1 /* 2 * linux/drivers/cpufreq/cpufreq.c 3 * 4 * Copyright (C) 2001 Russell King 5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 6 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org> 7 * 8 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 9 * Added handling for CPU hotplug 10 * Feb 2006 - Jacob Shin <jacob.shin@amd.com> 11 * Fix handling for CPU hotplug -- affected CPUs 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License version 2 as 15 * published by the Free Software Foundation. 16 */ 17 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/cpu.h> 21 #include <linux/cpufreq.h> 22 #include <linux/delay.h> 23 #include <linux/device.h> 24 #include <linux/init.h> 25 #include <linux/kernel_stat.h> 26 #include <linux/module.h> 27 #include <linux/mutex.h> 28 #include <linux/slab.h> 29 #include <linux/suspend.h> 30 #include <linux/syscore_ops.h> 31 #include <linux/tick.h> 32 #include <trace/events/power.h> 33 34 /* Macros to iterate over lists */ 35 /* Iterate over online CPUs policies */ 36 static LIST_HEAD(cpufreq_policy_list); 37 #define for_each_policy(__policy) \ 38 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) 39 40 /* Iterate over governors */ 41 static LIST_HEAD(cpufreq_governor_list); 42 #define for_each_governor(__governor) \ 43 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list) 44 45 /** 46 * The "cpufreq driver" - the arch- or hardware-dependent low 47 * level driver of CPUFreq support, and its spinlock. This lock 48 * also protects the cpufreq_cpu_data array. 49 */ 50 static struct cpufreq_driver *cpufreq_driver; 51 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data); 52 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data_fallback); 53 static DEFINE_RWLOCK(cpufreq_driver_lock); 54 DEFINE_MUTEX(cpufreq_governor_lock); 55 56 /* This one keeps track of the previously set governor of a removed CPU */ 57 static DEFINE_PER_CPU(char[CPUFREQ_NAME_LEN], cpufreq_cpu_governor); 58 59 /* Flag to suspend/resume CPUFreq governors */ 60 static bool cpufreq_suspended; 61 62 static inline bool has_target(void) 63 { 64 return cpufreq_driver->target_index || cpufreq_driver->target; 65 } 66 67 /* 68 * rwsem to guarantee that cpufreq driver module doesn't unload during critical 69 * sections 70 */ 71 static DECLARE_RWSEM(cpufreq_rwsem); 72 73 /* internal prototypes */ 74 static int __cpufreq_governor(struct cpufreq_policy *policy, 75 unsigned int event); 76 static unsigned int __cpufreq_get(struct cpufreq_policy *policy); 77 static void handle_update(struct work_struct *work); 78 79 /** 80 * Two notifier lists: the "policy" list is involved in the 81 * validation process for a new CPU frequency policy; the 82 * "transition" list for kernel code that needs to handle 83 * changes to devices when the CPU clock speed changes. 84 * The mutex locks both lists. 85 */ 86 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list); 87 static struct srcu_notifier_head cpufreq_transition_notifier_list; 88 89 static bool init_cpufreq_transition_notifier_list_called; 90 static int __init init_cpufreq_transition_notifier_list(void) 91 { 92 srcu_init_notifier_head(&cpufreq_transition_notifier_list); 93 init_cpufreq_transition_notifier_list_called = true; 94 return 0; 95 } 96 pure_initcall(init_cpufreq_transition_notifier_list); 97 98 static int off __read_mostly; 99 static int cpufreq_disabled(void) 100 { 101 return off; 102 } 103 void disable_cpufreq(void) 104 { 105 off = 1; 106 } 107 static DEFINE_MUTEX(cpufreq_governor_mutex); 108 109 bool have_governor_per_policy(void) 110 { 111 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY); 112 } 113 EXPORT_SYMBOL_GPL(have_governor_per_policy); 114 115 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy) 116 { 117 if (have_governor_per_policy()) 118 return &policy->kobj; 119 else 120 return cpufreq_global_kobject; 121 } 122 EXPORT_SYMBOL_GPL(get_governor_parent_kobj); 123 124 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) 125 { 126 u64 idle_time; 127 u64 cur_wall_time; 128 u64 busy_time; 129 130 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64()); 131 132 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER]; 133 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM]; 134 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ]; 135 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ]; 136 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL]; 137 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE]; 138 139 idle_time = cur_wall_time - busy_time; 140 if (wall) 141 *wall = cputime_to_usecs(cur_wall_time); 142 143 return cputime_to_usecs(idle_time); 144 } 145 146 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy) 147 { 148 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL); 149 150 if (idle_time == -1ULL) 151 return get_cpu_idle_time_jiffy(cpu, wall); 152 else if (!io_busy) 153 idle_time += get_cpu_iowait_time_us(cpu, wall); 154 155 return idle_time; 156 } 157 EXPORT_SYMBOL_GPL(get_cpu_idle_time); 158 159 /* 160 * This is a generic cpufreq init() routine which can be used by cpufreq 161 * drivers of SMP systems. It will do following: 162 * - validate & show freq table passed 163 * - set policies transition latency 164 * - policy->cpus with all possible CPUs 165 */ 166 int cpufreq_generic_init(struct cpufreq_policy *policy, 167 struct cpufreq_frequency_table *table, 168 unsigned int transition_latency) 169 { 170 int ret; 171 172 ret = cpufreq_table_validate_and_show(policy, table); 173 if (ret) { 174 pr_err("%s: invalid frequency table: %d\n", __func__, ret); 175 return ret; 176 } 177 178 policy->cpuinfo.transition_latency = transition_latency; 179 180 /* 181 * The driver only supports the SMP configuartion where all processors 182 * share the clock and voltage and clock. 183 */ 184 cpumask_setall(policy->cpus); 185 186 return 0; 187 } 188 EXPORT_SYMBOL_GPL(cpufreq_generic_init); 189 190 unsigned int cpufreq_generic_get(unsigned int cpu) 191 { 192 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 193 194 if (!policy || IS_ERR(policy->clk)) { 195 pr_err("%s: No %s associated to cpu: %d\n", 196 __func__, policy ? "clk" : "policy", cpu); 197 return 0; 198 } 199 200 return clk_get_rate(policy->clk) / 1000; 201 } 202 EXPORT_SYMBOL_GPL(cpufreq_generic_get); 203 204 /* Only for cpufreq core internal use */ 205 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu) 206 { 207 return per_cpu(cpufreq_cpu_data, cpu); 208 } 209 210 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) 211 { 212 struct cpufreq_policy *policy = NULL; 213 unsigned long flags; 214 215 if (cpu >= nr_cpu_ids) 216 return NULL; 217 218 if (!down_read_trylock(&cpufreq_rwsem)) 219 return NULL; 220 221 /* get the cpufreq driver */ 222 read_lock_irqsave(&cpufreq_driver_lock, flags); 223 224 if (cpufreq_driver) { 225 /* get the CPU */ 226 policy = per_cpu(cpufreq_cpu_data, cpu); 227 if (policy) 228 kobject_get(&policy->kobj); 229 } 230 231 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 232 233 if (!policy) 234 up_read(&cpufreq_rwsem); 235 236 return policy; 237 } 238 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 239 240 void cpufreq_cpu_put(struct cpufreq_policy *policy) 241 { 242 kobject_put(&policy->kobj); 243 up_read(&cpufreq_rwsem); 244 } 245 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 246 247 /********************************************************************* 248 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 249 *********************************************************************/ 250 251 /** 252 * adjust_jiffies - adjust the system "loops_per_jiffy" 253 * 254 * This function alters the system "loops_per_jiffy" for the clock 255 * speed change. Note that loops_per_jiffy cannot be updated on SMP 256 * systems as each CPU might be scaled differently. So, use the arch 257 * per-CPU loops_per_jiffy value wherever possible. 258 */ 259 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 260 { 261 #ifndef CONFIG_SMP 262 static unsigned long l_p_j_ref; 263 static unsigned int l_p_j_ref_freq; 264 265 if (ci->flags & CPUFREQ_CONST_LOOPS) 266 return; 267 268 if (!l_p_j_ref_freq) { 269 l_p_j_ref = loops_per_jiffy; 270 l_p_j_ref_freq = ci->old; 271 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n", 272 l_p_j_ref, l_p_j_ref_freq); 273 } 274 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) { 275 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, 276 ci->new); 277 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n", 278 loops_per_jiffy, ci->new); 279 } 280 #endif 281 } 282 283 static void __cpufreq_notify_transition(struct cpufreq_policy *policy, 284 struct cpufreq_freqs *freqs, unsigned int state) 285 { 286 BUG_ON(irqs_disabled()); 287 288 if (cpufreq_disabled()) 289 return; 290 291 freqs->flags = cpufreq_driver->flags; 292 pr_debug("notification %u of frequency transition to %u kHz\n", 293 state, freqs->new); 294 295 switch (state) { 296 297 case CPUFREQ_PRECHANGE: 298 /* detect if the driver reported a value as "old frequency" 299 * which is not equal to what the cpufreq core thinks is 300 * "old frequency". 