xref: /linux/drivers/cpufreq/cpufreq.c (revision 7fc2cd2e4b398c57c9cf961cfea05eadbf34c05c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/cpufreq/cpufreq.c
4  *
5  *  Copyright (C) 2001 Russell King
6  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8  *
9  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10  *	Added handling for CPU hotplug
11  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12  *	Fix handling for CPU hotplug -- affected CPUs
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_qos.h>
27 #include <linux/slab.h>
28 #include <linux/string_choices.h>
29 #include <linux/suspend.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/tick.h>
32 #include <linux/units.h>
33 #include <trace/events/power.h>
34 
35 static LIST_HEAD(cpufreq_policy_list);
36 
37 /* Macros to iterate over CPU policies */
38 #define for_each_suitable_policy(__policy, __active)			 \
39 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
40 		if ((__active) == !policy_is_inactive(__policy))
41 
42 #define for_each_active_policy(__policy)		\
43 	for_each_suitable_policy(__policy, true)
44 #define for_each_inactive_policy(__policy)		\
45 	for_each_suitable_policy(__policy, false)
46 
47 /* Iterate over governors */
48 static LIST_HEAD(cpufreq_governor_list);
49 #define for_each_governor(__governor)				\
50 	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
51 
52 static char default_governor[CPUFREQ_NAME_LEN];
53 
54 /*
55  * The "cpufreq driver" - the arch- or hardware-dependent low
56  * level driver of CPUFreq support, and its spinlock. This lock
57  * also protects the cpufreq_cpu_data array.
58  */
59 static struct cpufreq_driver *cpufreq_driver;
60 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
61 static DEFINE_RWLOCK(cpufreq_driver_lock);
62 
63 static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance);
64 bool cpufreq_supports_freq_invariance(void)
65 {
66 	return static_branch_likely(&cpufreq_freq_invariance);
67 }
68 
69 /* Flag to suspend/resume CPUFreq governors */
70 static bool cpufreq_suspended;
71 
72 static inline bool has_target(void)
73 {
74 	return cpufreq_driver->target_index || cpufreq_driver->target;
75 }
76 
77 bool has_target_index(void)
78 {
79 	return !!cpufreq_driver->target_index;
80 }
81 
82 /* internal prototypes */
83 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
84 static int cpufreq_init_governor(struct cpufreq_policy *policy);
85 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
86 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
87 static int cpufreq_set_policy(struct cpufreq_policy *policy,
88 			      struct cpufreq_governor *new_gov,
89 			      unsigned int new_pol);
90 static bool cpufreq_boost_supported(void);
91 static int cpufreq_boost_trigger_state(int state);
92 
93 /*
94  * Two notifier lists: the "policy" list is involved in the
95  * validation process for a new CPU frequency policy; the
96  * "transition" list for kernel code that needs to handle
97  * changes to devices when the CPU clock speed changes.
98  * The mutex locks both lists.
99  */
100 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
101 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
102 
103 static int off __read_mostly;
104 static int cpufreq_disabled(void)
105 {
106 	return off;
107 }
108 void disable_cpufreq(void)
109 {
110 	off = 1;
111 }
112 EXPORT_SYMBOL_GPL(disable_cpufreq);
113 
114 static DEFINE_MUTEX(cpufreq_governor_mutex);
115 
116 bool have_governor_per_policy(void)
117 {
118 	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
119 }
120 EXPORT_SYMBOL_GPL(have_governor_per_policy);
121 
122 static struct kobject *cpufreq_global_kobject;
123 
124 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
125 {
126 	if (have_governor_per_policy())
127 		return &policy->kobj;
128 	else
129 		return cpufreq_global_kobject;
130 }
131 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
132 
133 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
134 {
135 	struct kernel_cpustat kcpustat;
136 	u64 cur_wall_time;
137 	u64 idle_time;
138 	u64 busy_time;
139 
140 	cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
141 
142 	kcpustat_cpu_fetch(&kcpustat, cpu);
143 
144 	busy_time = kcpustat.cpustat[CPUTIME_USER];
145 	busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
146 	busy_time += kcpustat.cpustat[CPUTIME_IRQ];
147 	busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
148 	busy_time += kcpustat.cpustat[CPUTIME_STEAL];
149 	busy_time += kcpustat.cpustat[CPUTIME_NICE];
150 
151 	idle_time = cur_wall_time - busy_time;
152 	if (wall)
153 		*wall = div_u64(cur_wall_time, NSEC_PER_USEC);
154 
155 	return div_u64(idle_time, NSEC_PER_USEC);
156 }
157 
158 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
159 {
160 	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
161 
162 	if (idle_time == -1ULL)
163 		return get_cpu_idle_time_jiffy(cpu, wall);
164 	else if (!io_busy)
165 		idle_time += get_cpu_iowait_time_us(cpu, wall);
166 
167 	return idle_time;
168 }
169 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
170 
171 /*
172  * This is a generic cpufreq init() routine which can be used by cpufreq
173  * drivers of SMP systems. It will do following:
174  * - validate & show freq table passed
175  * - set policies transition latency
176  * - policy->cpus with all possible CPUs
177  */
178 void cpufreq_generic_init(struct cpufreq_policy *policy,
179 		struct cpufreq_frequency_table *table,
180 		unsigned int transition_latency)
181 {
182 	policy->freq_table = table;
183 	policy->cpuinfo.transition_latency = transition_latency;
184 
185 	/*
186 	 * The driver only supports the SMP configuration where all processors
187 	 * share the clock and voltage and clock.
188 	 */
189 	cpumask_setall(policy->cpus);
190 }
191 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
192 
193 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
194 {
195 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
196 
197 	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
198 }
199 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
200 
201 unsigned int cpufreq_generic_get(unsigned int cpu)
202 {
203 	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
204 
205 	if (!policy || IS_ERR(policy->clk)) {
206 		pr_err("%s: No %s associated to cpu: %d\n",
207 		       __func__, policy ? "clk" : "policy", cpu);
208 		return 0;
209 	}
210 
211 	return clk_get_rate(policy->clk) / 1000;
212 }
213 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
214 
215 /**
216  * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
217  * @cpu: CPU to find the policy for.
218  *
219  * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
220  * the kobject reference counter of that policy.  Return a valid policy on
221  * success or NULL on failure.
222  *
223  * The policy returned by this function has to be released with the help of
224  * cpufreq_cpu_put() to balance its kobject reference counter properly.
225  */
226 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
227 {
228 	struct cpufreq_policy *policy = NULL;
229 	unsigned long flags;
230 
231 	if (WARN_ON(cpu >= nr_cpu_ids))
232 		return NULL;
233 
234 	/* get the cpufreq driver */
235 	read_lock_irqsave(&cpufreq_driver_lock, flags);
236 
237 	if (cpufreq_driver) {
238 		/* get the CPU */
239 		policy = cpufreq_cpu_get_raw(cpu);
240 		if (policy)
241 			kobject_get(&policy->kobj);
242 	}
243 
244 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
245 
246 	return policy;
247 }
248 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
249 
250 /**
251  * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
252  * @policy: cpufreq policy returned by cpufreq_cpu_get().
253  */
254 void cpufreq_cpu_put(struct cpufreq_policy *policy)
255 {
256 	kobject_put(&policy->kobj);
257 }
258 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
259 
260 /*********************************************************************
261  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
262  *********************************************************************/
263 
264 /**
265  * adjust_jiffies - Adjust the system "loops_per_jiffy".
266  * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
267  * @ci: Frequency change information.
268  *
269  * This function alters the system "loops_per_jiffy" for the clock
270  * speed change. Note that loops_per_jiffy cannot be updated on SMP
271  * systems as each CPU might be scaled differently. So, use the arch
272  * per-CPU loops_per_jiffy value wherever possible.
273  */
274 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
275 {
276 #ifndef CONFIG_SMP
277 	static unsigned long l_p_j_ref;
278 	static unsigned int l_p_j_ref_freq;
279 
280 	if (ci->flags & CPUFREQ_CONST_LOOPS)
281 		return;
282 
283 	if (!l_p_j_ref_freq) {
284 		l_p_j_ref = loops_per_jiffy;
285 		l_p_j_ref_freq = ci->old;
286 		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
287 			 l_p_j_ref, l_p_j_ref_freq);
288 	}
289 	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
290 		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
291 								ci->new);
292 		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
293 			 loops_per_jiffy, ci->new);
294 	}
295 #endif
296 }
297 
298 /**
299  * cpufreq_notify_transition - Notify frequency transition and adjust jiffies.
300  * @policy: cpufreq policy to enable fast frequency switching for.
301  * @freqs: contain details of the frequency update.
302  * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
303  *
304  * This function calls the transition notifiers and adjust_jiffies().
305  *
306  * It is called twice on all CPU frequency changes that have external effects.
307  */
308 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
309 				      struct cpufreq_freqs *freqs,
310 				      unsigned int state)
311 {
312 	int cpu;
313 
314 	BUG_ON(irqs_disabled());
315 
316 	if (cpufreq_disabled())
317 		return;
318 
319 	freqs->policy = policy;
320 	freqs->flags = cpufreq_driver->flags;
321 	pr_debug("notification %u of frequency transition to %u kHz\n",
322 		 state, freqs->new);
323 
324 	switch (state) {
325 	case CPUFREQ_PRECHANGE:
326 		/*
327 		 * Detect if the driver reported a value as "old frequency"
328 		 * which is not equal to what the cpufreq core thinks is
329 		 * "old frequency".
330 		 */
331 		if (policy->cur && policy->cur != freqs->old) {
332 			pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
333 				 freqs->old, policy->cur);
334 			freqs->old = policy->cur;
335 		}
336 
337 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
338 					 CPUFREQ_PRECHANGE, freqs);
339 
340 		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
341 		break;
342 
343 	case CPUFREQ_POSTCHANGE:
344 		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
345 		pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
346 			 cpumask_pr_args(policy->cpus));
347 
348 		for_each_cpu(cpu, policy->cpus)
349 			trace_cpu_frequency(freqs->new, cpu);
350 
351 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
352 					 CPUFREQ_POSTCHANGE, freqs);
353 
354 		cpufreq_stats_record_transition(policy, freqs->new);
355 		policy->cur = freqs->new;
356 	}
357 }
358 
359 /* Do post notifications when there are chances that transition has failed */
360 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
361 		struct cpufreq_freqs *freqs, int transition_failed)
362 {
363 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
364 	if (!transition_failed)
365 		return;
366 
367 	swap(freqs->old, freqs->new);
368 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
369 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
370 }
371 
372 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
373 		struct cpufreq_freqs *freqs)
374 {
375 
376 	/*
377 	 * Catch double invocations of _begin() which lead to self-deadlock.
378 	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
379 	 * doesn't invoke _begin() on their behalf, and hence the chances of
380 	 * double invocations are very low. Moreover, there are scenarios
381 	 * where these checks can emit false-positive warnings in these
382 	 * drivers; so we avoid that by skipping them altogether.
383 	 */
384 	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
385 				&& current == policy->transition_task);
386 
387 wait:
388 	wait_event(policy->transition_wait, !policy->transition_ongoing);
389 
390 	spin_lock(&policy->transition_lock);
391 
392 	if (unlikely(policy->transition_ongoing)) {
393 		spin_unlock(&policy->transition_lock);
394 		goto wait;
395 	}
396 
397 	policy->transition_ongoing = true;
398 	policy->transition_task = current;
399 
400 	spin_unlock(&policy->transition_lock);
401 
402 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
403 }
404 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
405 
406 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
407 		struct cpufreq_freqs *freqs, int transition_failed)
408 {
409 	if (WARN_ON(!policy->transition_ongoing))
410 		return;
411 
412 	cpufreq_notify_post_transition(policy, freqs, transition_failed);
413 
414 	arch_set_freq_scale(policy->related_cpus,
415 			    policy->cur,
416 			    arch_scale_freq_ref(policy->cpu));
417 
418 	spin_lock(&policy->transition_lock);
419 	policy->transition_ongoing = false;
420 	policy->transition_task = NULL;
421 	spin_unlock(&policy->transition_lock);
422 
423 	wake_up(&policy->transition_wait);
424 }
425 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
426 
427 /*
428  * Fast frequency switching status count.  Positive means "enabled", negative
429  * means "disabled" and 0 means "not decided yet".
