1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/cpufreq/cpufreq.c 4 * 5 * Copyright (C) 2001 Russell King 6 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 7 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org> 8 * 9 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 10 * Added handling for CPU hotplug 11 * Feb 2006 - Jacob Shin <jacob.shin@amd.com> 12 * Fix handling for CPU hotplug -- affected CPUs 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/cpu.h> 18 #include <linux/cpufreq.h> 19 #include <linux/cpu_cooling.h> 20 #include <linux/delay.h> 21 #include <linux/device.h> 22 #include <linux/init.h> 23 #include <linux/kernel_stat.h> 24 #include <linux/module.h> 25 #include <linux/mutex.h> 26 #include <linux/pm_qos.h> 27 #include <linux/slab.h> 28 #include <linux/suspend.h> 29 #include <linux/syscore_ops.h> 30 #include <linux/tick.h> 31 #include <linux/units.h> 32 #include <trace/events/power.h> 33 34 static LIST_HEAD(cpufreq_policy_list); 35 36 /* Macros to iterate over CPU policies */ 37 #define for_each_suitable_policy(__policy, __active) \ 38 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \ 39 if ((__active) == !policy_is_inactive(__policy)) 40 41 #define for_each_active_policy(__policy) \ 42 for_each_suitable_policy(__policy, true) 43 #define for_each_inactive_policy(__policy) \ 44 for_each_suitable_policy(__policy, false) 45 46 /* Iterate over governors */ 47 static LIST_HEAD(cpufreq_governor_list); 48 #define for_each_governor(__governor) \ 49 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list) 50 51 static char default_governor[CPUFREQ_NAME_LEN]; 52 53 /* 54 * The "cpufreq driver" - the arch- or hardware-dependent low 55 * level driver of CPUFreq support, and its spinlock. This lock 56 * also protects the cpufreq_cpu_data array. 57 */ 58 static struct cpufreq_driver *cpufreq_driver; 59 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data); 60 static DEFINE_RWLOCK(cpufreq_driver_lock); 61 62 static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance); 63 bool cpufreq_supports_freq_invariance(void) 64 { 65 return static_branch_likely(&cpufreq_freq_invariance); 66 } 67 68 /* Flag to suspend/resume CPUFreq governors */ 69 static bool cpufreq_suspended; 70 71 static inline bool has_target(void) 72 { 73 return cpufreq_driver->target_index || cpufreq_driver->target; 74 } 75 76 /* internal prototypes */ 77 static unsigned int __cpufreq_get(struct cpufreq_policy *policy); 78 static int cpufreq_init_governor(struct cpufreq_policy *policy); 79 static void cpufreq_exit_governor(struct cpufreq_policy *policy); 80 static void cpufreq_governor_limits(struct cpufreq_policy *policy); 81 static int cpufreq_set_policy(struct cpufreq_policy *policy, 82 struct cpufreq_governor *new_gov, 83 unsigned int new_pol); 84 85 /* 86 * Two notifier lists: the "policy" list is involved in the 87 * validation process for a new CPU frequency policy; the 88 * "transition" list for kernel code that needs to handle 89 * changes to devices when the CPU clock speed changes. 90 * The mutex locks both lists. 91 */ 92 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list); 93 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list); 94 95 static int off __read_mostly; 96 static int cpufreq_disabled(void) 97 { 98 return off; 99 } 100 void disable_cpufreq(void) 101 { 102 off = 1; 103 } 104 static DEFINE_MUTEX(cpufreq_governor_mutex); 105 106 bool have_governor_per_policy(void) 107 { 108 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY); 109 } 110 EXPORT_SYMBOL_GPL(have_governor_per_policy); 111 112 static struct kobject *cpufreq_global_kobject; 113 114 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy) 115 { 116 if (have_governor_per_policy()) 117 return &policy->kobj; 118 else 119 return cpufreq_global_kobject; 120 } 121 EXPORT_SYMBOL_GPL(get_governor_parent_kobj); 122 123 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) 124 { 125 struct kernel_cpustat kcpustat; 126 u64 cur_wall_time; 127 u64 idle_time; 128 u64 busy_time; 129 130 cur_wall_time = jiffies64_to_nsecs(get_jiffies_64()); 131 132 kcpustat_cpu_fetch(&kcpustat, cpu); 133 134 busy_time = kcpustat.cpustat[CPUTIME_USER]; 135 busy_time += kcpustat.cpustat[CPUTIME_SYSTEM]; 136 busy_time += kcpustat.cpustat[CPUTIME_IRQ]; 137 busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ]; 138 busy_time += kcpustat.cpustat[CPUTIME_STEAL]; 139 busy_time += kcpustat.cpustat[CPUTIME_NICE]; 140 141 idle_time = cur_wall_time - busy_time; 142 if (wall) 143 *wall = div_u64(cur_wall_time, NSEC_PER_USEC); 144 145 return div_u64(idle_time, NSEC_PER_USEC); 146 } 147 148 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy) 149 { 150 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL); 151 152 if (idle_time == -1ULL) 153 return get_cpu_idle_time_jiffy(cpu, wall); 154 else if (!io_busy) 155 idle_time += get_cpu_iowait_time_us(cpu, wall); 156 157 return idle_time; 158 } 159 EXPORT_SYMBOL_GPL(get_cpu_idle_time); 160 161 /* 162 * This is a generic cpufreq init() routine which can be used by cpufreq 163 * drivers of SMP systems. It will do following: 164 * - validate & show freq table passed 165 * - set policies transition latency 166 * - policy->cpus with all possible CPUs 167 */ 168 void cpufreq_generic_init(struct cpufreq_policy *policy, 169 struct cpufreq_frequency_table *table, 170 unsigned int transition_latency) 171 { 172 policy->freq_table = table; 173 policy->cpuinfo.transition_latency = transition_latency; 174 175 /* 176 * The driver only supports the SMP configuration where all processors 177 * share the clock and voltage and clock. 178 */ 179 cpumask_setall(policy->cpus); 180 } 181 EXPORT_SYMBOL_GPL(cpufreq_generic_init); 182 183 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu) 184 { 185 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 186 187 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL; 188 } 189 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw); 190 191 unsigned int cpufreq_generic_get(unsigned int cpu) 192 { 193 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu); 194 195 if (!policy || IS_ERR(policy->clk)) { 196 pr_err("%s: No %s associated to cpu: %d\n", 197 __func__, policy ? "clk" : "policy", cpu); 198 return 0; 199 } 200 201 return clk_get_rate(policy->clk) / 1000; 202 } 203 EXPORT_SYMBOL_GPL(cpufreq_generic_get); 204 205 /** 206 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy. 207 * @cpu: CPU to find the policy for. 208 * 209 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment 210 * the kobject reference counter of that policy. Return a valid policy on 211 * success or NULL on failure. 212 * 213 * The policy returned by this function has to be released with the help of 214 * cpufreq_cpu_put() to balance its kobject reference counter properly. 215 */ 216 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) 217 { 218 struct cpufreq_policy *policy = NULL; 219 unsigned long flags; 220 221 if (WARN_ON(cpu >= nr_cpu_ids)) 222 return NULL; 223 224 /* get the cpufreq driver */ 225 read_lock_irqsave(&cpufreq_driver_lock, flags); 226 227 if (cpufreq_driver) { 228 /* get the CPU */ 229 policy = cpufreq_cpu_get_raw(cpu); 230 if (policy) 231 kobject_get(&policy->kobj); 232 } 233 234 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 235 236 return policy; 237 } 238 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 239 240 /** 241 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy. 242 * @policy: cpufreq policy returned by cpufreq_cpu_get(). 243 */ 244 void cpufreq_cpu_put(struct cpufreq_policy *policy) 245 { 246 kobject_put(&policy->kobj); 247 } 248 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 249 250 /** 251 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter. 252 * @policy: cpufreq policy returned by cpufreq_cpu_acquire(). 253 */ 254 void cpufreq_cpu_release(struct cpufreq_policy *policy) 255 { 256 if (WARN_ON(!policy)) 257 return; 258 259 lockdep_assert_held(&policy->rwsem); 260 261 up_write(&policy->rwsem); 262 263 cpufreq_cpu_put(policy); 264 } 265 266 /** 267 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it. 268 * @cpu: CPU to find the policy for. 269 * 270 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and 271 * if the policy returned by it is not NULL, acquire its rwsem for writing. 272 * Return the policy if it is active or release it and return NULL otherwise. 273 * 274 * The policy returned by this function has to be released with the help of 275 * cpufreq_cpu_release() in order to release its rwsem and balance its usage 276 * counter properly. 277 */ 278 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu) 279 { 280 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 281 282 if (!policy) 283 return NULL; 284 285 down_write(&policy->rwsem); 286 287 if (policy_is_inactive(policy)) { 288 cpufreq_cpu_release(policy); 289 return NULL; 290 } 291 292 return policy; 293 } 294 295 /********************************************************************* 296 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 297 *********************************************************************/ 298 299 /** 300 * adjust_jiffies - Adjust the system "loops_per_jiffy". 301 * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE. 302 * @ci: Frequency change information. 303 * 304 * This function alters the system "loops_per_jiffy" for the clock 305 * speed change. Note that loops_per_jiffy cannot be updated on SMP 306 * systems as each CPU might be scaled differently. So, use the arch 307 * per-CPU loops_per_jiffy value wherever possible. 308 */ 309 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 310 { 311 #ifndef CONFIG_SMP 312 static unsigned long l_p_j_ref; 313 static unsigned int l_p_j_ref_freq; 314 315 if (ci->flags & CPUFREQ_CONST_LOOPS) 316 return; 317 318 if (!l_p_j_ref_freq) { 319 l_p_j_ref = loops_per_jiffy; 320 l_p_j_ref_freq = ci->old; 321 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n", 322 l_p_j_ref, l_p_j_ref_freq); 323 } 324 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) { 325 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, 326 ci->new); 327 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n", 328 loops_per_jiffy, ci->new); 329 } 330 #endif 331 } 332 333 /** 334 * cpufreq_notify_transition - Notify frequency transition and adjust jiffies. 335 * @policy: cpufreq policy to enable fast frequency switching for. 336 * @freqs: contain details of the frequency update. 337 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE. 338 * 339 * This function calls the transition notifiers and adjust_jiffies(). 340 * 341 * It is called twice on all CPU frequency changes that have external effects. 