1 /* 2 * linux/drivers/cpufreq/cpufreq.c 3 * 4 * Copyright (C) 2001 Russell King 5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 6 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org> 7 * 8 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 9 * Added handling for CPU hotplug 10 * Feb 2006 - Jacob Shin <jacob.shin@amd.com> 11 * Fix handling for CPU hotplug -- affected CPUs 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License version 2 as 15 * published by the Free Software Foundation. 16 */ 17 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/cpu.h> 21 #include <linux/cpufreq.h> 22 #include <linux/delay.h> 23 #include <linux/device.h> 24 #include <linux/init.h> 25 #include <linux/kernel_stat.h> 26 #include <linux/module.h> 27 #include <linux/mutex.h> 28 #include <linux/slab.h> 29 #include <linux/suspend.h> 30 #include <linux/syscore_ops.h> 31 #include <linux/tick.h> 32 #include <trace/events/power.h> 33 34 static LIST_HEAD(cpufreq_policy_list); 35 36 static inline bool policy_is_inactive(struct cpufreq_policy *policy) 37 { 38 return cpumask_empty(policy->cpus); 39 } 40 41 /* Macros to iterate over CPU policies */ 42 #define for_each_suitable_policy(__policy, __active) \ 43 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \ 44 if ((__active) == !policy_is_inactive(__policy)) 45 46 #define for_each_active_policy(__policy) \ 47 for_each_suitable_policy(__policy, true) 48 #define for_each_inactive_policy(__policy) \ 49 for_each_suitable_policy(__policy, false) 50 51 #define for_each_policy(__policy) \ 52 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) 53 54 /* Iterate over governors */ 55 static LIST_HEAD(cpufreq_governor_list); 56 #define for_each_governor(__governor) \ 57 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list) 58 59 /** 60 * The "cpufreq driver" - the arch- or hardware-dependent low 61 * level driver of CPUFreq support, and its spinlock. This lock 62 * also protects the cpufreq_cpu_data array. 63 */ 64 static struct cpufreq_driver *cpufreq_driver; 65 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data); 66 static DEFINE_RWLOCK(cpufreq_driver_lock); 67 68 /* Flag to suspend/resume CPUFreq governors */ 69 static bool cpufreq_suspended; 70 71 static inline bool has_target(void) 72 { 73 return cpufreq_driver->target_index || cpufreq_driver->target; 74 } 75 76 /* internal prototypes */ 77 static unsigned int __cpufreq_get(struct cpufreq_policy *policy); 78 static int cpufreq_init_governor(struct cpufreq_policy *policy); 79 static void cpufreq_exit_governor(struct cpufreq_policy *policy); 80 static int cpufreq_start_governor(struct cpufreq_policy *policy); 81 static void cpufreq_stop_governor(struct cpufreq_policy *policy); 82 static void cpufreq_governor_limits(struct cpufreq_policy *policy); 83 84 /** 85 * Two notifier lists: the "policy" list is involved in the 86 * validation process for a new CPU frequency policy; the 87 * "transition" list for kernel code that needs to handle 88 * changes to devices when the CPU clock speed changes. 89 * The mutex locks both lists. 90 */ 91 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list); 92 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list); 93 94 static int off __read_mostly; 95 static int cpufreq_disabled(void) 96 { 97 return off; 98 } 99 void disable_cpufreq(void) 100 { 101 off = 1; 102 } 103 static DEFINE_MUTEX(cpufreq_governor_mutex); 104 105 bool have_governor_per_policy(void) 106 { 107 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY); 108 } 109 EXPORT_SYMBOL_GPL(have_governor_per_policy); 110 111 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy) 112 { 113 if (have_governor_per_policy()) 114 return &policy->kobj; 115 else 116 return cpufreq_global_kobject; 117 } 118 EXPORT_SYMBOL_GPL(get_governor_parent_kobj); 119 120 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) 121 { 122 u64 idle_time; 123 u64 cur_wall_time; 124 u64 busy_time; 125 126 cur_wall_time = jiffies64_to_nsecs(get_jiffies_64()); 127 128 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER]; 129 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM]; 130 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ]; 131 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ]; 132 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL]; 133 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE]; 134 135 idle_time = cur_wall_time - busy_time; 136 if (wall) 137 *wall = div_u64(cur_wall_time, NSEC_PER_USEC); 138 139 return div_u64(idle_time, NSEC_PER_USEC); 140 } 141 142 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy) 143 { 144 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL); 145 146 if (idle_time == -1ULL) 147 return get_cpu_idle_time_jiffy(cpu, wall); 148 else if (!io_busy) 149 idle_time += get_cpu_iowait_time_us(cpu, wall); 150 151 return idle_time; 152 } 153 EXPORT_SYMBOL_GPL(get_cpu_idle_time); 154 155 __weak void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq, 156 unsigned long max_freq) 157 { 158 } 159 EXPORT_SYMBOL_GPL(arch_set_freq_scale); 160 161 /* 162 * This is a generic cpufreq init() routine which can be used by cpufreq 163 * drivers of SMP systems. It will do following: 164 * - validate & show freq table passed 165 * - set policies transition latency 166 * - policy->cpus with all possible CPUs 167 */ 168 int cpufreq_generic_init(struct cpufreq_policy *policy, 169 struct cpufreq_frequency_table *table, 170 unsigned int transition_latency) 171 { 172 policy->freq_table = table; 173 policy->cpuinfo.transition_latency = transition_latency; 174 175 /* 176 * The driver only supports the SMP configuration where all processors 177 * share the clock and voltage and clock. 178 */ 179 cpumask_setall(policy->cpus); 180 181 return 0; 182 } 183 EXPORT_SYMBOL_GPL(cpufreq_generic_init); 184 185 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu) 186 { 187 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 188 189 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL; 190 } 191 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw); 192 193 unsigned int cpufreq_generic_get(unsigned int cpu) 194 { 195 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu); 196 197 if (!policy || IS_ERR(policy->clk)) { 198 pr_err("%s: No %s associated to cpu: %d\n", 199 __func__, policy ? "clk" : "policy", cpu); 200 return 0; 201 } 202 203 return clk_get_rate(policy->clk) / 1000; 204 } 205 EXPORT_SYMBOL_GPL(cpufreq_generic_get); 206 207 /** 208 * cpufreq_cpu_get: returns policy for a cpu and marks it busy. 209 * 210 * @cpu: cpu to find policy for. 211 * 212 * This returns policy for 'cpu', returns NULL if it doesn't exist. 213 * It also increments the kobject reference count to mark it busy and so would 214 * require a corresponding call to cpufreq_cpu_put() to decrement it back. 215 * If corresponding call cpufreq_cpu_put() isn't made, the policy wouldn't be 216 * freed as that depends on the kobj count. 217 * 218 * Return: A valid policy on success, otherwise NULL on failure. 219 */ 220 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) 221 { 222 struct cpufreq_policy *policy = NULL; 223 unsigned long flags; 224 225 if (WARN_ON(cpu >= nr_cpu_ids)) 226 return NULL; 227 228 /* get the cpufreq driver */ 229 read_lock_irqsave(&cpufreq_driver_lock, flags); 230 231 if (cpufreq_driver) { 232 /* get the CPU */ 233 policy = cpufreq_cpu_get_raw(cpu); 234 if (policy) 235 kobject_get(&policy->kobj); 236 } 237 238 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 239 240 return policy; 241 } 242 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 243 244 /** 245 * cpufreq_cpu_put: Decrements the usage count of a policy 246 * 247 * @policy: policy earlier returned by cpufreq_cpu_get(). 248 * 249 * This decrements the kobject reference count incremented earlier by calling 250 * cpufreq_cpu_get(). 251 */ 252 void cpufreq_cpu_put(struct cpufreq_policy *policy) 253 { 254 kobject_put(&policy->kobj); 255 } 256 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 257 258 /********************************************************************* 259 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 260 *********************************************************************/ 261 262 /** 263 * adjust_jiffies - adjust the system "loops_per_jiffy" 264 * 265 * This function alters the system "loops_per_jiffy" for the clock 266 * speed change. Note that loops_per_jiffy cannot be updated on SMP 267 * systems as each CPU might be scaled differently. So, use the arch 268 * per-CPU loops_per_jiffy value wherever possible. 269 */ 270 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 271 { 272 #ifndef CONFIG_SMP 273 static unsigned long l_p_j_ref; 274 static unsigned int l_p_j_ref_freq; 275 276 if (ci->flags & CPUFREQ_CONST_LOOPS) 277 return; 278 279 if (!l_p_j_ref_freq) { 280 l_p_j_ref = loops_per_jiffy; 281 l_p_j_ref_freq = ci->old; 282 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n", 283 l_p_j_ref, l_p_j_ref_freq); 284 } 285 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) { 286 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, 287 ci->new); 288 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n", 289 loops_per_jiffy, ci->new); 290 } 291 #endif 292 } 293 294 /** 295 * cpufreq_notify_transition - Notify frequency transition and adjust_jiffies. 296 * @policy: cpufreq policy to enable fast frequency switching for. 297 * @freqs: contain details of the frequency update. 