430  */
431 static int cpufreq_fast_switch_count;
432 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
433 
434 static void cpufreq_list_transition_notifiers(void)
435 {
436 	struct notifier_block *nb;
437 
438 	pr_info("Registered transition notifiers:\n");
439 
440 	mutex_lock(&cpufreq_transition_notifier_list.mutex);
441 
442 	for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
443 		pr_info("%pS\n", nb->notifier_call);
444 
445 	mutex_unlock(&cpufreq_transition_notifier_list.mutex);
446 }
447 
448 /**
449  * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
450  * @policy: cpufreq policy to enable fast frequency switching for.
451  *
452  * Try to enable fast frequency switching for @policy.
453  *
454  * The attempt will fail if there is at least one transition notifier registered
455  * at this point, as fast frequency switching is quite fundamentally at odds
456  * with transition notifiers.  Thus if successful, it will make registration of
457  * transition notifiers fail going forward.
458  */
459 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
460 {
461 	lockdep_assert_held(&policy->rwsem);
462 
463 	if (!policy->fast_switch_possible)
464 		return;
465 
466 	mutex_lock(&cpufreq_fast_switch_lock);
467 	if (cpufreq_fast_switch_count >= 0) {
468 		cpufreq_fast_switch_count++;
469 		policy->fast_switch_enabled = true;
470 	} else {
471 		pr_warn("CPU%u: Fast frequency switching not enabled\n",
472 			policy->cpu);
473 		cpufreq_list_transition_notifiers();
474 	}
475 	mutex_unlock(&cpufreq_fast_switch_lock);
476 }
477 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
478 
479 /**
480  * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
481  * @policy: cpufreq policy to disable fast frequency switching for.
482  */
483 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
484 {
485 	mutex_lock(&cpufreq_fast_switch_lock);
486 	if (policy->fast_switch_enabled) {
487 		policy->fast_switch_enabled = false;
488 		if (!WARN_ON(cpufreq_fast_switch_count <= 0))
489 			cpufreq_fast_switch_count--;
490 	}
491 	mutex_unlock(&cpufreq_fast_switch_lock);
492 }
493 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
494 
495 static unsigned int __resolve_freq(struct cpufreq_policy *policy,
496 				   unsigned int target_freq,
497 				   unsigned int min, unsigned int max,
498 				   unsigned int relation)
499 {
500 	unsigned int idx;
501 
502 	target_freq = clamp_val(target_freq, min, max);
503 
504 	if (!policy->freq_table)
505 		return target_freq;
506 
507 	idx = cpufreq_frequency_table_target(policy, target_freq, min, max, relation);
508 	policy->cached_resolved_idx = idx;
509 	policy->cached_target_freq = target_freq;
510 	return policy->freq_table[idx].frequency;
511 }
512 
513 /**
514  * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
515  * one.
516  * @policy: associated policy to interrogate
517  * @target_freq: target frequency to resolve.
518  *
519  * The target to driver frequency mapping is cached in the policy.
520  *
521  * Return: Lowest driver-supported frequency greater than or equal to the
522  * given target_freq, subject to policy (min/max) and driver limitations.
523  */
524 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
525 					 unsigned int target_freq)
526 {
527 	unsigned int min = READ_ONCE(policy->min);
528 	unsigned int max = READ_ONCE(policy->max);
529 
530 	/*
531 	 * If this function runs in parallel with cpufreq_set_policy(), it may
532 	 * read policy->min before the update and policy->max after the update
533 	 * or the other way around, so there is no ordering guarantee.
534 	 *
535 	 * Resolve this by always honoring the max (in case it comes from
536 	 * thermal throttling or similar).
537 	 */
538 	if (unlikely(min > max))
539 		min = max;
540 
541 	return __resolve_freq(policy, target_freq, min, max, CPUFREQ_RELATION_LE);
542 }
543 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
544 
545 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
546 {
547 	unsigned int latency;
548 
549 	if (policy->transition_delay_us)
550 		return policy->transition_delay_us;
551 
552 	latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
553 	if (latency)
554 		/* Give a 50% breathing room between updates */
555 		return latency + (latency >> 1);
556 
557 	return USEC_PER_MSEC;
558 }
559 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
560 
561 /*********************************************************************
562  *                          SYSFS INTERFACE                          *
563  *********************************************************************/
564 static ssize_t show_boost(struct kobject *kobj,
565 			  struct kobj_attribute *attr, char *buf)
566 {
567 	return sysfs_emit(buf, "%d\n", cpufreq_driver->boost_enabled);
568 }
569 
570 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
571 			   const char *buf, size_t count)
572 {
573 	bool enable;
574 
575 	if (kstrtobool(buf, &enable))
576 		return -EINVAL;
577 
578 	if (cpufreq_boost_trigger_state(enable)) {
579 		pr_err("%s: Cannot %s BOOST!\n",
580 		       __func__, str_enable_disable(enable));
581 		return -EINVAL;
582 	}
583 
584 	pr_debug("%s: cpufreq BOOST %s\n",
585 		 __func__, str_enabled_disabled(enable));
586 
587 	return count;
588 }
589 define_one_global_rw(boost);
590 
591 static ssize_t show_local_boost(struct cpufreq_policy *policy, char *buf)
592 {
593 	return sysfs_emit(buf, "%d\n", policy->boost_enabled);
594 }
595 
596 static int policy_set_boost(struct cpufreq_policy *policy, bool enable)
597 {
598 	int ret;
599 
600 	if (policy->boost_enabled == enable)
601 		return 0;
602 
603 	policy->boost_enabled = enable;
604 
605 	ret = cpufreq_driver->set_boost(policy, enable);
606 	if (ret)
607 		policy->boost_enabled = !policy->boost_enabled;
608 
609 	return ret;
610 }
611 
612 static ssize_t store_local_boost(struct cpufreq_policy *policy,
613 				 const char *buf, size_t count)
614 {
615 	int ret;
616 	bool enable;
617 
618 	if (kstrtobool(buf, &enable))
619 		return -EINVAL;
620 
621 	if (!cpufreq_driver->boost_enabled)
622 		return -EINVAL;
623 
624 	if (!policy->boost_supported)
625 		return -EINVAL;
626 
627 	ret = policy_set_boost(policy, enable);
628 	if (!ret)
629 		return count;
630 
631 	return ret;
632 }
633 
634 static struct freq_attr local_boost = __ATTR(boost, 0644, show_local_boost, store_local_boost);
635 
636 static struct cpufreq_governor *find_governor(const char *str_governor)
637 {
638 	struct cpufreq_governor *t;
639 
640 	for_each_governor(t)
641 		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
642 			return t;
643 
644 	return NULL;
645 }
646 
647 static struct cpufreq_governor *get_governor(const char *str_governor)
648 {
649 	struct cpufreq_governor *t;
650 
651 	mutex_lock(&cpufreq_governor_mutex);
652 	t = find_governor(str_governor);
653 	if (!t)
654 		goto unlock;
655 
656 	if (!try_module_get(t->owner))
657 		t = NULL;
658 
659 unlock:
660 	mutex_unlock(&cpufreq_governor_mutex);
661 
662 	return t;
663 }
664 
665 static unsigned int cpufreq_parse_policy(char *str_governor)
666 {
667 	if (!strncasecmp(str_governor, "performance", strlen("performance")))
668 		return CPUFREQ_POLICY_PERFORMANCE;
669 
670 	if (!strncasecmp(str_governor, "powersave", strlen("powersave")))
671 		return CPUFREQ_POLICY_POWERSAVE;
672 
673 	return CPUFREQ_POLICY_UNKNOWN;
674 }
675 
676 /**
677  * cpufreq_parse_governor - parse a governor string only for has_target()
678  * @str_governor: Governor name.
679  */
680 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
681 {
682 	struct cpufreq_governor *t;
683 
684 	t = get_governor(str_governor);
685 	if (t)
686 		return t;
687 
688 	if (request_module("cpufreq_%s", str_governor))
689 		return NULL;
690 
691 	return get_governor(str_governor);
692 }
693 
694 /*
695  * cpufreq_per_cpu_attr_read() / show_##file_name() -
696  * print out cpufreq information
697  *
698  * Write out information from cpufreq_driver->policy[cpu]; object must be
699  * "unsigned int".
700  */
701 
702 #define show_one(file_name, object)			\
703 static ssize_t show_##file_name				\
704 (struct cpufreq_policy *policy, char *buf)		\
705 {							\
706 	return sysfs_emit(buf, "%u\n", policy->object);	\
707 }
708 
709 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
710 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
711 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
712 show_one(scaling_min_freq, min);
713 show_one(scaling_max_freq, max);
714 
715 __weak int arch_freq_get_on_cpu(int cpu)
716 {
717 	return -EOPNOTSUPP;
718 }
719 
720 static inline bool cpufreq_avg_freq_supported(struct cpufreq_policy *policy)
721 {
722 	return arch_freq_get_on_cpu(policy->cpu) != -EOPNOTSUPP;
723 }
724 
725 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
726 {
727 	ssize_t ret;
728 	int freq;
729 
730 	freq = IS_ENABLED(CONFIG_CPUFREQ_ARCH_CUR_FREQ)
731 		? arch_freq_get_on_cpu(policy->cpu)
732 		: 0;
733 
734 	if (freq > 0)
735 		ret = sysfs_emit(buf, "%u\n", freq);
736 	else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
737 		ret = sysfs_emit(buf, "%u\n", cpufreq_driver->get(policy->cpu));
738 	else
739 		ret = sysfs_emit(buf, "%u\n", policy->cur);
740 	return ret;
741 }
742 
743 /*
744  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
745  */
746 #define store_one(file_name, object)			\
747 static ssize_t store_##file_name					\
748 (struct cpufreq_policy *policy, const char *buf, size_t count)		\
749 {									\
750 	unsigned long val;						\
751 	int ret;							\
752 									\
753 	ret = kstrtoul(buf, 0, &val);					\
754 	if (ret)							\
755 		return ret;						\
756 									\
757 	ret = freq_qos_update_request(policy->object##_freq_req, val);\
758 	return ret >= 0 ? count : ret;					\
759 }
760 
761 store_one(scaling_min_freq, min);
762 store_one(scaling_max_freq, max);
763 
764 /*
765  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
766  */
767 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
768 					char *buf)
769 {
770 	unsigned int cur_freq = __cpufreq_get(policy);
771 
772 	if (cur_freq)
773 		return sysfs_emit(buf, "%u\n", cur_freq);
774 
775 	return sysfs_emit(buf, "<unknown>\n");
776 }
777 
778 /*
779  * show_cpuinfo_avg_freq - average CPU frequency as detected by hardware
780  */
781 static ssize_t show_cpuinfo_avg_freq(struct cpufreq_policy *policy,
782 				     char *buf)
783 {
784 	int avg_freq = arch_freq_get_on_cpu(policy->cpu);
785 
786 	if (avg_freq > 0)
787 		return sysfs_emit(buf, "%u\n", avg_freq);
788 	return avg_freq != 0 ? avg_freq : -EINVAL;
789 }
790 
791 /*
792  * show_scaling_governor - show the current policy for the specified CPU
793  */
794 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
795 {
796 	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
797 		return sysfs_emit(buf, "powersave\n");
798 	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
799 		return sysfs_emit(buf, "performance\n");
800 	else if (policy->governor)
801 		return sysfs_emit(buf, "%s\n", policy->governor->name);
802 	return -EINVAL;
803 }
804 
805 /*
806  * store_scaling_governor - store policy for the specified CPU
807  */
808 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
809 					const char *buf, size_t count)
810 {
811 	char str_governor[CPUFREQ_NAME_LEN];
812 	int ret;
813 
814 	ret = sscanf(buf, "%15s", str_governor);
815 	if (ret != 1)
816 		return -EINVAL;
817 
818 	if (cpufreq_driver->setpolicy) {
819 		unsigned int new_pol;
820 
821 		new_pol = cpufreq_parse_policy(str_governor);
822 		if (!new_pol)
823 			return -EINVAL;
824 