342 */ 343 static void cpufreq_notify_transition(struct cpufreq_policy *policy, 344 struct cpufreq_freqs *freqs, 345 unsigned int state) 346 { 347 int cpu; 348 349 BUG_ON(irqs_disabled()); 350 351 if (cpufreq_disabled()) 352 return; 353 354 freqs->policy = policy; 355 freqs->flags = cpufreq_driver->flags; 356 pr_debug("notification %u of frequency transition to %u kHz\n", 357 state, freqs->new); 358 359 switch (state) { 360 case CPUFREQ_PRECHANGE: 361 /* 362 * Detect if the driver reported a value as "old frequency" 363 * which is not equal to what the cpufreq core thinks is 364 * "old frequency". 365 */ 366 if (policy->cur && policy->cur != freqs->old) { 367 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n", 368 freqs->old, policy->cur); 369 freqs->old = policy->cur; 370 } 371 372 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 373 CPUFREQ_PRECHANGE, freqs); 374 375 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 376 break; 377 378 case CPUFREQ_POSTCHANGE: 379 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 380 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new, 381 cpumask_pr_args(policy->cpus)); 382 383 for_each_cpu(cpu, policy->cpus) 384 trace_cpu_frequency(freqs->new, cpu); 385 386 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 387 CPUFREQ_POSTCHANGE, freqs); 388 389 cpufreq_stats_record_transition(policy, freqs->new); 390 policy->cur = freqs->new; 391 } 392 } 393 394 /* Do post notifications when there are chances that transition has failed */ 395 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy, 396 struct cpufreq_freqs *freqs, int transition_failed) 397 { 398 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 399 if (!transition_failed) 400 return; 401 402 swap(freqs->old, freqs->new); 403 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 404 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 405 } 406 407 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy, 408 struct cpufreq_freqs *freqs) 409 { 410 411 /* 412 * Catch double invocations of _begin() which lead to self-deadlock. 413 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core 414 * doesn't invoke _begin() on their behalf, and hence the chances of 415 * double invocations are very low. Moreover, there are scenarios 416 * where these checks can emit false-positive warnings in these 417 * drivers; so we avoid that by skipping them altogether. 418 */ 419 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION) 420 && current == policy->transition_task); 421 422 wait: 423 wait_event(policy->transition_wait, !policy->transition_ongoing); 424 425 spin_lock(&policy->transition_lock); 426 427 if (unlikely(policy->transition_ongoing)) { 428 spin_unlock(&policy->transition_lock); 429 goto wait; 430 } 431 432 policy->transition_ongoing = true; 433 policy->transition_task = current; 434 435 spin_unlock(&policy->transition_lock); 436 437 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 438 } 439 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin); 440 441 void cpufreq_freq_transition_end(struct cpufreq_policy *policy, 442 struct cpufreq_freqs *freqs, int transition_failed) 443 { 444 if (WARN_ON(!policy->transition_ongoing)) 445 return; 446 447 cpufreq_notify_post_transition(policy, freqs, transition_failed); 448 449 arch_set_freq_scale(policy->related_cpus, 450 policy->cur, 451 policy->cpuinfo.max_freq); 452 453 policy->transition_ongoing = false; 454 policy->transition_task = NULL; 455 456 wake_up(&policy->transition_wait); 457 } 458 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end); 459 460 /* 461 * Fast frequency switching status count. Positive means "enabled", negative 462 * means "disabled" and 0 means "not decided yet". 463 */ 464 static int cpufreq_fast_switch_count; 465 static DEFINE_MUTEX(cpufreq_fast_switch_lock); 466 467 static void cpufreq_list_transition_notifiers(void) 468 { 469 struct notifier_block *nb; 470 471 pr_info("Registered transition notifiers:\n"); 472 473 mutex_lock(&cpufreq_transition_notifier_list.mutex); 474 475 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next) 476 pr_info("%pS\n", nb->notifier_call); 477 478 mutex_unlock(&cpufreq_transition_notifier_list.mutex); 479 } 480 481 /** 482 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy. 483 * @policy: cpufreq policy to enable fast frequency switching for. 484 * 485 * Try to enable fast frequency switching for @policy. 486 * 487 * The attempt will fail if there is at least one transition notifier registered 488 * at this point, as fast frequency switching is quite fundamentally at odds 489 * with transition notifiers. Thus if successful, it will make registration of 490 * transition notifiers fail going forward. 491 */ 492 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy) 493 { 494 lockdep_assert_held(&policy->rwsem); 495 496 if (!policy->fast_switch_possible) 497 return; 498 499 mutex_lock(&cpufreq_fast_switch_lock); 500 if (cpufreq_fast_switch_count >= 0) { 501 cpufreq_fast_switch_count++; 502 policy->fast_switch_enabled = true; 503 } else { 504 pr_warn("CPU%u: Fast frequency switching not enabled\n", 505 policy->cpu); 506 cpufreq_list_transition_notifiers(); 507 } 508 mutex_unlock(&cpufreq_fast_switch_lock); 509 } 510 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch); 511 512 /** 513 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy. 514 * @policy: cpufreq policy to disable fast frequency switching for. 515 */ 516 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy) 517 { 518 mutex_lock(&cpufreq_fast_switch_lock); 519 if (policy->fast_switch_enabled) { 520 policy->fast_switch_enabled = false; 521 if (!WARN_ON(cpufreq_fast_switch_count <= 0)) 522 cpufreq_fast_switch_count--; 523 } 524 mutex_unlock(&cpufreq_fast_switch_lock); 525 } 526 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch); 527 528 static unsigned int __resolve_freq(struct cpufreq_policy *policy, 529 unsigned int target_freq, unsigned int relation) 530 { 531 unsigned int idx; 532 533 target_freq = clamp_val(target_freq, policy->min, policy->max); 534 535 if (!cpufreq_driver->target_index) 536 return target_freq; 537 538 idx = cpufreq_frequency_table_target(policy, target_freq, relation); 539 policy->cached_resolved_idx = idx; 540 policy->cached_target_freq = target_freq; 541 return policy->freq_table[idx].frequency; 542 } 543 544 /** 545 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported 546 * one. 547 * @policy: associated policy to interrogate 548 * @target_freq: target frequency to resolve. 549 * 550 * The target to driver frequency mapping is cached in the policy. 551 * 552 * Return: Lowest driver-supported frequency greater than or equal to the 553 * given target_freq, subject to policy (min/max) and driver limitations. 554 */ 555 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy, 556 unsigned int target_freq) 557 { 558 return __resolve_freq(policy, target_freq, CPUFREQ_RELATION_LE); 559 } 560 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq); 561 562 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy) 563 { 564 unsigned int latency; 565 566 if (policy->transition_delay_us) 567 return policy->transition_delay_us; 568 569 latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC; 570 if (latency) { 571 /* 572 * For platforms that can change the frequency very fast (< 10 573 * us), the above formula gives a decent transition delay. But 574 * for platforms where transition_latency is in milliseconds, it 575 * ends up giving unrealistic values. 576 * 577 * Cap the default transition delay to 10 ms, which seems to be 578 * a reasonable amount of time after which we should reevaluate 579 * the frequency. 580 */ 581 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000); 582 } 583 584 return LATENCY_MULTIPLIER; 585 } 586 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us); 587 588 /********************************************************************* 589 * SYSFS INTERFACE * 590 *********************************************************************/ 591 static ssize_t show_boost(struct kobject *kobj, 592 struct kobj_attribute *attr, char *buf) 593 { 594 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled); 595 } 596 597 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr, 598 const char *buf, size_t count) 599 { 600 int ret, enable; 601 602 ret = sscanf(buf, "%d", &enable); 603 if (ret != 1 || enable < 0 || enable > 1) 604 return -EINVAL; 605 606 if (cpufreq_boost_trigger_state(enable)) { 607 pr_err("%s: Cannot %s BOOST!\n", 608 __func__, enable ? "enable" : "disable"); 609 return -EINVAL; 610 } 611 612 pr_debug("%s: cpufreq BOOST %s\n", 613 __func__, enable ? "enabled" : "disabled"); 614 615 return count; 616 } 617 define_one_global_rw(boost); 618 619 static struct cpufreq_governor *find_governor(const char *str_governor) 620 { 621 struct cpufreq_governor *t; 622 623 for_each_governor(t) 624 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN)) 625 return t; 626 627 return NULL; 628 } 629 630 static struct cpufreq_governor *get_governor(const char *str_governor) 631 { 632 struct cpufreq_governor *t; 633 634 mutex_lock(&cpufreq_governor_mutex); 635 t = find_governor(str_governor); 636 if (!t) 637 goto unlock; 638 639 if (!try_module_get(t->owner)) 640 t = NULL; 641 642 unlock: 643 mutex_unlock(&cpufreq_governor_mutex); 644 645 return t; 646 } 647 648 static unsigned int cpufreq_parse_policy(char *str_governor) 649 { 650 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) 651 return CPUFREQ_POLICY_PERFORMANCE; 652 653 if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) 654 return CPUFREQ_POLICY_POWERSAVE; 655 656 return CPUFREQ_POLICY_UNKNOWN; 657 } 658 659 /** 660 * cpufreq_parse_governor - parse a governor string only for has_target() 661 * @str_governor: Governor name. 662 */ 663 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor) 664 { 665 struct cpufreq_governor *t; 666 667 t = get_governor(str_governor); 668 if (t) 669 return t; 670 671 if (request_module("cpufreq_%s", str_governor)) 672 return NULL; 673 674 return get_governor(str_governor); 675 } 676 677 /* 678 * cpufreq_per_cpu_attr_read() / show_##file_name() - 679 * print out cpufreq information 680 * 681 * Write out information from cpufreq_driver->policy[cpu]; object must be 682 * "unsigned int". 