret = 0; 2389 2390 if (cpufreq_driver->boost_enabled == state) 2391 return 0; 2392 2393 write_lock_irqsave(&cpufreq_driver_lock, flags); 2394 cpufreq_driver->boost_enabled = state; 2395 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2396 2397 ret = cpufreq_driver->set_boost(state); 2398 if (ret) { 2399 write_lock_irqsave(&cpufreq_driver_lock, flags); 2400 cpufreq_driver->boost_enabled = !state; 2401 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2402 2403 pr_err("%s: Cannot %s BOOST\n", 2404 __func__, state ? "enable" : "disable"); 2405 } 2406 2407 return ret; 2408 } 2409 2410 int cpufreq_boost_supported(void) 2411 { 2412 if (likely(cpufreq_driver)) 2413 return cpufreq_driver->boost_supported; 2414 2415 return 0; 2416 } 2417 EXPORT_SYMBOL_GPL(cpufreq_boost_supported); 2418 2419 int cpufreq_boost_enabled(void) 2420 { 2421 return cpufreq_driver->boost_enabled; 2422 } 2423 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled); 2424 2425 /********************************************************************* 2426 * REGISTER / UNREGISTER CPUFREQ DRIVER * 2427 *********************************************************************/ 2428 2429 /** 2430 * cpufreq_register_driver - register a CPU Frequency driver 2431 * @driver_data: A struct cpufreq_driver containing the values# 2432 * submitted by the CPU Frequency driver. 2433 * 2434 * Registers a CPU Frequency driver to this core code. This code 2435 * returns zero on success, -EBUSY when another driver got here first 2436 * (and isn't unregistered in the meantime). 2437 * 2438 */ 2439 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 2440 { 2441 unsigned long flags; 2442 int ret; 2443 2444 if (cpufreq_disabled()) 2445 return -ENODEV; 2446 2447 if (!driver_data || !driver_data->verify || !driver_data->init || 2448 !(driver_data->setpolicy || driver_data->target_index || 2449 driver_data->target) || 2450 (driver_data->setpolicy && (driver_data->target_index || 2451 driver_data->target)) || 2452 (!!driver_data->get_intermediate != !!driver_data->target_intermediate)) 2453 return -EINVAL; 2454 2455 pr_debug("trying to register driver %s\n", driver_data->name); 2456 2457 if (driver_data->setpolicy) 2458 driver_data->flags |= CPUFREQ_CONST_LOOPS; 2459 2460 write_lock_irqsave(&cpufreq_driver_lock, flags); 2461 if (cpufreq_driver) { 2462 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2463 return -EEXIST; 2464 } 2465 cpufreq_driver = driver_data; 2466 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2467 2468 if (cpufreq_boost_supported()) { 2469 /* 2470 * Check if driver provides function to enable boost - 2471 * if not, use cpufreq_boost_set_sw as default 2472 */ 2473 if (!cpufreq_driver->set_boost) 2474 cpufreq_driver->set_boost = cpufreq_boost_set_sw; 2475 2476 ret = cpufreq_sysfs_create_file(&boost.attr); 2477 if (ret) { 2478 pr_err("%s: cannot register global BOOST sysfs file\n", 2479 __func__); 2480 goto err_null_driver; 2481 } 2482 } 2483 2484 ret = subsys_interface_register(&cpufreq_interface); 2485 if (ret) 2486 goto err_boost_unreg; 2487 2488 if (!(cpufreq_driver->flags & CPUFREQ_STICKY)) { 2489 int i; 2490 ret = -ENODEV; 2491 2492 /* check for at least one working CPU */ 2493 for (i = 0; i < nr_cpu_ids; i++) 2494 if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) { 2495 ret = 0; 2496 break; 2497 } 2498 2499 /* if all ->init() calls failed, unregister */ 2500 if (ret) { 2501 pr_debug("no CPU initialized for driver %s\n", 2502 driver_data->name); 2503 goto err_if_unreg; 2504 } 2505 } 2506 2507 register_hotcpu_notifier(&cpufreq_cpu_notifier); 2508 pr_debug("driver %s up and running\n", driver_data->name); 2509 2510 return 0; 2511 err_if_unreg: 2512 subsys_interface_unregister(&cpufreq_interface); 2513 err_boost_unreg: 2514 if (cpufreq_boost_supported()) 2515 cpufreq_sysfs_remove_file(&boost.attr); 2516 err_null_driver: 2517 write_lock_irqsave(&cpufreq_driver_lock, flags); 2518 cpufreq_driver = NULL; 2519 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2520 return ret; 2521 } 2522 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 2523 2524 /** 2525 * cpufreq_unregister_driver - unregister the current CPUFreq driver 2526 * 2527 * Unregister the current CPUFreq driver. Only call this if you have 2528 * the right to do so, i.e. if you have succeeded in initialising before! 2529 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 2530 * currently not initialised. 2531 */ 2532 int cpufreq_unregister_driver(struct cpufreq_driver *driver) 2533 { 2534 unsigned long flags; 2535 2536 if (!cpufreq_driver || (driver != cpufreq_driver)) 2537 return -EINVAL; 2538 2539 pr_debug("unregistering driver %s\n", driver->name); 2540 2541 subsys_interface_unregister(&cpufreq_interface); 2542 if (cpufreq_boost_supported()) 2543 cpufreq_sysfs_remove_file(&boost.attr); 2544 2545 unregister_hotcpu_notifier(&cpufreq_cpu_notifier); 2546 2547 down_write(&cpufreq_rwsem); 2548 write_lock_irqsave(&cpufreq_driver_lock, flags); 2549 2550 cpufreq_driver = NULL; 2551 2552 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2553 up_write(&cpufreq_rwsem); 2554 2555 return 0; 2556 } 2557 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 2558 2559 static int __init cpufreq_core_init(void) 2560 { 2561 if (cpufreq_disabled()) 2562 return -ENODEV; 2563 2564 cpufreq_global_kobject = kobject_create(); 2565 BUG_ON(!cpufreq_global_kobject); 2566 2567 return 0; 2568 } 2569 core_initcall(cpufreq_core_init); 2570