298 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE. 299 * 300 * This function calls the transition notifiers and the "adjust_jiffies" 301 * function. It is called twice on all CPU frequency changes that have 302 * external effects. 303 */ 304 static void cpufreq_notify_transition(struct cpufreq_policy *policy, 305 struct cpufreq_freqs *freqs, 306 unsigned int state) 307 { 308 BUG_ON(irqs_disabled()); 309 310 if (cpufreq_disabled()) 311 return; 312 313 freqs->flags = cpufreq_driver->flags; 314 pr_debug("notification %u of frequency transition to %u kHz\n", 315 state, freqs->new); 316 317 switch (state) { 318 case CPUFREQ_PRECHANGE: 319 /* 320 * Detect if the driver reported a value as "old frequency" 321 * which is not equal to what the cpufreq core thinks is 322 * "old frequency". 323 */ 324 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 325 if (policy->cur && (policy->cur != freqs->old)) { 326 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n", 327 freqs->old, policy->cur); 328 freqs->old = policy->cur; 329 } 330 } 331 332 for_each_cpu(freqs->cpu, policy->cpus) { 333 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 334 CPUFREQ_PRECHANGE, freqs); 335 } 336 337 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 338 break; 339 340 case CPUFREQ_POSTCHANGE: 341 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 342 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new, 343 cpumask_pr_args(policy->cpus)); 344 345 for_each_cpu(freqs->cpu, policy->cpus) { 346 trace_cpu_frequency(freqs->new, freqs->cpu); 347 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 348 CPUFREQ_POSTCHANGE, freqs); 349 } 350 351 cpufreq_stats_record_transition(policy, freqs->new); 352 policy->cur = freqs->new; 353 } 354 } 355 356 /* Do post notifications when there are chances that transition has failed */ 357 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy, 358 struct cpufreq_freqs *freqs, int transition_failed) 359 { 360 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 361 if (!transition_failed) 362 return; 363 364 swap(freqs->old, freqs->new); 365 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 366 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 367 } 368 369 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy, 370 struct cpufreq_freqs *freqs) 371 { 372 373 /* 374 * Catch double invocations of _begin() which lead to self-deadlock. 375 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core 376 * doesn't invoke _begin() on their behalf, and hence the chances of 377 * double invocations are very low. Moreover, there are scenarios 378 * where these checks can emit false-positive warnings in these 379 * drivers; so we avoid that by skipping them altogether. 380 */ 381 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION) 382 && current == policy->transition_task); 383 384 wait: 385 wait_event(policy->transition_wait, !policy->transition_ongoing); 386 387 spin_lock(&policy->transition_lock); 388 389 if (unlikely(policy->transition_ongoing)) { 390 spin_unlock(&policy->transition_lock); 391 goto wait; 392 } 393 394 policy->transition_ongoing = true; 395 policy->transition_task = current; 396 397 spin_unlock(&policy->transition_lock); 398 399 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 400 } 401 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin); 402 403 void cpufreq_freq_transition_end(struct cpufreq_policy *policy, 404 struct cpufreq_freqs *freqs, int transition_failed) 405 { 406 if (unlikely(WARN_ON(!policy->transition_ongoing))) 407 return; 408 409 cpufreq_notify_post_transition(policy, freqs, transition_failed); 410 411 policy->transition_ongoing = false; 412 policy->transition_task = NULL; 413 414 wake_up(&policy->transition_wait); 415 } 416 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end); 417 418 /* 419 * Fast frequency switching status count. Positive means "enabled", negative 420 * means "disabled" and 0 means "not decided yet". 421 */ 422 static int cpufreq_fast_switch_count; 423 static DEFINE_MUTEX(cpufreq_fast_switch_lock); 424 425 static void cpufreq_list_transition_notifiers(void) 426 { 427 struct notifier_block *nb; 428 429 pr_info("Registered transition notifiers:\n"); 430 431 mutex_lock(&cpufreq_transition_notifier_list.mutex); 432 433 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next) 434 pr_info("%pF\n", nb->notifier_call); 435 436 mutex_unlock(&cpufreq_transition_notifier_list.mutex); 437 } 438 439 /** 440 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy. 441 * @policy: cpufreq policy to enable fast frequency switching for. 442 * 443 * Try to enable fast frequency switching for @policy. 444 * 445 * The attempt will fail if there is at least one transition notifier registered 446 * at this point, as fast frequency switching is quite fundamentally at odds 447 * with transition notifiers. Thus if successful, it will make registration of 448 * transition notifiers fail going forward. 449 */ 450 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy) 451 { 452 lockdep_assert_held(&policy->rwsem); 453 454 if (!policy->fast_switch_possible) 455 return; 456 457 mutex_lock(&cpufreq_fast_switch_lock); 458 if (cpufreq_fast_switch_count >= 0) { 459 cpufreq_fast_switch_count++; 460 policy->fast_switch_enabled = true; 461 } else { 462 pr_warn("CPU%u: Fast frequency switching not enabled\n", 463 policy->cpu); 464 cpufreq_list_transition_notifiers(); 465 } 466 mutex_unlock(&cpufreq_fast_switch_lock); 467 } 468 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch); 469 470 /** 471 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy. 472 * @policy: cpufreq policy to disable fast frequency switching for. 473 */ 474 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy) 475 { 476 mutex_lock(&cpufreq_fast_switch_lock); 477 if (policy->fast_switch_enabled) { 478 policy->fast_switch_enabled = false; 479 if (!WARN_ON(cpufreq_fast_switch_count <= 0)) 480 cpufreq_fast_switch_count--; 481 } 482 mutex_unlock(&cpufreq_fast_switch_lock); 483 } 484 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch); 485 486 /** 487 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported 488 * one. 489 * @target_freq: target frequency to resolve. 490 * 491 * The target to driver frequency mapping is cached in the policy. 492 * 493 * Return: Lowest driver-supported frequency greater than or equal to the 494 * given target_freq, subject to policy (min/max) and driver limitations. 495 */ 496 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy, 497 unsigned int target_freq) 498 { 499 target_freq = clamp_val(target_freq, policy->min, policy->max); 500 policy->cached_target_freq = target_freq; 501 502 if (cpufreq_driver->target_index) { 503 int idx; 504 505 idx = cpufreq_frequency_table_target(policy, target_freq, 506 CPUFREQ_RELATION_L); 507 policy->cached_resolved_idx = idx; 508 return policy->freq_table[idx].frequency; 509 } 510 511 if (cpufreq_driver->resolve_freq) 512 return cpufreq_driver->resolve_freq(policy, target_freq); 513 514 return target_freq; 515 } 516 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq); 517 518 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy) 519 { 520 unsigned int latency; 521 522 if (policy->transition_delay_us) 523 return policy->transition_delay_us; 524 525 latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC; 526 if (latency) { 527 /* 528 * For platforms that can change the frequency very fast (< 10 529 * us), the above formula gives a decent transition delay. But 530 * for platforms where transition_latency is in milliseconds, it 531 * ends up giving unrealistic values. 532 * 533 * Cap the default transition delay to 10 ms, which seems to be 534 * a reasonable amount of time after which we should reevaluate 535 * the frequency. 536 */ 537 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000); 538 } 539 540 return LATENCY_MULTIPLIER; 541 } 542 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us); 543 544 /********************************************************************* 545 * SYSFS INTERFACE * 546 *********************************************************************/ 547 static ssize_t show_boost(struct kobject *kobj, 548 struct attribute *attr, char *buf) 549 { 550 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled); 551 } 552 553 static ssize_t store_boost(struct kobject *kobj, struct attribute *attr, 554 const char *buf, size_t count) 555 { 556 int ret, enable; 557 558 ret = sscanf(buf, "%d", &enable); 559 if (ret != 1 || enable < 0 || enable > 1) 560 return -EINVAL; 561 562 if (cpufreq_boost_trigger_state(enable)) { 563 pr_err("%s: Cannot %s BOOST!