xref: /linux/drivers/cpufreq/cpufreq.c (revision 3932b9ca55b0be314a36d3e84faff3e823c081f5)
1 /*
2  *  linux/drivers/cpufreq/cpufreq.c
3  *
4  *  Copyright (C) 2001 Russell King
5  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
7  *
8  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
9  *	Added handling for CPU hotplug
10  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
11  *	Fix handling for CPU hotplug -- affected CPUs
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License version 2 as
15  * published by the Free Software Foundation.
16  */
17 
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/init.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/module.h>
27 #include <linux/mutex.h>
28 #include <linux/slab.h>
29 #include <linux/suspend.h>
30 #include <linux/tick.h>
31 #include <trace/events/power.h>
32 
33 /**
34  * The "cpufreq driver" - the arch- or hardware-dependent low
35  * level driver of CPUFreq support, and its spinlock. This lock
36  * also protects the cpufreq_cpu_data array.
37  */
38 static struct cpufreq_driver *cpufreq_driver;
39 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
40 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data_fallback);
41 static DEFINE_RWLOCK(cpufreq_driver_lock);
42 DEFINE_MUTEX(cpufreq_governor_lock);
43 static LIST_HEAD(cpufreq_policy_list);
44 
45 /* This one keeps track of the previously set governor of a removed CPU */
46 static DEFINE_PER_CPU(char[CPUFREQ_NAME_LEN], cpufreq_cpu_governor);
47 
48 /* Flag to suspend/resume CPUFreq governors */
49 static bool cpufreq_suspended;
50 
51 static inline bool has_target(void)
52 {
53 	return cpufreq_driver->target_index || cpufreq_driver->target;
54 }
55 
56 /*
57  * rwsem to guarantee that cpufreq driver module doesn't unload during critical
58  * sections
59  */
60 static DECLARE_RWSEM(cpufreq_rwsem);
61 
62 /* internal prototypes */
63 static int __cpufreq_governor(struct cpufreq_policy *policy,
64 		unsigned int event);
65 static unsigned int __cpufreq_get(unsigned int cpu);
66 static void handle_update(struct work_struct *work);
67 
68 /**
69  * Two notifier lists: the "policy" list is involved in the
70  * validation process for a new CPU frequency policy; the
71  * "transition" list for kernel code that needs to handle
72  * changes to devices when the CPU clock speed changes.
73  * The mutex locks both lists.
74  */
75 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
76 static struct srcu_notifier_head cpufreq_transition_notifier_list;
77 
78 static bool init_cpufreq_transition_notifier_list_called;
79 static int __init init_cpufreq_transition_notifier_list(void)
80 {
81 	srcu_init_notifier_head(&cpufreq_transition_notifier_list);
82 	init_cpufreq_transition_notifier_list_called = true;
83 	return 0;
84 }
85 pure_initcall(init_cpufreq_transition_notifier_list);
86 
87 static int off __read_mostly;
88 static int cpufreq_disabled(void)
89 {
90 	return off;
91 }
92 void disable_cpufreq(void)
93 {
94 	off = 1;
95 }
96 static LIST_HEAD(cpufreq_governor_list);
97 static DEFINE_MUTEX(cpufreq_governor_mutex);
98 
99 bool have_governor_per_policy(void)
100 {
101 	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
102 }
103 EXPORT_SYMBOL_GPL(have_governor_per_policy);
104 
105 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
106 {
107 	if (have_governor_per_policy())
108 		return &policy->kobj;
109 	else
110 		return cpufreq_global_kobject;
111 }
112 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
113 
114 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
115 {
116 	u64 idle_time;
117 	u64 cur_wall_time;
118 	u64 busy_time;
119 
120 	cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
121 
122 	busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
123 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
124 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
125 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
126 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
127 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
128 
129 	idle_time = cur_wall_time - busy_time;
130 	if (wall)
131 		*wall = cputime_to_usecs(cur_wall_time);
132 
133 	return cputime_to_usecs(idle_time);
134 }
135 
136 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
137 {
138 	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
139 
140 	if (idle_time == -1ULL)
141 		return get_cpu_idle_time_jiffy(cpu, wall);
142 	else if (!io_busy)
143 		idle_time += get_cpu_iowait_time_us(cpu, wall);
144 
145 	return idle_time;
146 }
147 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
148 
149 /*
150  * This is a generic cpufreq init() routine which can be used by cpufreq
151  * drivers of SMP systems. It will do following:
152  * - validate & show freq table passed
153  * - set policies transition latency
154  * - policy->cpus with all possible CPUs
155  */
156 int cpufreq_generic_init(struct cpufreq_policy *policy,
157 		struct cpufreq_frequency_table *table,
158 		unsigned int transition_latency)
159 {
160 	int ret;
161 
162 	ret = cpufreq_table_validate_and_show(policy, table);
163 	if (ret) {
164 		pr_err("%s: invalid frequency table: %d\n", __func__, ret);
165 		return ret;
166 	}
167 
168 	policy->cpuinfo.transition_latency = transition_latency;
169 
170 	/*
171 	 * The driver only supports the SMP configuartion where all processors
172 	 * share the clock and voltage and clock.
173 	 */
174 	cpumask_setall(policy->cpus);
175 
176 	return 0;
177 }
178 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
179 
180 unsigned int cpufreq_generic_get(unsigned int cpu)
181 {
182 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
183 
184 	if (!policy || IS_ERR(policy->clk)) {
185 		pr_err("%s: No %s associated to cpu: %d\n",
186 		       __func__, policy ? "clk" : "policy", cpu);
187 		return 0;
188 	}
189 
190 	return clk_get_rate(policy->clk) / 1000;
191 }
192 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
193 
194 /* Only for cpufreq core internal use */
195 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
196 {
197 	return per_cpu(cpufreq_cpu_data, cpu);
198 }
199 
200 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
201 {
202 	struct cpufreq_policy *policy = NULL;
203 	unsigned long flags;
204 
205 	if (cpufreq_disabled() || (cpu >= nr_cpu_ids))
206 		return NULL;
207 
208 	if (!down_read_trylock(&cpufreq_rwsem))
209 		return NULL;
210 
211 	/* get the cpufreq driver */
212 	read_lock_irqsave(&cpufreq_driver_lock, flags);
213 
214 	if (cpufreq_driver) {
215 		/* get the CPU */
216 		policy = per_cpu(cpufreq_cpu_data, cpu);
217 		if (policy)
218 			kobject_get(&policy->kobj);
219 	}
220 
221 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
222 
223 	if (!policy)
224 		up_read(&cpufreq_rwsem);
225 
226 	return policy;
227 }
228 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
229 
230 void cpufreq_cpu_put(struct cpufreq_policy *policy)
231 {
232 	if (cpufreq_disabled())
233 		return;
234 
235 	kobject_put(&policy->kobj);
236 	up_read(&cpufreq_rwsem);
237 }
238 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
239 
240 /*********************************************************************
241  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
242  *********************************************************************/
243 
244 /**
245  * adjust_jiffies - adjust the system "loops_per_jiffy"
246  *
247  * This function alters the system "loops_per_jiffy" for the clock
248  * speed change. Note that loops_per_jiffy cannot be updated on SMP
249  * systems as each CPU might be scaled differently. So, use the arch
250  * per-CPU loops_per_jiffy value wherever possible.
251  */
252 #ifndef CONFIG_SMP
253 static unsigned long l_p_j_ref;
254 static unsigned int l_p_j_ref_freq;
255 
256 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
257 {
258 	if (ci->flags & CPUFREQ_CONST_LOOPS)
259 		return;
260 
261 	if (!l_p_j_ref_freq) {
262 		l_p_j_ref = loops_per_jiffy;
263 		l_p_j_ref_freq = ci->old;
264 		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
265 			 l_p_j_ref, l_p_j_ref_freq);
266 	}
267 	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
268 		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
269 								ci->new);
270 		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
271 			 loops_per_jiffy, ci->new);
272 	}
273 }
274 #else
275 static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
276 {
277 	return;
278 }
279 #endif
280 
281 static void __cpufreq_notify_transition(struct cpufreq_policy *policy,
282 		struct cpufreq_freqs *freqs, unsigned int state)
283 {
284 	BUG_ON(irqs_disabled());
285 
286 	if (cpufreq_disabled())
287 		return;
288 
289 	freqs->flags = cpufreq_driver->flags;
290 	pr_debug("notification %u of frequency transition to %u kHz\n",
291 		 state, freqs->new);
292 
293 	switch (state) {
294 
295 	case CPUFREQ_PRECHANGE:
296 		/* detect if the driver reported a value as "old frequency"
297 		 * which is not equal to what the cpufreq core thinks is
298 		 * "old frequency".