825 		ret = cpufreq_set_policy(policy, NULL, new_pol);
826 	} else {
827 		struct cpufreq_governor *new_gov;
828 
829 		new_gov = cpufreq_parse_governor(str_governor);
830 		if (!new_gov)
831 			return -EINVAL;
832 
833 		ret = cpufreq_set_policy(policy, new_gov,
834 					 CPUFREQ_POLICY_UNKNOWN);
835 
836 		module_put(new_gov->owner);
837 	}
838 
839 	return ret ? ret : count;
840 }
841 
842 /*
843  * show_scaling_driver - show the cpufreq driver currently loaded
844  */
845 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
846 {
847 	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
848 }
849 
850 /*
851  * show_scaling_available_governors - show the available CPUfreq governors
852  */
853 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
854 						char *buf)
855 {
856 	ssize_t i = 0;
857 	struct cpufreq_governor *t;
858 
859 	if (!has_target()) {
860 		i += sysfs_emit(buf, "performance powersave");
861 		goto out;
862 	}
863 
864 	mutex_lock(&cpufreq_governor_mutex);
865 	for_each_governor(t) {
866 		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
867 		    - (CPUFREQ_NAME_LEN + 2)))
868 			break;
869 		i += sysfs_emit_at(buf, i, "%s ", t->name);
870 	}
871 	mutex_unlock(&cpufreq_governor_mutex);
872 out:
873 	i += sysfs_emit_at(buf, i, "\n");
874 	return i;
875 }
876 
877 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
878 {
879 	ssize_t i = 0;
880 	unsigned int cpu;
881 
882 	for_each_cpu(cpu, mask) {
883 		i += sysfs_emit_at(buf, i, "%u ", cpu);
884 		if (i >= (PAGE_SIZE - 5))
885 			break;
886 	}
887 
888 	/* Remove the extra space at the end */
889 	i--;
890 
891 	i += sysfs_emit_at(buf, i, "\n");
892 	return i;
893 }
894 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
895 
896 /*
897  * show_related_cpus - show the CPUs affected by each transition even if
898  * hw coordination is in use
899  */
900 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
901 {
902 	return cpufreq_show_cpus(policy->related_cpus, buf);
903 }
904 
905 /*
906  * show_affected_cpus - show the CPUs affected by each transition
907  */
908 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
909 {
910 	return cpufreq_show_cpus(policy->cpus, buf);
911 }
912 
913 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
914 					const char *buf, size_t count)
915 {
916 	unsigned int freq = 0;
917 	int ret;
918 
919 	if (!policy->governor || !policy->governor->store_setspeed)
920 		return -EINVAL;
921 
922 	ret = kstrtouint(buf, 0, &freq);
923 	if (ret)
924 		return ret;
925 
926 	policy->governor->store_setspeed(policy, freq);
927 
928 	return count;
929 }
930 
931 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
932 {
933 	if (!policy->governor || !policy->governor->show_setspeed)
934 		return sysfs_emit(buf, "<unsupported>\n");
935 
936 	return policy->governor->show_setspeed(policy, buf);
937 }
938 
939 /*
940  * show_bios_limit - show the current cpufreq HW/BIOS limitation
941  */
942 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
943 {
944 	unsigned int limit;
945 	int ret;
946 	ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
947 	if (!ret)
948 		return sysfs_emit(buf, "%u\n", limit);
949 	return sysfs_emit(buf, "%u\n", policy->cpuinfo.max_freq);
950 }
951 
952 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
953 cpufreq_freq_attr_ro(cpuinfo_avg_freq);
954 cpufreq_freq_attr_ro(cpuinfo_min_freq);
955 cpufreq_freq_attr_ro(cpuinfo_max_freq);
956 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
957 cpufreq_freq_attr_ro(scaling_available_governors);
958 cpufreq_freq_attr_ro(scaling_driver);
959 cpufreq_freq_attr_ro(scaling_cur_freq);
960 cpufreq_freq_attr_ro(bios_limit);
961 cpufreq_freq_attr_ro(related_cpus);
962 cpufreq_freq_attr_ro(affected_cpus);
963 cpufreq_freq_attr_rw(scaling_min_freq);
964 cpufreq_freq_attr_rw(scaling_max_freq);
965 cpufreq_freq_attr_rw(scaling_governor);
966 cpufreq_freq_attr_rw(scaling_setspeed);
967 
968 static struct attribute *cpufreq_attrs[] = {
969 	&cpuinfo_min_freq.attr,
970 	&cpuinfo_max_freq.attr,
971 	&cpuinfo_transition_latency.attr,
972 	&scaling_cur_freq.attr,
973 	&scaling_min_freq.attr,
974 	&scaling_max_freq.attr,
975 	&affected_cpus.attr,
976 	&related_cpus.attr,
977 	&scaling_governor.attr,
978 	&scaling_driver.attr,
979 	&scaling_available_governors.attr,
980 	&scaling_setspeed.attr,
981 	NULL
982 };
983 ATTRIBUTE_GROUPS(cpufreq);
984 
985 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
986 #define to_attr(a) container_of(a, struct freq_attr, attr)
987 
988 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
989 {
990 	struct cpufreq_policy *policy = to_policy(kobj);
991 	struct freq_attr *fattr = to_attr(attr);
992 
993 	if (!fattr->show)
994 		return -EIO;
995 
996 	guard(cpufreq_policy_read)(policy);
997 
998 	if (likely(!policy_is_inactive(policy)))
999 		return fattr->show(policy, buf);
1000 
1001 	return -EBUSY;
1002 }
1003 
1004 static ssize_t store(struct kobject *kobj, struct attribute *attr,
1005 		     const char *buf, size_t count)
1006 {
1007 	struct cpufreq_policy *policy = to_policy(kobj);
1008 	struct freq_attr *fattr = to_attr(attr);
1009 
1010 	if (!fattr->store)
1011 		return -EIO;
1012 
1013 	guard(cpufreq_policy_write)(policy);
1014 
1015 	if (likely(!policy_is_inactive(policy)))
1016 		return fattr->store(policy, buf, count);
1017 
1018 	return -EBUSY;
1019 }
1020 
1021 static void cpufreq_sysfs_release(struct kobject *kobj)
1022 {
1023 	struct cpufreq_policy *policy = to_policy(kobj);
1024 	pr_debug("last reference is dropped\n");
1025 	complete(&policy->kobj_unregister);
1026 }
1027 
1028 static const struct sysfs_ops sysfs_ops = {
1029 	.show	= show,
1030 	.store	= store,
1031 };
1032 
1033 static const struct kobj_type ktype_cpufreq = {
1034 	.sysfs_ops	= &sysfs_ops,
1035 	.default_groups	= cpufreq_groups,
1036 	.release	= cpufreq_sysfs_release,
1037 };
1038 
1039 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu,
1040 				struct device *dev)
1041 {
1042 	if (unlikely(!dev))
1043 		return;
1044 
1045 	if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1046 		return;
1047 
1048 	dev_dbg(dev, "%s: Adding symlink\n", __func__);
1049 	if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1050 		dev_err(dev, "cpufreq symlink creation failed\n");
1051 }
1052 
1053 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu,
1054 				   struct device *dev)
1055 {
1056 	dev_dbg(dev, "%s: Removing symlink\n", __func__);
1057 	sysfs_remove_link(&dev->kobj, "cpufreq");
1058 	cpumask_clear_cpu(cpu, policy->real_cpus);
1059 }
1060 
1061 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1062 {
1063 	struct freq_attr **drv_attr;
1064 	int ret = 0;
1065 
1066 	/* Attributes that need freq_table */
1067 	if (policy->freq_table) {
1068 		ret = sysfs_create_file(&policy->kobj,
1069 				&cpufreq_freq_attr_scaling_available_freqs.attr);
1070 		if (ret)
1071 			return ret;
1072 
1073 		if (cpufreq_boost_supported()) {
1074 			ret = sysfs_create_file(&policy->kobj,
1075 				&cpufreq_freq_attr_scaling_boost_freqs.attr);
1076 			if (ret)
1077 				return ret;
1078 		}
1079 	}
1080 
1081 	/* set up files for this cpu device */
1082 	drv_attr = cpufreq_driver->attr;
1083 	while (drv_attr && *drv_attr) {
1084 		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1085 		if (ret)
1086 			return ret;
1087 		drv_attr++;
1088 	}
1089 	if (cpufreq_driver->get) {
1090 		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1091 		if (ret)
1092 			return ret;
1093 	}
1094 
1095 	if (cpufreq_avg_freq_supported(policy)) {
1096 		ret = sysfs_create_file(&policy->kobj, &cpuinfo_avg_freq.attr);
1097 		if (ret)
1098 			return ret;
1099 	}
1100 
1101 	if (cpufreq_driver->bios_limit) {
1102 		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1103 		if (ret)
1104 			return ret;
1105 	}
1106 
1107 	if (cpufreq_boost_supported()) {
1108 		ret = sysfs_create_file(&policy->kobj, &local_boost.attr);
1109 		if (ret)
1110 			return ret;
1111 	}
1112 
1113 	return 0;
1114 }
1115 
1116 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1117 {
1118 	struct cpufreq_governor *gov = NULL;
1119 	unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1120 	int ret;
1121 
1122 	if (has_target()) {
1123 		/* Update policy governor to the one used before hotplug. */
1124 		if (policy->last_governor[0] != '\0')
1125 			gov = get_governor(policy->last_governor);
1126 		if (gov) {
1127 			pr_debug("Restoring governor %s for cpu %d\n",
1128 				 gov->name, policy->cpu);
1129 		} else {
1130 			gov = get_governor(default_governor);
1131 		}
1132 
1133 		if (!gov) {
1134 			gov = cpufreq_default_governor();
1135 			__module_get(gov->owner);
1136 		}
1137 
1138 	} else {
1139 
1140 		/* Use the default policy if there is no last_policy. */
1141 		if (policy->last_policy) {
1142 			pol = policy->last_policy;
1143 		} else {
1144 			pol = cpufreq_parse_policy(default_governor);
1145 			/*
1146 			 * In case the default governor is neither "performance"
1147 			 * nor "powersave", fall back to the initial policy
1148 			 * value set by the driver.
1149 			 */
1150 			if (pol == CPUFREQ_POLICY_UNKNOWN)
1151 				pol = policy->policy;
1152 		}
1153 		if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1154 		    pol != CPUFREQ_POLICY_POWERSAVE)
1155 			return -ENODATA;
1156 	}
1157 
1158 	ret = cpufreq_set_policy(policy, gov, pol);
1159 	if (gov)
1160 		module_put(gov->owner);
1161 
1162 	return ret;
1163 }
1164 
1165 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1166 {
1167 	int ret = 0;
1168 
1169 	/* Has this CPU been taken care of already? */
1170 	if (cpumask_test_cpu(cpu, policy->cpus))
1171 		return 0;
1172 
1173 	guard(cpufreq_policy_write)(policy);
1174 
1175 	if (has_target())
1176 		cpufreq_stop_governor(policy);
1177 
1178 	cpumask_set_cpu(cpu, policy->cpus);
1179 
1180 	if (has_target()) {
1181 		ret = cpufreq_start_governor(policy);
1182 		if (ret)
1183 			pr_err("%s: Failed to start governor\n", __func__);
1184 	}
1185 
1186 	return ret;
1187 }
1188 
1189 void refresh_frequency_limits(struct cpufreq_policy *policy)
1190 {
1191 	if (!policy_is_inactive(policy)) {
1192 		pr_debug("updating policy for CPU %u\n", policy->cpu);
1193 
1194 		cpufreq_set_policy(policy, policy->governor, policy->policy);
1195 	}
1196 }
1197 EXPORT_SYMBOL(refresh_frequency_limits);
1198 
1199 static void handle_update(struct work_struct *work)
1200 {
1201 	struct cpufreq_policy *policy =
1202 		container_of(work, struct cpufreq_policy, update);
1203 
1204 	pr_debug("handle_update for cpu %u called\n", policy->cpu);
1205 
1206 	guard(cpufreq_policy_write)(policy);
1207 
1208 	refresh_frequency_limits(policy);
1209 }
1210 
1211 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1212 				void *data)
1213 {
1214 	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1215 
1216 	schedule_work(&policy->update);
1217 	return 0;
1218 }
1219 
1220 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1221 				void *data)
1222 {
1223 	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1224 
1225 	schedule_work(&policy->update);
1226 	return 0;
1227 }
1228 
1229 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1230 {
1231 	struct kobject *kobj;
1232 	struct completion *cmp;
1233 
1234 	scoped_guard(cpufreq_policy_write, policy) {
1235 		cpufreq_stats_free_table(policy);
1236 		kobj = &policy->kobj;
1237 		cmp = &policy->kobj_unregister;
1238 	}
1239 	kobject_put(kobj);
1240 
1241 	/*
1242 	 * We need to make sure that the underlying kobj is
1243 	 * actually not referenced anymore by anybody before we
1244 	 * proceed with unloading.