\n", 564 __func__, enable ? "enable" : "disable"); 565 return -EINVAL; 566 } 567 568 pr_debug("%s: cpufreq BOOST %s\n", 569 __func__, enable ? "enabled" : "disabled"); 570 571 return count; 572 } 573 define_one_global_rw(boost); 574 575 static struct cpufreq_governor *find_governor(const char *str_governor) 576 { 577 struct cpufreq_governor *t; 578 579 for_each_governor(t) 580 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN)) 581 return t; 582 583 return NULL; 584 } 585 586 /** 587 * cpufreq_parse_governor - parse a governor string 588 */ 589 static int cpufreq_parse_governor(char *str_governor, 590 struct cpufreq_policy *policy) 591 { 592 if (cpufreq_driver->setpolicy) { 593 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) { 594 policy->policy = CPUFREQ_POLICY_PERFORMANCE; 595 return 0; 596 } 597 598 if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) { 599 policy->policy = CPUFREQ_POLICY_POWERSAVE; 600 return 0; 601 } 602 } else { 603 struct cpufreq_governor *t; 604 605 mutex_lock(&cpufreq_governor_mutex); 606 607 t = find_governor(str_governor); 608 if (!t) { 609 int ret; 610 611 mutex_unlock(&cpufreq_governor_mutex); 612 613 ret = request_module("cpufreq_%s", str_governor); 614 if (ret) 615 return -EINVAL; 616 617 mutex_lock(&cpufreq_governor_mutex); 618 619 t = find_governor(str_governor); 620 } 621 if (t && !try_module_get(t->owner)) 622 t = NULL; 623 624 mutex_unlock(&cpufreq_governor_mutex); 625 626 if (t) { 627 policy->governor = t; 628 return 0; 629 } 630 } 631 632 return -EINVAL; 633 } 634 635 /** 636 * cpufreq_per_cpu_attr_read() / show_##file_name() - 637 * print out cpufreq information 638 * 639 * Write out information from cpufreq_driver->policy[cpu]; object must be 640 * "unsigned int". 641 */ 642 643 #define show_one(file_name, object) \ 644 static ssize_t show_##file_name \ 645 (struct cpufreq_policy *policy, char *buf) \ 646 { \ 647 return sprintf(buf, "%u\n", policy->object); \ 648 } 649 650 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 651 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 652 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency); 653 show_one(scaling_min_freq, min); 654 show_one(scaling_max_freq, max); 655 656 __weak unsigned int arch_freq_get_on_cpu(int cpu) 657 { 658 return 0; 659 } 660 661 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf) 662 { 663 ssize_t ret; 664 unsigned int freq; 665 666 freq = arch_freq_get_on_cpu(policy->cpu); 667 if (freq) 668 ret = sprintf(buf, "%u\n", freq); 669 else if (cpufreq_driver && cpufreq_driver->setpolicy && 670 cpufreq_driver->get) 671 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu)); 672 else 673 ret = sprintf(buf, "%u\n", policy->cur); 674 return ret; 675 } 676 677 static int cpufreq_set_policy(struct cpufreq_policy *policy, 678 struct cpufreq_policy *new_policy); 679 680 /** 681 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 682 */ 683 #define store_one(file_name, object) \ 684 static ssize_t store_##file_name \ 685 (struct cpufreq_policy *policy, const char *buf, size_t count) \ 686 { \ 687 int ret, temp; \ 688 struct cpufreq_policy new_policy; \ 689 \ 690 memcpy(&new_policy, policy, sizeof(*policy)); \ 691 new_policy.min = policy->user_policy.min; \ 692 new_policy.max = policy->user_policy.max; \ 693 \ 694 ret = sscanf(buf, "%u", &new_policy.object); \ 695 if (ret != 1) \ 696 return -EINVAL; \ 697 \ 698 temp = new_policy.object; \ 699 ret = cpufreq_set_policy(policy, &new_policy); \ 700 if (!ret) \ 701 policy->user_policy.object = temp; \ 702 \ 703 return ret ? ret : count; \ 704 } 705 706 store_one(scaling_min_freq, min); 707 store_one(scaling_max_freq, max); 708 709 /** 710 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 711 */ 712 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy, 713 char *buf) 714 { 715 unsigned int cur_freq = __cpufreq_get(policy); 716 717 if (cur_freq) 718 return sprintf(buf, "%u\n", cur_freq); 719 720 return sprintf(buf, "<unknown>\n"); 721 } 722 723 /** 724 * show_scaling_governor - show the current policy for the specified CPU 725 */ 726 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf) 727 { 728 if (policy->policy == CPUFREQ_POLICY_POWERSAVE) 729 return sprintf(buf, "powersave\n"); 730 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 731 return sprintf(buf, "performance\n"); 732 else if (policy->governor) 733 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", 734 policy->governor->name); 735 return -EINVAL; 736 } 737 738 /** 739 * store_scaling_governor - store policy for the specified CPU 740 */ 741 static ssize_t store_scaling_governor(struct cpufreq_policy *policy, 742 const char *buf, size_t count) 743 { 744 int ret; 745 char str_governor[16]; 746 struct cpufreq_policy new_policy; 747 748 memcpy(&new_policy, policy, sizeof(*policy)); 749 750 ret = sscanf(buf, "%15s", str_governor); 751 if (ret != 1) 752 return -EINVAL; 753 754 if (cpufreq_parse_governor(str_governor, &new_policy)) 755 return -EINVAL; 756 757 ret = cpufreq_set_policy(policy, &new_policy); 758 759 if (new_policy.governor) 760 module_put(new_policy.governor->owner); 761 762 return ret ? ret : count; 763 } 764 765 /** 766 * show_scaling_driver - show the cpufreq driver currently loaded 767 */ 768 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf) 769 { 770 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name); 771 } 772 773 /** 774 * show_scaling_available_governors - show the available CPUfreq governors 775 */ 776 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy, 777 char *buf) 778 { 779 ssize_t i = 0; 780 struct cpufreq_governor *t; 781 782 if (!has_target()) { 783 i += sprintf(buf, "performance powersave"); 784 goto out; 785 } 786 787 for_each_governor(t) { 788 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) 789 - (CPUFREQ_NAME_LEN + 2))) 790 goto out; 791 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name); 792 } 793 out: 794 i += sprintf(&buf[i], "\n"); 795 return i; 796 } 797 798 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf) 799 { 800 ssize_t i = 0; 801 unsigned int cpu; 802 803 for_each_cpu(cpu, mask) { 804 if (i) 805 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " "); 806 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu); 807 if (i >= (PAGE_SIZE - 5)) 808 break; 809 } 810 i += sprintf(&buf[i], "\n"); 811 return i; 812 } 813 EXPORT_SYMBOL_GPL(cpufreq_show_cpus); 814 815 /** 816 * show_related_cpus - show the CPUs affected by each transition even if 817 * hw coordination is in use 818 */ 819 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf) 820 { 821 return cpufreq_show_cpus(policy->related_cpus, buf); 822 } 823 824 /** 825 * show_affected_cpus - show the CPUs affected by each transition 826 */ 827 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf) 828 { 829 return cpufreq_show_cpus(policy->cpus, buf); 830 } 831 832 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy, 833 const char *buf, size_t count) 834 { 835 unsigned int freq = 0; 836 unsigned int ret; 837 838 if (!policy->governor || !policy->governor->store_setspeed) 839 return -EINVAL; 840 841 ret = sscanf(buf, "%u", &freq); 842 if (ret != 1) 843 return -EINVAL; 844 845 policy->governor->store_setspeed(policy, freq); 846 847 return count; 848 } 849 850 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf) 851 { 852 if (!policy->governor || !policy->governor->show_setspeed) 853 return sprintf(buf, "<unsupported>\n"); 854 855 return policy->governor->show_setspeed(policy, buf); 856 } 857 858 /** 859 * show_bios_limit - show the current cpufreq HW/BIOS limitation 860 */ 861 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf) 862 { 863 unsigned int limit; 864 int ret; 865 if (cpufreq_driver->bios_limit) { 866 ret = cpufreq_driver->bios_limit(policy->cpu, &limit); 867 if (!ret) 868 return sprintf(buf, "%u\n", limit); 869 } 870 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq); 871 } 872 873 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400); 874 cpufreq_freq_attr_ro(cpuinfo_min_freq); 875 cpufreq_freq_attr_ro(cpuinfo_max_freq); 876 cpufreq_freq_attr_ro(cpuinfo_transition_latency); 877 cpufreq_freq_attr_ro(scaling_available_governors); 878 cpufreq_freq_attr_ro(scaling_driver); 879 cpufreq_freq_attr_ro(scaling_cur_freq); 880 cpufreq_freq_attr_ro(bios_limit); 881 cpufreq_freq_attr_ro(related_cpus); 882 cpufreq_freq_attr_ro(affected_cpus); 883 cpufreq_freq_attr_rw(scaling_min_freq); 884 cpufreq_freq_attr_rw(scaling_max_freq); 885 cpufreq_freq_attr_rw(scaling_governor); 886 cpufreq_freq_attr_rw(scaling_setspeed); 887 888 static struct attribute *default_attrs[] = { 889 &cpuinfo_min_freq.attr, 890 &cpuinfo_max_freq.attr, 891 &cpuinfo_transition_latency.attr, 892 &scaling_min_freq.attr, 893 &scaling_max_freq.attr, 894 &affected_cpus.attr, 895 &related_cpus.attr, 896 &scaling_governor.attr, 897 &scaling_driver.attr, 898 &scaling_available_governors.attr, 899 &scaling_setspeed.attr, 900 NULL 901 }; 902 903 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj) 904 #define to_attr(a) container_of(a, struct freq_attr, attr) 905 906 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) 907 { 908 struct cpufreq_policy *policy = to_policy(kobj); 909 struct freq_attr *fattr = to_attr(attr); 910 ssize_t ret; 911 912 down_read(&policy->rwsem); 913 ret = fattr->show(policy, buf); 914 up_read(&policy->rwsem); 915 916 return ret; 917 } 918 919 static ssize_t store(struct kobject *kobj, struct attribute *attr, 920 const char *buf, size_t count) 921 { 922 struct cpufreq_policy *policy = to_policy(kobj); 923 struct freq_attr *fattr = to_attr(attr); 924 ssize_t ret = -EINVAL; 925 926 cpus_read_lock(); 927 928 if (cpu_online(policy->cpu)) { 929 down_write(&policy->rwsem); 930 ret = fattr->store(policy, buf, count); 931 up_write(&policy->rwsem); 932 } 933 934 cpus_read_unlock(); 935 936 return ret; 937 } 938 939 static void cpufreq_sysfs_release(struct kobject *kobj) 940 { 941 struct cpufreq_policy *policy = to_policy(kobj); 942 pr_debug("last reference is dropped\n"); 943 complete(&policy->kobj_unregister); 944 } 945 946 static const struct sysfs_ops sysfs_ops = { 947 .show = show, 948 .store = store, 949 }; 950 951 static struct kobj_type ktype_cpufreq = { 952 .sysfs_ops = &sysfs_ops, 953 .default_attrs = default_attrs, 954 .release = cpufreq_sysfs_release, 955 }; 956 957 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu) 958 { 959 struct device *dev = get_cpu_device(cpu); 960 961 if (!dev) 962 return; 963 964 if (cpumask_test_and_set_cpu(cpu, policy->real_cpus)) 965 return; 966 967 dev_dbg(dev, "%s: Adding symlink\n", __func__); 968 if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq")) 969 dev_err(dev, "cpufreq symlink creation failed\n"); 970 } 971 972 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, 973 struct device *dev) 974 { 975 dev_dbg(dev, "%s: Removing symlink\n", __func__); 976 sysfs_remove_link(&dev->kobj, "cpufreq"); 977 } 978 979 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy) 980 { 981 struct freq_attr **drv_attr; 982 int ret = 0; 983 984 /* set up files for this cpu device */ 985 drv_attr = cpufreq_driver->attr; 986 while (drv_attr && *drv_attr) { 987 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 988 if (ret) 989 return ret; 990 drv_attr++; 991 } 992 if (cpufreq_driver->get) { 993 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 994 if (ret) 995 return ret; 996 } 997 998 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 999 if (ret) 1000 return ret; 1001 1002 if (cpufreq_driver->bios_limit) { 1003 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr); 1004 if (ret) 1005 return ret; 1006 } 1007 1008 return 0; 1009 } 1010 1011 __weak struct cpufreq_governor *cpufreq_default_governor(void) 1012 { 1013 return NULL; 1014 } 1015 1016 static int cpufreq_init_policy(struct cpufreq_policy *policy) 1017 { 1018 struct cpufreq_governor *gov = NULL; 1019 struct cpufreq_policy new_policy; 1020 1021 memcpy(&new_policy, policy, sizeof(*policy)); 1022 1023 /* Update governor of new_policy to the governor used before hotplug */ 1024 gov = find_governor(policy->last_governor); 1025 if (gov) { 1026 pr_debug("Restoring governor %s for cpu %d\n", 1027 policy->governor->name, policy->cpu); 1028 } else { 1029 gov = cpufreq_default_governor(); 1030 if (!gov) 1031 return -ENODATA; 1032 } 1033 1034 new_policy.governor = gov; 1035 1036 /* Use the default policy if there is no last_policy. */ 1037 if (cpufreq_driver->setpolicy) { 1038 if (policy->last_policy) 1039 new_policy.policy = policy->last_policy; 1040 else 1041 cpufreq_parse_governor(gov->name, &new_policy); 1042 } 1043 /* set default policy */ 1044 return cpufreq_set_policy(policy, &new_policy); 1045 } 1046 1047 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu) 1048 { 1049 int ret = 0; 1050 1051 /* Has this CPU been taken care of already? */ 1052 if (cpumask_test_cpu(cpu, policy->cpus)) 1053 return 0; 1054 1055 down_write(&policy->rwsem); 1056 if (has_target()) 1057 cpufreq_stop_governor(policy); 1058 1059 cpumask_set_cpu(cpu, policy->cpus); 1060 1061 if (has_target()) { 1062 ret = cpufreq_start_governor(policy); 1063 if (ret) 1064 pr_err("%s: Failed to start governor\n", __func__); 1065 } 1066 up_write(&policy->rwsem); 1067 return ret; 1068 } 1069 1070 static void handle_update(struct work_struct *work) 1071 { 1072 struct cpufreq_policy *policy = 1073 container_of(work, struct cpufreq_policy, update); 1074 unsigned int cpu = policy->cpu; 1075 pr_debug("handle_update for cpu %u called\n", cpu); 1076 cpufreq_update_policy(cpu); 1077 } 1078 1079 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu) 1080 { 1081 struct cpufreq_policy *policy; 1082 int ret; 1083 1084 policy = kzalloc(sizeof(*policy), GFP_KERNEL); 1085 if (!policy) 1086 return NULL; 1087 1088 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) 1089 goto err_free_policy; 1090 1091 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) 1092 goto err_free_cpumask; 1093 1094 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL)) 1095 goto err_free_rcpumask; 1096 1097 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, 1098 cpufreq_global_kobject, "policy%u", cpu); 1099 if (ret) { 1100 pr_err("%s: failed to init policy->kobj: %d\n", __func__, ret); 1101 goto err_free_real_cpus; 1102 } 1103 1104 INIT_LIST_HEAD(&policy->policy_list); 1105 init_rwsem(&policy->rwsem); 1106 spin_lock_init(&policy->transition_lock); 1107 init_waitqueue_head(&policy->transition_wait); 1108 init_completion(&policy->kobj_unregister); 1109 INIT_WORK(&policy->update, handle_update); 1110 1111 policy->cpu = cpu; 1112 return policy; 1113 1114 err_free_real_cpus: 1115 free_cpumask_var(policy->real_cpus); 1116 err_free_rcpumask: 1117 free_cpumask_var(policy->related_cpus); 1118 err_free_cpumask: 1119 free_cpumask_var(policy->cpus); 1120 err_free_policy: 1121 kfree(policy); 1122 1123 return NULL; 1124 } 1125 1126 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy) 1127 { 1128 struct kobject *kobj; 1129 struct completion *cmp; 1130 1131 down_write(&policy->rwsem); 1132 cpufreq_stats_free_table(policy); 1133 kobj = &policy->kobj; 1134 cmp = &policy->kobj_unregister; 1135 up_write(&policy->rwsem); 1136 kobject_put(kobj); 1137 1138 /* 1139 * We need to make sure that the underlying kobj is 1140 * actually not referenced anymore by anybody before we 1141 * proceed with unloading. 1142 */ 1143 pr_debug("waiting for dropping of refcount\n"); 1144 wait_for_completion(cmp); 1145 pr_debug("wait complete\n"); 1146 } 1147 1148 static void cpufreq_policy_free(struct cpufreq_policy *policy) 1149 { 1150 unsigned long flags; 1151 int cpu; 1152 1153 /* Remove policy from list */ 1154 write_lock_irqsave(&cpufreq_driver_lock, flags); 1155 list_del(&policy->policy_list); 1156 1157 for_each_cpu(cpu, policy->related_cpus) 1158 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1159 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1160 1161 cpufreq_policy_put_kobj(policy); 1162 free_cpumask_var(policy->real_cpus); 1163 free_cpumask_var(policy->related_cpus); 1164 free_cpumask_var(policy->cpus); 1165 kfree(policy); 1166 } 1167 1168 static int cpufreq_online(unsigned int cpu) 1169 { 1170 struct cpufreq_policy *policy; 1171 bool new_policy; 1172 unsigned long flags; 1173 unsigned int j; 1174 int ret; 1175 1176 pr_debug("%s: bringing CPU%u online\n", __func__, cpu); 1177 1178 /* Check if this CPU already has a policy to manage it */ 1179 policy = per_cpu(cpufreq_cpu_data, cpu); 1180 if (policy) { 1181 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus)); 1182 if (!policy_is_inactive(policy)) 1183 return cpufreq_add_policy_cpu(policy, cpu); 1184 1185 /* This is the only online CPU for the policy. Start over. */ 1186 new_policy = false; 1187 down_write(&policy->rwsem); 1188 policy->cpu = cpu; 1189 policy->governor = NULL; 1190 up_write(&policy->rwsem); 1191 } else { 1192 new_policy = true; 1193 policy = cpufreq_policy_alloc(cpu); 1194 if (!policy) 1195 return -ENOMEM; 1196 } 1197 1198 cpumask_copy(policy->cpus, cpumask_of(cpu)); 1199 1200 /* call driver. From then on the cpufreq must be able 1201 * to accept all calls to ->verify and ->setpolicy for this CPU 1202 */ 1203 ret = cpufreq_driver->init(policy); 1204 if (ret) { 1205 pr_debug("initialization failed\n"); 1206 goto out_free_policy; 1207 } 1208 1209 ret = cpufreq_table_validate_and_sort(policy); 1210 if (ret) 1211 goto out_exit_policy; 1212 1213 down_write(&policy->rwsem); 1214 1215 if (new_policy) { 1216 /* related_cpus should at least include policy->cpus. */ 1217 cpumask_copy(policy->related_cpus, policy->cpus); 1218 } 1219 1220 /* 1221 * affected cpus must always be the one, which are online. We aren't 1222 * managing offline cpus here. 1223 */ 1224 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask); 1225 1226 if (new_policy) { 1227 policy->user_policy.min = policy->min; 1228 policy->user_policy.max = policy->max; 1229 1230 for_each_cpu(j, policy->related_cpus) { 1231 per_cpu(cpufreq_cpu_data, j) = policy; 1232 add_cpu_dev_symlink(policy, j); 1233 } 1234 } else { 1235 policy->min = policy->user_policy.min; 1236 policy->max = policy->user_policy.max; 1237 } 1238 1239 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) { 1240 policy->cur = cpufreq_driver->get(policy->cpu); 1241 if (!policy->cur) { 1242 pr_err("%s: ->get() failed\n", __func__); 1243 goto out_destroy_policy; 1244 } 1245 } 1246 1247 /* 1248 * Sometimes boot loaders set CPU frequency to a value outside of 1249 * frequency table present with cpufreq core. In such cases CPU might be 1250 * unstable if it has to run on that frequency for long duration of time 1251 * and so its better to set it to a frequency which is specified in 1252 * freq-table. This also makes cpufreq stats inconsistent as 1253 * cpufreq-stats would fail to register because current frequency of CPU 1254 * isn't found in freq-table. 1255 * 1256 * Because we don't want this change to effect boot process badly, we go 1257 * for the next freq which is >= policy->cur ('cur' must be set by now, 1258 * otherwise we will end up setting freq to lowest of the table as 'cur' 1259 * is initialized to zero). 