299 		 */
300 		if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
301 			if ((policy) && (policy->cpu == freqs->cpu) &&
302 			    (policy->cur) && (policy->cur != freqs->old)) {
303 				pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
304 					 freqs->old, policy->cur);
305 				freqs->old = policy->cur;
306 			}
307 		}
308 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
309 				CPUFREQ_PRECHANGE, freqs);
310 		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
311 		break;
312 
313 	case CPUFREQ_POSTCHANGE:
314 		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
315 		pr_debug("FREQ: %lu - CPU: %lu\n",
316 			 (unsigned long)freqs->new, (unsigned long)freqs->cpu);
317 		trace_cpu_frequency(freqs->new, freqs->cpu);
318 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
319 				CPUFREQ_POSTCHANGE, freqs);
320 		if (likely(policy) && likely(policy->cpu == freqs->cpu))
321 			policy->cur = freqs->new;
322 		break;
323 	}
324 }
325 
326 /**
327  * cpufreq_notify_transition - call notifier chain and adjust_jiffies
328  * on frequency transition.
329  *
330  * This function calls the transition notifiers and the "adjust_jiffies"
331  * function. It is called twice on all CPU frequency changes that have
332  * external effects.
333  */
334 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
335 		struct cpufreq_freqs *freqs, unsigned int state)
336 {
337 	for_each_cpu(freqs->cpu, policy->cpus)
338 		__cpufreq_notify_transition(policy, freqs, state);
339 }
340 
341 /* Do post notifications when there are chances that transition has failed */
342 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
343 		struct cpufreq_freqs *freqs, int transition_failed)
344 {
345 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
346 	if (!transition_failed)
347 		return;
348 
349 	swap(freqs->old, freqs->new);
350 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
351 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
352 }
353 
354 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
355 		struct cpufreq_freqs *freqs)
356 {
357 
358 	/*
359 	 * Catch double invocations of _begin() which lead to self-deadlock.
360 	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
361 	 * doesn't invoke _begin() on their behalf, and hence the chances of
362 	 * double invocations are very low. Moreover, there are scenarios
363 	 * where these checks can emit false-positive warnings in these
364 	 * drivers; so we avoid that by skipping them altogether.
365 	 */
366 	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
367 				&& current == policy->transition_task);
368 
369 wait:
370 	wait_event(policy->transition_wait, !policy->transition_ongoing);
371 
372 	spin_lock(&policy->transition_lock);
373 
374 	if (unlikely(policy->transition_ongoing)) {
375 		spin_unlock(&policy->transition_lock);
376 		goto wait;
377 	}
378 
379 	policy->transition_ongoing = true;
380 	policy->transition_task = current;
381 
382 	spin_unlock(&policy->transition_lock);
383 
384 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
385 }
386 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
387 
388 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
389 		struct cpufreq_freqs *freqs, int transition_failed)
390 {
391 	if (unlikely(WARN_ON(!policy->transition_ongoing)))
392 		return;
393 
394 	cpufreq_notify_post_transition(policy, freqs, transition_failed);
395 
396 	policy->transition_ongoing = false;
397 	policy->transition_task = NULL;
398 
399 	wake_up(&policy->transition_wait);
400 }
401 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
402 
403 
404 /*********************************************************************
405  *                          SYSFS INTERFACE                          *
406  *********************************************************************/
407 static ssize_t show_boost(struct kobject *kobj,
408 				 struct attribute *attr, char *buf)
409 {
410 	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
411 }
412 
413 static ssize_t store_boost(struct kobject *kobj, struct attribute *attr,
414 				  const char *buf, size_t count)
415 {
416 	int ret, enable;
417 
418 	ret = sscanf(buf, "%d", &enable);
419 	if (ret != 1 || enable < 0 || enable > 1)
420 		return -EINVAL;
421 
422 	if (cpufreq_boost_trigger_state(enable)) {
423 		pr_err("%s: Cannot %s BOOST!\n",
424 		       __func__, enable ? "enable" : "disable");
425 		return -EINVAL;
426 	}
427 
428 	pr_debug("%s: cpufreq BOOST %s\n",
429 		 __func__, enable ? "enabled" : "disabled");
430 
431 	return count;
432 }
433 define_one_global_rw(boost);
434 
435 static struct cpufreq_governor *__find_governor(const char *str_governor)
436 {
437 	struct cpufreq_governor *t;
438 
439 	list_for_each_entry(t, &cpufreq_governor_list, governor_list)
440 		if (!strnicmp(str_governor, t->name, CPUFREQ_NAME_LEN))
441 			return t;
442 
443 	return NULL;
444 }
445 
446 /**
447  * cpufreq_parse_governor - parse a governor string
448  */
449 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
450 				struct cpufreq_governor **governor)
451 {
452 	int err = -EINVAL;
453 
454 	if (!cpufreq_driver)
455 		goto out;
456 
457 	if (cpufreq_driver->setpolicy) {
458 		if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
459 			*policy = CPUFREQ_POLICY_PERFORMANCE;
460 			err = 0;
461 		} else if (!strnicmp(str_governor, "powersave",
462 						CPUFREQ_NAME_LEN)) {
463 			*policy = CPUFREQ_POLICY_POWERSAVE;
464 			err = 0;
465 		}
466 	} else if (has_target()) {
467 		struct cpufreq_governor *t;
468 
469 		mutex_lock(&cpufreq_governor_mutex);
470 
471 		t = __find_governor(str_governor);
472 
473 		if (t == NULL) {
474 			int ret;
475 
476 			mutex_unlock(&cpufreq_governor_mutex);
477 			ret = request_module("cpufreq_%s", str_governor);
478 			mutex_lock(&cpufreq_governor_mutex);
479 
480 			if (ret == 0)
481 				t = __find_governor(str_governor);
482 		}
483 
484 		if (t != NULL) {
485 			*governor = t;
486 			err = 0;
487 		}
488 
489 		mutex_unlock(&cpufreq_governor_mutex);
490 	}
491 out:
492 	return err;
493 }
494 
495 /**
496  * cpufreq_per_cpu_attr_read() / show_##file_name() -
497  * print out cpufreq information
498  *
499  * Write out information from cpufreq_driver->policy[cpu]; object must be
500  * "unsigned int".