301 */ 302 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 303 if ((policy) && (policy->cpu == freqs->cpu) && 304 (policy->cur) && (policy->cur != freqs->old)) { 305 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n", 306 freqs->old, policy->cur); 307 freqs->old = policy->cur; 308 } 309 } 310 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 311 CPUFREQ_PRECHANGE, freqs); 312 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 313 break; 314 315 case CPUFREQ_POSTCHANGE: 316 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 317 pr_debug("FREQ: %lu - CPU: %lu\n", 318 (unsigned long)freqs->new, (unsigned long)freqs->cpu); 319 trace_cpu_frequency(freqs->new, freqs->cpu); 320 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 321 CPUFREQ_POSTCHANGE, freqs); 322 if (likely(policy) && likely(policy->cpu == freqs->cpu)) 323 policy->cur = freqs->new; 324 break; 325 } 326 } 327 328 /** 329 * cpufreq_notify_transition - call notifier chain and adjust_jiffies 330 * on frequency transition. 331 * 332 * This function calls the transition notifiers and the "adjust_jiffies" 333 * function. It is called twice on all CPU frequency changes that have 334 * external effects. 335 */ 336 static void cpufreq_notify_transition(struct cpufreq_policy *policy, 337 struct cpufreq_freqs *freqs, unsigned int state) 338 { 339 for_each_cpu(freqs->cpu, policy->cpus) 340 __cpufreq_notify_transition(policy, freqs, state); 341 } 342 343 /* Do post notifications when there are chances that transition has failed */ 344 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy, 345 struct cpufreq_freqs *freqs, int transition_failed) 346 { 347 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 348 if (!transition_failed) 349 return; 350 351 swap(freqs->old, freqs->new); 352 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 353 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 354 } 355 356 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy, 357 struct cpufreq_freqs *freqs) 358 { 359 360 /* 361 * Catch double invocations of _begin() which lead to self-deadlock. 362 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core 363 * doesn't invoke _begin() on their behalf, and hence the chances of 364 * double invocations are very low. Moreover, there are scenarios 365 * where these checks can emit false-positive warnings in these 366 * drivers; so we avoid that by skipping them altogether. 367 */ 368 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION) 369 && current == policy->transition_task); 370 371 wait: 372 wait_event(policy->transition_wait, !policy->transition_ongoing); 373 374 spin_lock(&policy->transition_lock); 375 376 if (unlikely(policy->transition_ongoing)) { 377 spin_unlock(&policy->transition_lock); 378 goto wait; 379 } 380 381 policy->transition_ongoing = true; 382 policy->transition_task = current; 383 384 spin_unlock(&policy->transition_lock); 385 386 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 387 } 388 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin); 389 390 void cpufreq_freq_transition_end(struct cpufreq_policy *policy, 391 struct cpufreq_freqs *freqs, int transition_failed) 392 { 393 if (unlikely(WARN_ON(!policy->transition_ongoing))) 394 return; 395 396 cpufreq_notify_post_transition(policy, freqs, transition_failed); 397 398 policy->transition_ongoing = false; 399 policy->transition_task = NULL; 400 401 wake_up(&policy->transition_wait); 402 } 403 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end); 404 405 406 /********************************************************************* 407 * SYSFS INTERFACE * 408 *********************************************************************/ 409 static ssize_t show_boost(struct kobject *kobj, 410 struct attribute *attr, char *buf) 411 { 412 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled); 413 } 414 415 static ssize_t store_boost(struct kobject *kobj, struct attribute *attr, 416 const char *buf, size_t count) 417 { 418 int ret, enable; 419 420 ret = sscanf(buf, "%d", &enable); 421 if (ret != 1 || enable < 0 || enable > 1) 422 return -EINVAL; 423 424 if (cpufreq_boost_trigger_state(enable)) { 425 pr_err("%s: Cannot %s BOOST!\n", 426 __func__, enable ? "enable" : "disable"); 427 return -EINVAL; 428 } 429 430 pr_debug("%s: cpufreq BOOST %s\n", 431 __func__, enable ? "enabled" : "disabled"); 432 433 return count; 434 } 435 define_one_global_rw(boost); 436 437 static struct cpufreq_governor *find_governor(const char *str_governor) 438 { 439 struct cpufreq_governor *t; 440 441 for_each_governor(t) 442 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN)) 443 return t; 444 445 return NULL; 446 } 447 448 /** 449 * cpufreq_parse_governor - parse a governor string 450 */ 451 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy, 452 struct cpufreq_governor **governor) 453 { 454 int err = -EINVAL; 455 456 if (!cpufreq_driver) 457 goto out; 458 459 if (cpufreq_driver->setpolicy) { 460 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) { 461 *policy = CPUFREQ_POLICY_PERFORMANCE; 462 err = 0; 463 } else if (!strncasecmp(str_governor, "powersave", 464 CPUFREQ_NAME_LEN)) { 465 *policy = CPUFREQ_POLICY_POWERSAVE; 466 err = 0; 467 } 468 } else { 469 struct cpufreq_governor *t; 470 471 mutex_lock(&cpufreq_governor_mutex); 472 473 t = find_governor(str_governor); 474 475 if (t == NULL) { 476 int ret; 477 478 mutex_unlock(&cpufreq_governor_mutex); 479 ret = request_module("cpufreq_%s", str_governor); 480 mutex_lock(&cpufreq_governor_mutex); 481 482 if (ret == 0) 483 t = find_governor(str_governor); 484 } 485 486 if (t != NULL) { 487 *governor = t; 488 err = 0; 489 } 490 491 mutex_unlock(&cpufreq_governor_mutex); 492 } 493 out: 494 return err; 495 } 496 497 /** 498 * cpufreq_per_cpu_attr_read() / show_##file_name() - 499 * print out cpufreq information 500 * 501 * Write out information from cpufreq_driver->policy[cpu]; object must be 502 * "unsigned int". 503 */ 504 505 #define show_one(file_name, object) \ 506 static ssize_t show_##file_name \ 507 (struct cpufreq_policy *policy, char *buf) \ 508 { \ 509 return sprintf(buf, "%u\n", policy->object); \ 510 } 511 512 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 513 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 514 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency); 515 show_one(scaling_min_freq, min); 516 show_one(scaling_max_freq, max); 517 518 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf) 519 { 520 ssize_t ret; 521 522 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) 523 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu)); 524 else 525 ret = sprintf(buf, "%u\n", policy->cur); 526 return ret; 527 } 528 529 static int cpufreq_set_policy(struct cpufreq_policy *policy, 530 struct cpufreq_policy *new_policy); 531 532 /** 533 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 534 */ 535 #define store_one(file_name, object) \ 536 static ssize_t store_##file_name \ 537 (struct cpufreq_policy *policy, const char *buf, size_t count) \ 538 { \ 539 int ret, temp; \ 540 struct cpufreq_policy new_policy; \ 541 \ 542 ret = cpufreq_get_policy(&new_policy, policy->cpu); \ 543 if (ret) \ 544 return -EINVAL; \ 545 \ 546 ret = sscanf(buf, "%u", &new_policy.object); \ 547 if (ret != 1) \ 548 return -EINVAL; \ 549 \ 550 temp = new_policy.object; \ 551 ret = cpufreq_set_policy(policy, &new_policy); \ 552 if (!ret) \ 553 policy->user_policy.object = temp; \ 554 \ 555 return ret ? ret : count; \ 556 } 557 558 store_one(scaling_min_freq, min); 559 store_one(scaling_max_freq, max); 560 561 /** 562 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 563 */ 564 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy, 565 char *buf) 566 { 567 unsigned int cur_freq = __cpufreq_get(policy); 568 if (!cur_freq) 569 return sprintf(buf, "<unknown>"); 570 return sprintf(buf, "%u\n", cur_freq); 571 } 572 573 /** 574 * show_scaling_governor - show the current policy for the specified CPU 575 */ 576 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf) 577 { 578 if (policy->policy == CPUFREQ_POLICY_POWERSAVE) 579 return sprintf(buf, "powersave\n"); 580 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 581 return sprintf(buf, "performance\n"); 582 else if (policy->governor) 583 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", 584 policy->governor->name); 585 return -EINVAL; 586 } 587 588 /** 589 * store_scaling_governor - store policy for the specified CPU 590 */ 591 static ssize_t store_scaling_governor(struct cpufreq_policy *policy, 592 const char *buf, size_t count) 593 { 594 int ret; 595 char str_governor[16]; 596 struct cpufreq_policy new_policy; 597 598 ret = cpufreq_get_policy(&new_policy, policy->cpu); 599 if (ret) 600 return ret; 601 602 ret = sscanf(buf, "%15s", str_governor); 603 if (ret != 1) 604 return -EINVAL; 605 606 if (cpufreq_parse_governor(str_governor, &new_policy.policy, 607 &new_policy.governor)) 608 return -EINVAL; 609 610 ret = cpufreq_set_policy(policy, &new_policy); 611 612 policy->user_policy.policy = policy->policy; 613 policy->user_policy.governor = policy->governor; 614 615 if (ret) 616 return ret; 617 else 618 return count; 619 } 620 621 /** 622 * show_scaling_driver - show