1260 * 1261 * We are passing target-freq as "policy->cur - 1" otherwise 1262 * __cpufreq_driver_target() would simply fail, as policy->cur will be 1263 * equal to target-freq. 1264 */ 1265 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK) 1266 && has_target()) { 1267 /* Are we running at unknown frequency ? */ 1268 ret = cpufreq_frequency_table_get_index(policy, policy->cur); 1269 if (ret == -EINVAL) { 1270 /* Warn user and fix it */ 1271 pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n", 1272 __func__, policy->cpu, policy->cur); 1273 ret = __cpufreq_driver_target(policy, policy->cur - 1, 1274 CPUFREQ_RELATION_L); 1275 1276 /* 1277 * Reaching here after boot in a few seconds may not 1278 * mean that system will remain stable at "unknown" 1279 * frequency for longer duration. Hence, a BUG_ON(). 1280 */ 1281 BUG_ON(ret); 1282 pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n", 1283 __func__, policy->cpu, policy->cur); 1284 } 1285 } 1286 1287 if (new_policy) { 1288 ret = cpufreq_add_dev_interface(policy); 1289 if (ret) 1290 goto out_destroy_policy; 1291 1292 cpufreq_stats_create_table(policy); 1293 1294 write_lock_irqsave(&cpufreq_driver_lock, flags); 1295 list_add(&policy->policy_list, &cpufreq_policy_list); 1296 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1297 } 1298 1299 ret = cpufreq_init_policy(policy); 1300 if (ret) { 1301 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n", 1302 __func__, cpu, ret); 1303 /* cpufreq_policy_free() will notify based on this */ 1304 new_policy = false; 1305 goto out_destroy_policy; 1306 } 1307 1308 up_write(&policy->rwsem); 1309 1310 kobject_uevent(&policy->kobj, KOBJ_ADD); 1311 1312 /* Callback for handling stuff after policy is ready */ 1313 if (cpufreq_driver->ready) 1314 cpufreq_driver->ready(policy); 1315 1316 pr_debug("initialization complete\n"); 1317 1318 return 0; 1319 1320 out_destroy_policy: 1321 for_each_cpu(j, policy->real_cpus) 1322 remove_cpu_dev_symlink(policy, get_cpu_device(j)); 1323 1324 up_write(&policy->rwsem); 1325 1326 out_exit_policy: 1327 if (cpufreq_driver->exit) 1328 cpufreq_driver->exit(policy); 1329 1330 out_free_policy: 1331 cpufreq_policy_free(policy); 1332 return ret; 1333 } 1334 1335 /** 1336 * cpufreq_add_dev - the cpufreq interface for a CPU device. 1337 * @dev: CPU device. 1338 * @sif: Subsystem interface structure pointer (not used) 1339 */ 1340 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 1341 { 1342 struct cpufreq_policy *policy; 1343 unsigned cpu = dev->id; 1344 int ret; 1345 1346 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu); 1347 1348 if (cpu_online(cpu)) { 1349 ret = cpufreq_online(cpu); 1350 if (ret) 1351 return ret; 1352 } 1353 1354 /* Create sysfs link on CPU registration */ 1355 policy = per_cpu(cpufreq_cpu_data, cpu); 1356 if (policy) 1357 add_cpu_dev_symlink(policy, cpu); 1358 1359 return 0; 1360 } 1361 1362 static int cpufreq_offline(unsigned int cpu) 1363 { 1364 struct cpufreq_policy *policy; 1365 int ret; 1366 1367 pr_debug("%s: unregistering CPU %u\n", __func__, cpu); 1368 1369 policy = cpufreq_cpu_get_raw(cpu); 1370 if (!policy) { 1371 pr_debug("%s: No cpu_data found\n", __func__); 1372 return 0; 1373 } 1374 1375 down_write(&policy->rwsem); 1376 if (has_target()) 1377 cpufreq_stop_governor(policy); 1378 1379 cpumask_clear_cpu(cpu, policy->cpus); 1380 1381 if (policy_is_inactive(policy)) { 1382 if (has_target()) 1383 strncpy(policy->last_governor, policy->governor->name, 1384 CPUFREQ_NAME_LEN); 1385 else 1386 policy->last_policy = policy->policy; 1387 } else if (cpu == policy->cpu) { 1388 /* Nominate new CPU */ 1389 policy->cpu = cpumask_any(policy->cpus); 1390 } 1391 1392 /* Start governor again for active policy */ 1393 if (!policy_is_inactive(policy)) { 1394 if (has_target()) { 1395 ret = cpufreq_start_governor(policy); 1396 if (ret) 1397 pr_err("%s: Failed to start governor\n", __func__); 1398 } 1399 1400 goto unlock; 1401 } 1402 1403 if (cpufreq_driver->stop_cpu) 1404 cpufreq_driver->stop_cpu(policy); 1405 1406 if (has_target()) 1407 cpufreq_exit_governor(policy); 1408 1409 /* 1410 * Perform the ->exit() even during light-weight tear-down, 1411 * since this is a core component, and is essential for the 1412 * subsequent light-weight ->init() to succeed. 1413 */ 1414 if (cpufreq_driver->exit) { 1415 cpufreq_driver->exit(policy); 1416 policy->freq_table = NULL; 1417 } 1418 1419 unlock: 1420 up_write(&policy->rwsem); 1421 return 0; 1422 } 1423 1424 /** 1425 * cpufreq_remove_dev - remove a CPU device 1426 * 1427 * Removes the cpufreq interface for a CPU device. 1428 */ 1429 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif) 1430 { 1431 unsigned int cpu = dev->id; 1432 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1433 1434 if (!policy) 1435 return; 1436 1437 if (cpu_online(cpu)) 1438 cpufreq_offline(cpu); 1439 1440 cpumask_clear_cpu(cpu, policy->real_cpus); 1441 remove_cpu_dev_symlink(policy, dev); 1442 1443 if (cpumask_empty(policy->real_cpus)) 1444 cpufreq_policy_free(policy); 1445 } 1446 1447 /** 1448 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're 1449 * in deep trouble. 1450 * @policy: policy managing CPUs 1451 * @new_freq: CPU frequency the CPU actually runs at 1452 * 1453 * We adjust to current frequency first, and need to clean up later. 1454 * So either call to cpufreq_update_policy() or schedule handle_update()). 1455 */ 1456 static void cpufreq_out_of_sync(struct cpufreq_policy *policy, 1457 unsigned int new_freq) 1458 { 1459 struct cpufreq_freqs freqs; 1460 1461 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n", 1462 policy->cur, new_freq); 1463 1464 freqs.old = policy->cur; 1465 freqs.new = new_freq; 1466 1467 cpufreq_freq_transition_begin(policy, &freqs); 1468 cpufreq_freq_transition_end(policy, &freqs, 0); 1469 } 1470 1471 /** 1472 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur 1473 * @cpu: CPU number 1474 * 1475 * This is the last known freq, without actually getting it from the driver. 1476 * Return value will be same as what is shown in scaling_cur_freq in sysfs. 1477 */ 1478 unsigned int cpufreq_quick_get(unsigned int cpu) 1479 { 1480 struct cpufreq_policy *policy; 1481 unsigned int ret_freq = 0; 1482 unsigned long flags; 1483 1484 read_lock_irqsave(&cpufreq_driver_lock, flags); 1485 1486 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) { 1487 ret_freq = cpufreq_driver->get(cpu); 1488 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1489 return ret_freq; 1490 } 1491 1492 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1493 1494 policy = cpufreq_cpu_get(cpu); 1495 if (policy) { 1496 ret_freq = policy->cur; 1497 cpufreq_cpu_put(policy); 1498 } 1499 1500 return ret_freq; 1501 } 1502 EXPORT_SYMBOL(cpufreq_quick_get); 1503 1504 /** 1505 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU 1506 * @cpu: CPU number 1507 * 1508 * Just return the max possible frequency for a given CPU. 1509 */ 1510 unsigned int cpufreq_quick_get_max(unsigned int cpu) 1511 { 1512 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1513 unsigned int ret_freq = 0; 1514 1515 if (policy) { 1516 ret_freq = policy->max; 1517 cpufreq_cpu_put(policy); 1518 } 1519 1520 return ret_freq; 1521 } 1522 EXPORT_SYMBOL(cpufreq_quick_get_max); 1523 1524 static unsigned int __cpufreq_get(struct cpufreq_policy *policy) 1525 { 1526 unsigned int ret_freq = 0; 1527 1528 if (!cpufreq_driver->get) 1529 return ret_freq; 1530 1531 ret_freq = cpufreq_driver->get(policy->cpu); 1532 1533 /* 1534 * Updating inactive policies is invalid, so avoid doing that. Also 1535 * if fast frequency switching is used with the given policy, the check 1536 * against policy->cur is pointless, so skip it in that case too. 1537 */ 1538 if (unlikely(policy_is_inactive(policy)) || policy->fast_switch_enabled) 1539 return ret_freq; 1540 1541 if (ret_freq && policy->cur && 1542 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 1543 /* verify no discrepancy between actual and 1544 saved value exists */ 1545 if (unlikely(ret_freq != policy->cur)) { 1546 cpufreq_out_of_sync(policy, ret_freq); 1547 schedule_work(&policy->update); 1548 } 1549 } 1550 1551 return ret_freq; 1552 } 1553 1554 /** 1555 * cpufreq_get - get the current CPU frequency (in kHz) 1556 * @cpu: CPU number 1557 * 1558 * Get the CPU current (static) CPU frequency 1559 */ 1560 unsigned int cpufreq_get(unsigned int cpu) 1561 { 1562 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1563 unsigned int ret_freq = 0; 1564 1565 if (policy) { 1566 down_read(&policy->rwsem); 1567 1568 if (!policy_is_inactive(policy)) 1569 ret_freq = __cpufreq_get(policy); 1570 1571 up_read(&policy->rwsem); 1572 1573 cpufreq_cpu_put(policy); 1574 } 1575 1576 return ret_freq; 1577 } 1578 EXPORT_SYMBOL(cpufreq_get); 1579 1580 static unsigned int cpufreq_update_current_freq(struct cpufreq_policy *policy) 1581 { 1582 unsigned int new_freq; 1583 1584 new_freq = cpufreq_driver->get(policy->cpu); 1585 if (!new_freq) 1586 return 0; 1587 1588 if (!policy->cur) { 1589 pr_debug("cpufreq: Driver did not initialize current freq\n"); 1590 policy->cur = new_freq; 1591 } else if (policy->cur != new_freq && has_target()) { 1592 cpufreq_out_of_sync(policy, new_freq); 1593 } 1594 1595 return new_freq; 1596 } 1597 1598 static struct subsys_interface cpufreq_interface = { 1599 .name = "cpufreq", 1600 .subsys = &cpu_subsys, 1601 .add_dev = cpufreq_add_dev, 1602 .remove_dev = cpufreq_remove_dev, 1603 }; 1604 1605 /* 1606 * In case platform wants some specific frequency to be configured 1607 * during suspend.. 