1245 	 */
1246 	pr_debug("waiting for dropping of refcount\n");
1247 	wait_for_completion(cmp);
1248 	pr_debug("wait complete\n");
1249 }
1250 
1251 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1252 {
1253 	struct cpufreq_policy *policy;
1254 	struct device *dev = get_cpu_device(cpu);
1255 	int ret;
1256 
1257 	if (!dev)
1258 		return NULL;
1259 
1260 	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1261 	if (!policy)
1262 		return NULL;
1263 
1264 	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1265 		goto err_free_policy;
1266 
1267 	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1268 		goto err_free_cpumask;
1269 
1270 	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1271 		goto err_free_rcpumask;
1272 
1273 	init_completion(&policy->kobj_unregister);
1274 	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1275 				   cpufreq_global_kobject, "policy%u", cpu);
1276 	if (ret) {
1277 		dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1278 		/*
1279 		 * The entire policy object will be freed below, but the extra
1280 		 * memory allocated for the kobject name needs to be freed by
1281 		 * releasing the kobject.
1282 		 */
1283 		kobject_put(&policy->kobj);
1284 		goto err_free_real_cpus;
1285 	}
1286 
1287 	init_rwsem(&policy->rwsem);
1288 
1289 	freq_constraints_init(&policy->constraints);
1290 
1291 	policy->nb_min.notifier_call = cpufreq_notifier_min;
1292 	policy->nb_max.notifier_call = cpufreq_notifier_max;
1293 
1294 	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1295 				    &policy->nb_min);
1296 	if (ret) {
1297 		dev_err(dev, "Failed to register MIN QoS notifier: %d (CPU%u)\n",
1298 			ret, cpu);
1299 		goto err_kobj_remove;
1300 	}
1301 
1302 	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1303 				    &policy->nb_max);
1304 	if (ret) {
1305 		dev_err(dev, "Failed to register MAX QoS notifier: %d (CPU%u)\n",
1306 			ret, cpu);
1307 		goto err_min_qos_notifier;
1308 	}
1309 
1310 	INIT_LIST_HEAD(&policy->policy_list);
1311 	spin_lock_init(&policy->transition_lock);
1312 	init_waitqueue_head(&policy->transition_wait);
1313 	INIT_WORK(&policy->update, handle_update);
1314 
1315 	return policy;
1316 
1317 err_min_qos_notifier:
1318 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1319 				 &policy->nb_min);
1320 err_kobj_remove:
1321 	cpufreq_policy_put_kobj(policy);
1322 err_free_real_cpus:
1323 	free_cpumask_var(policy->real_cpus);
1324 err_free_rcpumask:
1325 	free_cpumask_var(policy->related_cpus);
1326 err_free_cpumask:
1327 	free_cpumask_var(policy->cpus);
1328 err_free_policy:
1329 	kfree(policy);
1330 
1331 	return NULL;
1332 }
1333 
1334 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1335 {
1336 	unsigned long flags;
1337 	int cpu;
1338 
1339 	/*
1340 	 * The callers must ensure the policy is inactive by now, to avoid any
1341 	 * races with show()/store() callbacks.
1342 	 */
1343 	if (unlikely(!policy_is_inactive(policy)))
1344 		pr_warn("%s: Freeing active policy\n", __func__);
1345 
1346 	/* Remove policy from list */
1347 	write_lock_irqsave(&cpufreq_driver_lock, flags);
1348 	list_del(&policy->policy_list);
1349 
1350 	for_each_cpu(cpu, policy->related_cpus)
1351 		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1352 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1353 
1354 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1355 				 &policy->nb_max);
1356 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1357 				 &policy->nb_min);
1358 
1359 	/* Cancel any pending policy->update work before freeing the policy. */
1360 	cancel_work_sync(&policy->update);
1361 
1362 	if (policy->max_freq_req) {
1363 		/*
1364 		 * Remove max_freq_req after sending CPUFREQ_REMOVE_POLICY
1365 		 * notification, since CPUFREQ_CREATE_POLICY notification was
1366 		 * sent after adding max_freq_req earlier.
1367 		 */
1368 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1369 					     CPUFREQ_REMOVE_POLICY, policy);
1370 		freq_qos_remove_request(policy->max_freq_req);
1371 	}
1372 
1373 	freq_qos_remove_request(policy->min_freq_req);
1374 	kfree(policy->min_freq_req);
1375 
1376 	cpufreq_policy_put_kobj(policy);
1377 	free_cpumask_var(policy->real_cpus);
1378 	free_cpumask_var(policy->related_cpus);
1379 	free_cpumask_var(policy->cpus);
1380 	kfree(policy);
1381 }
1382 
1383 static int cpufreq_policy_online(struct cpufreq_policy *policy,
1384 				 unsigned int cpu, bool new_policy)
1385 {
1386 	unsigned long flags;
1387 	unsigned int j;
1388 	int ret;
1389 
1390 	guard(cpufreq_policy_write)(policy);
1391 
1392 	policy->cpu = cpu;
1393 	policy->governor = NULL;
1394 
1395 	if (!new_policy && cpufreq_driver->online) {
1396 		/* Recover policy->cpus using related_cpus */
1397 		cpumask_copy(policy->cpus, policy->related_cpus);
1398 
1399 		ret = cpufreq_driver->online(policy);
1400 		if (ret) {
1401 			pr_debug("%s: %d: initialization failed\n", __func__,
1402 				 __LINE__);
1403 			goto out_exit_policy;
1404 		}
1405 	} else {
1406 		cpumask_copy(policy->cpus, cpumask_of(cpu));
1407 
1408 		/*
1409 		 * Call driver. From then on the cpufreq must be able
1410 		 * to accept all calls to ->verify and ->setpolicy for this CPU.
1411 		 */
1412 		ret = cpufreq_driver->init(policy);
1413 		if (ret) {
1414 			pr_debug("%s: %d: initialization failed\n", __func__,
1415 				 __LINE__);
1416 			goto out_clear_policy;
1417 		}
1418 
1419 		/*
1420 		 * The initialization has succeeded and the policy is online.
1421 		 * If there is a problem with its frequency table, take it
1422 		 * offline and drop it.
1423 		 */
1424 		if (policy->freq_table_sorted != CPUFREQ_TABLE_SORTED_ASCENDING &&
1425 		    policy->freq_table_sorted != CPUFREQ_TABLE_SORTED_DESCENDING) {
1426 			ret = cpufreq_table_validate_and_sort(policy);
1427 			if (ret)
1428 				goto out_offline_policy;
1429 		}
1430 
1431 		/* related_cpus should at least include policy->cpus. */
1432 		cpumask_copy(policy->related_cpus, policy->cpus);
1433 	}
1434 
1435 	/*
1436 	 * affected cpus must always be the one, which are online. We aren't
1437 	 * managing offline cpus here.
1438 	 */
1439 	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1440 
1441 	if (new_policy) {
1442 		for_each_cpu(j, policy->related_cpus) {
1443 			per_cpu(cpufreq_cpu_data, j) = policy;
1444 			add_cpu_dev_symlink(policy, j, get_cpu_device(j));
1445 		}
1446 
1447 		policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1448 					       GFP_KERNEL);
1449 		if (!policy->min_freq_req) {
1450 			ret = -ENOMEM;
1451 			goto out_destroy_policy;
1452 		}
1453 
1454 		ret = freq_qos_add_request(&policy->constraints,
1455 					   policy->min_freq_req, FREQ_QOS_MIN,
1456 					   FREQ_QOS_MIN_DEFAULT_VALUE);
1457 		if (ret < 0) {
1458 			/*
1459 			 * So we don't call freq_qos_remove_request() for an
1460 			 * uninitialized request.
1461 			 */
1462 			kfree(policy->min_freq_req);
1463 			policy->min_freq_req = NULL;
1464 			goto out_destroy_policy;
1465 		}
1466 
1467 		/*
1468 		 * This must be initialized right here to avoid calling
1469 		 * freq_qos_remove_request() on uninitialized request in case
1470 		 * of errors.
1471 		 */
1472 		policy->max_freq_req = policy->min_freq_req + 1;
1473 
1474 		ret = freq_qos_add_request(&policy->constraints,
1475 					   policy->max_freq_req, FREQ_QOS_MAX,
1476 					   FREQ_QOS_MAX_DEFAULT_VALUE);
1477 		if (ret < 0) {
1478 			policy->max_freq_req = NULL;
1479 			goto out_destroy_policy;
1480 		}
1481 
1482 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1483 				CPUFREQ_CREATE_POLICY, policy);
1484 	} else {
1485 		ret = freq_qos_update_request(policy->max_freq_req, policy->max);
1486 		if (ret < 0)
1487 			goto out_destroy_policy;
1488 	}
1489 
1490 	if (cpufreq_driver->get && has_target()) {
1491 		policy->cur = cpufreq_driver->get(policy->cpu);
1492 		if (!policy->cur) {
1493 			ret = -EIO;
1494 			pr_err("%s: ->get() failed\n", __func__);
1495 			goto out_destroy_policy;
1496 		}
1497 	}
1498 
1499 	/*
1500 	 * Sometimes boot loaders set CPU frequency to a value outside of
1501 	 * frequency table present with cpufreq core. In such cases CPU might be
1502 	 * unstable if it has to run on that frequency for long duration of time
1503 	 * and so its better to set it to a frequency which is specified in
1504 	 * freq-table. This also makes cpufreq stats inconsistent as
1505 	 * cpufreq-stats would fail to register because current frequency of CPU
1506 	 * isn't found in freq-table.
1507 	 *
1508 	 * Because we don't want this change to effect boot process badly, we go
1509 	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1510 	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1511 	 * is initialized to zero).
1512 	 *
1513 	 * We are passing target-freq as "policy->cur - 1" otherwise
1514 	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1515 	 * equal to target-freq.
1516 	 */
1517 	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1518 	    && has_target()) {
1519 		unsigned int old_freq = policy->cur;
1520 
1521 		/* Are we running at unknown frequency ? */
1522 		ret = cpufreq_frequency_table_get_index(policy, old_freq);
1523 		if (ret == -EINVAL) {
1524 			ret = __cpufreq_driver_target(policy, old_freq - 1,
1525 						      CPUFREQ_RELATION_L);
1526 
1527 			/*
1528 			 * Reaching here after boot in a few seconds may not
1529 			 * mean that system will remain stable at "unknown"
1530 			 * frequency for longer duration. Hence, a BUG_ON().
1531 			 */
1532 			BUG_ON(ret);
1533 			pr_info("%s: CPU%d: Running at unlisted initial frequency: %u kHz, changing to: %u kHz\n",
1534 				__func__, policy->cpu, old_freq, policy->cur);
1535 		}
1536 	}
1537 
1538 	if (new_policy) {
1539 		ret = cpufreq_add_dev_interface(policy);
1540 		if (ret)
1541 			goto out_destroy_policy;
1542 
1543 		cpufreq_stats_create_table(policy);
1544 
1545 		write_lock_irqsave(&cpufreq_driver_lock, flags);
1546 		list_add(&policy->policy_list, &cpufreq_policy_list);
1547 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1548 
1549 		/*
1550 		 * Register with the energy model before
1551 		 * em_rebuild_sched_domains() is called, which will result
1552 		 * in rebuilding of the sched domains, which should only be done
1553 		 * once the energy model is properly initialized for the policy
1554 		 * first.
1555 		 *
1556 		 * Also, this should be called before the policy is registered
1557 		 * with cooling framework.