683 */ 684 685 #define show_one(file_name, object) \ 686 static ssize_t show_##file_name \ 687 (struct cpufreq_policy *policy, char *buf) \ 688 { \ 689 return sprintf(buf, "%u\n", policy->object); \ 690 } 691 692 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 693 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 694 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency); 695 show_one(scaling_min_freq, min); 696 show_one(scaling_max_freq, max); 697 698 __weak unsigned int arch_freq_get_on_cpu(int cpu) 699 { 700 return 0; 701 } 702 703 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf) 704 { 705 ssize_t ret; 706 unsigned int freq; 707 708 freq = arch_freq_get_on_cpu(policy->cpu); 709 if (freq) 710 ret = sprintf(buf, "%u\n", freq); 711 else if (cpufreq_driver->setpolicy && cpufreq_driver->get) 712 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu)); 713 else 714 ret = sprintf(buf, "%u\n", policy->cur); 715 return ret; 716 } 717 718 /* 719 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 720 */ 721 #define store_one(file_name, object) \ 722 static ssize_t store_##file_name \ 723 (struct cpufreq_policy *policy, const char *buf, size_t count) \ 724 { \ 725 unsigned long val; \ 726 int ret; \ 727 \ 728 ret = sscanf(buf, "%lu", &val); \ 729 if (ret != 1) \ 730 return -EINVAL; \ 731 \ 732 ret = freq_qos_update_request(policy->object##_freq_req, val);\ 733 return ret >= 0 ? count : ret; \ 734 } 735 736 store_one(scaling_min_freq, min); 737 store_one(scaling_max_freq, max); 738 739 /* 740 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 741 */ 742 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy, 743 char *buf) 744 { 745 unsigned int cur_freq = __cpufreq_get(policy); 746 747 if (cur_freq) 748 return sprintf(buf, "%u\n", cur_freq); 749 750 return sprintf(buf, "<unknown>\n"); 751 } 752 753 /* 754 * show_scaling_governor - show the current policy for the specified CPU 755 */ 756 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf) 757 { 758 if (policy->policy == CPUFREQ_POLICY_POWERSAVE) 759 return sprintf(buf, "powersave\n"); 760 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 761 return sprintf(buf, "performance\n"); 762 else if (policy->governor) 763 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", 764 policy->governor->name); 765 return -EINVAL; 766 } 767 768 /* 769 * store_scaling_governor - store policy for the specified CPU 770 */ 771 static ssize_t store_scaling_governor(struct cpufreq_policy *policy, 772 const char *buf, size_t count) 773 { 774 char str_governor[16]; 775 int ret; 776 777 ret = sscanf(buf, "%15s", str_governor); 778 if (ret != 1) 779 return -EINVAL; 780 781 if (cpufreq_driver->setpolicy) { 782 unsigned int new_pol; 783 784 new_pol = cpufreq_parse_policy(str_governor); 785 if (!new_pol) 786 return -EINVAL; 787 788 ret = cpufreq_set_policy(policy, NULL, new_pol); 789 } else { 790 struct cpufreq_governor *new_gov; 791 792 new_gov = cpufreq_parse_governor(str_governor); 793 if (!new_gov) 794 return -EINVAL; 795 796 ret = cpufreq_set_policy(policy, new_gov, 797 CPUFREQ_POLICY_UNKNOWN); 798 799 module_put(new_gov->owner); 800 } 801 802 return ret ? ret : count; 803 } 804 805 /* 806 * show_scaling_driver - show the cpufreq driver currently loaded 807 */ 808 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf) 809 { 810 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name); 811 } 812 813 /* 814 * show_scaling_available_governors - show the available CPUfreq governors 815 */ 816 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy, 817 char *buf) 818 { 819 ssize_t i = 0; 820 struct cpufreq_governor *t; 821 822 if (!has_target()) { 823 i += sprintf(buf, "performance powersave"); 824 goto out; 825 } 826 827 mutex_lock(&cpufreq_governor_mutex); 828 for_each_governor(t) { 829 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) 830 - (CPUFREQ_NAME_LEN + 2))) 831 break; 832 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name); 833 } 834 mutex_unlock(&cpufreq_governor_mutex); 835 out: 836 i += sprintf(&buf[i], "\n"); 837 return i; 838 } 839 840 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf) 841 { 842 ssize_t i = 0; 843 unsigned int cpu; 844 845 for_each_cpu(cpu, mask) { 846 if (i) 847 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " "); 848 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu); 849 if (i >= (PAGE_SIZE - 5)) 850 break; 851 } 852 i += sprintf(&buf[i], "\n"); 853 return i; 854 } 855 EXPORT_SYMBOL_GPL(cpufreq_show_cpus); 856 857 /* 858 * show_related_cpus - show the CPUs affected by each transition even if 859 * hw coordination is in use 860 */ 861 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf) 862 { 863 return cpufreq_show_cpus(policy->related_cpus, buf); 864 } 865 866 /* 867 * show_affected_cpus - show the CPUs affected by each transition 868 */ 869 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf) 870 { 871 return cpufreq_show_cpus(policy->cpus, buf); 872 } 873 874 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy, 875 const char *buf, size_t count) 876 { 877 unsigned int freq = 0; 878 unsigned int ret; 879 880 if (!policy->governor || !policy->governor->store_setspeed) 881 return -EINVAL; 882 883 ret = sscanf(buf, "%u", &freq); 884 if (ret != 1) 885 return -EINVAL; 886 887 policy->governor->store_setspeed(policy, freq); 888 889 return count; 890 } 891 892 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf) 893 { 894 if (!policy->governor || !policy->governor->show_setspeed) 895 return sprintf(buf, "<unsupported>\n"); 896 897 return policy->governor->show_setspeed(policy, buf); 898 } 899 900 /* 901 * show_bios_limit - show the current cpufreq HW/BIOS limitation 902 */ 903 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf) 904 { 905 unsigned int limit; 906 int ret; 907 ret = cpufreq_driver->bios_limit(policy->cpu, &limit); 908 if (!ret) 909 return sprintf(buf, "%u\n", limit); 910 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq); 911 } 912 913 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400); 914 cpufreq_freq_attr_ro(cpuinfo_min_freq); 915 cpufreq_freq_attr_ro(cpuinfo_max_freq); 916 cpufreq_freq_attr_ro(cpuinfo_transition_latency); 917 cpufreq_freq_attr_ro(scaling_available_governors); 918 cpufreq_freq_attr_ro(scaling_driver); 919 cpufreq_freq_attr_ro(scaling_cur_freq); 920 cpufreq_freq_attr_ro(bios_limit); 921 cpufreq_freq_attr_ro(related_cpus); 922 cpufreq_freq_attr_ro(affected_cpus); 923 cpufreq_freq_attr_rw(scaling_min_freq); 924 cpufreq_freq_attr_rw(scaling_max_freq); 925 cpufreq_freq_attr_rw(scaling_governor); 926 cpufreq_freq_attr_rw(scaling_setspeed); 927 928 static struct attribute *cpufreq_attrs[] = { 929 &cpuinfo_min_freq.attr, 930 &cpuinfo_max_freq.attr, 931 &cpuinfo_transition_latency.attr, 932 &scaling_min_freq.attr, 933 &scaling_max_freq.attr, 934 &affected_cpus.attr, 935 &related_cpus.attr, 936 &scaling_governor.attr, 937 &scaling_driver.attr, 938 &scaling_available_governors.attr, 939 &scaling_setspeed.attr, 940 NULL 941 }; 942 ATTRIBUTE_GROUPS(cpufreq); 943 944 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj) 945 #define to_attr(a) container_of(a, struct freq_attr, attr) 946 947 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) 948 { 949 struct cpufreq_policy *policy = to_policy(kobj); 950 struct freq_attr *fattr = to_attr(attr); 951 ssize_t ret = -EBUSY; 952 953 if (!fattr->show) 954 return -EIO; 955 956 down_read(&policy->rwsem); 957 if (likely(!policy_is_inactive(policy))) 958 ret = fattr->show(policy, buf); 959 up_read(&policy->rwsem); 960 961 return ret; 962 } 963 964 static ssize_t store(struct kobject *kobj, struct attribute *attr, 965 const char *buf, size_t count) 966 { 967 struct cpufreq_policy *policy = to_policy(kobj); 968 struct freq_attr *fattr = to_attr(attr); 969 ssize_t ret = -EBUSY; 970 971 if (!fattr->store) 972 return -EIO; 973 974 /* 975 * cpus_read_trylock() is used here to work around a circular lock 976 * dependency problem with respect to the cpufreq_register_driver(). 977 */ 978 if (!cpus_read_trylock()) 979 return -EBUSY; 980 981 if (cpu_online(policy->cpu)) { 982 down_write(&policy->rwsem); 983 if (likely(!policy_is_inactive(policy))) 984 ret = fattr->store(policy, buf, count); 985 up_write(&policy->rwsem); 986 } 987 988 cpus_read_unlock(); 989 990 return ret; 991 } 992 993 static void cpufreq_sysfs_release(struct kobject *kobj) 994 { 995 struct cpufreq_policy *policy = to_policy(kobj); 996 pr_debug("last reference is dropped\n"); 997 complete(&policy->kobj_unregister); 998 } 999 1000 static const struct sysfs_ops sysfs_ops = { 1001 .show = show, 1002 .store = store, 1003 }; 1004 1005 static struct kobj_type ktype_cpufreq = { 1006 .sysfs_ops = &sysfs_ops, 1007 .default_groups = cpufreq_groups, 1008 .release = cpufreq_sysfs_release, 1009 }; 1010 1011 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu, 1012 struct device *dev) 1013 { 1014 if (unlikely(!dev)) 1015 return; 1016 1017 if (cpumask_test_and_set_cpu(cpu, policy->real_cpus)) 1018 return; 1019 1020 dev_dbg(dev, "%s: Adding symlink\n", __func__); 1021 if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq")) 1022 dev_err(dev, "cpufreq symlink creation failed\n"); 1023 } 1024 1025 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu, 1026 struct device *dev) 1027 { 1028 dev_dbg(dev, "%s: Removing symlink\n", __func__); 1029 sysfs_remove_link(&dev->kobj, "cpufreq"); 1030 cpumask_clear_cpu(cpu, policy->real_cpus); 1031 } 1032 1033 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy) 1034 { 1035 struct freq_attr **drv_attr; 1036 int ret = 0; 1037 1038 /* set up files for this cpu device */ 1039 drv_attr = cpufreq_driver->attr; 1040 while (drv_attr && *drv_attr) { 1041 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 1042 if (ret) 1043 return ret; 1044 drv_attr++; 1045 } 1046 if (cpufreq_driver->get) { 1047 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 1048 if (ret) 1049 return ret; 1050 } 1051 1052 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 1053 if (ret) 1054 return ret; 1055 1056 if (cpufreq_driver->bios_limit) { 1057 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr); 1058 if (ret) 1059 return ret; 1060 } 1061 1062 return 0; 1063 } 1064 1065 static int cpufreq_init_policy(struct cpufreq_policy *policy) 1066 { 1067 struct cpufreq_governor *gov = NULL; 1068 unsigned int pol = CPUFREQ_POLICY_UNKNOWN; 1069 int ret; 1070 1071 if (has_target()) { 1072 /* Update policy governor to the one used before hotplug. */ 1073 gov = get_governor(policy->last_governor); 1074 if (gov) { 1075 pr_debug("Restoring governor %s for cpu %d\n", 1076 gov->name, policy->cpu); 1077 } else { 1078 gov = get_governor(default_governor); 1079 } 1080 1081 if (!gov) { 1082 gov = cpufreq_default_governor(); 1083 __module_get(gov->owner); 1084 } 1085 1086 } else { 1087 1088 /* Use the default policy if there is no last_policy. */ 1089 if (policy->last_policy) { 1090 pol = policy->last_policy; 1091 } else { 1092 pol = cpufreq_parse_policy(default_governor); 1093 /* 1094 * In case the default governor is neither "performance" 1095 * nor "powersave", fall back to the initial policy 1096 * value set by the driver. 