1608 */ 1609 int cpufreq_generic_suspend(struct cpufreq_policy *policy) 1610 { 1611 int ret; 1612 1613 if (!policy->suspend_freq) { 1614 pr_debug("%s: suspend_freq not defined\n", __func__); 1615 return 0; 1616 } 1617 1618 pr_debug("%s: Setting suspend-freq: %u\n", __func__, 1619 policy->suspend_freq); 1620 1621 ret = __cpufreq_driver_target(policy, policy->suspend_freq, 1622 CPUFREQ_RELATION_H); 1623 if (ret) 1624 pr_err("%s: unable to set suspend-freq: %u. err: %d\n", 1625 __func__, policy->suspend_freq, ret); 1626 1627 return ret; 1628 } 1629 EXPORT_SYMBOL(cpufreq_generic_suspend); 1630 1631 /** 1632 * cpufreq_suspend() - Suspend CPUFreq governors 1633 * 1634 * Called during system wide Suspend/Hibernate cycles for suspending governors 1635 * as some platforms can't change frequency after this point in suspend cycle. 1636 * Because some of the devices (like: i2c, regulators, etc) they use for 1637 * changing frequency are suspended quickly after this point. 1638 */ 1639 void cpufreq_suspend(void) 1640 { 1641 struct cpufreq_policy *policy; 1642 1643 if (!cpufreq_driver) 1644 return; 1645 1646 if (!has_target() && !cpufreq_driver->suspend) 1647 goto suspend; 1648 1649 pr_debug("%s: Suspending Governors\n", __func__); 1650 1651 for_each_active_policy(policy) { 1652 if (has_target()) { 1653 down_write(&policy->rwsem); 1654 cpufreq_stop_governor(policy); 1655 up_write(&policy->rwsem); 1656 } 1657 1658 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy)) 1659 pr_err("%s: Failed to suspend driver: %p\n", __func__, 1660 policy); 1661 } 1662 1663 suspend: 1664 cpufreq_suspended = true; 1665 } 1666 1667 /** 1668 * cpufreq_resume() - Resume CPUFreq governors 1669 * 1670 * Called during system wide Suspend/Hibernate cycle for resuming governors that 1671 * are suspended with cpufreq_suspend(). 1672 */ 1673 void cpufreq_resume(void) 1674 { 1675 struct cpufreq_policy *policy; 1676 int ret; 1677 1678 if (!cpufreq_driver) 1679 return; 1680 1681 if (unlikely(!cpufreq_suspended)) 1682 return; 1683 1684 cpufreq_suspended = false; 1685 1686 if (!has_target() && !cpufreq_driver->resume) 1687 return; 1688 1689 pr_debug("%s: Resuming Governors\n", __func__); 1690 1691 for_each_active_policy(policy) { 1692 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) { 1693 pr_err("%s: Failed to resume driver: %p\n", __func__, 1694 policy); 1695 } else if (has_target()) { 1696 down_write(&policy->rwsem); 1697 ret = cpufreq_start_governor(policy); 1698 up_write(&policy->rwsem); 1699 1700 if (ret) 1701 pr_err("%s: Failed to start governor for policy: %p\n", 1702 __func__, policy); 1703 } 1704 } 1705 } 1706 1707 /** 1708 * cpufreq_get_current_driver - return current driver's name 1709 * 1710 * Return the name string of the currently loaded cpufreq driver 1711 * or NULL, if none. 1712 */ 1713 const char *cpufreq_get_current_driver(void) 1714 { 1715 if (cpufreq_driver) 1716 return cpufreq_driver->name; 1717 1718 return NULL; 1719 } 1720 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver); 1721 1722 /** 1723 * cpufreq_get_driver_data - return current driver data 1724 * 1725 * Return the private data of the currently loaded cpufreq 1726 * driver, or NULL if no cpufreq driver is loaded. 1727 */ 1728 void *cpufreq_get_driver_data(void) 1729 { 1730 if (cpufreq_driver) 1731 return cpufreq_driver->driver_data; 1732 1733 return NULL; 1734 } 1735 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data); 1736 1737 /********************************************************************* 1738 * NOTIFIER LISTS INTERFACE * 1739 *********************************************************************/ 1740 1741 /** 1742 * cpufreq_register_notifier - register a driver with cpufreq 1743 * @nb: notifier function to register 1744 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1745 * 1746 * Add a driver to one of two lists: either a list of drivers that 1747 * are notified about clock rate changes (once before and once after 1748 * the transition), or a list of drivers that are notified about 1749 * changes in cpufreq policy. 1750 * 1751 * This function may sleep, and has the same return conditions as 1752 * blocking_notifier_chain_register. 1753 */ 1754 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 1755 { 1756 int ret; 1757 1758 if (cpufreq_disabled()) 1759 return -EINVAL; 1760 1761 switch (list) { 1762 case CPUFREQ_TRANSITION_NOTIFIER: 1763 mutex_lock(&cpufreq_fast_switch_lock); 1764 1765 if (cpufreq_fast_switch_count > 0) { 1766 mutex_unlock(&cpufreq_fast_switch_lock); 1767 return -EBUSY; 1768 } 1769 ret = srcu_notifier_chain_register( 1770 &cpufreq_transition_notifier_list, nb); 1771 if (!ret) 1772 cpufreq_fast_switch_count--; 1773 1774 mutex_unlock(&cpufreq_fast_switch_lock); 1775 break; 1776 case CPUFREQ_POLICY_NOTIFIER: 1777 ret = blocking_notifier_chain_register( 1778 &cpufreq_policy_notifier_list, nb); 1779 break; 1780 default: 1781 ret = -EINVAL; 1782 } 1783 1784 return ret; 1785 } 1786 EXPORT_SYMBOL(cpufreq_register_notifier); 1787 1788 /** 1789 * cpufreq_unregister_notifier - unregister a driver with cpufreq 1790 * @nb: notifier block to be unregistered 1791 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1792 * 1793 * Remove a driver from the CPU frequency notifier list. 1794 * 1795 * This function may sleep, and has the same return conditions as 1796 * blocking_notifier_chain_unregister. 1797 */ 1798 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 1799 { 1800 int ret; 1801 1802 if (cpufreq_disabled()) 1803 return -EINVAL; 1804 1805 switch (list) { 1806 case CPUFREQ_TRANSITION_NOTIFIER: 1807 mutex_lock(&cpufreq_fast_switch_lock); 1808 1809 ret = srcu_notifier_chain_unregister( 1810 &cpufreq_transition_notifier_list, nb); 1811 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0)) 1812 cpufreq_fast_switch_count++; 1813 1814 mutex_unlock(&cpufreq_fast_switch_lock); 1815 break; 1816 case CPUFREQ_POLICY_NOTIFIER: 1817 ret = blocking_notifier_chain_unregister( 1818 &cpufreq_policy_notifier_list, nb); 1819 break; 1820 default: 1821 ret = -EINVAL; 1822 } 1823 1824 return ret; 1825 } 1826 EXPORT_SYMBOL(cpufreq_unregister_notifier); 1827 1828 1829 /********************************************************************* 1830 * GOVERNORS * 1831 *********************************************************************/ 1832 1833 /** 1834 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch. 1835 * @policy: cpufreq policy to switch the frequency for. 1836 * @target_freq: New frequency to set (may be approximate). 1837 * 1838 * Carry out a fast frequency switch without sleeping. 1839 * 1840 * The driver's ->fast_switch() callback invoked by this function must be 1841 * suitable for being called from within RCU-sched read-side critical sections 1842 * and it is expected to select the minimum available frequency greater than or 1843 * equal to @target_freq (CPUFREQ_RELATION_L). 1844 * 1845 * This function must not be called if policy->fast_switch_enabled is unset. 1846 * 1847 * Governors calling this function must guarantee that it will never be invoked 1848 * twice in parallel for the same policy and that it will never be called in 1849 * parallel with either ->target() or ->target_index() for the same policy. 1850 * 1851 * Returns the actual frequency set for the CPU. 1852 * 1853 * If 0 is returned by the driver's ->fast_switch() callback to indicate an 1854 * error condition, the hardware configuration must be preserved. 1855 */ 1856 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy, 1857 unsigned int target_freq) 1858 { 1859 target_freq = clamp_val(target_freq, policy->min, policy->max); 1860 1861 return cpufreq_driver->fast_switch(policy, target_freq); 1862 } 1863 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch); 1864 1865 /* Must set freqs->new to intermediate frequency */ 1866 static int __target_intermediate(struct cpufreq_policy *policy, 1867 struct cpufreq_freqs *freqs, int index) 1868 { 1869 int ret; 1870 1871 freqs->new = cpufreq_driver->get_intermediate(policy, index); 1872 1873 /* We don't need to switch to intermediate freq */ 1874 if (!freqs->new) 1875 return 0; 1876 1877 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n", 1878 __func__, policy->cpu, freqs->old, freqs->new); 1879 1880 cpufreq_freq_transition_begin(policy, freqs); 1881 ret = cpufreq_driver->target_intermediate(policy, index); 1882 cpufreq_freq_transition_end(policy, freqs, ret); 1883 1884 if (ret) 1885 pr_err("%s: Failed to change to intermediate frequency: %d\n", 1886 __func__, ret); 1887 1888 return ret; 1889 } 1890 1891 static int __target_index(struct cpufreq_policy *policy, int index) 1892 { 1893 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0}; 1894 unsigned int intermediate_freq = 0; 1895 unsigned int newfreq = policy->freq_table[index].frequency; 1896 int retval = -EINVAL; 1897 bool notify; 1898 1899 if (newfreq == policy->cur) 1900 return 0; 1901 1902 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION); 1903 if (notify) { 1904 /* Handle switching to intermediate frequency */ 1905 if (cpufreq_driver->get_intermediate) { 1906 retval = __target_intermediate(policy, &freqs, index); 1907 if (retval) 1908 return retval; 1909 1910 intermediate_freq = freqs.new; 1911 /* Set old freq to intermediate */ 1912 if (intermediate_freq) 1913 freqs.old = freqs.new; 1914 } 1915 1916 freqs.new = newfreq; 1917 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n", 1918 __func__, policy->cpu, freqs.old, freqs.new); 1919 1920 cpufreq_freq_transition_begin(policy, &freqs); 1921 } 1922 1923 retval = cpufreq_driver->target_index(policy, index); 1924 if (retval) 1925 pr_err("%s: Failed to change cpu