501  */
502 
503 #define show_one(file_name, object)			\
504 static ssize_t show_##file_name				\
505 (struct cpufreq_policy *policy, char *buf)		\
506 {							\
507 	return sprintf(buf, "%u\n", policy->object);	\
508 }
509 
510 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
511 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
512 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
513 show_one(scaling_min_freq, min);
514 show_one(scaling_max_freq, max);
515 show_one(scaling_cur_freq, cur);
516 
517 static int cpufreq_set_policy(struct cpufreq_policy *policy,
518 				struct cpufreq_policy *new_policy);
519 
520 /**
521  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
522  */
523 #define store_one(file_name, object)			\
524 static ssize_t store_##file_name					\
525 (struct cpufreq_policy *policy, const char *buf, size_t count)		\
526 {									\
527 	int ret;							\
528 	struct cpufreq_policy new_policy;				\
529 									\
530 	ret = cpufreq_get_policy(&new_policy, policy->cpu);		\
531 	if (ret)							\
532 		return -EINVAL;						\
533 									\
534 	ret = sscanf(buf, "%u", &new_policy.object);			\
535 	if (ret != 1)							\
536 		return -EINVAL;						\
537 									\
538 	ret = cpufreq_set_policy(policy, &new_policy);		\
539 	policy->user_policy.object = policy->object;			\
540 									\
541 	return ret ? ret : count;					\
542 }
543 
544 store_one(scaling_min_freq, min);
545 store_one(scaling_max_freq, max);
546 
547 /**
548  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
549  */
550 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
551 					char *buf)
552 {
553 	unsigned int cur_freq = __cpufreq_get(policy->cpu);
554 	if (!cur_freq)
555 		return sprintf(buf, "<unknown>");
556 	return sprintf(buf, "%u\n", cur_freq);
557 }
558 
559 /**
560  * show_scaling_governor - show the current policy for the specified CPU
561  */
562 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
563 {
564 	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
565 		return sprintf(buf, "powersave\n");
566 	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
567 		return sprintf(buf, "performance\n");
568 	else if (policy->governor)
569 		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
570 				policy->governor->name);
571 	return -EINVAL;
572 }
573 
574 /**
575  * store_scaling_governor - store policy for the specified CPU
576  */
577 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
578 					const char *buf, size_t count)
579 {
580 	int ret;
581 	char	str_governor[16];
582 	struct cpufreq_policy new_policy;
583 
584 	ret = cpufreq_get_policy(&new_policy, policy->cpu);
585 	if (ret)
586 		return ret;
587 
588 	ret = sscanf(buf, "%15s", str_governor);
589 	if (ret != 1)
590 		return -EINVAL;
591 
592 	if (cpufreq_parse_governor(str_governor, &new_policy.policy,
593 						&new_policy.governor))
594 		return -EINVAL;
595 
596 	ret = cpufreq_set_policy(policy, &new_policy);
597 
598 	policy->user_policy.policy = policy->policy;
599 	policy->user_policy.governor = policy->governor;
600 
601 	if (ret)
602 		return ret;
603 	else
604 		return count;
605 }
606 
607 /**
608  * show_scaling_driver - show the cpufreq driver currently loaded
609  */
610 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
611 {
612 	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
613 }
614 
615 /**
616  * show_scaling_available_governors - show the available CPUfreq governors
617  */
618 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
619 						char *buf)
620 {
621 	ssize_t i = 0;
622 	struct cpufreq_governor *t;
623 
624 	if (!has_target()) {
625 		i += sprintf(buf, "performance powersave");
626 		goto out;
627 	}
628 
629 	list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
630 		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
631 		    - (CPUFREQ_NAME_LEN + 2)))
632 			goto out;
633 		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
634 	}
635 out:
636 	i += sprintf(&buf[i], "\n");
637 	return i;
638 }
639 
640 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
641 {
642 	ssize_t i = 0;
643 	unsigned int cpu;
644 
645 	for_each_cpu(cpu, mask) {
646 		if (i)
647 			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
648 		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
649 		if (i >= (PAGE_SIZE - 5))
650 			break;
651 	}
652 	i += sprintf(&buf[i], "\n");
653 	return i;
654 }
655 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
656 
657 /**
658  * show_related_cpus - show the CPUs affected by each transition even if
659  * hw coordination is in use
660  */
661 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
662 {
663 	return cpufreq_show_cpus(policy->related_cpus, buf);
664 }
665 
666 /**
667  * show_affected_cpus - show the CPUs affected by each transition
668  */
669 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
670 {
671 	return cpufreq_show_cpus(policy->cpus, buf);
672 }
673 
674 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
675 					const char *buf, size_t count)
676 {
677 	unsigned int freq = 0;
678 	unsigned int ret;
679 
680 	if (!policy->governor || !policy->governor->store_setspeed)
681 		return -EINVAL;
682 
683 	ret = sscanf(buf, "%u", &freq);
684 	if (ret != 1)
685 		return -EINVAL;
686 
687 	policy->governor->store_setspeed(policy, freq);
688 
689 	return count;
690 }
691 
692 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
693 {
694 	if (!policy->governor || !policy->governor->show_setspeed)
695 		return sprintf(buf, "<unsupported>\n");
696 
697 	return policy->governor->show_setspeed(policy, buf);
698 }
699 
700 /**
701  * show_bios_limit - show the current cpufreq HW/BIOS limitation
702  */
703 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
704 {
705 	unsigned int limit;
706 	int ret;
707 	if (cpufreq_driver->bios_limit) {
708 		ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
709 		if (!ret)
710 			return sprintf(buf, "%u\n", limit);
711 	}
712 	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
713 }
714 
715 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
716 cpufreq_freq_attr_ro(cpuinfo_min_freq);
717 cpufreq_freq_attr_ro(cpuinfo_max_freq);
718 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
719 cpufreq_freq_attr_ro(scaling_available_governors);
720 cpufreq_freq_attr_ro(scaling_driver);
721 cpufreq_freq_attr_ro(scaling_cur_freq);
722 cpufreq_freq_attr_ro(bios_limit);
723 cpufreq_freq_attr_ro(related_cpus);
724 cpufreq_freq_attr_ro(affected_cpus);
725 cpufreq_freq_attr_rw(scaling_min_freq);
726 cpufreq_freq_attr_rw(scaling_max_freq);
727 cpufreq_freq_attr_rw(scaling_governor);
728 cpufreq_freq_attr_rw(scaling_setspeed);
729 
730 static struct attribute *default_attrs[] = {
731 	&cpuinfo_min_freq.attr,
732 	&cpuinfo_max_freq.attr,
733 	&cpuinfo_transition_latency.attr,
734 	&scaling_min_freq.attr,
735 	&scaling_max_freq.attr,
736 	&affected_cpus.attr,
737 	&related_cpus.attr,
738 	&scaling_governor.attr,
739 	&scaling_driver.attr,
740 	&scaling_available_governors.attr,
741 	&scaling_setspeed.attr,
742 	NULL
743 };
744 
745 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
746 #define to_attr(a) container_of(a, struct freq_attr, attr)
747 
748 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
749 {
750 	struct cpufreq_policy *policy = to_policy(kobj);
751 	struct freq_attr *fattr = to_attr(attr);
752 	ssize_t ret;
753 
754 	if (!down_read_trylock(&cpufreq_rwsem))
755 		return -EINVAL;
756 
757 	down_read(&policy->rwsem);
758 
759 	if (fattr->show)
760 		ret = fattr->show(policy, buf);
761 	else
762 		ret = -EIO;
763 
764 	up_read(&policy->rwsem);
765 	up_read(&cpufreq_rwsem);
766 
767 	return ret;
768 }
769 
770 static ssize_t store(struct kobject *kobj, struct attribute *attr,
771 		     const char *buf, size_t count)
772 {
773 	struct cpufreq_policy *policy = to_policy(kobj);
774 	struct freq_attr *fattr = to_attr(attr);
775 	ssize_t ret = -EINVAL;
776 
777 	get_online_cpus();
778 
779 	if (!cpu_online(policy->cpu))
780 		goto unlock;
781 
782 	if (!down_read_trylock(&cpufreq_rwsem))
783 		goto unlock;
784 
785 	down_write(&policy->rwsem);
786 
787 	if (fattr->store)
788 		ret = fattr->store(policy, buf, count);
789 	else
790 		ret = -EIO;
791 
792 	up_write(&policy->rwsem);
793 
794 	up_read(&cpufreq_rwsem);
795 unlock:
796 	put_online_cpus();
797 
798 	return ret;
799 }
800 
801 static void cpufreq_sysfs_release(struct kobject *kobj)
802 {
803 	struct cpufreq_policy *policy = to_policy(kobj);
804 	pr_debug("last reference is dropped\n");
805 	complete(&policy->kobj_unregister);
806 }
807 
808 static const struct sysfs_ops sysfs_ops = {
809 	.show	= show,
810 	.store	= store,
811 };
812 
813 static struct kobj_type ktype_cpufreq = {
814 	.sysfs_ops	= &sysfs_ops,
815 	.default_attrs	= default_attrs,
816 	.release	= cpufreq_sysfs_release,
817 };
818 
819 struct kobject *cpufreq_global_kobject;
820 EXPORT_SYMBOL(cpufreq_global_kobject);
821 
822 static int cpufreq_global_kobject_usage;
823 