1558 		 */
1559 		if (cpufreq_driver->register_em)
1560 			cpufreq_driver->register_em(policy);
1561 	}
1562 
1563 	ret = cpufreq_init_policy(policy);
1564 	if (ret) {
1565 		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1566 		       __func__, cpu, ret);
1567 		goto out_destroy_policy;
1568 	}
1569 
1570 	return 0;
1571 
1572 out_destroy_policy:
1573 	for_each_cpu(j, policy->real_cpus)
1574 		remove_cpu_dev_symlink(policy, j, get_cpu_device(j));
1575 
1576 out_offline_policy:
1577 	if (cpufreq_driver->offline)
1578 		cpufreq_driver->offline(policy);
1579 
1580 out_exit_policy:
1581 	if (cpufreq_driver->exit)
1582 		cpufreq_driver->exit(policy);
1583 
1584 out_clear_policy:
1585 	cpumask_clear(policy->cpus);
1586 
1587 	return ret;
1588 }
1589 
1590 static int cpufreq_online(unsigned int cpu)
1591 {
1592 	struct cpufreq_policy *policy;
1593 	bool new_policy;
1594 	int ret;
1595 
1596 	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1597 
1598 	/* Check if this CPU already has a policy to manage it */
1599 	policy = per_cpu(cpufreq_cpu_data, cpu);
1600 	if (policy) {
1601 		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1602 		if (!policy_is_inactive(policy))
1603 			return cpufreq_add_policy_cpu(policy, cpu);
1604 
1605 		/* This is the only online CPU for the policy.  Start over. */
1606 		new_policy = false;
1607 	} else {
1608 		new_policy = true;
1609 		policy = cpufreq_policy_alloc(cpu);
1610 		if (!policy)
1611 			return -ENOMEM;
1612 	}
1613 
1614 	ret = cpufreq_policy_online(policy, cpu, new_policy);
1615 	if (ret) {
1616 		cpufreq_policy_free(policy);
1617 		return ret;
1618 	}
1619 
1620 	kobject_uevent(&policy->kobj, KOBJ_ADD);
1621 
1622 	/* Callback for handling stuff after policy is ready */
1623 	if (cpufreq_driver->ready)
1624 		cpufreq_driver->ready(policy);
1625 
1626 	/* Register cpufreq cooling only for a new policy */
1627 	if (new_policy && cpufreq_thermal_control_enabled(cpufreq_driver))
1628 		policy->cdev = of_cpufreq_cooling_register(policy);
1629 
1630 	/*
1631 	 * Let the per-policy boost flag mirror the cpufreq_driver boost during
1632 	 * initialization for a new policy. For an existing policy, maintain the
1633 	 * previous boost value unless global boost is disabled.
1634 	 */
1635 	if (cpufreq_driver->set_boost && policy->boost_supported &&
1636 	    (new_policy || !cpufreq_boost_enabled())) {
1637 		ret = policy_set_boost(policy, cpufreq_boost_enabled());
1638 		if (ret) {
1639 			/* If the set_boost fails, the online operation is not affected */
1640 			pr_info("%s: CPU%d: Cannot %s BOOST\n", __func__, policy->cpu,
1641 				str_enable_disable(cpufreq_boost_enabled()));
1642 		}
1643 	}
1644 
1645 	pr_debug("initialization complete\n");
1646 
1647 	return 0;
1648 }
1649 
1650 /**
1651  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1652  * @dev: CPU device.
1653  * @sif: Subsystem interface structure pointer (not used)
1654  */
1655 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1656 {
1657 	struct cpufreq_policy *policy;
1658 	unsigned cpu = dev->id;
1659 	int ret;
1660 
1661 	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1662 
1663 	if (cpu_online(cpu)) {
1664 		ret = cpufreq_online(cpu);
1665 		if (ret)
1666 			return ret;
1667 	}
1668 
1669 	/* Create sysfs link on CPU registration */
1670 	policy = per_cpu(cpufreq_cpu_data, cpu);
1671 	if (policy)
1672 		add_cpu_dev_symlink(policy, cpu, dev);
1673 
1674 	return 0;
1675 }
1676 
1677 static void __cpufreq_offline(unsigned int cpu, struct cpufreq_policy *policy)
1678 {
1679 	int ret;
1680 
1681 	if (has_target())
1682 		cpufreq_stop_governor(policy);
1683 
1684 	cpumask_clear_cpu(cpu, policy->cpus);
1685 
1686 	if (!policy_is_inactive(policy)) {
1687 		/* Nominate a new CPU if necessary. */
1688 		if (cpu == policy->cpu)
1689 			policy->cpu = cpumask_any(policy->cpus);
1690 
1691 		/* Start the governor again for the active policy. */
1692 		if (has_target()) {
1693 			ret = cpufreq_start_governor(policy);
1694 			if (ret)
1695 				pr_err("%s: Failed to start governor\n", __func__);
1696 		}
1697 
1698 		return;
1699 	}
1700 
1701 	if (has_target()) {
1702 		strscpy(policy->last_governor, policy->governor->name,
1703 			CPUFREQ_NAME_LEN);
1704 		cpufreq_exit_governor(policy);
1705 	} else {
1706 		policy->last_policy = policy->policy;
1707 	}
1708 
1709 	/*
1710 	 * Perform the ->offline() during light-weight tear-down, as
1711 	 * that allows fast recovery when the CPU comes back.
1712 	 */
1713 	if (cpufreq_driver->offline) {
1714 		cpufreq_driver->offline(policy);
1715 		return;
1716 	}
1717 
1718 	if (cpufreq_driver->exit)
1719 		cpufreq_driver->exit(policy);
1720 
1721 	policy->freq_table = NULL;
1722 }
1723 
1724 static int cpufreq_offline(unsigned int cpu)
1725 {
1726 	struct cpufreq_policy *policy;
1727 
1728 	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1729 
1730 	policy = cpufreq_cpu_get_raw(cpu);
1731 	if (!policy) {
1732 		pr_debug("%s: No cpu_data found\n", __func__);
1733 		return 0;
1734 	}
1735 
1736 	guard(cpufreq_policy_write)(policy);
1737 
1738 	__cpufreq_offline(cpu, policy);
1739 
1740 	return 0;
1741 }
1742 
1743 /*
1744  * cpufreq_remove_dev - remove a CPU device
1745  *
1746  * Removes the cpufreq interface for a CPU device.
1747  */
1748 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1749 {
1750 	unsigned int cpu = dev->id;
1751 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1752 
1753 	if (!policy)
1754 		return;
1755 
1756 	scoped_guard(cpufreq_policy_write, policy) {
1757 		if (cpu_online(cpu))
1758 			__cpufreq_offline(cpu, policy);
1759 
1760 		remove_cpu_dev_symlink(policy, cpu, dev);
1761 
1762 		if (!cpumask_empty(policy->real_cpus))
1763 			return;
1764 
1765 		/*
1766 		 * Unregister cpufreq cooling once all the CPUs of the policy
1767 		 * are removed.
1768 		 */
1769 		if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1770 			cpufreq_cooling_unregister(policy->cdev);
1771 			policy->cdev = NULL;
1772 		}
1773 
1774 		/* We did light-weight exit earlier, do full tear down now */
1775 		if (cpufreq_driver->offline && cpufreq_driver->exit)
1776 			cpufreq_driver->exit(policy);
1777 	}
1778 
1779 	cpufreq_policy_free(policy);
1780 }
1781 
1782 /**
1783  * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference.
1784  * @policy: Policy managing CPUs.
1785  * @new_freq: New CPU frequency.
1786  *
1787  * Adjust to the current frequency first and clean up later by either calling
1788  * cpufreq_update_policy(), or scheduling handle_update().
1789  */
1790 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1791 				unsigned int new_freq)
1792 {
1793 	struct cpufreq_freqs freqs;
1794 
1795 	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1796 		 policy->cur, new_freq);
1797 
1798 	freqs.old = policy->cur;
1799 	freqs.new = new_freq;
1800 
1801 	cpufreq_freq_transition_begin(policy, &freqs);
1802 	cpufreq_freq_transition_end(policy, &freqs, 0);
1803 }
1804 
1805 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1806 {
1807 	unsigned int new_freq;
1808 
1809 	if (!cpufreq_driver->get)
1810 		return 0;
1811 
1812 	new_freq = cpufreq_driver->get(policy->cpu);
1813 	if (!new_freq)
1814 		return 0;
1815 
1816 	/*
1817 	 * If fast frequency switching is used with the given policy, the check
1818 	 * against policy->cur is pointless, so skip it in that case.
1819 	 */
1820 	if (policy->fast_switch_enabled || !has_target())
1821 		return new_freq;
1822 
1823 	if (policy->cur != new_freq) {
1824 		/*
1825 		 * For some platforms, the frequency returned by hardware may be
1826 		 * slightly different from what is provided in the frequency
1827 		 * table, for example hardware may return 499 MHz instead of 500
1828 		 * MHz. In such cases it is better to avoid getting into
1829 		 * unnecessary frequency updates.
1830 		 */
1831 		if (abs(policy->cur - new_freq) < KHZ_PER_MHZ)
1832 			return policy->cur;
1833 
1834 		cpufreq_out_of_sync(policy, new_freq);
1835 		if (update)
1836 			schedule_work(&policy->update);
1837 	}
1838 
1839 	return new_freq;
1840 }
1841 
1842 /**
1843  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1844  * @cpu: CPU number
1845  *
1846  * This is the last known freq, without actually getting it from the driver.
1847  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1848  */
1849 unsigned int cpufreq_quick_get(unsigned int cpu)
1850 {
1851 	unsigned long flags;
1852 
1853 	read_lock_irqsave(&cpufreq_driver_lock, flags);
1854 
1855 	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1856 		unsigned int ret_freq = cpufreq_driver->get(cpu);
1857 
1858 		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1859 
1860 		return ret_freq;
1861 	}
1862 
1863 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1864 
1865 	struct cpufreq_policy *policy __free(put_cpufreq_policy) = cpufreq_cpu_get(cpu);
1866 	if (policy)
1867 		return policy->cur;
1868 
1869 	return 0;
1870 }
1871 EXPORT_SYMBOL(cpufreq_quick_get);
1872 
1873 /**
1874  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1875  * @cpu: CPU number
1876  *
1877  * Just return the max possible frequency for a given CPU.
1878  */
1879 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1880 {
1881 	struct cpufreq_policy *policy __free(put_cpufreq_policy) = cpufreq_cpu_get(cpu);
1882 	if (policy)
1883 		return policy->max;
1884 
1885 	return 0;
1886 }
1887 EXPORT_SYMBOL(cpufreq_quick_get_max);
1888 
1889 /**
1890  * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1891  * @cpu: CPU number
1892  *
1893  * The default return value is the max_freq field of cpuinfo.
1894  */
1895 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1896 {
1897 	struct cpufreq_policy *policy __free(put_cpufreq_policy) = cpufreq_cpu_get(cpu);
1898 	if (policy)
1899 		return policy->cpuinfo.max_freq;
1900 
1901 	return 0;
1902 }
1903 EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1904 
1905 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1906 {
1907 	if (unlikely(policy_is_inactive(policy)))
1908 		return 0;
1909 
1910 	return cpufreq_verify_current_freq(policy, true);
1911 }
1912 
1913 /**
1914  * cpufreq_get - get the current CPU frequency (in kHz)
1915  * @cpu: CPU number
1916  *
1917  * Get the CPU current (static) CPU frequency
1918  */
1919 unsigned int cpufreq_get(unsigned int cpu)
1920 {
1921 	struct cpufreq_policy *policy __free(put_cpufreq_policy) = cpufreq_cpu_get(cpu);
1922 	if (!policy)
1923 		return 0;
1924 
1925 	guard(cpufreq_policy_read)(policy);
1926 
1927 	return __cpufreq_get(policy);
1928 }
1929 EXPORT_SYMBOL(cpufreq_get);
1930 
1931 static struct subsys_interface cpufreq_interface = {
1932 	.name		= "cpufreq",
1933 	.subsys		= &cpu_subsys,
1934 	.add_dev	= cpufreq_add_dev,
1935 	.remove_dev	= cpufreq_remove_dev,
1936 };
1937 
1938 /*
1939  * In case platform wants some specific frequency to be configured
1940  * during suspend..
1941  */
1942 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1943 {
1944 	int ret;
1945 
1946 	if (!policy->suspend_freq) {
1947 		pr_debug("%s: suspend_freq not defined\n", __func__);
1948 		return 0;
1949 	}
1950 
1951 	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1952 			policy->suspend_freq);
1953 
1954 	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1955 			CPUFREQ_RELATION_H);
1956 	if (ret)
1957 		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1958 				__func__, policy->suspend_freq, ret);
1959 
1960 	return ret;
1961 }
1962 EXPORT_SYMBOL(cpufreq_generic_suspend);
1963 
1964 /**
1965  * cpufreq_suspend() - Suspend CPUFreq governors.