1097 */ 1098 if (pol == CPUFREQ_POLICY_UNKNOWN) 1099 pol = policy->policy; 1100 } 1101 if (pol != CPUFREQ_POLICY_PERFORMANCE && 1102 pol != CPUFREQ_POLICY_POWERSAVE) 1103 return -ENODATA; 1104 } 1105 1106 ret = cpufreq_set_policy(policy, gov, pol); 1107 if (gov) 1108 module_put(gov->owner); 1109 1110 return ret; 1111 } 1112 1113 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu) 1114 { 1115 int ret = 0; 1116 1117 /* Has this CPU been taken care of already? */ 1118 if (cpumask_test_cpu(cpu, policy->cpus)) 1119 return 0; 1120 1121 down_write(&policy->rwsem); 1122 if (has_target()) 1123 cpufreq_stop_governor(policy); 1124 1125 cpumask_set_cpu(cpu, policy->cpus); 1126 1127 if (has_target()) { 1128 ret = cpufreq_start_governor(policy); 1129 if (ret) 1130 pr_err("%s: Failed to start governor\n", __func__); 1131 } 1132 up_write(&policy->rwsem); 1133 return ret; 1134 } 1135 1136 void refresh_frequency_limits(struct cpufreq_policy *policy) 1137 { 1138 if (!policy_is_inactive(policy)) { 1139 pr_debug("updating policy for CPU %u\n", policy->cpu); 1140 1141 cpufreq_set_policy(policy, policy->governor, policy->policy); 1142 } 1143 } 1144 EXPORT_SYMBOL(refresh_frequency_limits); 1145 1146 static void handle_update(struct work_struct *work) 1147 { 1148 struct cpufreq_policy *policy = 1149 container_of(work, struct cpufreq_policy, update); 1150 1151 pr_debug("handle_update for cpu %u called\n", policy->cpu); 1152 down_write(&policy->rwsem); 1153 refresh_frequency_limits(policy); 1154 up_write(&policy->rwsem); 1155 } 1156 1157 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq, 1158 void *data) 1159 { 1160 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min); 1161 1162 schedule_work(&policy->update); 1163 return 0; 1164 } 1165 1166 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq, 1167 void *data) 1168 { 1169 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max); 1170 1171 schedule_work(&policy->update); 1172 return 0; 1173 } 1174 1175 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy) 1176 { 1177 struct kobject *kobj; 1178 struct completion *cmp; 1179 1180 down_write(&policy->rwsem); 1181 cpufreq_stats_free_table(policy); 1182 kobj = &policy->kobj; 1183 cmp = &policy->kobj_unregister; 1184 up_write(&policy->rwsem); 1185 kobject_put(kobj); 1186 1187 /* 1188 * We need to make sure that the underlying kobj is 1189 * actually not referenced anymore by anybody before we 1190 * proceed with unloading. 1191 */ 1192 pr_debug("waiting for dropping of refcount\n"); 1193 wait_for_completion(cmp); 1194 pr_debug("wait complete\n"); 1195 } 1196 1197 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu) 1198 { 1199 struct cpufreq_policy *policy; 1200 struct device *dev = get_cpu_device(cpu); 1201 int ret; 1202 1203 if (!dev) 1204 return NULL; 1205 1206 policy = kzalloc(sizeof(*policy), GFP_KERNEL); 1207 if (!policy) 1208 return NULL; 1209 1210 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) 1211 goto err_free_policy; 1212 1213 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) 1214 goto err_free_cpumask; 1215 1216 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL)) 1217 goto err_free_rcpumask; 1218 1219 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, 1220 cpufreq_global_kobject, "policy%u", cpu); 1221 if (ret) { 1222 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret); 1223 /* 1224 * The entire policy object will be freed below, but the extra 1225 * memory allocated for the kobject name needs to be freed by 1226 * releasing the kobject. 1227 */ 1228 kobject_put(&policy->kobj); 1229 goto err_free_real_cpus; 1230 } 1231 1232 freq_constraints_init(&policy->constraints); 1233 1234 policy->nb_min.notifier_call = cpufreq_notifier_min; 1235 policy->nb_max.notifier_call = cpufreq_notifier_max; 1236 1237 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN, 1238 &policy->nb_min); 1239 if (ret) { 1240 dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n", 1241 ret, cpumask_pr_args(policy->cpus)); 1242 goto err_kobj_remove; 1243 } 1244 1245 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX, 1246 &policy->nb_max); 1247 if (ret) { 1248 dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n", 1249 ret, cpumask_pr_args(policy->cpus)); 1250 goto err_min_qos_notifier; 1251 } 1252 1253 INIT_LIST_HEAD(&policy->policy_list); 1254 init_rwsem(&policy->rwsem); 1255 spin_lock_init(&policy->transition_lock); 1256 init_waitqueue_head(&policy->transition_wait); 1257 init_completion(&policy->kobj_unregister); 1258 INIT_WORK(&policy->update, handle_update); 1259 1260 policy->cpu = cpu; 1261 return policy; 1262 1263 err_min_qos_notifier: 1264 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN, 1265 &policy->nb_min); 1266 err_kobj_remove: 1267 cpufreq_policy_put_kobj(policy); 1268 err_free_real_cpus: 1269 free_cpumask_var(policy->real_cpus); 1270 err_free_rcpumask: 1271 free_cpumask_var(policy->related_cpus); 1272 err_free_cpumask: 1273 free_cpumask_var(policy->cpus); 1274 err_free_policy: 1275 kfree(policy); 1276 1277 return NULL; 1278 } 1279 1280 static void cpufreq_policy_free(struct cpufreq_policy *policy) 1281 { 1282 unsigned long flags; 1283 int cpu; 1284 1285 /* Remove policy from list */ 1286 write_lock_irqsave(&cpufreq_driver_lock, flags); 1287 list_del(&policy->policy_list); 1288 1289 for_each_cpu(cpu, policy->related_cpus) 1290 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1291 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1292 1293 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX, 1294 &policy->nb_max); 1295 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN, 1296 &policy->nb_min); 1297 1298 /* Cancel any pending policy->update work before freeing the policy. */ 1299 cancel_work_sync(&policy->update); 1300 1301 if (policy->max_freq_req) { 1302 /* 1303 * Remove max_freq_req after sending CPUFREQ_REMOVE_POLICY 1304 * notification, since CPUFREQ_CREATE_POLICY notification was 1305 * sent after adding max_freq_req earlier. 1306 */ 1307 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1308 CPUFREQ_REMOVE_POLICY, policy); 1309 freq_qos_remove_request(policy->max_freq_req); 1310 } 1311 1312 freq_qos_remove_request(policy->min_freq_req); 1313 kfree(policy->min_freq_req); 1314 1315 cpufreq_policy_put_kobj(policy); 1316 free_cpumask_var(policy->real_cpus); 1317 free_cpumask_var(policy->related_cpus); 1318 free_cpumask_var(policy->cpus); 1319 kfree(policy); 1320 } 1321 1322 static int cpufreq_online(unsigned int cpu) 1323 { 1324 struct cpufreq_policy *policy; 1325 bool new_policy; 1326 unsigned long flags; 1327 unsigned int j; 1328 int ret; 1329 1330 pr_debug("%s: bringing CPU%u online\n", __func__, cpu); 1331 1332 /* Check if this CPU already has a policy to manage it */ 1333 policy = per_cpu(cpufreq_cpu_data, cpu); 1334 if (policy) { 1335 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus)); 1336 if (!policy_is_inactive(policy)) 1337 return cpufreq_add_policy_cpu(policy, cpu); 1338 1339 /* This is the only online CPU for the policy. Start over. */ 1340 new_policy = false; 1341 down_write(&policy->rwsem); 1342 policy->cpu = cpu; 1343 policy->governor = NULL; 1344 } else { 1345 new_policy = true; 1346 policy = cpufreq_policy_alloc(cpu); 1347 if (!policy) 1348 return -ENOMEM; 1349 down_write(&policy->rwsem); 1350 } 1351 1352 if (!new_policy && cpufreq_driver->online) { 1353 ret = cpufreq_driver->online(policy); 1354 if (ret) { 1355 pr_debug("%s: %d: initialization failed\n", __func__, 1356 __LINE__); 1357 goto out_exit_policy; 1358 } 1359 1360 /* Recover policy->cpus using related_cpus */ 1361 cpumask_copy(policy->cpus, policy->related_cpus); 1362 } else { 1363 cpumask_copy(policy->cpus, cpumask_of(cpu)); 1364 1365 /* 1366 * Call driver. From then on the cpufreq must be able 1367 * to accept all calls to ->verify and ->setpolicy for this CPU. 1368 */ 1369 ret = cpufreq_driver->init(policy); 1370 if (ret) { 1371 pr_debug("%s: %d: initialization failed\n", __func__, 1372 __LINE__); 1373 goto out_free_policy; 1374 } 1375 1376 /* 1377 * The initialization has succeeded and the policy is online. 1378 * If there is a problem with its frequency table, take it 1379 * offline and drop it. 1380 */ 1381 ret = cpufreq_table_validate_and_sort(policy); 1382 if (ret) 1383 goto out_offline_policy; 1384 1385 /* related_cpus should at least include policy->cpus. */ 1386 cpumask_copy(policy->related_cpus, policy->cpus); 1387 } 1388 1389 /* 1390 * affected cpus must always be the one, which are online. We aren't 1391 * managing offline cpus here. 1392 */ 1393 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask); 1394 1395 if (new_policy) { 1396 for_each_cpu(j, policy->related_cpus) { 1397 per_cpu(cpufreq_cpu_data, j) = policy; 1398 add_cpu_dev_symlink(policy, j, get_cpu_device(j)); 1399 } 1400 1401 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req), 1402 GFP_KERNEL); 1403 if (!policy->min_freq_req) { 1404 ret = -ENOMEM; 1405 goto out_destroy_policy; 1406 } 1407 1408 ret = freq_qos_add_request(&policy->constraints, 1409 policy->min_freq_req, FREQ_QOS_MIN, 1410 FREQ_QOS_MIN_DEFAULT_VALUE); 1411 if (ret < 0) { 1412 /* 1413 * So we don't call freq_qos_remove_request() for an 1414 * uninitialized request. 1415 */ 1416 kfree(policy->min_freq_req); 1417 policy->min_freq_req = NULL; 1418 goto out_destroy_policy; 1419 } 1420 1421 /* 1422 * This must be initialized right here to avoid calling 1423 * freq_qos_remove_request() on uninitialized request in case 1424 * of errors. 1425 */ 1426 policy->max_freq_req = policy->min_freq_req + 1; 1427 1428 ret = freq_qos_add_request(&policy->constraints, 1429 policy->max_freq_req, FREQ_QOS_MAX, 1430 FREQ_QOS_MAX_DEFAULT_VALUE); 1431 if (ret < 0) { 1432 policy->max_freq_req = NULL; 1433 goto out_destroy_policy; 1434 } 1435 1436 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1437 CPUFREQ_CREATE_POLICY, policy); 1438 } 1439 1440 if (cpufreq_driver->get && has_target()) { 1441 policy->cur = cpufreq_driver->get(policy->cpu); 1442 if (!policy->cur) { 1443 ret = -EIO; 1444 pr_err("%s: ->get() failed\n", __func__); 1445 goto out_destroy_policy; 1446 } 1447 } 1448 1449 /* 1450 * Sometimes boot loaders set CPU frequency to a value outside of 1451 * frequency table present with cpufreq core. In such cases CPU might be 1452 * unstable if it has to run on that frequency for long duration of time 1453 * and so its better to set it to a frequency which is specified in 1454 * freq-table. This also makes cpufreq stats inconsistent as 1455 * cpufreq-stats would fail to register because current frequency of CPU 1456 * isn't found in freq-table. 1457 * 1458 * Because we don't want this change to effect boot process badly, we go 1459 * for the next freq which is >= policy->cur ('cur' must be set by now, 1460 * otherwise we will end up setting freq to lowest of the table as 'cur' 1461 * is initialized to zero). 