824 int cpufreq_get_global_kobject(void)
825 {
826 	if (!cpufreq_global_kobject_usage++)
827 		return kobject_add(cpufreq_global_kobject,
828 				&cpu_subsys.dev_root->kobj, "%s", "cpufreq");
829 
830 	return 0;
831 }
832 EXPORT_SYMBOL(cpufreq_get_global_kobject);
833 
834 void cpufreq_put_global_kobject(void)
835 {
836 	if (!--cpufreq_global_kobject_usage)
837 		kobject_del(cpufreq_global_kobject);
838 }
839 EXPORT_SYMBOL(cpufreq_put_global_kobject);
840 
841 int cpufreq_sysfs_create_file(const struct attribute *attr)
842 {
843 	int ret = cpufreq_get_global_kobject();
844 
845 	if (!ret) {
846 		ret = sysfs_create_file(cpufreq_global_kobject, attr);
847 		if (ret)
848 			cpufreq_put_global_kobject();
849 	}
850 
851 	return ret;
852 }
853 EXPORT_SYMBOL(cpufreq_sysfs_create_file);
854 
855 void cpufreq_sysfs_remove_file(const struct attribute *attr)
856 {
857 	sysfs_remove_file(cpufreq_global_kobject, attr);
858 	cpufreq_put_global_kobject();
859 }
860 EXPORT_SYMBOL(cpufreq_sysfs_remove_file);
861 
862 /* symlink affected CPUs */
863 static int cpufreq_add_dev_symlink(struct cpufreq_policy *policy)
864 {
865 	unsigned int j;
866 	int ret = 0;
867 
868 	for_each_cpu(j, policy->cpus) {
869 		struct device *cpu_dev;
870 
871 		if (j == policy->cpu)
872 			continue;
873 
874 		pr_debug("Adding link for CPU: %u\n", j);
875 		cpu_dev = get_cpu_device(j);
876 		ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj,
877 					"cpufreq");
878 		if (ret)
879 			break;
880 	}
881 	return ret;
882 }
883 
884 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy,
885 				     struct device *dev)
886 {
887 	struct freq_attr **drv_attr;
888 	int ret = 0;
889 
890 	/* prepare interface data */
891 	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
892 				   &dev->kobj, "cpufreq");
893 	if (ret)
894 		return ret;
895 
896 	/* set up files for this cpu device */
897 	drv_attr = cpufreq_driver->attr;
898 	while ((drv_attr) && (*drv_attr)) {
899 		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
900 		if (ret)
901 			goto err_out_kobj_put;
902 		drv_attr++;
903 	}
904 	if (cpufreq_driver->get) {
905 		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
906 		if (ret)
907 			goto err_out_kobj_put;
908 	}
909 	if (has_target()) {
910 		ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
911 		if (ret)
912 			goto err_out_kobj_put;
913 	}
914 	if (cpufreq_driver->bios_limit) {
915 		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
916 		if (ret)
917 			goto err_out_kobj_put;
918 	}
919 
920 	ret = cpufreq_add_dev_symlink(policy);
921 	if (ret)
922 		goto err_out_kobj_put;
923 
924 	return ret;
925 
926 err_out_kobj_put:
927 	kobject_put(&policy->kobj);
928 	wait_for_completion(&policy->kobj_unregister);
929 	return ret;
930 }
931 
932 static void cpufreq_init_policy(struct cpufreq_policy *policy)
933 {
934 	struct cpufreq_governor *gov = NULL;
935 	struct cpufreq_policy new_policy;
936 	int ret = 0;
937 
938 	memcpy(&new_policy, policy, sizeof(*policy));
939 
940 	/* Update governor of new_policy to the governor used before hotplug */
941 	gov = __find_governor(per_cpu(cpufreq_cpu_governor, policy->cpu));
942 	if (gov)
943 		pr_debug("Restoring governor %s for cpu %d\n",
944 				policy->governor->name, policy->cpu);
945 	else
946 		gov = CPUFREQ_DEFAULT_GOVERNOR;
947 
948 	new_policy.governor = gov;
949 
950 	/* Use the default policy if its valid. */
951 	if (cpufreq_driver->setpolicy)
952 		cpufreq_parse_governor(gov->name, &new_policy.policy, NULL);
953 
954 	/* set default policy */
955 	ret = cpufreq_set_policy(policy, &new_policy);
956 	if (ret) {
957 		pr_debug("setting policy failed\n");
958 		if (cpufreq_driver->exit)
959 			cpufreq_driver->exit(policy);
960 	}
961 }
962 
963 #ifdef CONFIG_HOTPLUG_CPU
964 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy,
965 				  unsigned int cpu, struct device *dev)
966 {
967 	int ret = 0;
968 	unsigned long flags;
969 
970 	if (has_target()) {
971 		ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
972 		if (ret) {
973 			pr_err("%s: Failed to stop governor\n", __func__);
974 			return ret;
975 		}
976 	}
977 
978 	down_write(&policy->rwsem);
979 
980 	write_lock_irqsave(&cpufreq_driver_lock, flags);
981 
982 	cpumask_set_cpu(cpu, policy->cpus);
983 	per_cpu(cpufreq_cpu_data, cpu) = policy;
984 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
985 
986 	up_write(&policy->rwsem);
987 
988 	if (has_target()) {
989 		ret = __cpufreq_governor(policy, CPUFREQ_GOV_START);
990 		if (!ret)
991 			ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
992 
993 		if (ret) {
994 			pr_err("%s: Failed to start governor\n", __func__);
995 			return ret;
996 		}
997 	}
998 
999 	return sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq");
1000 }
1001 #endif
1002 
1003 static struct cpufreq_policy *cpufreq_policy_restore(unsigned int cpu)
1004 {
1005 	struct cpufreq_policy *policy;
1006 	unsigned long flags;
1007 
1008 	read_lock_irqsave(&cpufreq_driver_lock, flags);
1009 
1010 	policy = per_cpu(cpufreq_cpu_data_fallback, cpu);
1011 
1012 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1013 
1014 	policy->governor = NULL;
1015 
1016 	return policy;
1017 }
1018 
1019 static struct cpufreq_policy *cpufreq_policy_alloc(void)
1020 {
1021 	struct cpufreq_policy *policy;
1022 
1023 	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1024 	if (!policy)
1025 		return NULL;
1026 
1027 	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1028 		goto err_free_policy;
1029 
1030 	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1031 		goto err_free_cpumask;
1032 
1033 	INIT_LIST_HEAD(&policy->policy_list);
1034 	init_rwsem(&policy->rwsem);
1035 	spin_lock_init(&policy->transition_lock);
1036 	init_waitqueue_head(&policy->transition_wait);
1037 
1038 	return policy;
1039 
1040 err_free_cpumask:
1041 	free_cpumask_var(policy->cpus);
1042 err_free_policy:
1043 	kfree(policy);
1044 
1045 	return NULL;
1046 }
1047 
1048 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1049 {
1050 	struct kobject *kobj;
1051 	struct completion *cmp;
1052 
1053 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1054 			CPUFREQ_REMOVE_POLICY, policy);
1055 
1056 	down_read(&policy->rwsem);
1057 	kobj = &policy->kobj;
1058 	cmp = &policy->kobj_unregister;
1059 	up_read(&policy->rwsem);
1060 	kobject_put(kobj);
1061 
1062 	/*
1063 	 * We need to make sure that the underlying kobj is
1064 	 * actually not referenced anymore by anybody before we
1065 	 * proceed with unloading.
1066 	 */
1067 	pr_debug("waiting for dropping of refcount\n");
1068 	wait_for_completion(cmp);
1069 	pr_debug("wait complete\n");
1070 }
1071 
1072 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1073 {
1074 	free_cpumask_var(policy->related_cpus);
1075 	free_cpumask_var(policy->cpus);
1076 	kfree(policy);
1077 }
1078 
1079 static int update_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu,
1080 			     struct device *cpu_dev)
1081 {
1082 	int ret;
1083 
1084 	if (WARN_ON(cpu == policy->cpu))
1085 		return 0;
1086 
1087 	/* Move kobject to the new policy->cpu */
1088 	ret = kobject_move(&policy->kobj, &cpu_dev->kobj);
1089 	if (ret) {
1090 		pr_err("%s: Failed to move kobj: %d\n", __func__, ret);
1091 		return ret;
1092 	}
1093 
1094 	down_write(&policy->rwsem);
1095 
1096 	policy->last_cpu = policy->cpu;
1097 	policy->cpu = cpu;
1098 
1099 	up_write(&policy->rwsem);
1100 
1101 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1102 			CPUFREQ_UPDATE_POLICY_CPU, policy);
1103 
1104 	return 0;
1105 }
1106 
1107 static int __cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1108 {
1109 	unsigned int j, cpu = dev->id;
1110 	int ret = -ENOMEM;
1111 	struct cpufreq_policy *policy;
1112 	unsigned long flags;
1113 	bool recover_policy = cpufreq_suspended;
1114 #ifdef CONFIG_HOTPLUG_CPU
1115 	struct cpufreq_policy *tpolicy;
1116 #endif
1117 
1118 	if (cpu_is_offline(cpu))
1119 		return 0;
1120 
1121 	pr_debug("adding CPU %u\n", cpu);
1122 
1123 #ifdef CONFIG_SMP
1124 	/* check whether a different CPU already registered this
1125 	 * CPU because it is in the same boat. */
1126 	policy = cpufreq_cpu_get(cpu);
1127 	if (unlikely(policy)) {
1128 		cpufreq_cpu_put(policy);
1129 		return 0;
1130 	}
1131 #endif
1132 
1133 	if (!down_read_trylock(&cpufreq_rwsem))
1134 		return 0;
1135 
1136 #ifdef CONFIG_HOTPLUG_CPU
1137 	/* Check if this cpu was hot-unplugged earlier and has siblings */
1138 	read_lock_irqsave(&cpufreq_driver_lock, flags);
1139 	list_for_each_entry(tpolicy, &cpufreq_policy_list, policy_list) {
1140 		if (cpumask_test_cpu(cpu, tpolicy->related_cpus)) {
1141 			read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1142 			ret = cpufreq_add_policy_cpu(tpolicy, cpu, dev);
1143 			up_read(&cpufreq_rwsem);
1144 			return ret;
1145 		}
1146 	}
1147 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1148 #endif
1149 
1150 	/*
1151 	 * Restore the saved policy when doing light-weight init and fall back
1152 	 * to the full init if that fails.