frequency: %d\n", __func__, 1926 retval); 1927 1928 if (notify) { 1929 cpufreq_freq_transition_end(policy, &freqs, retval); 1930 1931 /* 1932 * Failed after setting to intermediate freq? Driver should have 1933 * reverted back to initial frequency and so should we. Check 1934 * here for intermediate_freq instead of get_intermediate, in 1935 * case we haven't switched to intermediate freq at all. 1936 */ 1937 if (unlikely(retval && intermediate_freq)) { 1938 freqs.old = intermediate_freq; 1939 freqs.new = policy->restore_freq; 1940 cpufreq_freq_transition_begin(policy, &freqs); 1941 cpufreq_freq_transition_end(policy, &freqs, 0); 1942 } 1943 } 1944 1945 return retval; 1946 } 1947 1948 int __cpufreq_driver_target(struct cpufreq_policy *policy, 1949 unsigned int target_freq, 1950 unsigned int relation) 1951 { 1952 unsigned int old_target_freq = target_freq; 1953 int index; 1954 1955 if (cpufreq_disabled()) 1956 return -ENODEV; 1957 1958 /* Make sure that target_freq is within supported range */ 1959 target_freq = clamp_val(target_freq, policy->min, policy->max); 1960 1961 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n", 1962 policy->cpu, target_freq, relation, old_target_freq); 1963 1964 /* 1965 * This might look like a redundant call as we are checking it again 1966 * after finding index. But it is left intentionally for cases where 1967 * exactly same freq is called again and so we can save on few function 1968 * calls. 1969 */ 1970 if (target_freq == policy->cur) 1971 return 0; 1972 1973 /* Save last value to restore later on errors */ 1974 policy->restore_freq = policy->cur; 1975 1976 if (cpufreq_driver->target) 1977 return cpufreq_driver->target(policy, target_freq, relation); 1978 1979 if (!cpufreq_driver->target_index) 1980 return -EINVAL; 1981 1982 index = cpufreq_frequency_table_target(policy, target_freq, relation); 1983 1984 return __target_index(policy, index); 1985 } 1986 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 1987 1988 int cpufreq_driver_target(struct cpufreq_policy *policy, 1989 unsigned int target_freq, 1990 unsigned int relation) 1991 { 1992 int ret = -EINVAL; 1993 1994 down_write(&policy->rwsem); 1995 1996 ret = __cpufreq_driver_target(policy, target_freq, relation); 1997 1998 up_write(&policy->rwsem); 1999 2000 return ret; 2001 } 2002 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 2003 2004 __weak struct cpufreq_governor *cpufreq_fallback_governor(void) 2005 { 2006 return NULL; 2007 } 2008 2009 static int cpufreq_init_governor(struct cpufreq_policy *policy) 2010 { 2011 int ret; 2012 2013 /* Don't start any governor operations if we are entering suspend */ 2014 if (cpufreq_suspended) 2015 return 0; 2016 /* 2017 * Governor might not be initiated here if ACPI _PPC changed 2018 * notification happened, so check it. 2019 */ 2020 if (!policy->governor) 2021 return -EINVAL; 2022 2023 /* Platform doesn't want dynamic frequency switching ? */ 2024 if (policy->governor->dynamic_switching && 2025 cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) { 2026 struct cpufreq_governor *gov = cpufreq_fallback_governor(); 2027 2028 if (gov) { 2029 pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n", 2030 policy->governor->name, gov->name); 2031 policy->governor = gov; 2032 } else { 2033 return -EINVAL; 2034 } 2035 } 2036 2037 if (!try_module_get(policy->governor->owner)) 2038 return -EINVAL; 2039 2040 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2041 2042 if (policy->governor->init) { 2043 ret = policy->governor->init(policy); 2044 if (ret) { 2045 module_put(policy->governor->owner); 2046 return ret; 2047 } 2048 } 2049 2050 return 0; 2051 } 2052 2053 static void cpufreq_exit_governor(struct cpufreq_policy *policy) 2054 { 2055 if (cpufreq_suspended || !policy->governor) 2056 return; 2057 2058 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2059 2060 if (policy->governor->exit) 2061 policy->governor->exit(policy); 2062 2063 module_put(policy->governor->owner); 2064 } 2065 2066 static int cpufreq_start_governor(struct cpufreq_policy *policy) 2067 { 2068 int ret; 2069 2070 if (cpufreq_suspended) 2071 return 0; 2072 2073 if (!policy->governor) 2074 return -EINVAL; 2075 2076 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2077 2078 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) 2079 cpufreq_update_current_freq(policy); 2080 2081 if (policy->governor->start) { 2082 ret = policy->governor->start(policy); 2083 if (ret) 2084 return ret; 2085 } 2086 2087 if (policy->governor->limits) 2088 policy->governor->limits(policy); 2089 2090 return 0; 2091 } 2092 2093 static void cpufreq_stop_governor(struct cpufreq_policy *policy) 2094 { 2095 if (cpufreq_suspended || !policy->governor) 2096 return; 2097 2098 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2099 2100 if (policy->governor->stop) 2101 policy->governor->stop(policy); 2102 } 2103 2104 static void cpufreq_governor_limits(struct cpufreq_policy *policy) 2105 { 2106 if (cpufreq_suspended || !policy->governor) 2107 return; 2108 2109 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2110 2111 if (policy->governor->limits) 2112 policy->governor->limits(policy); 2113 } 2114 2115 int cpufreq_register_governor(struct cpufreq_governor *governor) 2116 { 2117 int err; 2118 2119 if (!governor) 2120 return -EINVAL; 2121 2122 if (cpufreq_disabled()) 2123 return -ENODEV; 2124 2125 mutex_lock(&cpufreq_governor_mutex); 2126 2127 err = -EBUSY; 2128 if (!find_governor(governor->name)) { 2129 err = 0; 2130 list_add(&governor->governor_list, &cpufreq_governor_list); 2131 } 2132 2133 mutex_unlock(&cpufreq_governor_mutex); 2134 return err; 2135 } 2136 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 2137 2138 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 2139 { 2140 struct cpufreq_policy *policy; 2141 unsigned long flags; 2142 2143 if (!governor) 2144 return; 2145 2146 if (cpufreq_disabled()) 2147 return; 2148 2149 /* clear last_governor for all inactive policies */ 2150 read_lock_irqsave(&cpufreq_driver_lock, flags); 2151 for_each_inactive_policy(policy) { 2152 if (!strcmp(policy->last_governor, governor->name)) { 2153 policy->governor = NULL; 2154 strcpy(policy->last_governor, "\0"); 2155 } 2156 } 2157 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 2158 2159 mutex_lock(&cpufreq_governor_mutex); 2160 list_del(&governor->governor_list); 2161 mutex_unlock(&cpufreq_governor_mutex); 2162 } 2163 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 2164 2165 2166 /********************************************************************* 2167 * POLICY INTERFACE * 2168 *********************************************************************/ 2169 2170 /** 2171 * cpufreq_get_policy - get the current cpufreq_policy 2172 * @policy: struct cpufreq_policy into which the current cpufreq_policy 2173 * is written 2174 * 2175 * Reads the current cpufreq policy. 2176 */ 2177 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 2178 { 2179 struct cpufreq_policy *cpu_policy; 2180 if (!policy) 2181 return -EINVAL; 2182 2183 cpu_policy = cpufreq_cpu_get(cpu); 2184 if (!cpu_policy) 2185 return -EINVAL; 2186 2187 memcpy(policy, cpu_policy, sizeof(*policy)); 2188 2189 cpufreq_cpu_put(cpu_policy); 2190 return 0; 2191 } 2192 EXPORT_SYMBOL(cpufreq_get_policy); 2193 2194 /* 2195 * policy : current policy. 2196 * new_policy: policy to be set. 2197 */ 2198 static int cpufreq_set_policy(struct cpufreq_policy *policy, 2199 struct cpufreq_policy *new_policy) 2200 { 2201 struct cpufreq_governor *old_gov; 2202 int ret; 2203 2204 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", 2205 new_policy->cpu, new_policy->min, new_policy->max); 2206 2207 memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo)); 2208 2209 /* 2210 * This check works well when we store new min/max freq attributes, 2211 * because new_policy is a copy of policy with one field updated. 2212 */ 2213 if (new_policy->min > new_policy->max) 2214 return -EINVAL; 2215 2216 /* verify the cpu speed can be set within this limit */ 2217 ret = cpufreq_driver->verify(new_policy); 2218 if (ret) 2219 return ret; 2220 2221 /* adjust if necessary - all reasons */ 2222 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 2223 CPUFREQ_ADJUST, new_policy); 2224 2225 /* 2226 * verify the cpu speed can be set within this limit, which might be 2227 * different to the first one 2228 */ 2229 ret = cpufreq_driver->verify(new_policy); 2230 if (ret) 2231 return ret; 2232 2233 /* notification of the new policy */ 2234 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 2235 CPUFREQ_NOTIFY, new_policy); 2236 2237 policy->min = new_policy->min; 2238 policy->max = new_policy->max; 2239 2240 policy->cached_target_freq = UINT_MAX; 2241 2242 pr_debug("new min and max freqs are %u - %u kHz\n", 2243 policy->min, policy->max); 2244 2245 if (cpufreq_driver->setpolicy) { 2246 policy->policy = new_policy->policy; 2247 pr_debug("setting range\n"); 2248 return cpufreq_driver->setpolicy(new_policy); 2249 } 2250 2251 if (new_policy->governor == policy->governor) { 2252 pr_debug("cpufreq: governor limits update\n"); 2253 cpufreq_governor_limits(policy); 2254 return 0; 2255 } 2256 2257 pr_debug("governor switch\n"); 2258 2259 /* save old, working values */ 2260 old_gov = policy->governor; 2261 /* end old governor */ 2262 if (old_gov) { 2263 cpufreq_stop_governor(policy); 2264 cpufreq_exit_governor(policy); 2265 } 2266 2267 /* start new governor */ 2268 policy->governor = new_policy->governor; 2269 ret = cpufreq_init_governor(policy); 2270 if (!ret) { 2271 ret = cpufreq_start_governor(policy); 2272 if (!ret) { 2273 pr_debug("cpufreq: governor change\n"); 2274 return 0; 2275 } 2276 cpufreq_exit_governor(policy); 2277 } 2278 2279 /* new governor failed, so re-start old one */ 2280 pr_debug("starting governor %s failed\n", policy->governor->name); 2281 if (old_gov) { 2282 policy->governor = old_gov; 2283 if (cpufreq_init_governor(policy)) 2284 policy->governor = NULL; 2285 else 2286 cpufreq_start_governor(policy); 2287 } 2288 2289 return ret; 2290 } 2291 2292 /** 2293 * cpufreq_update_policy - re-evaluate an existing cpufreq policy 2294 * @cpu: CPU which shall be re-evaluated 2295 * 2296 * Useful for policy notifiers which have different necessities 2297 * at different times. 