1462 * 1463 * We are passing target-freq as "policy->cur - 1" otherwise 1464 * __cpufreq_driver_target() would simply fail, as policy->cur will be 1465 * equal to target-freq. 1466 */ 1467 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK) 1468 && has_target()) { 1469 unsigned int old_freq = policy->cur; 1470 1471 /* Are we running at unknown frequency ? */ 1472 ret = cpufreq_frequency_table_get_index(policy, old_freq); 1473 if (ret == -EINVAL) { 1474 ret = __cpufreq_driver_target(policy, old_freq - 1, 1475 CPUFREQ_RELATION_L); 1476 1477 /* 1478 * Reaching here after boot in a few seconds may not 1479 * mean that system will remain stable at "unknown" 1480 * frequency for longer duration. Hence, a BUG_ON(). 1481 */ 1482 BUG_ON(ret); 1483 pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n", 1484 __func__, policy->cpu, old_freq, policy->cur); 1485 } 1486 } 1487 1488 if (new_policy) { 1489 ret = cpufreq_add_dev_interface(policy); 1490 if (ret) 1491 goto out_destroy_policy; 1492 1493 cpufreq_stats_create_table(policy); 1494 1495 write_lock_irqsave(&cpufreq_driver_lock, flags); 1496 list_add(&policy->policy_list, &cpufreq_policy_list); 1497 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1498 1499 /* 1500 * Register with the energy model before 1501 * sched_cpufreq_governor_change() is called, which will result 1502 * in rebuilding of the sched domains, which should only be done 1503 * once the energy model is properly initialized for the policy 1504 * first. 1505 * 1506 * Also, this should be called before the policy is registered 1507 * with cooling framework. 1508 */ 1509 if (cpufreq_driver->register_em) 1510 cpufreq_driver->register_em(policy); 1511 } 1512 1513 ret = cpufreq_init_policy(policy); 1514 if (ret) { 1515 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n", 1516 __func__, cpu, ret); 1517 goto out_destroy_policy; 1518 } 1519 1520 up_write(&policy->rwsem); 1521 1522 kobject_uevent(&policy->kobj, KOBJ_ADD); 1523 1524 /* Callback for handling stuff after policy is ready */ 1525 if (cpufreq_driver->ready) 1526 cpufreq_driver->ready(policy); 1527 1528 if (cpufreq_thermal_control_enabled(cpufreq_driver)) 1529 policy->cdev = of_cpufreq_cooling_register(policy); 1530 1531 pr_debug("initialization complete\n"); 1532 1533 return 0; 1534 1535 out_destroy_policy: 1536 for_each_cpu(j, policy->real_cpus) 1537 remove_cpu_dev_symlink(policy, j, get_cpu_device(j)); 1538 1539 cpumask_clear(policy->cpus); 1540 1541 out_offline_policy: 1542 if (cpufreq_driver->offline) 1543 cpufreq_driver->offline(policy); 1544 1545 out_exit_policy: 1546 if (cpufreq_driver->exit) 1547 cpufreq_driver->exit(policy); 1548 1549 out_free_policy: 1550 up_write(&policy->rwsem); 1551 1552 cpufreq_policy_free(policy); 1553 return ret; 1554 } 1555 1556 /** 1557 * cpufreq_add_dev - the cpufreq interface for a CPU device. 1558 * @dev: CPU device. 1559 * @sif: Subsystem interface structure pointer (not used) 1560 */ 1561 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 1562 { 1563 struct cpufreq_policy *policy; 1564 unsigned cpu = dev->id; 1565 int ret; 1566 1567 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu); 1568 1569 if (cpu_online(cpu)) { 1570 ret = cpufreq_online(cpu); 1571 if (ret) 1572 return ret; 1573 } 1574 1575 /* Create sysfs link on CPU registration */ 1576 policy = per_cpu(cpufreq_cpu_data, cpu); 1577 if (policy) 1578 add_cpu_dev_symlink(policy, cpu, dev); 1579 1580 return 0; 1581 } 1582 1583 static void __cpufreq_offline(unsigned int cpu, struct cpufreq_policy *policy) 1584 { 1585 int ret; 1586 1587 if (has_target()) 1588 cpufreq_stop_governor(policy); 1589 1590 cpumask_clear_cpu(cpu, policy->cpus); 1591 1592 if (!policy_is_inactive(policy)) { 1593 /* Nominate a new CPU if necessary. */ 1594 if (cpu == policy->cpu) 1595 policy->cpu = cpumask_any(policy->cpus); 1596 1597 /* Start the governor again for the active policy. */ 1598 if (has_target()) { 1599 ret = cpufreq_start_governor(policy); 1600 if (ret) 1601 pr_err("%s: Failed to start governor\n", __func__); 1602 } 1603 1604 return; 1605 } 1606 1607 if (has_target()) 1608 strncpy(policy->last_governor, policy->governor->name, 1609 CPUFREQ_NAME_LEN); 1610 else 1611 policy->last_policy = policy->policy; 1612 1613 if (cpufreq_thermal_control_enabled(cpufreq_driver)) { 1614 cpufreq_cooling_unregister(policy->cdev); 1615 policy->cdev = NULL; 1616 } 1617 1618 if (has_target()) 1619 cpufreq_exit_governor(policy); 1620 1621 /* 1622 * Perform the ->offline() during light-weight tear-down, as 1623 * that allows fast recovery when the CPU comes back. 1624 */ 1625 if (cpufreq_driver->offline) { 1626 cpufreq_driver->offline(policy); 1627 } else if (cpufreq_driver->exit) { 1628 cpufreq_driver->exit(policy); 1629 policy->freq_table = NULL; 1630 } 1631 } 1632 1633 static int cpufreq_offline(unsigned int cpu) 1634 { 1635 struct cpufreq_policy *policy; 1636 1637 pr_debug("%s: unregistering CPU %u\n", __func__, cpu); 1638 1639 policy = cpufreq_cpu_get_raw(cpu); 1640 if (!policy) { 1641 pr_debug("%s: No cpu_data found\n", __func__); 1642 return 0; 1643 } 1644 1645 down_write(&policy->rwsem); 1646 1647 __cpufreq_offline(cpu, policy); 1648 1649 up_write(&policy->rwsem); 1650 return 0; 1651 } 1652 1653 /* 1654 * cpufreq_remove_dev - remove a CPU device 1655 * 1656 * Removes the cpufreq interface for a CPU device. 1657 */ 1658 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif) 1659 { 1660 unsigned int cpu = dev->id; 1661 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1662 1663 if (!policy) 1664 return; 1665 1666 down_write(&policy->rwsem); 1667 1668 if (cpu_online(cpu)) 1669 __cpufreq_offline(cpu, policy); 1670 1671 remove_cpu_dev_symlink(policy, cpu, dev); 1672 1673 if (!cpumask_empty(policy->real_cpus)) { 1674 up_write(&policy->rwsem); 1675 return; 1676 } 1677 1678 /* We did light-weight exit earlier, do full tear down now */ 1679 if (cpufreq_driver->offline) 1680 cpufreq_driver->exit(policy); 1681 1682 up_write(&policy->rwsem); 1683 1684 cpufreq_policy_free(policy); 1685 } 1686 1687 /** 1688 * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference. 1689 * @policy: Policy managing CPUs. 1690 * @new_freq: New CPU frequency. 1691 * 1692 * Adjust to the current frequency first and clean up later by either calling 1693 * cpufreq_update_policy(), or scheduling handle_update(). 1694 */ 1695 static void cpufreq_out_of_sync(struct cpufreq_policy *policy, 1696 unsigned int new_freq) 1697 { 1698 struct cpufreq_freqs freqs; 1699 1700 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n", 1701 policy->cur, new_freq); 1702 1703 freqs.old = policy->cur; 1704 freqs.new = new_freq; 1705 1706 cpufreq_freq_transition_begin(policy, &freqs); 1707 cpufreq_freq_transition_end(policy, &freqs, 0); 1708 } 1709 1710 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update) 1711 { 1712 unsigned int new_freq; 1713 1714 new_freq = cpufreq_driver->get(policy->cpu); 1715 if (!new_freq) 1716 return 0; 1717 1718 /* 1719 * If fast frequency switching is used with the given policy, the check 1720 * against policy->cur is pointless, so skip it in that case. 1721 */ 1722 if (policy->fast_switch_enabled || !has_target()) 1723 return new_freq; 1724 1725 if (policy->cur != new_freq) { 1726 /* 1727 * For some platforms, the frequency returned by hardware may be 1728 * slightly different from what is provided in the frequency 1729 * table, for example hardware may return 499 MHz instead of 500 1730 * MHz. In such cases it is better to avoid getting into 1731 * unnecessary frequency updates. 1732 */ 1733 if (abs(policy->cur - new_freq) < HZ_PER_MHZ) 1734 return policy->cur; 1735 1736 cpufreq_out_of_sync(policy, new_freq); 1737 if (update) 1738 schedule_work(&policy->update); 1739 } 1740 1741 return new_freq; 1742 } 1743 1744 /** 1745 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur 1746 * @cpu: CPU number 1747 * 1748 * This is the last known freq, without actually getting it from the driver. 1749 * Return value will be same as what is shown in scaling_cur_freq in sysfs. 1750 */ 1751 unsigned int cpufreq_quick_get(unsigned int cpu) 1752 { 1753 struct cpufreq_policy *policy; 1754 unsigned int ret_freq = 0; 1755 unsigned long flags; 1756 1757 read_lock_irqsave(&cpufreq_driver_lock, flags); 1758 1759 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) { 1760 ret_freq = cpufreq_driver->get(cpu); 1761 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1762 return ret_freq; 1763 } 1764 1765 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1766 1767 policy = cpufreq_cpu_get(cpu); 1768 if (policy) { 1769 ret_freq = policy->cur; 1770 cpufreq_cpu_put(policy); 1771 } 1772 1773 return ret_freq; 1774 } 1775 EXPORT_SYMBOL(cpufreq_quick_get); 1776 1777 /** 1778 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU 1779 * @cpu: CPU number 1780 * 1781 * Just return the max possible frequency for a given CPU. 1782 */ 1783 unsigned int cpufreq_quick_get_max(unsigned int cpu) 1784 { 1785 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1786 unsigned int ret_freq = 0; 1787 1788 if (policy) { 1789 ret_freq = policy->max; 1790 cpufreq_cpu_put(policy); 1791 } 1792 1793 return ret_freq; 1794 } 1795 EXPORT_SYMBOL(cpufreq_quick_get_max); 1796 1797 /** 1798 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU 1799 * @cpu: CPU number 1800 * 1801 * The default return value is the max_freq field of cpuinfo. 1802 */ 1803 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu) 1804 { 1805 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1806 unsigned int ret_freq = 0; 1807 1808 if (policy) { 1809 ret_freq = policy->cpuinfo.max_freq; 1810 cpufreq_cpu_put(policy); 1811 } 1812 1813 return ret_freq; 1814 } 1815 EXPORT_SYMBOL(cpufreq_get_hw_max_freq); 1816 1817 static unsigned int __cpufreq_get(struct cpufreq_policy *policy) 1818 { 1819 if (unlikely(policy_is_inactive(policy))) 1820 return 0; 1821 1822 return cpufreq_verify_current_freq(policy, true); 1823 } 1824 1825 /** 1826 * cpufreq_get - get the current CPU frequency (in kHz) 1827 * @cpu: CPU number 1828 * 1829 * Get the CPU current (static) CPU frequency 1830 */ 1831 unsigned int cpufreq_get(unsigned int cpu) 1832 { 1833 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1834 unsigned int ret_freq = 0; 1835 1836 if (policy) { 1837 down_read(&policy->rwsem); 1838 if (cpufreq_driver->get) 1839 ret_freq = __cpufreq_get(policy); 1840 up_read(&policy->rwsem); 1841 1842 cpufreq_cpu_put(policy); 1843 } 1844 1845 return ret_freq; 1846 } 1847 EXPORT_SYMBOL(cpufreq_get); 1848 1849 static struct subsys_interface cpufreq_interface = { 1850 .name = "cpufreq", 1851 .subsys = &cpu_subsys, 1852 .add_dev = cpufreq_add_dev, 1853 .remove_dev = cpufreq_remove_dev, 1854 }; 1855 1856 /* 1857 * In case platform wants some specific frequency to be configured 1858 * during suspend.. 