the cpufreq driver currently loaded 623 */ 624 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf) 625 { 626 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name); 627 } 628 629 /** 630 * show_scaling_available_governors - show the available CPUfreq governors 631 */ 632 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy, 633 char *buf) 634 { 635 ssize_t i = 0; 636 struct cpufreq_governor *t; 637 638 if (!has_target()) { 639 i += sprintf(buf, "performance powersave"); 640 goto out; 641 } 642 643 for_each_governor(t) { 644 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) 645 - (CPUFREQ_NAME_LEN + 2))) 646 goto out; 647 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name); 648 } 649 out: 650 i += sprintf(&buf[i], "\n"); 651 return i; 652 } 653 654 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf) 655 { 656 ssize_t i = 0; 657 unsigned int cpu; 658 659 for_each_cpu(cpu, mask) { 660 if (i) 661 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " "); 662 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu); 663 if (i >= (PAGE_SIZE - 5)) 664 break; 665 } 666 i += sprintf(&buf[i], "\n"); 667 return i; 668 } 669 EXPORT_SYMBOL_GPL(cpufreq_show_cpus); 670 671 /** 672 * show_related_cpus - show the CPUs affected by each transition even if 673 * hw coordination is in use 674 */ 675 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf) 676 { 677 return cpufreq_show_cpus(policy->related_cpus, buf); 678 } 679 680 /** 681 * show_affected_cpus - show the CPUs affected by each transition 682 */ 683 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf) 684 { 685 return cpufreq_show_cpus(policy->cpus, buf); 686 } 687 688 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy, 689 const char *buf, size_t count) 690 { 691 unsigned int freq = 0; 692 unsigned int ret; 693 694 if (!policy->governor || !policy->governor->store_setspeed) 695 return -EINVAL; 696 697 ret = sscanf(buf, "%u", &freq); 698 if (ret != 1) 699 return -EINVAL; 700 701 policy->governor->store_setspeed(policy, freq); 702 703 return count; 704 } 705 706 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf) 707 { 708 if (!policy->governor || !policy->governor->show_setspeed) 709 return sprintf(buf, "<unsupported>\n"); 710 711 return policy->governor->show_setspeed(policy, buf); 712 } 713 714 /** 715 * show_bios_limit - show the current cpufreq HW/BIOS limitation 716 */ 717 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf) 718 { 719 unsigned int limit; 720 int ret; 721 if (cpufreq_driver->bios_limit) { 722 ret = cpufreq_driver->bios_limit(policy->cpu, &limit); 723 if (!ret) 724 return sprintf(buf, "%u\n", limit); 725 } 726 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq); 727 } 728 729 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400); 730 cpufreq_freq_attr_ro(cpuinfo_min_freq); 731 cpufreq_freq_attr_ro(cpuinfo_max_freq); 732 cpufreq_freq_attr_ro(cpuinfo_transition_latency); 733 cpufreq_freq_attr_ro(scaling_available_governors); 734 cpufreq_freq_attr_ro(scaling_driver); 735 cpufreq_freq_attr_ro(scaling_cur_freq); 736 cpufreq_freq_attr_ro(bios_limit); 737 cpufreq_freq_attr_ro(related_cpus); 738 cpufreq_freq_attr_ro(affected_cpus); 739 cpufreq_freq_attr_rw(scaling_min_freq); 740 cpufreq_freq_attr_rw(scaling_max_freq); 741 cpufreq_freq_attr_rw(scaling_governor); 742 cpufreq_freq_attr_rw(scaling_setspeed); 743 744 static struct attribute *default_attrs[] = { 745 &cpuinfo_min_freq.attr, 746 &cpuinfo_max_freq.attr, 747 &cpuinfo_transition_latency.attr, 748 &scaling_min_freq.attr, 749 &scaling_max_freq.attr, 750 &affected_cpus.attr, 751 &related_cpus.attr, 752 &scaling_governor.attr, 753 &scaling_driver.attr, 754 &scaling_available_governors.attr, 755 &scaling_setspeed.attr, 756 NULL 757 }; 758 759 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj) 760 #define to_attr(a) container_of(a, struct freq_attr, attr) 761 762 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) 763 { 764 struct cpufreq_policy *policy = to_policy(kobj); 765 struct freq_attr *fattr = to_attr(attr); 766 ssize_t ret; 767 768 if (!down_read_trylock(&cpufreq_rwsem)) 769 return -EINVAL; 770 771 down_read(&policy->rwsem); 772 773 if (fattr->show) 774 ret = fattr->show(policy, buf); 775 else 776 ret = -EIO; 777 778 up_read(&policy->rwsem); 779 up_read(&cpufreq_rwsem); 780 781 return ret; 782 } 783 784 static ssize_t store(struct kobject *kobj, struct attribute *attr, 785 const char *buf, size_t count) 786 { 787 struct cpufreq_policy *policy = to_policy(kobj); 788 struct freq_attr *fattr = to_attr(attr); 789 ssize_t ret = -EINVAL; 790 791 get_online_cpus(); 792 793 if (!cpu_online(policy->cpu)) 794 goto unlock; 795 796 if (!down_read_trylock(&cpufreq_rwsem)) 797 goto unlock; 798 799 down_write(&policy->rwsem); 800 801 if (fattr->store) 802 ret = fattr->store(policy, buf, count); 803 else 804 ret = -EIO; 805 806 up_write(&policy->rwsem); 807 808 up_read(&cpufreq_rwsem); 809 unlock: 810 put_online_cpus(); 811 812 return ret; 813 } 814 815 static void cpufreq_sysfs_release(struct kobject *kobj) 816 { 817 struct cpufreq_policy *policy = to_policy(kobj); 818 pr_debug("last reference is dropped\n"); 819 complete(&policy->kobj_unregister); 820 } 821 822 static const struct sysfs_ops sysfs_ops = { 823 .show = show, 824 .store = store, 825 }; 826 827 static struct kobj_type ktype_cpufreq = { 828 .sysfs_ops = &sysfs_ops, 829 .default_attrs = default_attrs, 830 .release = cpufreq_sysfs_release, 831 }; 832 833 struct kobject *cpufreq_global_kobject; 834 EXPORT_SYMBOL(cpufreq_global_kobject); 835 836 static int cpufreq_global_kobject_usage; 837 838 int cpufreq_get_global_kobject(void) 839 { 840 if (!cpufreq_global_kobject_usage++) 841 return kobject_add(cpufreq_global_kobject, 842 &cpu_subsys.dev_root->kobj, "%s", "cpufreq"); 843 844 return 0; 845 } 846 EXPORT_SYMBOL(cpufreq_get_global_kobject); 847 848 void cpufreq_put_global_kobject(void) 849 { 850 if (!--cpufreq_global_kobject_usage) 851 kobject_del(cpufreq_global_kobject); 852 } 853 EXPORT_SYMBOL(cpufreq_put_global_kobject); 854 855 int cpufreq_sysfs_create_file(const struct attribute *attr) 856 { 857 int ret = cpufreq_get_global_kobject(); 858 859 if (!ret) { 860 ret = sysfs_create_file(cpufreq_global_kobject, attr); 861 if (ret) 862 cpufreq_put_global_kobject(); 863 } 864 865 return ret; 866 } 867 EXPORT_SYMBOL(cpufreq_sysfs_create_file); 868 869 void cpufreq_sysfs_remove_file(const struct attribute *attr) 870 { 871 sysfs_remove_file(cpufreq_global_kobject, attr); 872 cpufreq_put_global_kobject(); 873 } 874 EXPORT_SYMBOL(cpufreq_sysfs_remove_file); 875 876 /* symlink affected CPUs */ 877 static int cpufreq_add_dev_symlink(struct cpufreq_policy *policy) 878 { 879 unsigned int j; 880 int ret = 0; 881 882 for_each_cpu(j, policy->cpus) { 883 struct device *cpu_dev; 884 885 if (j == policy->cpu) 886 continue; 887 888 pr_debug("Adding link for CPU: %u\n", j); 889 cpu_dev = get_cpu_device(j); 890 ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj, 891 "cpufreq"); 892 if (ret) 893 break; 894 } 895 return ret; 896 } 897 898 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy, 899 struct device *dev) 900 { 901 struct freq_attr **drv_attr; 902 int ret = 0; 903 904 /* set up files for this cpu device */ 905 drv_attr = cpufreq_driver->attr; 906 while (drv_attr && *drv_attr) { 907 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 908 if (ret) 909 return ret; 910 drv_attr++; 911 } 912 if (cpufreq_driver->get) { 913 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 914 if (ret) 915 return ret; 916 } 917 918 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 919 if (ret) 920 return ret; 921 922 if (cpufreq_driver->bios_limit) { 923 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr); 924 if (ret) 925 return ret; 926 } 927 928 return cpufreq_add_dev_symlink(policy); 929 } 930 931 static void cpufreq_init_policy(struct cpufreq_policy *policy) 932 { 933 struct cpufreq_governor *gov = NULL; 934 struct cpufreq_policy new_policy; 935 int ret = 0; 936 937 memcpy(&new_policy, policy, sizeof(*policy)); 938 939 /* Update governor of new_policy to the governor used before hotplug */ 940 gov = find_governor(per_cpu(cpufreq_cpu_governor, policy->cpu)); 941 if (gov) 942 pr_debug("Restoring governor %s for cpu %d\n", 943 policy->governor->name, policy->cpu); 944 else 945 gov = CPUFREQ_DEFAULT_GOVERNOR; 946 947 new_policy.governor = gov; 948 949 /* Use the default policy if its valid. */ 950 if (cpufreq_driver->setpolicy) 951 cpufreq_parse_governor(gov->name, &new_policy.policy, NULL); 952 953 /* set default policy */ 954 ret = cpufreq_set_policy(policy, &new_policy); 955 if (ret) { 956 pr_debug("setting policy failed\n"); 957 if (cpufreq_driver->exit) 958 cpufreq_driver->exit(policy); 959 } 960 } 961 962 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, 963 unsigned int cpu, struct device *dev) 964 { 965 int ret = 0; 966 unsigned long flags; 967 968 if (has_target()) { 969 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP); 970 if (ret) { 971 pr_err("%s: Failed to stop governor\n", __func__); 972 return ret; 973 } 974 } 975 976 down_write(&policy->rwsem); 977 978 