2298 */ 2299 void cpufreq_update_policy(unsigned int cpu) 2300 { 2301 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 2302 struct cpufreq_policy new_policy; 2303 2304 if (!policy) 2305 return; 2306 2307 down_write(&policy->rwsem); 2308 2309 if (policy_is_inactive(policy)) 2310 goto unlock; 2311 2312 pr_debug("updating policy for CPU %u\n", cpu); 2313 memcpy(&new_policy, policy, sizeof(*policy)); 2314 new_policy.min = policy->user_policy.min; 2315 new_policy.max = policy->user_policy.max; 2316 2317 /* 2318 * BIOS might change freq behind our back 2319 * -> ask driver for current freq and notify governors about a change 2320 */ 2321 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) { 2322 if (cpufreq_suspended) 2323 goto unlock; 2324 2325 new_policy.cur = cpufreq_update_current_freq(policy); 2326 if (WARN_ON(!new_policy.cur)) 2327 goto unlock; 2328 } 2329 2330 cpufreq_set_policy(policy, &new_policy); 2331 2332 unlock: 2333 up_write(&policy->rwsem); 2334 2335 cpufreq_cpu_put(policy); 2336 } 2337 EXPORT_SYMBOL(cpufreq_update_policy); 2338 2339 /********************************************************************* 2340 * BOOST * 2341 *********************************************************************/ 2342 static int cpufreq_boost_set_sw(int state) 2343 { 2344 struct cpufreq_policy *policy; 2345 int ret = -EINVAL; 2346 2347 for_each_active_policy(policy) { 2348 if (!policy->freq_table) 2349 continue; 2350 2351 ret = cpufreq_frequency_table_cpuinfo(policy, 2352 policy->freq_table); 2353 if (ret) { 2354 pr_err("%s: Policy frequency update failed\n", 2355 __func__); 2356 break; 2357 } 2358 2359 down_write(&policy->rwsem); 2360 policy->user_policy.max = policy->max; 2361 cpufreq_governor_limits(policy); 2362 up_write(&policy->rwsem); 2363 } 2364 2365 return ret; 2366 } 2367 2368 int cpufreq_boost_trigger_state(int state) 2369 { 2370 unsigned long flags; 2371 int ret = 0; 2372 2373 if (cpufreq_driver->boost_enabled == state) 2374 return 0; 2375 2376 write_lock_irqsave(&cpufreq_driver_lock, flags); 2377 cpufreq_driver->boost_enabled = state; 2378 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2379 2380 ret = cpufreq_driver->set_boost(state); 2381 if (ret) { 2382 write_lock_irqsave(&cpufreq_driver_lock, flags); 2383 cpufreq_driver->boost_enabled = !state; 2384 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2385 2386 pr_err("%s: Cannot %s BOOST\n", 2387 __func__, state ? "enable" : "disable"); 2388 } 2389 2390 return ret; 2391 } 2392 2393 static bool cpufreq_boost_supported(void) 2394 { 2395 return likely(cpufreq_driver) && cpufreq_driver->set_boost; 2396 } 2397 2398 static int create_boost_sysfs_file(void) 2399 { 2400 int ret; 2401 2402 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr); 2403 if (ret) 2404 pr_err("%s: cannot register global BOOST sysfs file\n", 2405 __func__); 2406 2407 return ret; 2408 } 2409 2410 static void remove_boost_sysfs_file(void) 2411 { 2412 if (cpufreq_boost_supported()) 2413 sysfs_remove_file(cpufreq_global_kobject, &boost.attr); 2414 } 2415 2416 int cpufreq_enable_boost_support(void) 2417 { 2418 if (!cpufreq_driver) 2419 return -EINVAL; 2420 2421 if (cpufreq_boost_supported()) 2422 return 0; 2423 2424 cpufreq_driver->set_boost = cpufreq_boost_set_sw; 2425 2426 /* This will get removed on driver unregister */ 2427 return create_boost_sysfs_file(); 2428 } 2429 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support); 2430 2431 int cpufreq_boost_enabled(void) 2432 { 2433 return cpufreq_driver->boost_enabled; 2434 } 2435 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled); 2436 2437 /********************************************************************* 2438 * REGISTER / UNREGISTER CPUFREQ DRIVER * 2439 *********************************************************************/ 2440 static enum cpuhp_state hp_online; 2441 2442 static int cpuhp_cpufreq_online(unsigned int cpu) 2443 { 2444 cpufreq_online(cpu); 2445 2446 return 0; 2447 } 2448 2449 static int cpuhp_cpufreq_offline(unsigned int cpu) 2450 { 2451 cpufreq_offline(cpu); 2452 2453 return 0; 2454 } 2455 2456 /** 2457 * cpufreq_register_driver - register a CPU Frequency driver 2458 * @driver_data: A struct cpufreq_driver containing the values# 2459 * submitted by the CPU Frequency driver. 2460 * 2461 * Registers a CPU Frequency driver to this core code. This code 2462 * returns zero on success, -EEXIST when another driver got here first 2463 * (and isn't unregistered in the meantime). 2464 * 2465 */ 2466 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 2467 { 2468 unsigned long flags; 2469 int ret; 2470 2471 if (cpufreq_disabled()) 2472 return -ENODEV; 2473 2474 if (!driver_data || !driver_data->verify || !driver_data->init || 2475 !(driver_data->setpolicy || driver_data->target_index || 2476 driver_data->target) || 2477 (driver_data->setpolicy && (driver_data->target_index || 2478 driver_data->target)) || 2479 (!!driver_data->get_intermediate != !!driver_data->target_intermediate)) 2480 return -EINVAL; 2481 2482 pr_debug("trying to register driver %s\n", driver_data->name); 2483 2484 /* Protect against concurrent CPU online/offline. */ 2485 cpus_read_lock(); 2486 2487 write_lock_irqsave(&cpufreq_driver_lock, flags); 2488 if (cpufreq_driver) { 2489 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2490 ret = -EEXIST; 2491 goto out; 2492 } 2493 cpufreq_driver = driver_data; 2494 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2495 2496 if (driver_data->setpolicy) 2497 driver_data->flags |= CPUFREQ_CONST_LOOPS; 2498 2499 if (cpufreq_boost_supported()) { 2500 ret = create_boost_sysfs_file(); 2501 if (ret) 2502 goto err_null_driver; 2503 } 2504 2505 ret = subsys_interface_register(&cpufreq_interface); 2506 if (ret) 2507 goto err_boost_unreg; 2508 2509 if (!(cpufreq_driver->flags & CPUFREQ_STICKY) && 2510 list_empty(&cpufreq_policy_list)) { 2511 /* if all ->init() calls failed, unregister */ 2512 ret = -ENODEV; 2513 pr_debug("%s: No CPU initialized for driver %s\n", __func__, 2514 driver_data->name); 2515 goto err_if_unreg; 2516 } 2517 2518 ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN, 2519 "cpufreq:online", 2520 cpuhp_cpufreq_online, 2521 cpuhp_cpufreq_offline); 2522 if (ret < 0) 2523 goto err_if_unreg; 2524 hp_online = ret; 2525 ret = 0; 2526 2527 pr_debug("driver %s up and running\n", driver_data->name); 2528 goto out; 2529 2530 err_if_unreg: 2531 subsys_interface_unregister(&cpufreq_interface); 2532 err_boost_unreg: 2533 remove_boost_sysfs_file(); 2534 err_null_driver: 2535 write_lock_irqsave(&cpufreq_driver_lock, flags); 2536 cpufreq_driver = NULL; 2537 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2538 out: 2539 cpus_read_unlock(); 2540 return ret; 2541 } 2542 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 2543 2544 /** 2545 * cpufreq_unregister_driver - unregister the current CPUFreq driver 2546 * 2547 * Unregister the current CPUFreq driver. Only call this if you have 2548 * the right to do so, i.e. if you have succeeded in initialising before! 2549 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 2550 * currently not initialised. 2551 */ 2552 int cpufreq_unregister_driver(struct cpufreq_driver *driver) 2553 { 2554 unsigned long flags; 2555 2556 if (!cpufreq_driver || (driver != cpufreq_driver)) 2557 return -EINVAL; 2558 2559 pr_debug("unregistering driver %s\n", driver->name); 2560 2561 /* Protect against concurrent cpu hotplug */ 2562 cpus_read_lock(); 2563 subsys_interface_unregister(&cpufreq_interface); 2564 remove_boost_sysfs_file(); 2565 cpuhp_remove_state_nocalls_cpuslocked(hp_online); 2566 2567 write_lock_irqsave(&cpufreq_driver_lock, flags); 2568 2569 cpufreq_driver = NULL; 2570 2571 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2572 cpus_read_unlock(); 2573 2574 return 0; 2575 } 2576 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 2577 2578 /* 2579 * Stop cpufreq at shutdown to make sure it isn't holding any locks 2580 * or mutexes when secondary CPUs are halted. 2581 */ 2582 static struct syscore_ops cpufreq_syscore_ops = { 2583 .shutdown = cpufreq_suspend, 2584 }; 2585 2586 struct kobject *cpufreq_global_kobject; 2587 EXPORT_SYMBOL(cpufreq_global_kobject); 2588 2589 static int __init cpufreq_core_init(void) 2590 { 2591 if (cpufreq_disabled()) 2592 return -ENODEV; 2593 2594 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj); 2595 BUG_ON(!cpufreq_global_kobject); 2596 2597 register_syscore_ops(&cpufreq_syscore_ops); 2598 2599 return 0; 2600 } 2601 module_param(off, int, 0444); 2602 core_initcall(cpufreq_core_init); 2603