1859 */ 1860 int cpufreq_generic_suspend(struct cpufreq_policy *policy) 1861 { 1862 int ret; 1863 1864 if (!policy->suspend_freq) { 1865 pr_debug("%s: suspend_freq not defined\n", __func__); 1866 return 0; 1867 } 1868 1869 pr_debug("%s: Setting suspend-freq: %u\n", __func__, 1870 policy->suspend_freq); 1871 1872 ret = __cpufreq_driver_target(policy, policy->suspend_freq, 1873 CPUFREQ_RELATION_H); 1874 if (ret) 1875 pr_err("%s: unable to set suspend-freq: %u. err: %d\n", 1876 __func__, policy->suspend_freq, ret); 1877 1878 return ret; 1879 } 1880 EXPORT_SYMBOL(cpufreq_generic_suspend); 1881 1882 /** 1883 * cpufreq_suspend() - Suspend CPUFreq governors. 1884 * 1885 * Called during system wide Suspend/Hibernate cycles for suspending governors 1886 * as some platforms can't change frequency after this point in suspend cycle. 1887 * Because some of the devices (like: i2c, regulators, etc) they use for 1888 * changing frequency are suspended quickly after this point. 1889 */ 1890 void cpufreq_suspend(void) 1891 { 1892 struct cpufreq_policy *policy; 1893 1894 if (!cpufreq_driver) 1895 return; 1896 1897 if (!has_target() && !cpufreq_driver->suspend) 1898 goto suspend; 1899 1900 pr_debug("%s: Suspending Governors\n", __func__); 1901 1902 for_each_active_policy(policy) { 1903 if (has_target()) { 1904 down_write(&policy->rwsem); 1905 cpufreq_stop_governor(policy); 1906 up_write(&policy->rwsem); 1907 } 1908 1909 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy)) 1910 pr_err("%s: Failed to suspend driver: %s\n", __func__, 1911 cpufreq_driver->name); 1912 } 1913 1914 suspend: 1915 cpufreq_suspended = true; 1916 } 1917 1918 /** 1919 * cpufreq_resume() - Resume CPUFreq governors. 1920 * 1921 * Called during system wide Suspend/Hibernate cycle for resuming governors that 1922 * are suspended with cpufreq_suspend(). 1923 */ 1924 void cpufreq_resume(void) 1925 { 1926 struct cpufreq_policy *policy; 1927 int ret; 1928 1929 if (!cpufreq_driver) 1930 return; 1931 1932 if (unlikely(!cpufreq_suspended)) 1933 return; 1934 1935 cpufreq_suspended = false; 1936 1937 if (!has_target() && !cpufreq_driver->resume) 1938 return; 1939 1940 pr_debug("%s: Resuming Governors\n", __func__); 1941 1942 for_each_active_policy(policy) { 1943 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) { 1944 pr_err("%s: Failed to resume driver: %p\n", __func__, 1945 policy); 1946 } else if (has_target()) { 1947 down_write(&policy->rwsem); 1948 ret = cpufreq_start_governor(policy); 1949 up_write(&policy->rwsem); 1950 1951 if (ret) 1952 pr_err("%s: Failed to start governor for policy: %p\n", 1953 __func__, policy); 1954 } 1955 } 1956 } 1957 1958 /** 1959 * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones. 1960 * @flags: Flags to test against the current cpufreq driver's flags. 1961 * 1962 * Assumes that the driver is there, so callers must ensure that this is the 1963 * case. 1964 */ 1965 bool cpufreq_driver_test_flags(u16 flags) 1966 { 1967 return !!(cpufreq_driver->flags & flags); 1968 } 1969 1970 /** 1971 * cpufreq_get_current_driver - Return the current driver's name. 1972 * 1973 * Return the name string of the currently registered cpufreq driver or NULL if 1974 * none. 1975 */ 1976 const char *cpufreq_get_current_driver(void) 1977 { 1978 if (cpufreq_driver) 1979 return cpufreq_driver->name; 1980 1981 return NULL; 1982 } 1983 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver); 1984 1985 /** 1986 * cpufreq_get_driver_data - Return current driver data. 1987 * 1988 * Return the private data of the currently registered cpufreq driver, or NULL 1989 * if no cpufreq driver has been registered. 1990 */ 1991 void *cpufreq_get_driver_data(void) 1992 { 1993 if (cpufreq_driver) 1994 return cpufreq_driver->driver_data; 1995 1996 return NULL; 1997 } 1998 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data); 1999 2000 /********************************************************************* 2001 * NOTIFIER LISTS INTERFACE * 2002 *********************************************************************/ 2003 2004 /** 2005 * cpufreq_register_notifier - Register a notifier with cpufreq. 2006 * @nb: notifier function to register. 2007 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER. 2008 * 2009 * Add a notifier to one of two lists: either a list of notifiers that run on 2010 * clock rate changes (once before and once after every transition), or a list 2011 * of notifiers that ron on cpufreq policy changes. 2012 * 2013 * This function may sleep and it has the same return values as 2014 * blocking_notifier_chain_register(). 2015 */ 2016 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 2017 { 2018 int ret; 2019 2020 if (cpufreq_disabled()) 2021 return -EINVAL; 2022 2023 switch (list) { 2024 case CPUFREQ_TRANSITION_NOTIFIER: 2025 mutex_lock(&cpufreq_fast_switch_lock); 2026 2027 if (cpufreq_fast_switch_count > 0) { 2028 mutex_unlock(&cpufreq_fast_switch_lock); 2029 return -EBUSY; 2030 } 2031 ret = srcu_notifier_chain_register( 2032 &cpufreq_transition_notifier_list, nb); 2033 if (!ret) 2034 cpufreq_fast_switch_count--; 2035 2036 mutex_unlock(&cpufreq_fast_switch_lock); 2037 break; 2038 case CPUFREQ_POLICY_NOTIFIER: 2039 ret = blocking_notifier_chain_register( 2040 &cpufreq_policy_notifier_list, nb); 2041 break; 2042 default: 2043 ret = -EINVAL; 2044 } 2045 2046 return ret; 2047 } 2048 EXPORT_SYMBOL(cpufreq_register_notifier); 2049 2050 /** 2051 * cpufreq_unregister_notifier - Unregister a notifier from cpufreq. 2052 * @nb: notifier block to be unregistered. 2053 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER. 2054 * 2055 * Remove a notifier from one of the cpufreq notifier lists. 2056 * 2057 * This function may sleep and it has the same return values as 2058 * blocking_notifier_chain_unregister(). 2059 */ 2060 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 2061 { 2062 int ret; 2063 2064 if (cpufreq_disabled()) 2065 return -EINVAL; 2066 2067 switch (list) { 2068 case CPUFREQ_TRANSITION_NOTIFIER: 2069 mutex_lock(&cpufreq_fast_switch_lock); 2070 2071 ret = srcu_notifier_chain_unregister( 2072 &cpufreq_transition_notifier_list, nb); 2073 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0)) 2074 cpufreq_fast_switch_count++; 2075 2076 mutex_unlock(&cpufreq_fast_switch_lock); 2077 break; 2078 case CPUFREQ_POLICY_NOTIFIER: 2079 ret = blocking_notifier_chain_unregister( 2080 &cpufreq_policy_notifier_list, nb); 2081 break; 2082 default: 2083 ret = -EINVAL; 2084 } 2085 2086 return ret; 2087 } 2088 EXPORT_SYMBOL(cpufreq_unregister_notifier); 2089 2090 2091 /********************************************************************* 2092 * GOVERNORS * 2093 *********************************************************************/ 2094 2095 /** 2096 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch. 2097 * @policy: cpufreq policy to switch the frequency for. 2098 * @target_freq: New frequency to set (may be approximate). 2099 * 2100 * Carry out a fast frequency switch without sleeping. 2101 * 2102 * The driver's ->fast_switch() callback invoked by this function must be 2103 * suitable for being called from within RCU-sched read-side critical sections 2104 * and it is expected to select the minimum available frequency greater than or 2105 * equal to @target_freq (CPUFREQ_RELATION_L). 2106 * 2107 * This function must not be called if policy->fast_switch_enabled is unset. 2108 * 2109 * Governors calling this function must guarantee that it will never be invoked 2110 * twice in parallel for the same policy and that it will never be called in 2111 * parallel with either ->target() or ->target_index() for the same policy. 2112 * 2113 * Returns the actual frequency set for the CPU. 2114 * 2115 * If 0 is returned by the driver's ->fast_switch() callback to indicate an 2116 * error condition, the hardware configuration must be preserved. 2117 */ 2118 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy, 2119 unsigned int target_freq) 2120 { 2121 unsigned int freq; 2122 int cpu; 2123 2124 target_freq = clamp_val(target_freq, policy->min, policy->max); 2125 freq = cpufreq_driver->fast_switch(policy, target_freq); 2126 2127 if (!freq) 2128 return 0; 2129 2130 policy->cur = freq; 2131 arch_set_freq_scale(policy->related_cpus, freq, 2132 policy->cpuinfo.max_freq); 2133 cpufreq_stats_record_transition(policy, freq); 2134 2135 if (trace_cpu_frequency_enabled()) { 2136 for_each_cpu(cpu, policy->cpus) 2137 trace_cpu_frequency(freq, cpu); 2138 } 2139 2140 return freq; 2141 } 2142 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch); 2143 2144 /** 2145 * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go. 2146 * @cpu: Target CPU. 2147 * @min_perf: Minimum (required) performance level (units of @capacity). 2148 * @target_perf: Target (desired) performance level (units of @capacity). 2149 * @capacity: Capacity of the target CPU. 2150 * 2151 * Carry out a fast performance level switch of @cpu without sleeping. 2152 * 2153 * The driver's ->adjust_perf() callback invoked by this function must be 2154 * suitable for being called from within RCU-sched read-side critical sections 2155 * and it is expected to select a suitable performance level equal to or above 2156 * @min_perf and preferably equal to or below @target_perf. 2157 * 2158 * This function must not be called if policy->fast_switch_enabled is unset. 2159 * 2160 * Governors calling this function must guarantee that it will never be invoked 2161 * twice in parallel for the same CPU and that it will never be called in 2162 * parallel with either ->target() or ->target_index() or ->fast_switch() for 2163 * the same CPU. 2164 */ 2165 void cpufreq_driver_adjust_perf(unsigned int cpu, 2166 unsigned long min_perf, 2167 unsigned long target_perf, 2168 unsigned long capacity) 2169 { 2170 cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity); 2171 } 2172 2173 /** 2174 * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback. 2175 * 2176 * Return 'true' if the ->adjust_perf callback is present for the 2177 * current driver or 'false' otherwise. 