1153 	 */
1154 	policy = recover_policy ? cpufreq_policy_restore(cpu) : NULL;
1155 	if (!policy) {
1156 		recover_policy = false;
1157 		policy = cpufreq_policy_alloc();
1158 		if (!policy)
1159 			goto nomem_out;
1160 	}
1161 
1162 	/*
1163 	 * In the resume path, since we restore a saved policy, the assignment
1164 	 * to policy->cpu is like an update of the existing policy, rather than
1165 	 * the creation of a brand new one. So we need to perform this update
1166 	 * by invoking update_policy_cpu().
1167 	 */
1168 	if (recover_policy && cpu != policy->cpu)
1169 		WARN_ON(update_policy_cpu(policy, cpu, dev));
1170 	else
1171 		policy->cpu = cpu;
1172 
1173 	cpumask_copy(policy->cpus, cpumask_of(cpu));
1174 
1175 	init_completion(&policy->kobj_unregister);
1176 	INIT_WORK(&policy->update, handle_update);
1177 
1178 	/* call driver. From then on the cpufreq must be able
1179 	 * to accept all calls to ->verify and ->setpolicy for this CPU
1180 	 */
1181 	ret = cpufreq_driver->init(policy);
1182 	if (ret) {
1183 		pr_debug("initialization failed\n");
1184 		goto err_set_policy_cpu;
1185 	}
1186 
1187 	/* related cpus should atleast have policy->cpus */
1188 	cpumask_or(policy->related_cpus, policy->related_cpus, policy->cpus);
1189 
1190 	/*
1191 	 * affected cpus must always be the one, which are online. We aren't
1192 	 * managing offline cpus here.
1193 	 */
1194 	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1195 
1196 	if (!recover_policy) {
1197 		policy->user_policy.min = policy->min;
1198 		policy->user_policy.max = policy->max;
1199 	}
1200 
1201 	down_write(&policy->rwsem);
1202 	write_lock_irqsave(&cpufreq_driver_lock, flags);
1203 	for_each_cpu(j, policy->cpus)
1204 		per_cpu(cpufreq_cpu_data, j) = policy;
1205 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1206 
1207 	if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
1208 		policy->cur = cpufreq_driver->get(policy->cpu);
1209 		if (!policy->cur) {
1210 			pr_err("%s: ->get() failed\n", __func__);
1211 			goto err_get_freq;
1212 		}
1213 	}
1214 
1215 	/*
1216 	 * Sometimes boot loaders set CPU frequency to a value outside of
1217 	 * frequency table present with cpufreq core. In such cases CPU might be
1218 	 * unstable if it has to run on that frequency for long duration of time
1219 	 * and so its better to set it to a frequency which is specified in
1220 	 * freq-table. This also makes cpufreq stats inconsistent as
1221 	 * cpufreq-stats would fail to register because current frequency of CPU
1222 	 * isn't found in freq-table.
1223 	 *
1224 	 * Because we don't want this change to effect boot process badly, we go
1225 	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1226 	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1227 	 * is initialized to zero).
1228 	 *
1229 	 * We are passing target-freq as "policy->cur - 1" otherwise
1230 	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1231 	 * equal to target-freq.
1232 	 */
1233 	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1234 	    && has_target()) {
1235 		/* Are we running at unknown frequency ? */
1236 		ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1237 		if (ret == -EINVAL) {
1238 			/* Warn user and fix it */
1239 			pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1240 				__func__, policy->cpu, policy->cur);
1241 			ret = __cpufreq_driver_target(policy, policy->cur - 1,
1242 				CPUFREQ_RELATION_L);
1243 
1244 			/*
1245 			 * Reaching here after boot in a few seconds may not
1246 			 * mean that system will remain stable at "unknown"
1247 			 * frequency for longer duration. Hence, a BUG_ON().
1248 			 */
1249 			BUG_ON(ret);
1250 			pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1251 				__func__, policy->cpu, policy->cur);
1252 		}
1253 	}
1254 
1255 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1256 				     CPUFREQ_START, policy);
1257 
1258 	if (!recover_policy) {
1259 		ret = cpufreq_add_dev_interface(policy, dev);
1260 		if (ret)
1261 			goto err_out_unregister;
1262 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1263 				CPUFREQ_CREATE_POLICY, policy);
1264 	}
1265 
1266 	write_lock_irqsave(&cpufreq_driver_lock, flags);
1267 	list_add(&policy->policy_list, &cpufreq_policy_list);
1268 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1269 
1270 	cpufreq_init_policy(policy);
1271 
1272 	if (!recover_policy) {
1273 		policy->user_policy.policy = policy->policy;
1274 		policy->user_policy.governor = policy->governor;
1275 	}
1276 	up_write(&policy->rwsem);
1277 
1278 	kobject_uevent(&policy->kobj, KOBJ_ADD);
1279 	up_read(&cpufreq_rwsem);
1280 
1281 	pr_debug("initialization complete\n");
1282 
1283 	return 0;
1284 
1285 err_out_unregister:
1286 err_get_freq:
1287 	write_lock_irqsave(&cpufreq_driver_lock, flags);
1288 	for_each_cpu(j, policy->cpus)
1289 		per_cpu(cpufreq_cpu_data, j) = NULL;
1290 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1291 
1292 	up_write(&policy->rwsem);
1293 
1294 	if (cpufreq_driver->exit)
1295 		cpufreq_driver->exit(policy);
1296 err_set_policy_cpu:
1297 	if (recover_policy) {
1298 		/* Do not leave stale fallback data behind. */
1299 		per_cpu(cpufreq_cpu_data_fallback, cpu) = NULL;
1300 		cpufreq_policy_put_kobj(policy);
1301 	}
1302 	cpufreq_policy_free(policy);
1303 
1304 nomem_out:
1305 	up_read(&cpufreq_rwsem);
1306 
1307 	return ret;
1308 }
1309 
1310 /**
1311  * cpufreq_add_dev - add a CPU device
1312  *
1313  * Adds the cpufreq interface for a CPU device.