write_lock_irqsave(&cpufreq_driver_lock, flags); 979 980 cpumask_set_cpu(cpu, policy->cpus); 981 per_cpu(cpufreq_cpu_data, cpu) = policy; 982 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 983 984 up_write(&policy->rwsem); 985 986 if (has_target()) { 987 ret = __cpufreq_governor(policy, CPUFREQ_GOV_START); 988 if (!ret) 989 ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); 990 991 if (ret) { 992 pr_err("%s: Failed to start governor\n", __func__); 993 return ret; 994 } 995 } 996 997 return sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"); 998 } 999 1000 static struct cpufreq_policy *cpufreq_policy_restore(unsigned int cpu) 1001 { 1002 struct cpufreq_policy *policy; 1003 unsigned long flags; 1004 1005 read_lock_irqsave(&cpufreq_driver_lock, flags); 1006 1007 policy = per_cpu(cpufreq_cpu_data_fallback, cpu); 1008 1009 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1010 1011 if (policy) 1012 policy->governor = NULL; 1013 1014 return policy; 1015 } 1016 1017 static struct cpufreq_policy *cpufreq_policy_alloc(void) 1018 { 1019 struct cpufreq_policy *policy; 1020 1021 policy = kzalloc(sizeof(*policy), GFP_KERNEL); 1022 if (!policy) 1023 return NULL; 1024 1025 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) 1026 goto err_free_policy; 1027 1028 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) 1029 goto err_free_cpumask; 1030 1031 INIT_LIST_HEAD(&policy->policy_list); 1032 init_rwsem(&policy->rwsem); 1033 spin_lock_init(&policy->transition_lock); 1034 init_waitqueue_head(&policy->transition_wait); 1035 init_completion(&policy->kobj_unregister); 1036 INIT_WORK(&policy->update, handle_update); 1037 1038 return policy; 1039 1040 err_free_cpumask: 1041 free_cpumask_var(policy->cpus); 1042 err_free_policy: 1043 kfree(policy); 1044 1045 return NULL; 1046 } 1047 1048 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy) 1049 { 1050 struct kobject *kobj; 1051 struct completion *cmp; 1052 1053 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1054 CPUFREQ_REMOVE_POLICY, policy); 1055 1056 down_read(&policy->rwsem); 1057 kobj = &policy->kobj; 1058 cmp = &policy->kobj_unregister; 1059 up_read(&policy->rwsem); 1060 kobject_put(kobj); 1061 1062 /* 1063 * We need to make sure that the underlying kobj is 1064 * actually not referenced anymore by anybody before we 1065 * proceed with unloading. 1066 */ 1067 pr_debug("waiting for dropping of refcount\n"); 1068 wait_for_completion(cmp); 1069 pr_debug("wait complete\n"); 1070 } 1071 1072 static void cpufreq_policy_free(struct cpufreq_policy *policy) 1073 { 1074 free_cpumask_var(policy->related_cpus); 1075 free_cpumask_var(policy->cpus); 1076 kfree(policy); 1077 } 1078 1079 static int update_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu, 1080 struct device *cpu_dev) 1081 { 1082 int ret; 1083 1084 if (WARN_ON(cpu == policy->cpu)) 1085 return 0; 1086 1087 /* Move kobject to the new policy->cpu */ 1088 ret = kobject_move(&policy->kobj, &cpu_dev->kobj); 1089 if (ret) { 1090 pr_err("%s: Failed to move kobj: %d\n", __func__, ret); 1091 return ret; 1092 } 1093 1094 down_write(&policy->rwsem); 1095 policy->cpu = cpu; 1096 up_write(&policy->rwsem); 1097 1098 return 0; 1099 } 1100 1101 static int __cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 1102 { 1103 unsigned int j, cpu = dev->id; 1104 int ret = -ENOMEM; 1105 struct cpufreq_policy *policy; 1106 unsigned long flags; 1107 bool recover_policy = cpufreq_suspended; 1108 1109 if (cpu_is_offline(cpu)) 1110 return 0; 1111 1112 pr_debug("adding CPU %u\n", cpu); 1113 1114 /* check whether a different CPU already registered this 1115 * CPU because it is in the same boat. */ 1116 policy = cpufreq_cpu_get_raw(cpu); 1117 if (unlikely(policy)) 1118 return 0; 1119 1120 if (!down_read_trylock(&cpufreq_rwsem)) 1121 return 0; 1122 1123 /* Check if this cpu was hot-unplugged earlier and has siblings */ 1124 read_lock_irqsave(&cpufreq_driver_lock, flags); 1125 for_each_policy(policy) { 1126 if (cpumask_test_cpu(cpu, policy->related_cpus)) { 1127 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1128 ret = cpufreq_add_policy_cpu(policy, cpu, dev); 1129 up_read(&cpufreq_rwsem); 1130 return ret; 1131 } 1132 } 1133 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1134 1135 /* 1136 * Restore the saved policy when doing light-weight init and fall back 1137 * to the full init if that fails. 1138 */ 1139 policy = recover_policy ? cpufreq_policy_restore(cpu) : NULL; 1140 if (!policy) { 1141 recover_policy = false; 1142 policy = cpufreq_policy_alloc(); 1143 if (!policy) 1144 goto nomem_out; 1145 } 1146 1147 /* 1148 * In the resume path, since we restore a saved policy, the assignment 1149 * to policy->cpu is like an update of the existing policy, rather than 1150 * the creation of a brand new one. So we need to perform this update 1151 * by invoking update_policy_cpu(). 1152 */ 1153 if (recover_policy && cpu != policy->cpu) 1154 WARN_ON(update_policy_cpu(policy, cpu, dev)); 1155 else 1156 policy->cpu = cpu; 1157 1158 cpumask_copy(policy->cpus, cpumask_of(cpu)); 1159 1160 /* call driver. From then on the cpufreq must be able 1161 * to accept all calls to ->verify and ->setpolicy for this CPU 1162 */ 1163 ret = cpufreq_driver->init(policy); 1164 if (ret) { 1165 pr_debug("initialization failed\n"); 1166 goto err_set_policy_cpu; 1167 } 1168 1169 down_write(&policy->rwsem); 1170 1171 /* related cpus should atleast have policy->cpus */ 1172 cpumask_or(policy->related_cpus, policy->related_cpus, policy->cpus); 1173 1174 /* 1175 * affected cpus must always be the one, which are online. We aren't 1176 * managing offline cpus here. 1177 */ 1178 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask); 1179 1180 if (!recover_policy) { 1181 policy->user_policy.min = policy->min; 1182 policy->user_policy.max = policy->max; 1183 1184 /* prepare interface data */ 1185 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, 1186 &dev->kobj, "cpufreq"); 1187 if (ret) { 1188 pr_err("%s: failed to init policy->kobj: %d\n", 1189 __func__, ret); 1190 goto err_init_policy_kobj; 1191 } 1192 } 1193 1194 write_lock_irqsave(&cpufreq_driver_lock, flags); 1195 for_each_cpu(j, policy->cpus) 1196 per_cpu(cpufreq_cpu_data, j) = policy; 1197 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1198 1199 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) { 1200 policy->cur = cpufreq_driver->get(policy->cpu); 1201 if (!policy->cur) { 1202 pr_err("%s: ->get() failed\n", __func__); 1203 goto err_get_freq; 1204 } 1205 } 1206 1207 /* 1208 * Sometimes boot loaders set CPU frequency to a value outside of 1209 * frequency table present with cpufreq core. In such cases CPU might be 1210 * unstable if it has to run on that frequency for long duration of time 1211 * and so its better to set it to a frequency which is specified in 1212 * freq-table. This also makes cpufreq stats inconsistent as 1213 * cpufreq-stats would fail to register because current frequency of CPU 1214 * isn't found in freq-table. 1215 * 1216 * Because we don't want this change to effect boot process badly, we go 1217 * for the next freq which is >= policy->cur ('cur' must be set by now, 1218 * otherwise we will end up setting freq to lowest of the table as 'cur' 1219 * is initialized to zero). 1220 * 1221 * We are passing target-freq as "policy->cur - 1" otherwise 1222 * __cpufreq_driver_target() would simply fail, as policy->cur will be 1223 * equal to target-freq. 1224 */ 1225 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK) 1226 && has_target()) { 1227 /* Are we running at unknown frequency ? */ 1228 ret = cpufreq_frequency_table_get_index(policy, policy->cur); 1229 if (ret == -EINVAL) { 1230 /* Warn user and fix it */ 1231 pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n", 1232 __func__, policy->cpu, policy->cur); 1233 ret = __cpufreq_driver_target(policy, policy->cur - 1, 1234 CPUFREQ_RELATION_L); 1235 1236 /* 1237 * Reaching here after boot in a few seconds may not 1238 * mean that system will remain stable at "unknown" 1239 * frequency for longer duration. Hence, a BUG_ON(). 1240 */ 1241 BUG_ON(ret); 1242 pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n", 1243 __func__, policy->cpu, policy->cur); 1244 } 1245 } 1246 1247 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1248 CPUFREQ_START, policy); 1249 1250 if (!recover_policy) { 1251 ret = cpufreq_add_dev_interface(policy, dev); 1252 if (ret) 1253 goto err_out_unregister; 1254 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1255 CPUFREQ_CREATE_POLICY, policy); 1256 } 1257 1258 write_lock_irqsave(&cpufreq_driver_lock, flags); 1259 list_add(&policy->policy_list, &cpufreq_policy_list); 1260 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1261 1262 cpufreq_init_policy(policy); 1263 1264 if (!recover_policy) { 1265 policy->user_policy.policy = policy->policy; 1266 policy->user_policy.governor = policy->governor; 1267 } 1268 up_write(&policy->rwsem); 1269 1270 kobject_uevent(&policy->kobj, KOBJ_ADD); 1271 1272 up_read(&cpufreq_rwsem); 1273 1274 /* Callback for handling stuff after policy is ready */ 1275 if (cpufreq_driver->ready) 1276 cpufreq_driver->ready(policy); 1277 1278 pr_debug("initialization complete\n"); 1279 1280 return 0; 1281 1282 err_out_unregister: 1283 err_get_freq: 1284 write_lock_irqsave(&cpufreq_driver_lock, flags); 1285 for_each_cpu(j, policy->cpus) 1286 per_cpu(cpufreq_cpu_data, j) = NULL; 1287 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1288 1289 if (!recover_policy) { 1290 kobject_put(&policy->kobj); 1291 wait_for_completion(&policy->kobj_unregister); 1292 } 1293 err_init_policy_kobj: 1294 up_write(&policy->rwsem); 1295 1296 if (cpufreq_driver->exit) 1297 cpufreq_driver->exit(policy); 1298 err_set_policy_cpu: 1299 if (recover_policy) { 1300 /* Do not leave stale fallback data behind. */ 1301 per_cpu(cpufreq_cpu_data_fallback, cpu) = NULL; 1302 cpufreq_policy_put_kobj(policy); 1303 } 1304 cpufreq_policy_free(policy); 1305 1306 nomem_out: 1307 up_read(&cpufreq_rwsem); 1308 1309 return ret; 1310 } 1311 1312 /** 1313 * cpufreq_add_dev - add a CPU device 1314 * 1315 * Adds the cpufreq interface for a CPU device. 