2178 */ 2179 bool cpufreq_driver_has_adjust_perf(void) 2180 { 2181 return !!cpufreq_driver->adjust_perf; 2182 } 2183 2184 /* Must set freqs->new to intermediate frequency */ 2185 static int __target_intermediate(struct cpufreq_policy *policy, 2186 struct cpufreq_freqs *freqs, int index) 2187 { 2188 int ret; 2189 2190 freqs->new = cpufreq_driver->get_intermediate(policy, index); 2191 2192 /* We don't need to switch to intermediate freq */ 2193 if (!freqs->new) 2194 return 0; 2195 2196 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n", 2197 __func__, policy->cpu, freqs->old, freqs->new); 2198 2199 cpufreq_freq_transition_begin(policy, freqs); 2200 ret = cpufreq_driver->target_intermediate(policy, index); 2201 cpufreq_freq_transition_end(policy, freqs, ret); 2202 2203 if (ret) 2204 pr_err("%s: Failed to change to intermediate frequency: %d\n", 2205 __func__, ret); 2206 2207 return ret; 2208 } 2209 2210 static int __target_index(struct cpufreq_policy *policy, int index) 2211 { 2212 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0}; 2213 unsigned int restore_freq, intermediate_freq = 0; 2214 unsigned int newfreq = policy->freq_table[index].frequency; 2215 int retval = -EINVAL; 2216 bool notify; 2217 2218 if (newfreq == policy->cur) 2219 return 0; 2220 2221 /* Save last value to restore later on errors */ 2222 restore_freq = policy->cur; 2223 2224 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION); 2225 if (notify) { 2226 /* Handle switching to intermediate frequency */ 2227 if (cpufreq_driver->get_intermediate) { 2228 retval = __target_intermediate(policy, &freqs, index); 2229 if (retval) 2230 return retval; 2231 2232 intermediate_freq = freqs.new; 2233 /* Set old freq to intermediate */ 2234 if (intermediate_freq) 2235 freqs.old = freqs.new; 2236 } 2237 2238 freqs.new = newfreq; 2239 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n", 2240 __func__, policy->cpu, freqs.old, freqs.new); 2241 2242 cpufreq_freq_transition_begin(policy, &freqs); 2243 } 2244 2245 retval = cpufreq_driver->target_index(policy, index); 2246 if (retval) 2247 pr_err("%s: Failed to change cpu frequency: %d\n", __func__, 2248 retval); 2249 2250 if (notify) { 2251 cpufreq_freq_transition_end(policy, &freqs, retval); 2252 2253 /* 2254 * Failed after setting to intermediate freq? Driver should have 2255 * reverted back to initial frequency and so should we. Check 2256 * here for intermediate_freq instead of get_intermediate, in 2257 * case we haven't switched to intermediate freq at all. 2258 */ 2259 if (unlikely(retval && intermediate_freq)) { 2260 freqs.old = intermediate_freq; 2261 freqs.new = restore_freq; 2262 cpufreq_freq_transition_begin(policy, &freqs); 2263 cpufreq_freq_transition_end(policy, &freqs, 0); 2264 } 2265 } 2266 2267 return retval; 2268 } 2269 2270 int __cpufreq_driver_target(struct cpufreq_policy *policy, 2271 unsigned int target_freq, 2272 unsigned int relation) 2273 { 2274 unsigned int old_target_freq = target_freq; 2275 2276 if (cpufreq_disabled()) 2277 return -ENODEV; 2278 2279 target_freq = __resolve_freq(policy, target_freq, relation); 2280 2281 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n", 2282 policy->cpu, target_freq, relation, old_target_freq); 2283 2284 /* 2285 * This might look like a redundant call as we are checking it again 2286 * after finding index. But it is left intentionally for cases where 2287 * exactly same freq is called again and so we can save on few function 2288 * calls. 2289 */ 2290 if (target_freq == policy->cur && 2291 !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS)) 2292 return 0; 2293 2294 if (cpufreq_driver->target) { 2295 /* 2296 * If the driver hasn't setup a single inefficient frequency, 2297 * it's unlikely it knows how to decode CPUFREQ_RELATION_E. 2298 */ 2299 if (!policy->efficiencies_available) 2300 relation &= ~CPUFREQ_RELATION_E; 2301 2302 return cpufreq_driver->target(policy, target_freq, relation); 2303 } 2304 2305 if (!cpufreq_driver->target_index) 2306 return -EINVAL; 2307 2308 return __target_index(policy, policy->cached_resolved_idx); 2309 } 2310 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 2311 2312 int cpufreq_driver_target(struct cpufreq_policy *policy, 2313 unsigned int target_freq, 2314 unsigned int relation) 2315 { 2316 int ret; 2317 2318 down_write(&policy->rwsem); 2319 2320 ret = __cpufreq_driver_target(policy, target_freq, relation); 2321 2322 up_write(&policy->rwsem); 2323 2324 return ret; 2325 } 2326 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 2327 2328 __weak struct cpufreq_governor *cpufreq_fallback_governor(void) 2329 { 2330 return NULL; 2331 } 2332 2333 static int cpufreq_init_governor(struct cpufreq_policy *policy) 2334 { 2335 int ret; 2336 2337 /* Don't start any governor operations if we are entering suspend */ 2338 if (cpufreq_suspended) 2339 return 0; 2340 /* 2341 * Governor might not be initiated here if ACPI _PPC changed 2342 * notification happened, so check it. 2343 */ 2344 if (!policy->governor) 2345 return -EINVAL; 2346 2347 /* Platform doesn't want dynamic frequency switching ? */ 2348 if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING && 2349 cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) { 2350 struct cpufreq_governor *gov = cpufreq_fallback_governor(); 2351 2352 if (gov) { 2353 pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n", 2354 policy->governor->name, gov->name); 2355 policy->governor = gov; 2356 } else { 2357 return -EINVAL; 2358 } 2359 } 2360 2361 if (!try_module_get(policy->governor->owner)) 2362 return -EINVAL; 2363 2364 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2365 2366 if (policy->governor->init) { 2367 ret = policy->governor->init(policy); 2368 if (ret) { 2369 module_put(policy->governor->owner); 2370 return ret; 2371 } 2372 } 2373 2374 policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET); 2375 2376 return 0; 2377 } 2378 2379 static void cpufreq_exit_governor(struct cpufreq_policy *policy) 2380 { 2381 if (cpufreq_suspended || !policy->governor) 2382 return; 2383 2384 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2385 2386 if (policy->governor->exit) 2387 policy->governor->exit(policy); 2388 2389 module_put(policy->governor->owner); 2390 } 2391 2392 int cpufreq_start_governor(struct cpufreq_policy *policy) 2393 { 2394 int ret; 2395 2396 if (cpufreq_suspended) 2397 return 0; 2398 2399 if (!policy->governor) 2400 return -EINVAL; 2401 2402 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2403 2404 if (cpufreq_driver->get) 2405 cpufreq_verify_current_freq(policy, false); 2406 2407 if (policy->governor->start) { 2408 ret = policy->governor->start(policy); 2409 if (ret) 2410 return ret; 2411 } 2412 2413 if (policy->governor->limits) 2414 policy->governor->limits(policy); 2415 2416 return 0; 2417 } 2418 2419 void cpufreq_stop_governor(struct cpufreq_policy *policy) 2420 { 2421 if (cpufreq_suspended || !policy->governor) 2422 return; 2423 2424 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2425 2426 if (policy->governor->stop) 2427 policy->governor->stop(policy); 2428 } 2429 2430 static void cpufreq_governor_limits(struct cpufreq_policy *policy) 2431 { 2432 if (cpufreq_suspended || !policy->governor) 2433 return; 2434 2435 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2436 2437 if (policy->governor->limits) 2438 policy->governor->limits(policy); 2439 } 2440 2441 int cpufreq_register_governor(struct cpufreq_governor *governor) 2442 { 2443 int err; 2444 2445 if (!governor) 2446 return -EINVAL; 2447 2448 if (cpufreq_disabled()) 2449 return -ENODEV; 2450 2451 mutex_lock(&cpufreq_governor_mutex); 2452 2453 err = -EBUSY; 2454 if (!find_governor(governor->name)) { 2455 err = 0; 2456 list_add(&governor->governor_list, &cpufreq_governor_list); 2457 } 2458 2459 mutex_unlock(&cpufreq_governor_mutex); 2460 return err; 2461 } 2462 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 2463 2464 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 2465 { 2466 struct cpufreq_policy *policy; 2467 unsigned long flags; 2468 2469 if (!governor) 2470 return; 2471 2472 if (cpufreq_disabled()) 2473 return; 2474 2475 /* clear last_governor for all inactive policies */ 2476 read_lock_irqsave(&cpufreq_driver_lock, flags); 2477 for_each_inactive_policy(policy) { 2478 if (!strcmp(policy->last_governor, governor->name)) { 2479 policy->governor = NULL; 2480 strcpy(policy->last_governor, "\0"); 2481 } 2482 } 2483 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 2484 2485 mutex_lock(&cpufreq_governor_mutex); 2486 list_del(&governor->governor_list); 2487 mutex_unlock(&cpufreq_governor_mutex); 2488 } 2489 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 2490 2491 2492 /********************************************************************* 2493 * POLICY INTERFACE * 2494 *********************************************************************/ 2495 2496 /** 2497 * cpufreq_get_policy - get the current cpufreq_policy 2498 * @policy: struct cpufreq_policy into which the current cpufreq_policy 2499 * is written 2500 * @cpu: CPU to find the policy for 2501 * 2502 * Reads the current cpufreq policy. 2503 */ 2504 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 2505 { 2506 struct cpufreq_policy *cpu_policy; 2507 if (!policy) 2508 return -EINVAL; 2509 2510 cpu_policy = cpufreq_cpu_get(cpu); 2511 if (!cpu_policy) 2512 return -EINVAL; 2513 2514 memcpy(policy, cpu_policy, sizeof(*policy)); 2515 2516 cpufreq_cpu_put(cpu_policy); 2517 return 0; 2518 } 2519 EXPORT_SYMBOL(cpufreq_get_policy); 2520 2521 /** 2522 * cpufreq_set_policy - Modify cpufreq policy parameters. 2523 * @policy: Policy object to modify. 2524 * @new_gov: Policy governor pointer. 2525 * @new_pol: Policy value (for drivers with built-in governors). 2526 * 2527 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency 2528 * limits to be set for the policy, update @policy with the verified limits 2529 * values and either invoke the driver's ->setpolicy() callback (if present) or 2530 * carry out a governor update for @policy. That is, run the current governor's 2531 * ->limits() callback (if @new_gov points to the same object as the one in 2532 * @policy) or replace the governor for @policy with @new_gov. 2533 * 2534 * The cpuinfo part of @policy is not updated by this function. 2535 */ 2536 static int cpufreq_set_policy(struct cpufreq_policy *policy, 2537 struct cpufreq_governor *new_gov, 2538 unsigned int new_pol) 2539 { 2540 struct cpufreq_policy_data new_data; 2541 struct cpufreq_governor *old_gov; 2542 int ret; 2543 2544 memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo)); 2545 new_data.freq_table = policy->freq_table; 2546 new_data.cpu = policy->cpu; 2547 /* 2548 * PM QoS framework collects all the requests from users and provide us 2549 * the final aggregated value here. 2550 */ 2551 new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN); 2552 new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX); 2553 2554 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", 2555 new_data.cpu, new_data.min, new_data.max); 2556 2557 /* 2558 * Verify that the CPU speed can be set within these limits and make sure 2559 * that min <= max. 2560 */ 2561 ret = cpufreq_driver->verify(&new_data); 2562 if (ret) 2563 return ret; 2564 2565 /* 2566 * Resolve policy min/max to available frequencies. It ensures 2567 * no frequency resolution will neither overshoot the requested maximum 2568 * nor undershoot the requested minimum. 