1966  *
1967  * Called during system wide Suspend/Hibernate cycles for suspending governors
1968  * as some platforms can't change frequency after this point in suspend cycle.
1969  * Because some of the devices (like: i2c, regulators, etc) they use for
1970  * changing frequency are suspended quickly after this point.
1971  */
1972 void cpufreq_suspend(void)
1973 {
1974 	struct cpufreq_policy *policy;
1975 
1976 	if (!cpufreq_driver)
1977 		return;
1978 
1979 	if (!has_target() && !cpufreq_driver->suspend)
1980 		goto suspend;
1981 
1982 	pr_debug("%s: Suspending Governors\n", __func__);
1983 
1984 	for_each_active_policy(policy) {
1985 		if (has_target()) {
1986 			scoped_guard(cpufreq_policy_write, policy) {
1987 				cpufreq_stop_governor(policy);
1988 			}
1989 		}
1990 
1991 		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1992 			pr_err("%s: Failed to suspend driver: %s\n", __func__,
1993 				cpufreq_driver->name);
1994 	}
1995 
1996 suspend:
1997 	cpufreq_suspended = true;
1998 }
1999 
2000 /**
2001  * cpufreq_resume() - Resume CPUFreq governors.
2002  *
2003  * Called during system wide Suspend/Hibernate cycle for resuming governors that
2004  * are suspended with cpufreq_suspend().
2005  */
2006 void cpufreq_resume(void)
2007 {
2008 	struct cpufreq_policy *policy;
2009 	int ret;
2010 
2011 	if (!cpufreq_driver)
2012 		return;
2013 
2014 	if (unlikely(!cpufreq_suspended))
2015 		return;
2016 
2017 	cpufreq_suspended = false;
2018 
2019 	if (!has_target() && !cpufreq_driver->resume)
2020 		return;
2021 
2022 	pr_debug("%s: Resuming Governors\n", __func__);
2023 
2024 	for_each_active_policy(policy) {
2025 		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
2026 			pr_err("%s: Failed to resume driver: %s\n", __func__,
2027 				cpufreq_driver->name);
2028 		} else if (has_target()) {
2029 			scoped_guard(cpufreq_policy_write, policy) {
2030 				ret = cpufreq_start_governor(policy);
2031 			}
2032 
2033 			if (ret)
2034 				pr_err("%s: Failed to start governor for CPU%u's policy\n",
2035 				       __func__, policy->cpu);
2036 		}
2037 	}
2038 }
2039 
2040 /**
2041  * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones.
2042  * @flags: Flags to test against the current cpufreq driver's flags.
2043  *
2044  * Assumes that the driver is there, so callers must ensure that this is the
2045  * case.
2046  */
2047 bool cpufreq_driver_test_flags(u16 flags)
2048 {
2049 	return !!(cpufreq_driver->flags & flags);
2050 }
2051 
2052 /**
2053  * cpufreq_get_current_driver - Return the current driver's name.
2054  *
2055  * Return the name string of the currently registered cpufreq driver or NULL if
2056  * none.
2057  */
2058 const char *cpufreq_get_current_driver(void)
2059 {
2060 	if (cpufreq_driver)
2061 		return cpufreq_driver->name;
2062 
2063 	return NULL;
2064 }
2065 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
2066 
2067 /**
2068  * cpufreq_get_driver_data - Return current driver data.
2069  *
2070  * Return the private data of the currently registered cpufreq driver, or NULL
2071  * if no cpufreq driver has been registered.
2072  */
2073 void *cpufreq_get_driver_data(void)
2074 {
2075 	if (cpufreq_driver)
2076 		return cpufreq_driver->driver_data;
2077 
2078 	return NULL;
2079 }
2080 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
2081 
2082 /*********************************************************************
2083  *                     NOTIFIER LISTS INTERFACE                      *
2084  *********************************************************************/
2085 
2086 /**
2087  * cpufreq_register_notifier - Register a notifier with cpufreq.
2088  * @nb: notifier function to register.
2089  * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2090  *
2091  * Add a notifier to one of two lists: either a list of notifiers that run on
2092  * clock rate changes (once before and once after every transition), or a list
2093  * of notifiers that ron on cpufreq policy changes.
2094  *
2095  * This function may sleep and it has the same return values as
2096  * blocking_notifier_chain_register().
2097  */
2098 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
2099 {
2100 	int ret;
2101 
2102 	if (cpufreq_disabled())
2103 		return -EINVAL;
2104 
2105 	switch (list) {
2106 	case CPUFREQ_TRANSITION_NOTIFIER:
2107 		mutex_lock(&cpufreq_fast_switch_lock);
2108 
2109 		if (cpufreq_fast_switch_count > 0) {
2110 			mutex_unlock(&cpufreq_fast_switch_lock);
2111 			return -EBUSY;
2112 		}
2113 		ret = srcu_notifier_chain_register(
2114 				&cpufreq_transition_notifier_list, nb);
2115 		if (!ret)
2116 			cpufreq_fast_switch_count--;
2117 
2118 		mutex_unlock(&cpufreq_fast_switch_lock);
2119 		break;
2120 	case CPUFREQ_POLICY_NOTIFIER:
2121 		ret = blocking_notifier_chain_register(
2122 				&cpufreq_policy_notifier_list, nb);
2123 		break;
2124 	default:
2125 		ret = -EINVAL;
2126 	}
2127 
2128 	return ret;
2129 }
2130 EXPORT_SYMBOL(cpufreq_register_notifier);
2131 
2132 /**
2133  * cpufreq_unregister_notifier - Unregister a notifier from cpufreq.
2134  * @nb: notifier block to be unregistered.
2135  * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2136  *
2137  * Remove a notifier from one of the cpufreq notifier lists.
2138  *
2139  * This function may sleep and it has the same return values as
2140  * blocking_notifier_chain_unregister().
2141  */
2142 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2143 {
2144 	int ret;
2145 
2146 	if (cpufreq_disabled())
2147 		return -EINVAL;
2148 
2149 	switch (list) {
2150 	case CPUFREQ_TRANSITION_NOTIFIER:
2151 		mutex_lock(&cpufreq_fast_switch_lock);
2152 
2153 		ret = srcu_notifier_chain_unregister(
2154 				&cpufreq_transition_notifier_list, nb);
2155 		if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2156 			cpufreq_fast_switch_count++;
2157 
2158 		mutex_unlock(&cpufreq_fast_switch_lock);
2159 		break;
2160 	case CPUFREQ_POLICY_NOTIFIER:
2161 		ret = blocking_notifier_chain_unregister(
2162 				&cpufreq_policy_notifier_list, nb);
2163 		break;
2164 	default:
2165 		ret = -EINVAL;
2166 	}
2167 
2168 	return ret;
2169 }
2170 EXPORT_SYMBOL(cpufreq_unregister_notifier);
2171 
2172 
2173 /*********************************************************************
2174  *                              GOVERNORS                            *
2175  *********************************************************************/
2176 
2177 /**
2178  * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2179  * @policy: cpufreq policy to switch the frequency for.
2180  * @target_freq: New frequency to set (may be approximate).
2181  *
2182  * Carry out a fast frequency switch without sleeping.
2183  *
2184  * The driver's ->fast_switch() callback invoked by this function must be
2185  * suitable for being called from within RCU-sched read-side critical sections
2186  * and it is expected to select the minimum available frequency greater than or
2187  * equal to @target_freq (CPUFREQ_RELATION_L).
2188  *
2189  * This function must not be called if policy->fast_switch_enabled is unset.
2190  *
2191  * Governors calling this function must guarantee that it will never be invoked
2192  * twice in parallel for the same policy and that it will never be called in
2193  * parallel with either ->target() or ->target_index() for the same policy.
2194  *
2195  * Returns the actual frequency set for the CPU.
2196  *
2197  * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2198  * error condition, the hardware configuration must be preserved.
2199  */
2200 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2201 					unsigned int target_freq)
2202 {
2203 	unsigned int freq;
2204 	int cpu;
2205 
2206 	target_freq = clamp_val(target_freq, policy->min, policy->max);
2207 	freq = cpufreq_driver->fast_switch(policy, target_freq);
2208 
2209 	if (!freq)
2210 		return 0;
2211 
2212 	policy->cur = freq;
2213 	arch_set_freq_scale(policy->related_cpus, freq,
2214 			    arch_scale_freq_ref(policy->cpu));
2215 	cpufreq_stats_record_transition(policy, freq);
2216 
2217 	if (trace_cpu_frequency_enabled()) {
2218 		for_each_cpu(cpu, policy->cpus)
2219 			trace_cpu_frequency(freq, cpu);
2220 	}
2221 
2222 	return freq;
2223 }
2224 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2225 
2226 /**
2227  * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go.
2228  * @cpu: Target CPU.
2229  * @min_perf: Minimum (required) performance level (units of @capacity).
2230  * @target_perf: Target (desired) performance level (units of @capacity).
2231  * @capacity: Capacity of the target CPU.
2232  *
2233  * Carry out a fast performance level switch of @cpu without sleeping.
2234  *
2235  * The driver's ->adjust_perf() callback invoked by this function must be
2236  * suitable for being called from within RCU-sched read-side critical sections
2237  * and it is expected to select a suitable performance level equal to or above
2238  * @min_perf and preferably equal to or below @target_perf.
2239  *
2240  * This function must not be called if policy->fast_switch_enabled is unset.
2241  *
2242  * Governors calling this function must guarantee that it will never be invoked
2243  * twice in parallel for the same CPU and that it will never be called in
2244  * parallel with either ->target() or ->target_index() or ->fast_switch() for
2245  * the same CPU.
2246  */
2247 void cpufreq_driver_adjust_perf(unsigned int cpu,
2248 				 unsigned long min_perf,
2249 				 unsigned long target_perf,
2250 				 unsigned long capacity)
2251 {
2252 	cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity);
2253 }
2254 
2255 /**
2256  * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback.
2257  *
2258  * Return 'true' if the ->adjust_perf callback is present for the
2259  * current driver or 'false' otherwise.
2260  */
2261 bool cpufreq_driver_has_adjust_perf(void)
2262 {
2263 	return !!cpufreq_driver->adjust_perf;
2264 }
2265 
2266 /* Must set freqs->new to intermediate frequency */
2267 static int __target_intermediate(struct cpufreq_policy *policy,
2268 				 struct cpufreq_freqs *freqs, int index)
2269 {
2270 	int ret;
2271 
2272 	freqs->new = cpufreq_driver->get_intermediate(policy, index);
2273 
2274 	/* We don't need to switch to intermediate freq */
2275 	if (!freqs->new)
2276 		return 0;
2277 
2278 	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2279 		 __func__, policy->cpu, freqs->old, freqs->new);
2280 
2281 	cpufreq_freq_transition_begin(policy, freqs);
2282 	ret = cpufreq_driver->target_intermediate(policy, index);
2283 	cpufreq_freq_transition_end(policy, freqs, ret);
2284 
2285 	if (ret)
2286 		pr_err("%s: Failed to change to intermediate frequency: %d\n",
2287 		       __func__, ret);
2288 
2289 	return ret;
2290 }
2291 
2292 static int __target_index(struct cpufreq_policy *policy, int index)
2293 {
2294 	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2295 	unsigned int restore_freq, intermediate_freq = 0;
2296 	unsigned int newfreq = policy->freq_table[index].frequency;
2297 	int retval = -EINVAL;
2298 	bool notify;
2299 
2300 	if (newfreq == policy->cur)
2301 		return 0;
2302 
2303 	/* Save last value to restore later on errors */
2304 	restore_freq = policy->cur;
2305 
2306 	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2307 	if (notify) {
2308 		/* Handle switching to intermediate frequency */
2309 		if (cpufreq_driver->get_intermediate) {
2310 			retval = __target_intermediate(policy, &freqs, index);
2311 			if (retval)
2312 				return retval;
2313 
2314 			intermediate_freq = freqs.new;
2315 			/* Set old freq to intermediate */
2316 			if (intermediate_freq)
2317 				freqs.old = freqs.new;
2318 		}
2319 
2320 		freqs.new = newfreq;
2321 		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2322 			 __func__, policy->cpu, freqs.old, freqs.new);
2323 
2324 		cpufreq_freq_transition_begin(policy, &freqs);
2325 	}
2326 
2327 	retval = cpufreq_driver->target_index(policy, index);
2328 	if (retval)
2329 		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2330 		       retval);
2331 
2332 	if (notify) {
2333 		cpufreq_freq_transition_end(policy, &freqs, retval);
2334 
2335 		/*
2336 		 * Failed after setting to intermediate freq? Driver should have
2337 		 * reverted back to initial frequency and so should we. Check
2338 		 * here for intermediate_freq instead of get_intermediate, in
2339 		 * case we haven't switched to intermediate freq at all.