1314  *
1315  * The Oracle says: try running cpufreq registration/unregistration concurrently
1316  * with with cpu hotplugging and all hell will break loose. Tried to clean this
1317  * mess up, but more thorough testing is needed. - Mathieu
1318  */
1319 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1320 {
1321 	return __cpufreq_add_dev(dev, sif);
1322 }
1323 
1324 static int __cpufreq_remove_dev_prepare(struct device *dev,
1325 					struct subsys_interface *sif)
1326 {
1327 	unsigned int cpu = dev->id, cpus;
1328 	int ret;
1329 	unsigned long flags;
1330 	struct cpufreq_policy *policy;
1331 
1332 	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1333 
1334 	write_lock_irqsave(&cpufreq_driver_lock, flags);
1335 
1336 	policy = per_cpu(cpufreq_cpu_data, cpu);
1337 
1338 	/* Save the policy somewhere when doing a light-weight tear-down */
1339 	if (cpufreq_suspended)
1340 		per_cpu(cpufreq_cpu_data_fallback, cpu) = policy;
1341 
1342 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1343 
1344 	if (!policy) {
1345 		pr_debug("%s: No cpu_data found\n", __func__);
1346 		return -EINVAL;
1347 	}
1348 
1349 	if (has_target()) {
1350 		ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
1351 		if (ret) {
1352 			pr_err("%s: Failed to stop governor\n", __func__);
1353 			return ret;
1354 		}
1355 	}
1356 
1357 	if (!cpufreq_driver->setpolicy)
1358 		strncpy(per_cpu(cpufreq_cpu_governor, cpu),
1359 			policy->governor->name, CPUFREQ_NAME_LEN);
1360 
1361 	down_read(&policy->rwsem);
1362 	cpus = cpumask_weight(policy->cpus);
1363 	up_read(&policy->rwsem);
1364 
1365 	if (cpu != policy->cpu) {
1366 		sysfs_remove_link(&dev->kobj, "cpufreq");
1367 	} else if (cpus > 1) {
1368 		/* Nominate new CPU */
1369 		int new_cpu = cpumask_any_but(policy->cpus, cpu);
1370 		struct device *cpu_dev = get_cpu_device(new_cpu);
1371 
1372 		sysfs_remove_link(&cpu_dev->kobj, "cpufreq");
1373 		ret = update_policy_cpu(policy, new_cpu, cpu_dev);
1374 		if (ret) {
1375 			if (sysfs_create_link(&cpu_dev->kobj, &policy->kobj,
1376 					      "cpufreq"))
1377 				pr_err("%s: Failed to restore kobj link to cpu:%d\n",
1378 				       __func__, cpu_dev->id);
1379 			return ret;
1380 		}
1381 
1382 		if (!cpufreq_suspended)
1383 			pr_debug("%s: policy Kobject moved to cpu: %d from: %d\n",
1384 				 __func__, new_cpu, cpu);
1385 	} else if (cpufreq_driver->stop_cpu && cpufreq_driver->setpolicy) {
1386 		cpufreq_driver->stop_cpu(policy);
1387 	}
1388 
1389 	return 0;
1390 }
1391 
1392 static int __cpufreq_remove_dev_finish(struct device *dev,
1393 				       struct subsys_interface *sif)
1394 {
1395 	unsigned int cpu = dev->id, cpus;
1396 	int ret;
1397 	unsigned long flags;
1398 	struct cpufreq_policy *policy;
1399 
1400 	read_lock_irqsave(&cpufreq_driver_lock, flags);
1401 	policy = per_cpu(cpufreq_cpu_data, cpu);
1402 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1403 
1404 	if (!policy) {
1405 		pr_debug("%s: No cpu_data found\n", __func__);
1406 		return -EINVAL;
1407 	}
1408 
1409 	down_write(&policy->rwsem);
1410 	cpus = cpumask_weight(policy->cpus);
1411 
1412 	if (cpus > 1)
1413 		cpumask_clear_cpu(cpu, policy->cpus);
1414 	up_write(&policy->rwsem);
1415 
1416 	/* If cpu is last user of policy, free policy */
1417 	if (cpus == 1) {
1418 		if (has_target()) {
1419 			ret = __cpufreq_governor(policy,
1420 					CPUFREQ_GOV_POLICY_EXIT);
1421 			if (ret) {
1422 				pr_err("%s: Failed to exit governor\n",
1423 				       __func__);
1424 				return ret;
1425 			}
1426 		}
1427 
1428 		if (!cpufreq_suspended)
1429 			cpufreq_policy_put_kobj(policy);
1430 
1431 		/*
1432 		 * Perform the ->exit() even during light-weight tear-down,
1433 		 * since this is a core component, and is essential for the
1434 		 * subsequent light-weight ->init() to succeed.
1435 		 */
1436 		if (cpufreq_driver->exit)
1437 			cpufreq_driver->exit(policy);
1438 
1439 		/* Remove policy from list of active policies */
1440 		write_lock_irqsave(&cpufreq_driver_lock, flags);
1441 		list_del(&policy->policy_list);
1442 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1443 
1444 		if (!cpufreq_suspended)
1445 			cpufreq_policy_free(policy);
1446 	} else if (has_target()) {
1447 		ret = __cpufreq_governor(policy, CPUFREQ_GOV_START);
1448 		if (!ret)
1449 			ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
1450 
1451 		if (ret) {
1452 			pr_err("%s: Failed to start governor\n", __func__);
1453 			return ret;
1454 		}
1455 	}
1456 
1457 	per_cpu(cpufreq_cpu_data, cpu) = NULL;
1458 	return 0;
1459 }
1460 
1461 /**
1462  * cpufreq_remove_dev - remove a CPU device
1463  *
1464  * Removes the cpufreq interface for a CPU device.
1465  */
1466 static int cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1467 {
1468 	unsigned int cpu = dev->id;
1469 	int ret;
1470 
1471 	if (cpu_is_offline(cpu))
1472 		return 0;
1473 
1474 	ret = __cpufreq_remove_dev_prepare(dev, sif);
1475 
1476 	if (!ret)
1477 		ret = __cpufreq_remove_dev_finish(dev, sif);
1478 
1479 	return ret;
1480 }
1481 
1482 static void handle_update(struct work_struct *work)
1483 {
1484 	struct cpufreq_policy *policy =
1485 		container_of(work, struct cpufreq_policy, update);
1486 	unsigned int cpu = policy->cpu;
1487 	pr_debug("handle_update for cpu %u called\n", cpu);
1488 	cpufreq_update_policy(cpu);
1489 }
1490 
1491 /**
1492  *	cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1493  *	in deep trouble.
1494  *	@cpu: cpu number
1495  *	@old_freq: CPU frequency the kernel thinks the CPU runs at
1496  *	@new_freq: CPU frequency the CPU actually runs at
1497  *
1498  *	We adjust to current frequency first, and need to clean up later.
1499  *	So either call to cpufreq_update_policy() or schedule handle_update()).
1500  */
1501 static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq,
1502 				unsigned int new_freq)
1503 {
1504 	struct cpufreq_policy *policy;
1505 	struct cpufreq_freqs freqs;
1506 	unsigned long flags;
1507 
1508 	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1509 		 old_freq, new_freq);
1510 
1511 	freqs.old = old_freq;
1512 	freqs.new = new_freq;
1513 
1514 	read_lock_irqsave(&cpufreq_driver_lock, flags);
1515 	policy = per_cpu(cpufreq_cpu_data, cpu);
1516 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1517 
1518 	cpufreq_freq_transition_begin(policy, &freqs);
1519 	cpufreq_freq_transition_end(policy, &freqs, 0);
1520 }
1521 
1522 /**
1523  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1524  * @cpu: CPU number
1525  *
1526  * This is the last known freq, without actually getting it from the driver.
1527  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1528  */
1529 unsigned int cpufreq_quick_get(unsigned int cpu)
1530 {
1531 	struct cpufreq_policy *policy;
1532 	unsigned int ret_freq = 0;
1533 
1534 	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get)
1535 		return cpufreq_driver->get(cpu);
1536 
1537 	policy = cpufreq_cpu_get(cpu);
1538 	if (policy) {
1539 		ret_freq = policy->cur;
1540 		cpufreq_cpu_put(policy);
1541 	}
1542 
1543 	return ret_freq;
1544 }
1545 EXPORT_SYMBOL(cpufreq_quick_get);
1546 
1547 /**
1548  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1549  * @cpu: CPU number
1550  *
1551  * Just return the max possible frequency for a given CPU.
1552  */
1553 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1554 {
1555 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1556 	unsigned int ret_freq = 0;
1557 
1558 	if (policy) {
1559 		ret_freq = policy->max;
1560 		cpufreq_cpu_put(policy);
1561 	}
1562 
1563 	return ret_freq;
1564 }
1565 EXPORT_SYMBOL(cpufreq_quick_get_max);
1566 
1567 static unsigned int __cpufreq_get(unsigned int cpu)
1568 {
1569 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1570 	unsigned int ret_freq = 0;
1571 
1572 	if (!cpufreq_driver->get)
1573 		return ret_freq;
1574 
1575 	ret_freq = cpufreq_driver->get(cpu);
1576 
1577 	if (ret_freq && policy->cur &&
1578 		!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1579 		/* verify no discrepancy between actual and
1580 					saved value exists */
1581 		if (unlikely(ret_freq != policy->cur)) {
1582 			cpufreq_out_of_sync(cpu, policy->cur, ret_freq);
1583 			schedule_work(&policy->update);
1584 		}
1585 	}
1586 
1587 	return ret_freq;
1588 }
1589 
1590 /**
1591  * cpufreq_get - get the current CPU frequency (in kHz)
1592  * @cpu: CPU number
1593  *
1594  * Get the CPU current (static) CPU frequency
1595  */
1596 unsigned int cpufreq_get(unsigned int cpu)
1597 {
1598 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1599 	unsigned int ret_freq = 0;
1600 
1601 	if (policy) {
1602 		down_read(&policy->rwsem);
1603 		ret_freq = __cpufreq_get(cpu);
1604 		up_read(&policy->rwsem);
1605 
1606 		cpufreq_cpu_put(policy);
1607 	}
1608 
1609 	return ret_freq;
1610 }
1611 EXPORT_SYMBOL(cpufreq_get);
1612 
1613 static struct subsys_interface cpufreq_interface = {
1614 	.name		= "cpufreq",
1615 	.subsys		= &cpu_subsys,
1616 	.add_dev	= cpufreq_add_dev,
1617 	.remove_dev	= cpufreq_remove_dev,
1618 };
1619 
1620 /*
1621  * In case platform wants some specific frequency to be configured
1622  * during suspend..