1316 * 1317 * The Oracle says: try running cpufreq registration/unregistration concurrently 1318 * with with cpu hotplugging and all hell will break loose. Tried to clean this 1319 * mess up, but more thorough testing is needed. - Mathieu 1320 */ 1321 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 1322 { 1323 return __cpufreq_add_dev(dev, sif); 1324 } 1325 1326 static int __cpufreq_remove_dev_prepare(struct device *dev, 1327 struct subsys_interface *sif) 1328 { 1329 unsigned int cpu = dev->id, cpus; 1330 int ret; 1331 unsigned long flags; 1332 struct cpufreq_policy *policy; 1333 1334 pr_debug("%s: unregistering CPU %u\n", __func__, cpu); 1335 1336 write_lock_irqsave(&cpufreq_driver_lock, flags); 1337 1338 policy = per_cpu(cpufreq_cpu_data, cpu); 1339 1340 /* Save the policy somewhere when doing a light-weight tear-down */ 1341 if (cpufreq_suspended) 1342 per_cpu(cpufreq_cpu_data_fallback, cpu) = policy; 1343 1344 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1345 1346 if (!policy) { 1347 pr_debug("%s: No cpu_data found\n", __func__); 1348 return -EINVAL; 1349 } 1350 1351 if (has_target()) { 1352 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP); 1353 if (ret) { 1354 pr_err("%s: Failed to stop governor\n", __func__); 1355 return ret; 1356 } 1357 1358 strncpy(per_cpu(cpufreq_cpu_governor, cpu), 1359 policy->governor->name, CPUFREQ_NAME_LEN); 1360 } 1361 1362 down_read(&policy->rwsem); 1363 cpus = cpumask_weight(policy->cpus); 1364 up_read(&policy->rwsem); 1365 1366 if (cpu != policy->cpu) { 1367 sysfs_remove_link(&dev->kobj, "cpufreq"); 1368 } else if (cpus > 1) { 1369 /* Nominate new CPU */ 1370 int new_cpu = cpumask_any_but(policy->cpus, cpu); 1371 struct device *cpu_dev = get_cpu_device(new_cpu); 1372 1373 sysfs_remove_link(&cpu_dev->kobj, "cpufreq"); 1374 ret = update_policy_cpu(policy, new_cpu, cpu_dev); 1375 if (ret) { 1376 if (sysfs_create_link(&cpu_dev->kobj, &policy->kobj, 1377 "cpufreq")) 1378 pr_err("%s: Failed to restore kobj link to cpu:%d\n", 1379 __func__, cpu_dev->id); 1380 return ret; 1381 } 1382 1383 if (!cpufreq_suspended) 1384 pr_debug("%s: policy Kobject moved to cpu: %d from: %d\n", 1385 __func__, new_cpu, cpu); 1386 } else if (cpufreq_driver->stop_cpu) { 1387 cpufreq_driver->stop_cpu(policy); 1388 } 1389 1390 return 0; 1391 } 1392 1393 static int __cpufreq_remove_dev_finish(struct device *dev, 1394 struct subsys_interface *sif) 1395 { 1396 unsigned int cpu = dev->id, cpus; 1397 int ret; 1398 unsigned long flags; 1399 struct cpufreq_policy *policy; 1400 1401 write_lock_irqsave(&cpufreq_driver_lock, flags); 1402 policy = per_cpu(cpufreq_cpu_data, cpu); 1403 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1404 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1405 1406 if (!policy) { 1407 pr_debug("%s: No cpu_data found\n", __func__); 1408 return -EINVAL; 1409 } 1410 1411 down_write(&policy->rwsem); 1412 cpus = cpumask_weight(policy->cpus); 1413 1414 if (cpus > 1) 1415 cpumask_clear_cpu(cpu, policy->cpus); 1416 up_write(&policy->rwsem); 1417 1418 /* If cpu is last user of policy, free policy */ 1419 if (cpus == 1) { 1420 if (has_target()) { 1421 ret = __cpufreq_governor(policy, 1422 CPUFREQ_GOV_POLICY_EXIT); 1423 if (ret) { 1424 pr_err("%s: Failed to exit governor\n", 1425 __func__); 1426 return ret; 1427 } 1428 } 1429 1430 if (!cpufreq_suspended) 1431 cpufreq_policy_put_kobj(policy); 1432 1433 /* 1434 * Perform the ->exit() even during light-weight tear-down, 1435 * since this is a core component, and is essential for the 1436 * subsequent light-weight ->init() to succeed. 1437 */ 1438 if (cpufreq_driver->exit) 1439 cpufreq_driver->exit(policy); 1440 1441 /* Remove policy from list of active policies */ 1442 write_lock_irqsave(&cpufreq_driver_lock, flags); 1443 list_del(&policy->policy_list); 1444 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1445 1446 if (!cpufreq_suspended) 1447 cpufreq_policy_free(policy); 1448 } else if (has_target()) { 1449 ret = __cpufreq_governor(policy, CPUFREQ_GOV_START); 1450 if (!ret) 1451 ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); 1452 1453 if (ret) { 1454 pr_err("%s: Failed to start governor\n", __func__); 1455 return ret; 1456 } 1457 } 1458 1459 return 0; 1460 } 1461 1462 /** 1463 * cpufreq_remove_dev - remove a CPU device 1464 * 1465 * Removes the cpufreq interface for a CPU device. 1466 */ 1467 static int cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif) 1468 { 1469 unsigned int cpu = dev->id; 1470 int ret; 1471 1472 if (cpu_is_offline(cpu)) 1473 return 0; 1474 1475 ret = __cpufreq_remove_dev_prepare(dev, sif); 1476 1477 if (!ret) 1478 ret = __cpufreq_remove_dev_finish(dev, sif); 1479 1480 return ret; 1481 } 1482 1483 static void handle_update(struct work_struct *work) 1484 { 1485 struct cpufreq_policy *policy = 1486 container_of(work, struct cpufreq_policy, update); 1487 unsigned int cpu = policy->cpu; 1488 pr_debug("handle_update for cpu %u called\n", cpu); 1489 cpufreq_update_policy(cpu); 1490 } 1491 1492 /** 1493 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're 1494 * in deep trouble. 1495 * @policy: policy managing CPUs 1496 * @new_freq: CPU frequency the CPU actually runs at 1497 * 1498 * We adjust to current frequency first, and need to clean up later. 1499 * So either call to cpufreq_update_policy() or schedule handle_update()). 1500 */ 1501 static void cpufreq_out_of_sync(struct cpufreq_policy *policy, 1502 unsigned int new_freq) 1503 { 1504 struct cpufreq_freqs freqs; 1505 1506 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n", 1507 policy->cur, new_freq); 1508 1509 freqs.old = policy->cur; 1510 freqs.new = new_freq; 1511 1512 cpufreq_freq_transition_begin(policy, &freqs); 1513 cpufreq_freq_transition_end(policy, &freqs, 0); 1514 } 1515 1516 /** 1517 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur 1518 * @cpu: CPU number 1519 * 1520 * This is the last known freq, without actually getting it from the driver. 1521 * Return value will be same as what is shown in scaling_cur_freq in sysfs. 1522 */ 1523 unsigned int cpufreq_quick_get(unsigned int cpu) 1524 { 1525 struct cpufreq_policy *policy; 1526 unsigned int ret_freq = 0; 1527 1528 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) 1529 return cpufreq_driver->get(cpu); 1530 1531 policy = cpufreq_cpu_get(cpu); 1532 if (policy) { 1533 ret_freq = policy->cur; 1534 cpufreq_cpu_put(policy); 1535 } 1536 1537 return ret_freq; 1538 } 1539 EXPORT_SYMBOL(cpufreq_quick_get); 1540 1541 /** 1542 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU 1543 * @cpu: CPU number 1544 * 1545 * Just return the max possible frequency for a given CPU. 1546 */ 1547 unsigned int cpufreq_quick_get_max(unsigned int cpu) 1548 { 1549 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1550 unsigned int ret_freq = 0; 1551 1552 if (policy) { 1553 ret_freq = policy->max; 1554 cpufreq_cpu_put(policy); 1555 } 1556 1557 return ret_freq; 1558 } 1559 EXPORT_SYMBOL(cpufreq_quick_get_max); 1560 1561 static unsigned int __cpufreq_get(struct cpufreq_policy *policy) 1562 { 1563 unsigned int ret_freq = 0; 1564 1565 if (!cpufreq_driver->get) 1566 return ret_freq; 1567 1568 ret_freq = cpufreq_driver->get(policy->cpu); 1569 1570 if (ret_freq && policy->cur && 1571 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 1572 /* verify no discrepancy between actual and 1573 saved value exists */ 1574 if (unlikely(ret_freq != policy->cur)) { 1575 cpufreq_out_of_sync(policy, ret_freq); 1576 schedule_work(&policy->update); 1577 } 1578 } 1579 1580 return ret_freq; 1581 } 1582 1583 /** 1584 * cpufreq_get - get the current CPU frequency (in kHz) 1585 * @cpu: CPU number 1586 * 1587 * Get the CPU current (static) CPU frequency 1588 */ 1589 unsigned int cpufreq_get(unsigned int cpu) 1590 { 1591 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1592 unsigned int ret_freq = 0; 1593 1594 if (policy) { 1595 down_read(&policy->rwsem); 1596 ret_freq = __cpufreq_get(policy); 1597 up_read(&policy->rwsem); 1598 1599 cpufreq_cpu_put(policy); 1600 } 1601 1602 return ret_freq; 1603 } 1604 EXPORT_SYMBOL(cpufreq_get); 1605 1606 static struct subsys_interface cpufreq_interface = { 1607 .name = "cpufreq", 1608 .subsys = &cpu_subsys, 1609 .add_dev = cpufreq_add_dev, 1610 .remove_dev = cpufreq_remove_dev, 1611 }; 1612 1613 /* 1614 * In case platform wants some specific frequency to be configured 1615 * during suspend.. 