2340 		 */
2341 		if (unlikely(retval && intermediate_freq)) {
2342 			freqs.old = intermediate_freq;
2343 			freqs.new = restore_freq;
2344 			cpufreq_freq_transition_begin(policy, &freqs);
2345 			cpufreq_freq_transition_end(policy, &freqs, 0);
2346 		}
2347 	}
2348 
2349 	return retval;
2350 }
2351 
2352 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2353 			    unsigned int target_freq,
2354 			    unsigned int relation)
2355 {
2356 	unsigned int old_target_freq = target_freq;
2357 
2358 	if (cpufreq_disabled())
2359 		return -ENODEV;
2360 
2361 	target_freq = __resolve_freq(policy, target_freq, policy->min,
2362 				     policy->max, relation);
2363 
2364 	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2365 		 policy->cpu, target_freq, relation, old_target_freq);
2366 
2367 	/*
2368 	 * This might look like a redundant call as we are checking it again
2369 	 * after finding index. But it is left intentionally for cases where
2370 	 * exactly same freq is called again and so we can save on few function
2371 	 * calls.
2372 	 */
2373 	if (target_freq == policy->cur &&
2374 	    !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS))
2375 		return 0;
2376 
2377 	if (cpufreq_driver->target) {
2378 		/*
2379 		 * If the driver hasn't setup a single inefficient frequency,
2380 		 * it's unlikely it knows how to decode CPUFREQ_RELATION_E.
2381 		 */
2382 		if (!policy->efficiencies_available)
2383 			relation &= ~CPUFREQ_RELATION_E;
2384 
2385 		return cpufreq_driver->target(policy, target_freq, relation);
2386 	}
2387 
2388 	if (!cpufreq_driver->target_index)
2389 		return -EINVAL;
2390 
2391 	return __target_index(policy, policy->cached_resolved_idx);
2392 }
2393 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2394 
2395 int cpufreq_driver_target(struct cpufreq_policy *policy,
2396 			  unsigned int target_freq,
2397 			  unsigned int relation)
2398 {
2399 	guard(cpufreq_policy_write)(policy);
2400 
2401 	return __cpufreq_driver_target(policy, target_freq, relation);
2402 }
2403 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2404 
2405 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2406 {
2407 	return NULL;
2408 }
2409 
2410 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2411 {
2412 	int ret;
2413 
2414 	/* Don't start any governor operations if we are entering suspend */
2415 	if (cpufreq_suspended)
2416 		return 0;
2417 	/*
2418 	 * Governor might not be initiated here if ACPI _PPC changed
2419 	 * notification happened, so check it.
2420 	 */
2421 	if (!policy->governor)
2422 		return -EINVAL;
2423 
2424 	/* Platform doesn't want dynamic frequency switching ? */
2425 	if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING &&
2426 	    cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2427 		struct cpufreq_governor *gov = cpufreq_fallback_governor();
2428 
2429 		if (gov) {
2430 			pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2431 				policy->governor->name, gov->name);
2432 			policy->governor = gov;
2433 		} else {
2434 			return -EINVAL;
2435 		}
2436 	}
2437 
2438 	if (!try_module_get(policy->governor->owner))
2439 		return -EINVAL;
2440 
2441 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2442 
2443 	if (policy->governor->init) {
2444 		ret = policy->governor->init(policy);
2445 		if (ret) {
2446 			module_put(policy->governor->owner);
2447 			return ret;
2448 		}
2449 	}
2450 
2451 	policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET);
2452 
2453 	return 0;
2454 }
2455 
2456 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2457 {
2458 	if (cpufreq_suspended || !policy->governor)
2459 		return;
2460 
2461 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2462 
2463 	if (policy->governor->exit)
2464 		policy->governor->exit(policy);
2465 
2466 	module_put(policy->governor->owner);
2467 }
2468 
2469 int cpufreq_start_governor(struct cpufreq_policy *policy)
2470 {
2471 	int ret;
2472 
2473 	if (cpufreq_suspended)
2474 		return 0;
2475 
2476 	if (!policy->governor)
2477 		return -EINVAL;
2478 
2479 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2480 
2481 	cpufreq_verify_current_freq(policy, false);
2482 
2483 	if (policy->governor->start) {
2484 		ret = policy->governor->start(policy);
2485 		if (ret)
2486 			return ret;
2487 	}
2488 
2489 	if (policy->governor->limits)
2490 		policy->governor->limits(policy);
2491 
2492 	return 0;
2493 }
2494 
2495 void cpufreq_stop_governor(struct cpufreq_policy *policy)
2496 {
2497 	if (cpufreq_suspended || !policy->governor)
2498 		return;
2499 
2500 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2501 
2502 	if (policy->governor->stop)
2503 		policy->governor->stop(policy);
2504 }
2505 
2506 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2507 {
2508 	if (cpufreq_suspended || !policy->governor)
2509 		return;
2510 
2511 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2512 
2513 	if (policy->governor->limits)
2514 		policy->governor->limits(policy);
2515 }
2516 
2517 int cpufreq_register_governor(struct cpufreq_governor *governor)
2518 {
2519 	int err;
2520 
2521 	if (!governor)
2522 		return -EINVAL;
2523 
2524 	if (cpufreq_disabled())
2525 		return -ENODEV;
2526 
2527 	mutex_lock(&cpufreq_governor_mutex);
2528 
2529 	err = -EBUSY;
2530 	if (!find_governor(governor->name)) {
2531 		err = 0;
2532 		list_add(&governor->governor_list, &cpufreq_governor_list);
2533 	}
2534 
2535 	mutex_unlock(&cpufreq_governor_mutex);
2536 	return err;
2537 }
2538 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2539 
2540 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2541 {
2542 	struct cpufreq_policy *policy;
2543 	unsigned long flags;
2544 
2545 	if (!governor)
2546 		return;
2547 
2548 	if (cpufreq_disabled())
2549 		return;
2550 
2551 	/* clear last_governor for all inactive policies */
2552 	read_lock_irqsave(&cpufreq_driver_lock, flags);
2553 	for_each_inactive_policy(policy) {
2554 		if (!strcmp(policy->last_governor, governor->name)) {
2555 			policy->governor = NULL;
2556 			policy->last_governor[0] = '\0';
2557 		}
2558 	}
2559 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2560 
2561 	mutex_lock(&cpufreq_governor_mutex);
2562 	list_del(&governor->governor_list);
2563 	mutex_unlock(&cpufreq_governor_mutex);
2564 }
2565 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2566 
2567 
2568 /*********************************************************************
2569  *                          POLICY INTERFACE                         *
2570  *********************************************************************/
2571 
2572 DEFINE_PER_CPU(unsigned long, cpufreq_pressure);
2573 
2574 /**
2575  * cpufreq_update_pressure() - Update cpufreq pressure for CPUs
2576  * @policy: cpufreq policy of the CPUs.
2577  *
2578  * Update the value of cpufreq pressure for all @cpus in the policy.
2579  */
2580 static void cpufreq_update_pressure(struct cpufreq_policy *policy)
2581 {
2582 	unsigned long max_capacity, capped_freq, pressure;
2583 	u32 max_freq;
2584 	int cpu;
2585 
2586 	cpu = cpumask_first(policy->related_cpus);
2587 	max_freq = arch_scale_freq_ref(cpu);
2588 	capped_freq = policy->max;
2589 
2590 	/*
2591 	 * Handle properly the boost frequencies, which should simply clean
2592 	 * the cpufreq pressure value.
2593 	 */
2594 	if (max_freq <= capped_freq) {
2595 		pressure = 0;
2596 	} else {
2597 		max_capacity = arch_scale_cpu_capacity(cpu);
2598 		pressure = max_capacity -
2599 			   mult_frac(max_capacity, capped_freq, max_freq);
2600 	}
2601 
2602 	for_each_cpu(cpu, policy->related_cpus)
2603 		WRITE_ONCE(per_cpu(cpufreq_pressure, cpu), pressure);
2604 }
2605 
2606 /**
2607  * cpufreq_set_policy - Modify cpufreq policy parameters.
2608  * @policy: Policy object to modify.
2609  * @new_gov: Policy governor pointer.
2610  * @new_pol: Policy value (for drivers with built-in governors).
2611  *
2612  * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2613  * limits to be set for the policy, update @policy with the verified limits
2614  * values and either invoke the driver's ->setpolicy() callback (if present) or
2615  * carry out a governor update for @policy.  That is, run the current governor's
2616  * ->limits() callback (if @new_gov points to the same object as the one in
2617  * @policy) or replace the governor for @policy with @new_gov.
2618  *
2619  * The cpuinfo part of @policy is not updated by this function.
2620  */
2621 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2622 			      struct cpufreq_governor *new_gov,
2623 			      unsigned int new_pol)
2624 {
2625 	struct cpufreq_policy_data new_data;
2626 	struct cpufreq_governor *old_gov;
2627 	int ret;
2628 
2629 	memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2630 	new_data.freq_table = policy->freq_table;
2631 	new_data.cpu = policy->cpu;
2632 	/*
2633 	 * PM QoS framework collects all the requests from users and provide us
2634 	 * the final aggregated value here.
2635 	 */
2636 	new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2637 	new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2638 
2639 	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2640 		 new_data.cpu, new_data.min, new_data.max);
2641 
2642 	/*
2643 	 * Verify that the CPU speed can be set within these limits and make sure
2644 	 * that min <= max.
2645 	 */
2646 	ret = cpufreq_driver->verify(&new_data);
2647 	if (ret)
2648 		return ret;
2649 
2650 	/*
2651 	 * Resolve policy min/max to available frequencies. It ensures
2652 	 * no frequency resolution will neither overshoot the requested maximum
2653 	 * nor undershoot the requested minimum.
2654 	 *
2655 	 * Avoid storing intermediate values in policy->max or policy->min and
2656 	 * compiler optimizations around them because they may be accessed
2657 	 * concurrently by cpufreq_driver_resolve_freq() during the update.
2658 	 */
2659 	WRITE_ONCE(policy->max, __resolve_freq(policy, new_data.max,
2660 					       new_data.min, new_data.max,
2661 					       CPUFREQ_RELATION_H));
2662 	new_data.min = __resolve_freq(policy, new_data.min, new_data.min,
2663 				      new_data.max, CPUFREQ_RELATION_L);
2664 	WRITE_ONCE(policy->min, new_data.min > policy->max ? policy->max : new_data.min);
2665 
2666 	trace_cpu_frequency_limits(policy);
2667 
2668 	cpufreq_update_pressure(policy);
2669 
2670 	policy->cached_target_freq = UINT_MAX;
2671 
2672 	pr_debug("new min and max freqs are %u - %u kHz\n",
2673 		 policy->min, policy->max);
2674 
2675 	if (cpufreq_driver->setpolicy) {
2676 		policy->policy = new_pol;
2677 		pr_debug("setting range\n");
2678 		return cpufreq_driver->setpolicy(policy);
2679 	}
2680 
2681 	if (new_gov == policy->governor) {
2682 		pr_debug("governor limits update\n");
2683 		cpufreq_governor_limits(policy);
2684 		return 0;
2685 	}
2686 
2687 	pr_debug("governor switch\n");
2688 
2689 	/* save old, working values */
2690 	old_gov = policy->governor;
2691 	/* end old governor */
2692 	if (old_gov) {
2693 		cpufreq_stop_governor(policy);
2694 		cpufreq_exit_governor(policy);
2695 	}
2696 
2697 	/* start new governor */
2698 	policy->governor = new_gov;
2699 	ret = cpufreq_init_governor(policy);
2700 	if (!ret) {
2701 		ret = cpufreq_start_governor(policy);
2702 		if (!ret) {
2703 			pr_debug("governor change\n");
2704 			return 0;
2705 		}
2706 		cpufreq_exit_governor(policy);
2707 	}
2708 
2709 	/* new governor failed, so re-start old one */
2710 	pr_debug("starting governor %s failed\n", policy->governor->name);
2711 	if (old_gov) {
2712 		policy->governor = old_gov;
2713 		if (cpufreq_init_governor(policy)) {
2714 			policy->governor = NULL;
2715 		} else if (cpufreq_start_governor(policy)) {
2716 			cpufreq_exit_governor(policy);
2717 			policy->governor = NULL;
2718 		}
2719 	}
2720 
2721 	return ret;
2722 }
2723 
2724 static void cpufreq_policy_refresh(struct cpufreq_policy *policy)
2725 {
2726 	guard(cpufreq_policy_write)(policy);
2727 
2728 	/*
2729 	 * BIOS might change freq behind our back
2730 	 * -> ask driver for current freq and notify governors about a change
2731 	 */
2732 	if (cpufreq_driver->get && has_target() &&
2733 	    (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2734 		return;
2735 
2736 	refresh_frequency_limits(policy);
2737 }
2738 
2739 /**
2740  * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2741  * @cpu: CPU to re-evaluate the policy for.