1623  */
1624 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1625 {
1626 	int ret;
1627 
1628 	if (!policy->suspend_freq) {
1629 		pr_err("%s: suspend_freq can't be zero\n", __func__);
1630 		return -EINVAL;
1631 	}
1632 
1633 	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1634 			policy->suspend_freq);
1635 
1636 	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1637 			CPUFREQ_RELATION_H);
1638 	if (ret)
1639 		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1640 				__func__, policy->suspend_freq, ret);
1641 
1642 	return ret;
1643 }
1644 EXPORT_SYMBOL(cpufreq_generic_suspend);
1645 
1646 /**
1647  * cpufreq_suspend() - Suspend CPUFreq governors
1648  *
1649  * Called during system wide Suspend/Hibernate cycles for suspending governors
1650  * as some platforms can't change frequency after this point in suspend cycle.
1651  * Because some of the devices (like: i2c, regulators, etc) they use for
1652  * changing frequency are suspended quickly after this point.
1653  */
1654 void cpufreq_suspend(void)
1655 {
1656 	struct cpufreq_policy *policy;
1657 
1658 	if (!cpufreq_driver)
1659 		return;
1660 
1661 	if (!has_target())
1662 		goto suspend;
1663 
1664 	pr_debug("%s: Suspending Governors\n", __func__);
1665 
1666 	list_for_each_entry(policy, &cpufreq_policy_list, policy_list) {
1667 		if (__cpufreq_governor(policy, CPUFREQ_GOV_STOP))
1668 			pr_err("%s: Failed to stop governor for policy: %p\n",
1669 				__func__, policy);
1670 		else if (cpufreq_driver->suspend
1671 		    && cpufreq_driver->suspend(policy))
1672 			pr_err("%s: Failed to suspend driver: %p\n", __func__,
1673 				policy);
1674 	}
1675 
1676 suspend:
1677 	cpufreq_suspended = true;
1678 }
1679 
1680 /**
1681  * cpufreq_resume() - Resume CPUFreq governors
1682  *
1683  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1684  * are suspended with cpufreq_suspend().
1685  */
1686 void cpufreq_resume(void)
1687 {
1688 	struct cpufreq_policy *policy;
1689 
1690 	if (!cpufreq_driver)
1691 		return;
1692 
1693 	cpufreq_suspended = false;
1694 
1695 	if (!has_target())
1696 		return;
1697 
1698 	pr_debug("%s: Resuming Governors\n", __func__);
1699 
1700 	list_for_each_entry(policy, &cpufreq_policy_list, policy_list) {
1701 		if (cpufreq_driver->resume && cpufreq_driver->resume(policy))
1702 			pr_err("%s: Failed to resume driver: %p\n", __func__,
1703 				policy);
1704 		else if (__cpufreq_governor(policy, CPUFREQ_GOV_START)
1705 		    || __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS))
1706 			pr_err("%s: Failed to start governor for policy: %p\n",
1707 				__func__, policy);
1708 
1709 		/*
1710 		 * schedule call cpufreq_update_policy() for boot CPU, i.e. last
1711 		 * policy in list. It will verify that the current freq is in
1712 		 * sync with what we believe it to be.
1713 		 */
1714 		if (list_is_last(&policy->policy_list, &cpufreq_policy_list))
1715 			schedule_work(&policy->update);
1716 	}
1717 }
1718 
1719 /**
1720  *	cpufreq_get_current_driver - return current driver's name
1721  *
1722  *	Return the name string of the currently loaded cpufreq driver
1723  *	or NULL, if none.
1724  */
1725 const char *cpufreq_get_current_driver(void)
1726 {
1727 	if (cpufreq_driver)
1728 		return cpufreq_driver->name;
1729 
1730 	return NULL;
1731 }
1732 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1733 
1734 /*********************************************************************
1735  *                     NOTIFIER LISTS INTERFACE                      *
1736  *********************************************************************/
1737 
1738 /**
1739  *	cpufreq_register_notifier - register a driver with cpufreq
1740  *	@nb: notifier function to register
1741  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1742  *
1743  *	Add a driver to one of two lists: either a list of drivers that
1744  *      are notified about clock rate changes (once before and once after
1745  *      the transition), or a list of drivers that are notified about
1746  *      changes in cpufreq policy.
1747  *
1748  *	This function may sleep, and has the same return conditions as
1749  *	blocking_notifier_chain_register.
1750  */
1751 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1752 {
1753 	int ret;
1754 
1755 	if (cpufreq_disabled())
1756 		return -EINVAL;
1757 
1758 	WARN_ON(!init_cpufreq_transition_notifier_list_called);
1759 
1760 	switch (list) {
1761 	case CPUFREQ_TRANSITION_NOTIFIER:
1762 		ret = srcu_notifier_chain_register(
1763 				&cpufreq_transition_notifier_list, nb);
1764 		break;
1765 	case CPUFREQ_POLICY_NOTIFIER:
1766 		ret = blocking_notifier_chain_register(
1767 				&cpufreq_policy_notifier_list, nb);
1768 		break;
1769 	default:
1770 		ret = -EINVAL;
1771 	}
1772 
1773 	return ret;
1774 }
1775 EXPORT_SYMBOL(cpufreq_register_notifier);
1776 
1777 /**
1778  *	cpufreq_unregister_notifier - unregister a driver with cpufreq
1779  *	@nb: notifier block to be unregistered
1780  *	@list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1781  *
1782  *	Remove a driver from the CPU frequency notifier list.
1783  *
1784  *	This function may sleep, and has the same return conditions as
1785  *	blocking_notifier_chain_unregister.
1786  */
1787 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1788 {
1789 	int ret;
1790 
1791 	if (cpufreq_disabled())
1792 		return -EINVAL;
1793 
1794 	switch (list) {
1795 	case CPUFREQ_TRANSITION_NOTIFIER:
1796 		ret = srcu_notifier_chain_unregister(
1797 				&cpufreq_transition_notifier_list, nb);
1798 		break;
1799 	case CPUFREQ_POLICY_NOTIFIER:
1800 		ret = blocking_notifier_chain_unregister(
1801 				&cpufreq_policy_notifier_list, nb);
1802 		break;
1803 	default:
1804 		ret = -EINVAL;
1805 	}
1806 
1807 	return ret;
1808 }
1809 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1810 
1811 
1812 /*********************************************************************
1813  *                              GOVERNORS                            *
1814  *********************************************************************/
1815 
1816 /* Must set freqs->new to intermediate frequency */
1817 static int __target_intermediate(struct cpufreq_policy *policy,
1818 				 struct cpufreq_freqs *freqs, int index)
1819 {
1820 	int ret;
1821 
1822 	freqs->new = cpufreq_driver->get_intermediate(policy, index);
1823 
1824 	/* We don't need to switch to intermediate freq */
1825 	if (!freqs->new)
1826 		return 0;
1827 
1828 	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
1829 		 __func__, policy->cpu, freqs->old, freqs->new);
1830 
1831 	cpufreq_freq_transition_begin(policy, freqs);
1832 	ret = cpufreq_driver->target_intermediate(policy, index);
1833 	cpufreq_freq_transition_end(policy, freqs, ret);
1834 
1835 	if (ret)
1836 		pr_err("%s: Failed to change to intermediate frequency: %d\n",
1837 		       __func__, ret);
1838 
1839 	return ret;
1840 }
1841 
1842 static int __target_index(struct cpufreq_policy *policy,
1843 			  struct cpufreq_frequency_table *freq_table, int index)
1844 {
1845 	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
1846 	unsigned int intermediate_freq = 0;
1847 	int retval = -EINVAL;
1848 	bool notify;
1849 
1850 	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
1851 	if (notify) {
1852 		/* Handle switching to intermediate frequency */
1853 		if (cpufreq_driver->get_intermediate) {
1854 			retval = __target_intermediate(policy, &freqs, index);
1855 			if (retval)
1856 				return retval;
1857 
1858 			intermediate_freq = freqs.new;
1859 			/* Set old freq to intermediate */
1860 			if (intermediate_freq)
1861 				freqs.old = freqs.new;
1862 		}
1863 
1864 		freqs.new = freq_table[index].frequency;
1865 		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
1866 			 __func__, policy->cpu, freqs.old, freqs.new);
1867 
1868 		cpufreq_freq_transition_begin(policy, &freqs);
1869 	}
1870 
1871 	retval = cpufreq_driver->target_index(policy, index);
1872 	if (retval)
1873 		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
1874 		       retval);
1875 
1876 	if (notify) {
1877 		cpufreq_freq_transition_end(policy, &freqs, retval);
1878 
1879 		/*
1880 		 * Failed after setting to intermediate freq? Driver should have
1881 		 * reverted back to initial frequency and so should we. Check
1882 		 * here for intermediate_freq instead of get_intermediate, in
1883 		 * case we have't switched to intermediate freq at all.