1616 */ 1617 int cpufreq_generic_suspend(struct cpufreq_policy *policy) 1618 { 1619 int ret; 1620 1621 if (!policy->suspend_freq) { 1622 pr_err("%s: suspend_freq can't be zero\n", __func__); 1623 return -EINVAL; 1624 } 1625 1626 pr_debug("%s: Setting suspend-freq: %u\n", __func__, 1627 policy->suspend_freq); 1628 1629 ret = __cpufreq_driver_target(policy, policy->suspend_freq, 1630 CPUFREQ_RELATION_H); 1631 if (ret) 1632 pr_err("%s: unable to set suspend-freq: %u. err: %d\n", 1633 __func__, policy->suspend_freq, ret); 1634 1635 return ret; 1636 } 1637 EXPORT_SYMBOL(cpufreq_generic_suspend); 1638 1639 /** 1640 * cpufreq_suspend() - Suspend CPUFreq governors 1641 * 1642 * Called during system wide Suspend/Hibernate cycles for suspending governors 1643 * as some platforms can't change frequency after this point in suspend cycle. 1644 * Because some of the devices (like: i2c, regulators, etc) they use for 1645 * changing frequency are suspended quickly after this point. 1646 */ 1647 void cpufreq_suspend(void) 1648 { 1649 struct cpufreq_policy *policy; 1650 1651 if (!cpufreq_driver) 1652 return; 1653 1654 if (!has_target()) 1655 goto suspend; 1656 1657 pr_debug("%s: Suspending Governors\n", __func__); 1658 1659 for_each_policy(policy) { 1660 if (__cpufreq_governor(policy, CPUFREQ_GOV_STOP)) 1661 pr_err("%s: Failed to stop governor for policy: %p\n", 1662 __func__, policy); 1663 else if (cpufreq_driver->suspend 1664 && cpufreq_driver->suspend(policy)) 1665 pr_err("%s: Failed to suspend driver: %p\n", __func__, 1666 policy); 1667 } 1668 1669 suspend: 1670 cpufreq_suspended = true; 1671 } 1672 1673 /** 1674 * cpufreq_resume() - Resume CPUFreq governors 1675 * 1676 * Called during system wide Suspend/Hibernate cycle for resuming governors that 1677 * are suspended with cpufreq_suspend(). 1678 */ 1679 void cpufreq_resume(void) 1680 { 1681 struct cpufreq_policy *policy; 1682 1683 if (!cpufreq_driver) 1684 return; 1685 1686 cpufreq_suspended = false; 1687 1688 if (!has_target()) 1689 return; 1690 1691 pr_debug("%s: Resuming Governors\n", __func__); 1692 1693 for_each_policy(policy) { 1694 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) 1695 pr_err("%s: Failed to resume driver: %p\n", __func__, 1696 policy); 1697 else if (__cpufreq_governor(policy, CPUFREQ_GOV_START) 1698 || __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS)) 1699 pr_err("%s: Failed to start governor for policy: %p\n", 1700 __func__, policy); 1701 } 1702 1703 /* 1704 * schedule call cpufreq_update_policy() for first-online CPU, as that 1705 * wouldn't be hotplugged-out on suspend. It will verify that the 1706 * current freq is in sync with what we believe it to be. 1707 */ 1708 policy = cpufreq_cpu_get_raw(cpumask_first(cpu_online_mask)); 1709 if (WARN_ON(!policy)) 1710 return; 1711 1712 schedule_work(&policy->update); 1713 } 1714 1715 /** 1716 * cpufreq_get_current_driver - return current driver's name 1717 * 1718 * Return the name string of the currently loaded cpufreq driver 1719 * or NULL, if none. 1720 */ 1721 const char *cpufreq_get_current_driver(void) 1722 { 1723 if (cpufreq_driver) 1724 return cpufreq_driver->name; 1725 1726 return NULL; 1727 } 1728 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver); 1729 1730 /** 1731 * cpufreq_get_driver_data - return current driver data 1732 * 1733 * Return the private data of the currently loaded cpufreq 1734 * driver, or NULL if no cpufreq driver is loaded. 1735 */ 1736 void *cpufreq_get_driver_data(void) 1737 { 1738 if (cpufreq_driver) 1739 return cpufreq_driver->driver_data; 1740 1741 return NULL; 1742 } 1743 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data); 1744 1745 /********************************************************************* 1746 * NOTIFIER LISTS INTERFACE * 1747 *********************************************************************/ 1748 1749 /** 1750 * cpufreq_register_notifier - register a driver with cpufreq 1751 * @nb: notifier function to register 1752 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1753 * 1754 * Add a driver to one of two lists: either a list of drivers that 1755 * are notified about clock rate changes (once before and once after 1756 * the transition), or a list of drivers that are notified about 1757 * changes in cpufreq policy. 1758 * 1759 * This function may sleep, and has the same return conditions as 1760 * blocking_notifier_chain_register. 1761 */ 1762 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 1763 { 1764 int ret; 1765 1766 if (cpufreq_disabled()) 1767 return -EINVAL; 1768 1769 WARN_ON(!init_cpufreq_transition_notifier_list_called); 1770 1771 switch (list) { 1772 case CPUFREQ_TRANSITION_NOTIFIER: 1773 ret = srcu_notifier_chain_register( 1774 &cpufreq_transition_notifier_list, nb); 1775 break; 1776 case CPUFREQ_POLICY_NOTIFIER: 1777 ret = blocking_notifier_chain_register( 1778 &cpufreq_policy_notifier_list, nb); 1779 break; 1780 default: 1781 ret = -EINVAL; 1782 } 1783 1784 return ret; 1785 } 1786 EXPORT_SYMBOL(cpufreq_register_notifier); 1787 1788 /** 1789 * cpufreq_unregister_notifier - unregister a driver with cpufreq 1790 * @nb: notifier block to be unregistered 1791 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1792 * 1793 * Remove a driver from the CPU frequency notifier list. 1794 * 1795 * This function may sleep, and has the same return conditions as 1796 * blocking_notifier_chain_unregister. 1797 */ 1798 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 1799 { 1800 int ret; 1801 1802 if (cpufreq_disabled()) 1803 return -EINVAL; 1804 1805 switch (list) { 1806 case CPUFREQ_TRANSITION_NOTIFIER: 1807 ret = srcu_notifier_chain_unregister( 1808 &cpufreq_transition_notifier_list, nb); 1809 break; 1810 case CPUFREQ_POLICY_NOTIFIER: 1811 ret = blocking_notifier_chain_unregister( 1812 &cpufreq_policy_notifier_list, nb); 1813 break; 1814 default: 1815 ret = -EINVAL; 1816 } 1817 1818 return ret; 1819 } 1820 EXPORT_SYMBOL(cpufreq_unregister_notifier); 1821 1822 1823 /********************************************************************* 1824 * GOVERNORS * 1825 *********************************************************************/ 1826 1827 /* Must set freqs->new to intermediate frequency */ 1828 static int __target_intermediate(struct cpufreq_policy *policy, 1829 struct cpufreq_freqs *freqs, int index) 1830 { 1831 int ret; 1832 1833 freqs->new = cpufreq_driver->get_intermediate(policy, index); 1834 1835 /* We don't need to switch to intermediate freq */ 1836 if (!freqs->new) 1837 return 0; 1838 1839 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n", 1840 __func__, policy->cpu, freqs->old, freqs->new); 1841 1842 cpufreq_freq_transition_begin(policy, freqs); 1843 ret = cpufreq_driver->target_intermediate(policy, index); 1844 cpufreq_freq_transition_end(policy, freqs, ret); 1845 1846 if (ret) 1847 pr_err("%s: Failed to change to intermediate frequency: %d\n", 1848 __func__, ret); 1849 1850 return ret; 1851 } 1852 1853 static int __target_index(struct cpufreq_policy *policy, 1854 struct cpufreq_frequency_table *freq_table, int index) 1855 { 1856 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0}; 1857 unsigned int intermediate_freq = 0; 1858 int retval = -EINVAL; 1859 bool notify; 1860 1861 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION); 1862 if (notify) { 1863 /* Handle switching to intermediate frequency */ 1864 if (cpufreq_driver->get_intermediate) { 1865 retval = __target_intermediate(policy, &freqs, index); 1866 if (retval) 1867 return retval; 1868 1869 intermediate_freq = freqs.new; 1870 /* Set old freq to intermediate */ 1871 if (intermediate_freq) 1872 freqs.old = freqs.new; 1873 } 1874 1875 freqs.new = freq_table[index].frequency; 1876 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n", 1877 __func__, policy->cpu, freqs.old, freqs.new); 1878 1879 cpufreq_freq_transition_begin(policy, &freqs); 1880 } 1881 1882 retval = cpufreq_driver->target_index(policy, index); 1883 if (retval) 1884 pr_err("%s: Failed to change cpu frequency: %d\n", __func__, 1885 retval); 1886 1887 if (notify) { 1888 cpufreq_freq_transition_end(policy, &freqs, retval); 1889 1890 /* 1891 * Failed after setting to intermediate freq? Driver should have 1892 * reverted back to initial frequency and so should we. Check 1893 * here for intermediate_freq instead of get_intermediate, in 1894 * case we have't switched to intermediate freq at all. 1895 */ 1896 if (unlikely(retval && intermediate_freq)) { 1897 freqs.old = intermediate_freq; 1898 freqs.new = policy->restore_freq; 1899 cpufreq_freq_transition_begin(policy, &freqs); 1900 cpufreq_freq_transition_end(policy, &freqs, 0); 1901 } 1902 } 1903 1904 return retval; 1905 } 1906 1907 int __cpufreq_driver_target(struct cpufreq_policy *policy, 1908 unsigned int target_freq, 1909 unsigned int relation) 1910 { 1911 unsigned int old_target_freq = target_freq; 1912 int retval = -EINVAL; 1913 1914 if (cpufreq_disabled()) 1915 return -ENODEV; 1916 1917 /* Make sure that target_freq is within supported range */ 1918 if (target_freq > policy->max) 1919 target_freq = policy->max; 1920 if (target_freq < policy->min) 1921 target_freq = policy->min; 1922 1923 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n", 1924 policy->cpu, target_freq, relation, old_target_freq); 1925 1926 /* 1927 * This might look like a redundant call as we are checking it again 1928 * after finding index. But it is left intentionally for cases where 1929 * exactly same freq is called again and so we can save on few function 1930 * calls. 