2742  *
2743  * Update the current frequency for the cpufreq policy of @cpu and use
2744  * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2745  * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2746  * for the policy in question, among other things.
2747  */
2748 void cpufreq_update_policy(unsigned int cpu)
2749 {
2750 	struct cpufreq_policy *policy __free(put_cpufreq_policy) = cpufreq_cpu_get(cpu);
2751 	if (!policy)
2752 		return;
2753 
2754 	cpufreq_policy_refresh(policy);
2755 }
2756 EXPORT_SYMBOL(cpufreq_update_policy);
2757 
2758 /**
2759  * cpufreq_update_limits - Update policy limits for a given CPU.
2760  * @cpu: CPU to update the policy limits for.
2761  *
2762  * Invoke the driver's ->update_limits callback if present or call
2763  * cpufreq_policy_refresh() for @cpu.
2764  */
2765 void cpufreq_update_limits(unsigned int cpu)
2766 {
2767 	struct cpufreq_policy *policy __free(put_cpufreq_policy) = cpufreq_cpu_get(cpu);
2768 	if (!policy)
2769 		return;
2770 
2771 	if (cpufreq_driver->update_limits)
2772 		cpufreq_driver->update_limits(policy);
2773 	else
2774 		cpufreq_policy_refresh(policy);
2775 }
2776 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2777 
2778 /*********************************************************************
2779  *               BOOST						     *
2780  *********************************************************************/
2781 int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2782 {
2783 	int ret;
2784 
2785 	if (!policy->freq_table)
2786 		return -ENXIO;
2787 
2788 	ret = cpufreq_frequency_table_cpuinfo(policy);
2789 	if (ret) {
2790 		pr_err("%s: Policy frequency update failed\n", __func__);
2791 		return ret;
2792 	}
2793 
2794 	ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2795 	if (ret < 0)
2796 		return ret;
2797 
2798 	return 0;
2799 }
2800 EXPORT_SYMBOL_GPL(cpufreq_boost_set_sw);
2801 
2802 static int cpufreq_boost_trigger_state(int state)
2803 {
2804 	struct cpufreq_policy *policy;
2805 	unsigned long flags;
2806 	int ret = 0;
2807 
2808 	/*
2809 	 * Don't compare 'cpufreq_driver->boost_enabled' with 'state' here to
2810 	 * make sure all policies are in sync with global boost flag.
2811 	 */
2812 
2813 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2814 	cpufreq_driver->boost_enabled = state;
2815 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2816 
2817 	cpus_read_lock();
2818 	for_each_active_policy(policy) {
2819 		if (!policy->boost_supported)
2820 			continue;
2821 
2822 		ret = policy_set_boost(policy, state);
2823 		if (ret)
2824 			goto err_reset_state;
2825 	}
2826 	cpus_read_unlock();
2827 
2828 	return 0;
2829 
2830 err_reset_state:
2831 	cpus_read_unlock();
2832 
2833 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2834 	cpufreq_driver->boost_enabled = !state;
2835 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2836 
2837 	pr_err("%s: Cannot %s BOOST\n",
2838 	       __func__, str_enable_disable(state));
2839 
2840 	return ret;
2841 }
2842 
2843 static bool cpufreq_boost_supported(void)
2844 {
2845 	return cpufreq_driver->set_boost;
2846 }
2847 
2848 static int create_boost_sysfs_file(void)
2849 {
2850 	int ret;
2851 
2852 	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2853 	if (ret)
2854 		pr_err("%s: cannot register global BOOST sysfs file\n",
2855 		       __func__);
2856 
2857 	return ret;
2858 }
2859 
2860 static void remove_boost_sysfs_file(void)
2861 {
2862 	if (cpufreq_boost_supported())
2863 		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2864 }
2865 
2866 bool cpufreq_boost_enabled(void)
2867 {
2868 	return cpufreq_driver->boost_enabled;
2869 }
2870 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2871 
2872 /*********************************************************************
2873  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2874  *********************************************************************/
2875 static enum cpuhp_state hp_online;
2876 
2877 static int cpuhp_cpufreq_online(unsigned int cpu)
2878 {
2879 	cpufreq_online(cpu);
2880 
2881 	return 0;
2882 }
2883 
2884 static int cpuhp_cpufreq_offline(unsigned int cpu)
2885 {
2886 	cpufreq_offline(cpu);
2887 
2888 	return 0;
2889 }
2890 
2891 /**
2892  * cpufreq_register_driver - register a CPU Frequency driver
2893  * @driver_data: A struct cpufreq_driver containing the values#
2894  * submitted by the CPU Frequency driver.
2895  *
2896  * Registers a CPU Frequency driver to this core code. This code
2897  * returns zero on success, -EEXIST when another driver got here first
2898  * (and isn't unregistered in the meantime).
2899  *
2900  */
2901 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2902 {
2903 	unsigned long flags;
2904 	int ret;
2905 
2906 	if (cpufreq_disabled())
2907 		return -ENODEV;
2908 
2909 	/*
2910 	 * The cpufreq core depends heavily on the availability of device
2911 	 * structure, make sure they are available before proceeding further.
2912 	 */
2913 	if (!get_cpu_device(0))
2914 		return -EPROBE_DEFER;
2915 
2916 	if (!driver_data || !driver_data->verify || !driver_data->init ||
2917 	     (driver_data->target_index && driver_data->target) ||
2918 	     (!!driver_data->setpolicy == (driver_data->target_index || driver_data->target)) ||
2919 	     (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2920 	     (!driver_data->online != !driver_data->offline) ||
2921 		 (driver_data->adjust_perf && !driver_data->fast_switch))
2922 		return -EINVAL;
2923 
2924 	pr_debug("trying to register driver %s\n", driver_data->name);
2925 
2926 	/* Protect against concurrent CPU online/offline. */
2927 	cpus_read_lock();
2928 
2929 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2930 	if (cpufreq_driver) {
2931 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2932 		ret = -EEXIST;
2933 		goto out;
2934 	}
2935 	cpufreq_driver = driver_data;
2936 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2937 
2938 	if (driver_data->setpolicy)
2939 		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2940 
2941 	if (cpufreq_boost_supported()) {
2942 		ret = create_boost_sysfs_file();
2943 		if (ret)
2944 			goto err_null_driver;
2945 	}
2946 
2947 	/*
2948 	 * Mark support for the scheduler's frequency invariance engine for
2949 	 * drivers that implement target(), target_index() or fast_switch().
2950 	 */
2951 	if (!cpufreq_driver->setpolicy) {
2952 		static_branch_enable_cpuslocked(&cpufreq_freq_invariance);
2953 		pr_debug("cpufreq: supports frequency invariance\n");
2954 	}
2955 
2956 	ret = subsys_interface_register(&cpufreq_interface);
2957 	if (ret)
2958 		goto err_boost_unreg;
2959 
2960 	if (unlikely(list_empty(&cpufreq_policy_list))) {
2961 		/* if all ->init() calls failed, unregister */
2962 		ret = -ENODEV;
2963 		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2964 			 driver_data->name);
2965 		goto err_if_unreg;
2966 	}
2967 
2968 	ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2969 						   "cpufreq:online",
2970 						   cpuhp_cpufreq_online,
2971 						   cpuhp_cpufreq_offline);
2972 	if (ret < 0)
2973 		goto err_if_unreg;
2974 	hp_online = ret;
2975 	ret = 0;
2976 
2977 	pr_debug("driver %s up and running\n", driver_data->name);
2978 	goto out;
2979 
2980 err_if_unreg:
2981 	subsys_interface_unregister(&cpufreq_interface);
2982 err_boost_unreg:
2983 	if (!cpufreq_driver->setpolicy)
2984 		static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
2985 	remove_boost_sysfs_file();
2986 err_null_driver:
2987 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2988 	cpufreq_driver = NULL;
2989 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2990 out:
2991 	cpus_read_unlock();
2992 	return ret;
2993 }
2994 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2995 
2996 /*
2997  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2998  *
2999  * Unregister the current CPUFreq driver. Only call this if you have
3000  * the right to do so, i.e. if you have succeeded in initialising before!
3001  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
3002  * currently not initialised.
3003  */
3004 void cpufreq_unregister_driver(struct cpufreq_driver *driver)
3005 {
3006 	unsigned long flags;
3007 
3008 	if (WARN_ON(!cpufreq_driver || (driver != cpufreq_driver)))
3009 		return;
3010 
3011 	pr_debug("unregistering driver %s\n", driver->name);
3012 
3013 	/* Protect against concurrent cpu hotplug */
3014 	cpus_read_lock();
3015 	subsys_interface_unregister(&cpufreq_interface);
3016 	remove_boost_sysfs_file();
3017 	static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
3018 	cpuhp_remove_state_nocalls_cpuslocked(hp_online);
3019 
3020 	write_lock_irqsave(&cpufreq_driver_lock, flags);
3021 
3022 	cpufreq_driver = NULL;
3023 
3024 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
3025 	cpus_read_unlock();
3026 }
3027 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
3028 
3029 static int __init cpufreq_core_init(void)
3030 {
3031 	struct cpufreq_governor *gov = cpufreq_default_governor();
3032 	struct device *dev_root;
3033 
3034 	if (cpufreq_disabled())
3035 		return -ENODEV;
3036 
3037 	dev_root = bus_get_dev_root(&cpu_subsys);
3038 	if (dev_root) {
3039 		cpufreq_global_kobject = kobject_create_and_add("cpufreq", &dev_root->kobj);
3040 		put_device(dev_root);
3041 	}
3042 	BUG_ON(!cpufreq_global_kobject);
3043 
3044 	if (!strlen(default_governor))
3045 		strscpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
3046 
3047 	return 0;
3048 }
3049 
3050 static bool cpufreq_policy_is_good_for_eas(unsigned int cpu)
3051 {
3052 	struct cpufreq_policy *policy __free(put_cpufreq_policy) = cpufreq_cpu_get(cpu);
3053 	if (!policy) {
3054 		pr_debug("cpufreq policy not set for CPU: %d\n", cpu);
3055 		return false;
3056 	}
3057 
3058 	return sugov_is_governor(policy);
3059 }
3060 
3061 bool cpufreq_ready_for_eas(const struct cpumask *cpu_mask)
3062 {
3063 	unsigned int cpu;
3064 
3065 	/* Do not attempt EAS if schedutil is not being used. */
3066 	for_each_cpu(cpu, cpu_mask) {
3067 		if (!cpufreq_policy_is_good_for_eas(cpu)) {
3068 			pr_debug("rd %*pbl: schedutil is mandatory for EAS\n",
3069 				 cpumask_pr_args(cpu_mask));
3070 			return false;
3071 		}
3072 	}
3073 
3074 	return true;
3075 }
3076 
3077 module_param(off, int, 0444);
3078 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
3079 core_initcall(cpufreq_core_init);
3080