2569 */ 2570 policy->min = new_data.min; 2571 policy->max = new_data.max; 2572 policy->min = __resolve_freq(policy, policy->min, CPUFREQ_RELATION_L); 2573 policy->max = __resolve_freq(policy, policy->max, CPUFREQ_RELATION_H); 2574 trace_cpu_frequency_limits(policy); 2575 2576 policy->cached_target_freq = UINT_MAX; 2577 2578 pr_debug("new min and max freqs are %u - %u kHz\n", 2579 policy->min, policy->max); 2580 2581 if (cpufreq_driver->setpolicy) { 2582 policy->policy = new_pol; 2583 pr_debug("setting range\n"); 2584 return cpufreq_driver->setpolicy(policy); 2585 } 2586 2587 if (new_gov == policy->governor) { 2588 pr_debug("governor limits update\n"); 2589 cpufreq_governor_limits(policy); 2590 return 0; 2591 } 2592 2593 pr_debug("governor switch\n"); 2594 2595 /* save old, working values */ 2596 old_gov = policy->governor; 2597 /* end old governor */ 2598 if (old_gov) { 2599 cpufreq_stop_governor(policy); 2600 cpufreq_exit_governor(policy); 2601 } 2602 2603 /* start new governor */ 2604 policy->governor = new_gov; 2605 ret = cpufreq_init_governor(policy); 2606 if (!ret) { 2607 ret = cpufreq_start_governor(policy); 2608 if (!ret) { 2609 pr_debug("governor change\n"); 2610 sched_cpufreq_governor_change(policy, old_gov); 2611 return 0; 2612 } 2613 cpufreq_exit_governor(policy); 2614 } 2615 2616 /* new governor failed, so re-start old one */ 2617 pr_debug("starting governor %s failed\n", policy->governor->name); 2618 if (old_gov) { 2619 policy->governor = old_gov; 2620 if (cpufreq_init_governor(policy)) 2621 policy->governor = NULL; 2622 else 2623 cpufreq_start_governor(policy); 2624 } 2625 2626 return ret; 2627 } 2628 2629 /** 2630 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy. 2631 * @cpu: CPU to re-evaluate the policy for. 2632 * 2633 * Update the current frequency for the cpufreq policy of @cpu and use 2634 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the 2635 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback 2636 * for the policy in question, among other things. 2637 */ 2638 void cpufreq_update_policy(unsigned int cpu) 2639 { 2640 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu); 2641 2642 if (!policy) 2643 return; 2644 2645 /* 2646 * BIOS might change freq behind our back 2647 * -> ask driver for current freq and notify governors about a change 2648 */ 2649 if (cpufreq_driver->get && has_target() && 2650 (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false)))) 2651 goto unlock; 2652 2653 refresh_frequency_limits(policy); 2654 2655 unlock: 2656 cpufreq_cpu_release(policy); 2657 } 2658 EXPORT_SYMBOL(cpufreq_update_policy); 2659 2660 /** 2661 * cpufreq_update_limits - Update policy limits for a given CPU. 2662 * @cpu: CPU to update the policy limits for. 2663 * 2664 * Invoke the driver's ->update_limits callback if present or call 2665 * cpufreq_update_policy() for @cpu. 2666 */ 2667 void cpufreq_update_limits(unsigned int cpu) 2668 { 2669 if (cpufreq_driver->update_limits) 2670 cpufreq_driver->update_limits(cpu); 2671 else 2672 cpufreq_update_policy(cpu); 2673 } 2674 EXPORT_SYMBOL_GPL(cpufreq_update_limits); 2675 2676 /********************************************************************* 2677 * BOOST * 2678 *********************************************************************/ 2679 static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state) 2680 { 2681 int ret; 2682 2683 if (!policy->freq_table) 2684 return -ENXIO; 2685 2686 ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table); 2687 if (ret) { 2688 pr_err("%s: Policy frequency update failed\n", __func__); 2689 return ret; 2690 } 2691 2692 ret = freq_qos_update_request(policy->max_freq_req, policy->max); 2693 if (ret < 0) 2694 return ret; 2695 2696 return 0; 2697 } 2698 2699 int cpufreq_boost_trigger_state(int state) 2700 { 2701 struct cpufreq_policy *policy; 2702 unsigned long flags; 2703 int ret = 0; 2704 2705 if (cpufreq_driver->boost_enabled == state) 2706 return 0; 2707 2708 write_lock_irqsave(&cpufreq_driver_lock, flags); 2709 cpufreq_driver->boost_enabled = state; 2710 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2711 2712 cpus_read_lock(); 2713 for_each_active_policy(policy) { 2714 ret = cpufreq_driver->set_boost(policy, state); 2715 if (ret) 2716 goto err_reset_state; 2717 } 2718 cpus_read_unlock(); 2719 2720 return 0; 2721 2722 err_reset_state: 2723 cpus_read_unlock(); 2724 2725 write_lock_irqsave(&cpufreq_driver_lock, flags); 2726 cpufreq_driver->boost_enabled = !state; 2727 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2728 2729 pr_err("%s: Cannot %s BOOST\n", 2730 __func__, state ? "enable" : "disable"); 2731 2732 return ret; 2733 } 2734 2735 static bool cpufreq_boost_supported(void) 2736 { 2737 return cpufreq_driver->set_boost; 2738 } 2739 2740 static int create_boost_sysfs_file(void) 2741 { 2742 int ret; 2743 2744 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr); 2745 if (ret) 2746 pr_err("%s: cannot register global BOOST sysfs file\n", 2747 __func__); 2748 2749 return ret; 2750 } 2751 2752 static void remove_boost_sysfs_file(void) 2753 { 2754 if (cpufreq_boost_supported()) 2755 sysfs_remove_file(cpufreq_global_kobject, &boost.attr); 2756 } 2757 2758 int cpufreq_enable_boost_support(void) 2759 { 2760 if (!cpufreq_driver) 2761 return -EINVAL; 2762 2763 if (cpufreq_boost_supported()) 2764 return 0; 2765 2766 cpufreq_driver->set_boost = cpufreq_boost_set_sw; 2767 2768 /* This will get removed on driver unregister */ 2769 return create_boost_sysfs_file(); 2770 } 2771 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support); 2772 2773 int cpufreq_boost_enabled(void) 2774 { 2775 return cpufreq_driver->boost_enabled; 2776 } 2777 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled); 2778 2779 /********************************************************************* 2780 * REGISTER / UNREGISTER CPUFREQ DRIVER * 2781 *********************************************************************/ 2782 static enum cpuhp_state hp_online; 2783 2784 static int cpuhp_cpufreq_online(unsigned int cpu) 2785 { 2786 cpufreq_online(cpu); 2787 2788 return 0; 2789 } 2790 2791 static int cpuhp_cpufreq_offline(unsigned int cpu) 2792 { 2793 cpufreq_offline(cpu); 2794 2795 return 0; 2796 } 2797 2798 /** 2799 * cpufreq_register_driver - register a CPU Frequency driver 2800 * @driver_data: A struct cpufreq_driver containing the values# 2801 * submitted by the CPU Frequency driver. 2802 * 2803 * Registers a CPU Frequency driver to this core code. This code 2804 * returns zero on success, -EEXIST when another driver got here first 2805 * (and isn't unregistered in the meantime). 2806 * 2807 */ 2808 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 2809 { 2810 unsigned long flags; 2811 int ret; 2812 2813 if (cpufreq_disabled()) 2814 return -ENODEV; 2815 2816 /* 2817 * The cpufreq core depends heavily on the availability of device 2818 * structure, make sure they are available before proceeding further. 2819 */ 2820 if (!get_cpu_device(0)) 2821 return -EPROBE_DEFER; 2822 2823 if (!driver_data || !driver_data->verify || !driver_data->init || 2824 !(driver_data->setpolicy || driver_data->target_index || 2825 driver_data->target) || 2826 (driver_data->setpolicy && (driver_data->target_index || 2827 driver_data->target)) || 2828 (!driver_data->get_intermediate != !driver_data->target_intermediate) || 2829 (!driver_data->online != !driver_data->offline)) 2830 return -EINVAL; 2831 2832 pr_debug("trying to register driver %s\n", driver_data->name); 2833 2834 /* Protect against concurrent CPU online/offline. */ 2835 cpus_read_lock(); 2836 2837 write_lock_irqsave(&cpufreq_driver_lock, flags); 2838 if (cpufreq_driver) { 2839 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2840 ret = -EEXIST; 2841 goto out; 2842 } 2843 cpufreq_driver = driver_data; 2844 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2845 2846 /* 2847 * Mark support for the scheduler's frequency invariance engine for 2848 * drivers that implement target(), target_index() or fast_switch(). 2849 */ 2850 if (!cpufreq_driver->setpolicy) { 2851 static_branch_enable_cpuslocked(&cpufreq_freq_invariance); 2852 pr_debug("supports frequency invariance"); 2853 } 2854 2855 if (driver_data->setpolicy) 2856 driver_data->flags |= CPUFREQ_CONST_LOOPS; 2857 2858 if (cpufreq_boost_supported()) { 2859 ret = create_boost_sysfs_file(); 2860 if (ret) 2861 goto err_null_driver; 2862 } 2863 2864 ret = subsys_interface_register(&cpufreq_interface); 2865 if (ret) 2866 goto err_boost_unreg; 2867 2868 if (unlikely(list_empty(&cpufreq_policy_list))) { 2869 /* if all ->init() calls failed, unregister */ 2870 ret = -ENODEV; 2871 pr_debug("%s: No CPU initialized for driver %s\n", __func__, 2872 driver_data->name); 2873 goto err_if_unreg; 2874 } 2875 2876 ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN, 2877 "cpufreq:online", 2878 cpuhp_cpufreq_online, 2879 cpuhp_cpufreq_offline); 2880 if (ret < 0) 2881 goto err_if_unreg; 2882 hp_online = ret; 2883 ret = 0; 2884 2885 pr_debug("driver %s up and running\n", driver_data->name); 2886 goto out; 2887 2888 err_if_unreg: 2889 subsys_interface_unregister(&cpufreq_interface); 2890 err_boost_unreg: 2891 remove_boost_sysfs_file(); 2892 err_null_driver: 2893 write_lock_irqsave(&cpufreq_driver_lock, flags); 2894 cpufreq_driver = NULL; 2895 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2896 out: 2897 cpus_read_unlock(); 2898 return ret; 2899 } 2900 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 2901 2902 /* 2903 * cpufreq_unregister_driver - unregister the current CPUFreq driver 2904 * 2905 * Unregister the current CPUFreq driver. Only call this if you have 2906 * the right to do so, i.e. if you have succeeded in initialising before! 2907 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 2908 * currently not initialised. 2909 */ 2910 int cpufreq_unregister_driver(struct cpufreq_driver *driver) 2911 { 2912 unsigned long flags; 2913 2914 if (!cpufreq_driver || (driver != cpufreq_driver)) 2915 return -EINVAL; 2916 2917 pr_debug("unregistering driver %s\n", driver->name); 2918 2919 /* Protect against concurrent cpu hotplug */ 2920 cpus_read_lock(); 2921 subsys_interface_unregister(&cpufreq_interface); 2922 remove_boost_sysfs_file(); 2923 static_branch_disable_cpuslocked(&cpufreq_freq_invariance); 2924 cpuhp_remove_state_nocalls_cpuslocked(hp_online); 2925 2926 write_lock_irqsave(&cpufreq_driver_lock, flags); 2927 2928 cpufreq_driver = NULL; 2929 2930 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2931 cpus_read_unlock(); 2932 2933 return 0; 2934 } 2935 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 2936 2937 static int __init cpufreq_core_init(void) 2938 { 2939 struct cpufreq_governor *gov = cpufreq_default_governor(); 2940 2941 if (cpufreq_disabled()) 2942 return -ENODEV; 2943 2944 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj); 2945 BUG_ON(!cpufreq_global_kobject); 2946 2947 if (!strlen(default_governor)) 2948 strncpy(default_governor, gov->name, CPUFREQ_NAME_LEN); 2949 2950 return 0; 2951 } 2952 module_param(off, int, 0444); 2953 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444); 2954 core_initcall(cpufreq_core_init); 2955