1931 */ 1932 if (target_freq == policy->cur) 1933 return 0; 1934 1935 /* Save last value to restore later on errors */ 1936 policy->restore_freq = policy->cur; 1937 1938 if (cpufreq_driver->target) 1939 retval = cpufreq_driver->target(policy, target_freq, relation); 1940 else if (cpufreq_driver->target_index) { 1941 struct cpufreq_frequency_table *freq_table; 1942 int index; 1943 1944 freq_table = cpufreq_frequency_get_table(policy->cpu); 1945 if (unlikely(!freq_table)) { 1946 pr_err("%s: Unable to find freq_table\n", __func__); 1947 goto out; 1948 } 1949 1950 retval = cpufreq_frequency_table_target(policy, freq_table, 1951 target_freq, relation, &index); 1952 if (unlikely(retval)) { 1953 pr_err("%s: Unable to find matching freq\n", __func__); 1954 goto out; 1955 } 1956 1957 if (freq_table[index].frequency == policy->cur) { 1958 retval = 0; 1959 goto out; 1960 } 1961 1962 retval = __target_index(policy, freq_table, index); 1963 } 1964 1965 out: 1966 return retval; 1967 } 1968 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 1969 1970 int cpufreq_driver_target(struct cpufreq_policy *policy, 1971 unsigned int target_freq, 1972 unsigned int relation) 1973 { 1974 int ret = -EINVAL; 1975 1976 down_write(&policy->rwsem); 1977 1978 ret = __cpufreq_driver_target(policy, target_freq, relation); 1979 1980 up_write(&policy->rwsem); 1981 1982 return ret; 1983 } 1984 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 1985 1986 static int __cpufreq_governor(struct cpufreq_policy *policy, 1987 unsigned int event) 1988 { 1989 int ret; 1990 1991 /* Only must be defined when default governor is known to have latency 1992 restrictions, like e.g. conservative or ondemand. 1993 That this is the case is already ensured in Kconfig 1994 */ 1995 #ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE 1996 struct cpufreq_governor *gov = &cpufreq_gov_performance; 1997 #else 1998 struct cpufreq_governor *gov = NULL; 1999 #endif 2000 2001 /* Don't start any governor operations if we are entering suspend */ 2002 if (cpufreq_suspended) 2003 return 0; 2004 /* 2005 * Governor might not be initiated here if ACPI _PPC changed 2006 * notification happened, so check it. 2007 */ 2008 if (!policy->governor) 2009 return -EINVAL; 2010 2011 if (policy->governor->max_transition_latency && 2012 policy->cpuinfo.transition_latency > 2013 policy->governor->max_transition_latency) { 2014 if (!gov) 2015 return -EINVAL; 2016 else { 2017 pr_warn("%s governor failed, too long transition latency of HW, fallback to %s governor\n", 2018 policy->governor->name, gov->name); 2019 policy->governor = gov; 2020 } 2021 } 2022 2023 if (event == CPUFREQ_GOV_POLICY_INIT) 2024 if (!try_module_get(policy->governor->owner)) 2025 return -EINVAL; 2026 2027 pr_debug("__cpufreq_governor for CPU %u, event %u\n", 2028 policy->cpu, event); 2029 2030 mutex_lock(&cpufreq_governor_lock); 2031 if ((policy->governor_enabled && event == CPUFREQ_GOV_START) 2032 || (!policy->governor_enabled 2033 && (event == CPUFREQ_GOV_LIMITS || event == CPUFREQ_GOV_STOP))) { 2034 mutex_unlock(&cpufreq_governor_lock); 2035 return -EBUSY; 2036 } 2037 2038 if (event == CPUFREQ_GOV_STOP) 2039 policy->governor_enabled = false; 2040 else if (event == CPUFREQ_GOV_START) 2041 policy->governor_enabled = true; 2042 2043 mutex_unlock(&cpufreq_governor_lock); 2044 2045 ret = policy->governor->governor(policy, event); 2046 2047 if (!ret) { 2048 if (event == CPUFREQ_GOV_POLICY_INIT) 2049 policy->governor->initialized++; 2050 else if (event == CPUFREQ_GOV_POLICY_EXIT) 2051 policy->governor->initialized--; 2052 } else { 2053 /* Restore original values */ 2054 mutex_lock(&cpufreq_governor_lock); 2055 if (event == CPUFREQ_GOV_STOP) 2056 policy->governor_enabled = true; 2057 else if (event == CPUFREQ_GOV_START) 2058 policy->governor_enabled = false; 2059 mutex_unlock(&cpufreq_governor_lock); 2060 } 2061 2062 if (((event == CPUFREQ_GOV_POLICY_INIT) && ret) || 2063 ((event == CPUFREQ_GOV_POLICY_EXIT) && !ret)) 2064 module_put(policy->governor->owner); 2065 2066 return ret; 2067 } 2068 2069 int cpufreq_register_governor(struct cpufreq_governor *governor) 2070 { 2071 int err; 2072 2073 if (!governor) 2074 return -EINVAL; 2075 2076 if (cpufreq_disabled()) 2077 return -ENODEV; 2078 2079 mutex_lock(&cpufreq_governor_mutex); 2080 2081 governor->initialized = 0; 2082 err = -EBUSY; 2083 if (!find_governor(governor->name)) { 2084 err = 0; 2085 list_add(&governor->governor_list, &cpufreq_governor_list); 2086 } 2087 2088 mutex_unlock(&cpufreq_governor_mutex); 2089 return err; 2090 } 2091 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 2092 2093 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 2094 { 2095 int cpu; 2096 2097 if (!governor) 2098 return; 2099 2100 if (cpufreq_disabled()) 2101 return; 2102 2103 for_each_present_cpu(cpu) { 2104 if (cpu_online(cpu)) 2105 continue; 2106 if (!strcmp(per_cpu(cpufreq_cpu_governor, cpu), governor->name)) 2107 strcpy(per_cpu(cpufreq_cpu_governor, cpu), "\0"); 2108 } 2109 2110 mutex_lock(&cpufreq_governor_mutex); 2111 list_del(&governor->governor_list); 2112 mutex_unlock(&cpufreq_governor_mutex); 2113 return; 2114 } 2115 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 2116 2117 2118 /********************************************************************* 2119 * POLICY INTERFACE * 2120 *********************************************************************/ 2121 2122 /** 2123 * cpufreq_get_policy - get the current cpufreq_policy 2124 * @policy: struct cpufreq_policy into which the current cpufreq_policy 2125 * is written 2126 * 2127 * Reads the current cpufreq policy. 2128 */ 2129 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 2130 { 2131 struct cpufreq_policy *cpu_policy; 2132 if (!policy) 2133 return -EINVAL; 2134 2135 cpu_policy = cpufreq_cpu_get(cpu); 2136 if (!cpu_policy) 2137 return -EINVAL; 2138 2139 memcpy(policy, cpu_policy, sizeof(*policy)); 2140 2141 cpufreq_cpu_put(cpu_policy); 2142 return 0; 2143 } 2144 EXPORT_SYMBOL(cpufreq_get_policy); 2145 2146 /* 2147 * policy : current policy. 2148 * new_policy: policy to be set. 2149 */ 2150 static int cpufreq_set_policy(struct cpufreq_policy *policy, 2151 struct cpufreq_policy *new_policy) 2152 { 2153 struct cpufreq_governor *old_gov; 2154 int ret; 2155 2156 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", 2157 new_policy->cpu, new_policy->min, new_policy->max); 2158 2159 memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo)); 2160 2161 if (new_policy->min > policy->max || new_policy->max < policy->min) 2162 return -EINVAL; 2163 2164 /* verify the cpu speed can be set within this limit */ 2165 ret = cpufreq_driver->verify(new_policy); 2166 if (ret) 2167 return ret; 2168 2169 /* adjust if necessary - all reasons */ 2170 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 2171 CPUFREQ_ADJUST, new_policy); 2172 2173 /* adjust if necessary - hardware incompatibility*/ 2174 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 2175 CPUFREQ_INCOMPATIBLE, new_policy); 2176 2177 /* 2178 * verify the cpu speed can be set within this limit, which might be 2179 * different to the first one 2180 */ 2181 ret = cpufreq_driver->verify(new_policy); 2182 if (ret) 2183 return ret; 2184 2185 /* notification of the new policy */ 2186 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 2187 CPUFREQ_NOTIFY, new_policy); 2188 2189 policy->min = new_policy->min; 2190 policy->max = new_policy->max; 2191 2192 pr_debug("new min and max freqs are %u - %u kHz\n", 2193 policy->min, policy->max); 2194 2195 if (cpufreq_driver->setpolicy) { 2196 policy->policy = new_policy->policy; 2197 pr_debug("setting range\n"); 2198 return cpufreq_driver->setpolicy(new_policy); 2199 } 2200 2201 if (new_policy->governor == policy->governor) 2202 goto out; 2203 2204 pr_debug("governor switch\n"); 2205 2206 /* save old, working values */ 2207 old_gov = policy->governor; 2208 /* end old governor */ 2209 if (old_gov) { 2210 __cpufreq_governor(policy, CPUFREQ_GOV_STOP); 2211 up_write(&policy->rwsem); 2212 __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT); 2213 down_write(&policy->rwsem); 2214 } 2215 2216 /* start new governor */ 2217 policy->governor = new_policy->governor; 2218 if (!__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT)) { 2219 if (!__cpufreq_governor(policy, CPUFREQ_GOV_START)) 2220 goto out; 2221 2222 up_write(&policy->rwsem); 2223 __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT); 2224 down_write(&policy->rwsem); 2225 } 2226 2227 /* new governor failed, so re-start old one */ 2228 pr_debug("starting governor %s failed\n", policy->governor->name); 2229 if (old_gov) { 2230 policy->governor = old_gov; 2231 __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT); 2232 __cpufreq_governor(policy, CPUFREQ_GOV_START); 2233 } 2234 2235 return -EINVAL; 2236 2237 out: 2238 pr_debug("governor: change or update limits\n"); 2239 return __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); 2240 } 2241 2242 /** 2243 * cpufreq_update_policy - re-evaluate an existing cpufreq policy 2244 * @cpu: CPU which shall be re-evaluated 2245 * 2246 * Useful for policy notifiers which have different necessities 2247 * at different times. 2248 */ 2249 int cpufreq_update_policy(unsigned int cpu) 2250 { 2251 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 2252 struct cpufreq_policy new_policy; 2253 int ret; 2254 2255 if (!policy) 2256 return -ENODEV; 2257 2258 down_write(&policy->rwsem); 2259 2260 pr_debug("updating policy for CPU %u\n", cpu); 2261 memcpy(&new_policy, policy, sizeof(*policy)); 2262 new_policy.min = policy->user_policy.min; 2263 new_policy.max = policy->user_policy.max; 2264 new_policy.policy = policy->user_policy.policy; 2265 new_policy.governor = policy->user_policy.governor; 2266 2267 /* 2268 * BIOS might change freq behind our back 2269 * -> ask driver for current freq and notify governors about a change 2270 */ 2271 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) { 2272 new_policy.cur = cpufreq_driver->get(cpu); 2273 if (WARN_ON(!new_policy.cur)) { 2274 ret = -EIO; 2275 goto unlock; 2276 } 2277 2278 if (!policy->cur) { 2279 pr_debug("Driver did not initialize current freq\n"); 2280 policy->cur = new_policy.cur; 2281 } else { 2282 if (policy->cur != new_policy.cur && has_target()) 2283 cpufreq_out_of_sync(policy, new_policy.cur); 2284 } 2285 } 2286 2287 ret = cpufreq_set_policy(policy, &new_policy); 2288 2289 unlock: 2290 up_write(&policy->rwsem); 2291 2292 cpufreq_cpu_put(policy); 2293 return ret; 2294 } 2295 EXPORT_SYMBOL(cpufreq_update_policy); 2296 2297 static int cpufreq_cpu_callback(struct notifier_block *nfb, 2298 unsigned long action, void *hcpu) 2299 { 2300 unsigned int cpu = (unsigned long)hcpu; 2301 struct device *dev; 2302 2303 dev = get_cpu_device(cpu); 2304 if (dev) { 2305 switch (action & ~CPU_TASKS_FROZEN) { 2306 case CPU_ONLINE: 2307 __cpufreq_add_dev(dev, NULL); 2308 break; 2309 2310 case CPU_DOWN_PREPARE: 2311 __cpufreq_remove_dev_prepare(dev, NULL); 2312 break; 2313 2314 case CPU_POST_DEAD: 2315 __cpufreq_remove_dev_finish(dev, NULL); 2316 break; 2317 2318 case CPU_DOWN_FAILED: 2319 __cpufreq_add_dev(dev, NULL); 2320 break; 2321 } 2322 } 2323 return NOTIFY_OK; 2324 } 2325 2326 static struct notifier_block __refdata cpufreq_cpu_notifier = { 2327 .notifier_call = cpufreq_cpu_callback, 2328 }; 2329 2330 /********************************************************************* 2331 * BOOST * 2332 *********************************************************************/ 2333 static int cpufreq_boost_set_sw(int state) 2334 { 2335 struct cpufreq_frequency_table *freq_table; 2336 struct cpufreq_policy *policy; 2337 int ret = -EINVAL; 2338 2339 for_each_policy(policy) { 2340 freq_table = cpufreq_frequency_get_table(policy->cpu); 2341 if (freq_table) { 2342 ret = cpufreq_frequency_table_cpuinfo(policy, 2343 freq_table); 2344 if (ret) { 2345 pr_err("%s: Policy frequency update failed\n", 2346 __func__); 2347 break; 2348 } 2349 policy->user_policy.max = policy->max; 2350 __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); 2351 } 2352 } 2353 2354 return ret; 2355 } 2356 2357 int cpufreq_boost_trigger_state(int state) 2358 { 2359 unsigned long flags; 2360 int ret = 0; 2361 2362 if (cpufreq_driver->boost_enabled == state) 2363 return 0; 2364 2365 write_lock_irqsave(&cpufreq_driver_lock, flags); 2366 cpufreq_driver->boost_enabled = state; 2367 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2368 2369 ret = cpufreq_driver->set_boost(state); 2370 if (ret) { 2371 write_lock_irqsave(&cpufreq_driver_lock, flags); 2372 cpufreq_driver->boost_enabled = !state; 2373 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2374 2375 pr_err("%s: Cannot %s BOOST\n", 2376 __func__, state ? "enable" : "disable"); 2377 } 2378 2379 return ret; 2380 } 2381 2382 int cpufreq_boost_supported(void) 2383 { 2384 if (likely(cpufreq_driver)) 2385 return cpufreq_driver->boost_supported; 2386 2387 return 0; 2388 } 2389 EXPORT_SYMBOL_GPL(cpufreq_boost_supported); 2390 2391 int cpufreq_boost_enabled(void) 2392 { 2393 return cpufreq_driver->boost_enabled; 2394 } 2395 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled); 2396 2397 /********************************************************************* 2398 * REGISTER / UNREGISTER CPUFREQ DRIVER * 2399 *********************************************************************/ 2400 2401 /** 2402 * cpufreq_register_driver - register a CPU Frequency driver 2403 * @driver_data: A struct cpufreq_driver containing the values# 2404 * submitted by the CPU Frequency driver. 2405 * 2406 * Registers a CPU Frequency driver to this core code. This code 2407 * returns zero on success, -EBUSY when another driver got here first 2408 * (and isn't unregistered in the meantime). 2409 * 2410 */ 2411 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 2412 { 2413 unsigned long flags; 2414 int ret; 2415 2416 if (cpufreq_disabled()) 2417 return -ENODEV; 2418 2419 if (!driver_data || !driver_data->verify || !driver_data->init || 2420 !(driver_data->setpolicy || driver_data->target_index || 2421 driver_data->target) || 2422 (driver_data->setpolicy && (driver_data->target_index || 2423 driver_data->target)) || 2424 (!!driver_data->get_intermediate != !!driver_data->target_intermediate)) 2425 return -EINVAL; 2426 2427 pr_debug("trying to register driver %s\n", driver_data->name); 2428 2429 write_lock_irqsave(&cpufreq_driver_lock, flags); 2430 if (cpufreq_driver) { 2431 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2432 return -EEXIST; 2433 } 2434 cpufreq_driver = driver_data; 2435 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2436 2437 if (driver_data->setpolicy) 2438 driver_data->flags |= CPUFREQ_CONST_LOOPS; 2439 2440 if (cpufreq_boost_supported()) { 2441 /* 2442 * Check if driver provides function to enable boost - 2443 * if not, use cpufreq_boost_set_sw as default 2444 */ 2445 if (!cpufreq_driver->set_boost) 2446 cpufreq_driver->set_boost = cpufreq_boost_set_sw; 2447 2448 ret = cpufreq_sysfs_create_file(&boost.attr); 2449 if (ret) { 2450 pr_err("%s: cannot register global BOOST sysfs file\n", 2451 __func__); 2452 goto err_null_driver; 2453 } 2454 } 2455 2456 ret = subsys_interface_register(&cpufreq_interface); 2457 if (ret) 2458 goto err_boost_unreg; 2459 2460 if (!(cpufreq_driver->flags & CPUFREQ_STICKY) && 2461 list_empty(&cpufreq_policy_list)) { 2462 /* if all ->init() calls failed, unregister */ 2463 pr_debug("%s: No CPU initialized for driver %s\n", __func__, 2464 driver_data->name); 2465 goto err_if_unreg; 2466 } 2467 2468 register_hotcpu_notifier(&cpufreq_cpu_notifier); 2469 pr_debug("driver %s up and running\n", driver_data->name); 2470 2471 return 0; 2472 err_if_unreg: 2473 subsys_interface_unregister(&cpufreq_interface); 2474 err_boost_unreg: 2475 if (cpufreq_boost_supported()) 2476 cpufreq_sysfs_remove_file(&boost.attr); 2477 err_null_driver: 2478 write_lock_irqsave(&cpufreq_driver_lock, flags); 2479 cpufreq_driver = NULL; 2480 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2481 return ret; 2482 } 2483 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 2484 2485 /** 2486 * cpufreq_unregister_driver - unregister the current CPUFreq driver 2487 * 2488 * Unregister the current CPUFreq driver. Only call this if you have 2489 * the right to do so, i.e. if you have succeeded in initialising before! 2490 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 2491 * currently not initialised. 2492 */ 2493 int cpufreq_unregister_driver(struct cpufreq_driver *driver) 2494 { 2495 unsigned long flags; 2496 2497 if (!cpufreq_driver || (driver != cpufreq_driver)) 2498 return -EINVAL; 2499 2500 pr_debug("unregistering driver %s\n", driver->name); 2501 2502 subsys_interface_unregister(&cpufreq_interface); 2503 if (cpufreq_boost_supported()) 2504 cpufreq_sysfs_remove_file(&boost.attr); 2505 2506 unregister_hotcpu_notifier(&cpufreq_cpu_notifier); 2507 2508 down_write(&cpufreq_rwsem); 2509 write_lock_irqsave(&cpufreq_driver_lock, flags); 2510 2511 cpufreq_driver = NULL; 2512 2513 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2514 up_write(&cpufreq_rwsem); 2515 2516 return 0; 2517 } 2518 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 2519 2520 /* 2521 * Stop cpufreq at shutdown to make sure it isn't holding any locks 2522 * or mutexes when secondary CPUs are halted. 2523 */ 2524 static struct syscore_ops cpufreq_syscore_ops = { 2525 .shutdown = cpufreq_suspend, 2526 }; 2527 2528 static int __init cpufreq_core_init(void) 2529 { 2530 if (cpufreq_disabled()) 2531 return -ENODEV; 2532 2533 cpufreq_global_kobject = kobject_create(); 2534 BUG_ON(!cpufreq_global_kobject); 2535 2536 register_syscore_ops(&cpufreq_syscore_ops); 2537 2538 return 0; 2539 } 2540 core_initcall(cpufreq_core_init); 2541