1884 		 */
1885 		if (unlikely(retval && intermediate_freq)) {
1886 			freqs.old = intermediate_freq;
1887 			freqs.new = policy->restore_freq;
1888 			cpufreq_freq_transition_begin(policy, &freqs);
1889 			cpufreq_freq_transition_end(policy, &freqs, 0);
1890 		}
1891 	}
1892 
1893 	return retval;
1894 }
1895 
1896 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1897 			    unsigned int target_freq,
1898 			    unsigned int relation)
1899 {
1900 	unsigned int old_target_freq = target_freq;
1901 	int retval = -EINVAL;
1902 
1903 	if (cpufreq_disabled())
1904 		return -ENODEV;
1905 
1906 	/* Make sure that target_freq is within supported range */
1907 	if (target_freq > policy->max)
1908 		target_freq = policy->max;
1909 	if (target_freq < policy->min)
1910 		target_freq = policy->min;
1911 
1912 	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
1913 		 policy->cpu, target_freq, relation, old_target_freq);
1914 
1915 	/*
1916 	 * This might look like a redundant call as we are checking it again
1917 	 * after finding index. But it is left intentionally for cases where
1918 	 * exactly same freq is called again and so we can save on few function
1919 	 * calls.
1920 	 */
1921 	if (target_freq == policy->cur)
1922 		return 0;
1923 
1924 	/* Save last value to restore later on errors */
1925 	policy->restore_freq = policy->cur;
1926 
1927 	if (cpufreq_driver->target)
1928 		retval = cpufreq_driver->target(policy, target_freq, relation);
1929 	else if (cpufreq_driver->target_index) {
1930 		struct cpufreq_frequency_table *freq_table;
1931 		int index;
1932 
1933 		freq_table = cpufreq_frequency_get_table(policy->cpu);
1934 		if (unlikely(!freq_table)) {
1935 			pr_err("%s: Unable to find freq_table\n", __func__);
1936 			goto out;
1937 		}
1938 
1939 		retval = cpufreq_frequency_table_target(policy, freq_table,
1940 				target_freq, relation, &index);
1941 		if (unlikely(retval)) {
1942 			pr_err("%s: Unable to find matching freq\n", __func__);
1943 			goto out;
1944 		}
1945 
1946 		if (freq_table[index].frequency == policy->cur) {
1947 			retval = 0;
1948 			goto out;
1949 		}
1950 
1951 		retval = __target_index(policy, freq_table, index);
1952 	}
1953 
1954 out:
1955 	return retval;
1956 }
1957 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1958 
1959 int cpufreq_driver_target(struct cpufreq_policy *policy,
1960 			  unsigned int target_freq,
1961 			  unsigned int relation)
1962 {
1963 	int ret = -EINVAL;
1964 
1965 	down_write(&policy->rwsem);
1966 
1967 	ret = __cpufreq_driver_target(policy, target_freq, relation);
1968 
1969 	up_write(&policy->rwsem);
1970 
1971 	return ret;
1972 }
1973 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1974 
1975 /*
1976  * when "event" is CPUFREQ_GOV_LIMITS
1977  */
1978 
1979 static int __cpufreq_governor(struct cpufreq_policy *policy,
1980 					unsigned int event)
1981 {
1982 	int ret;
1983 
1984 	/* Only must be defined when default governor is known to have latency
1985 	   restrictions, like e.g. conservative or ondemand.
1986 	   That this is the case is already ensured in Kconfig
1987 	*/
1988 #ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE
1989 	struct cpufreq_governor *gov = &cpufreq_gov_performance;
1990 #else
1991 	struct cpufreq_governor *gov = NULL;
1992 #endif
1993 
1994 	/* Don't start any governor operations if we are entering suspend */
1995 	if (cpufreq_suspended)
1996 		return 0;
1997 
1998 	if (policy->governor->max_transition_latency &&
1999 	    policy->cpuinfo.transition_latency >
2000 	    policy->governor->max_transition_latency) {
2001 		if (!gov)
2002 			return -EINVAL;
2003 		else {
2004 			pr_warn("%s governor failed, too long transition latency of HW, fallback to %s governor\n",
2005 				policy->governor->name, gov->name);
2006 			policy->governor = gov;
2007 		}
2008 	}
2009 
2010 	if (event == CPUFREQ_GOV_POLICY_INIT)
2011 		if (!try_module_get(policy->governor->owner))
2012 			return -EINVAL;
2013 
2014 	pr_debug("__cpufreq_governor for CPU %u, event %u\n",
2015 		 policy->cpu, event);
2016 
2017 	mutex_lock(&cpufreq_governor_lock);
2018 	if ((policy->governor_enabled && event == CPUFREQ_GOV_START)
2019 	    || (!policy->governor_enabled
2020 	    && (event == CPUFREQ_GOV_LIMITS || event == CPUFREQ_GOV_STOP))) {
2021 		mutex_unlock(&cpufreq_governor_lock);
2022 		return -EBUSY;
2023 	}
2024 
2025 	if (event == CPUFREQ_GOV_STOP)
2026 		policy->governor_enabled = false;
2027 	else if (event == CPUFREQ_GOV_START)
2028 		policy->governor_enabled = true;
2029 
2030 	mutex_unlock(&cpufreq_governor_lock);
2031 
2032 	ret = policy->governor->governor(policy, event);
2033 
2034 	if (!ret) {
2035 		if (event == CPUFREQ_GOV_POLICY_INIT)
2036 			policy->governor->initialized++;
2037 		else if (event == CPUFREQ_GOV_POLICY_EXIT)
2038 			policy->governor->initialized--;
2039 	} else {
2040 		/* Restore original values */
2041 		mutex_lock(&cpufreq_governor_lock);
2042 		if (event == CPUFREQ_GOV_STOP)
2043 			policy->governor_enabled = true;
2044 		else if (event == CPUFREQ_GOV_START)
2045 			policy->governor_enabled = false;
2046 		mutex_unlock(&cpufreq_governor_lock);
2047 	}
2048 
2049 	if (((event == CPUFREQ_GOV_POLICY_INIT) && ret) ||
2050 			((event == CPUFREQ_GOV_POLICY_EXIT) && !ret))
2051 		module_put(policy->governor->owner);
2052 
2053 	return ret;
2054 }
2055 
2056 int cpufreq_register_governor(struct cpufreq_governor *governor)
2057 {
2058 	int err;
2059 
2060 	if (!governor)
2061 		return -EINVAL;
2062 
2063 	if (cpufreq_disabled())
2064 		return -ENODEV;
2065 
2066 	mutex_lock(&cpufreq_governor_mutex);
2067 
2068 	governor->initialized = 0;
2069 	err = -EBUSY;
2070 	if (__find_governor(governor->name) == NULL) {
2071 		err = 0;
2072 		list_add(&governor->governor_list, &cpufreq_governor_list);
2073 	}
2074 
2075 	mutex_unlock(&cpufreq_governor_mutex);
2076 	return err;
2077 }
2078 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2079 
2080 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2081 {
2082 	int cpu;
2083 
2084 	if (!governor)
2085 		return;
2086 
2087 	if (cpufreq_disabled())
2088 		return;
2089 
2090 	for_each_present_cpu(cpu) {
2091 		if (cpu_online(cpu))
2092 			continue;
2093 		if (!strcmp(per_cpu(cpufreq_cpu_governor, cpu), governor->name))
2094 			strcpy(per_cpu(cpufreq_cpu_governor, cpu), "\0");
2095 	}
2096 
2097 	mutex_lock(&cpufreq_governor_mutex);
2098 	list_del(&governor->governor_list);
2099 	mutex_unlock(&cpufreq_governor_mutex);
2100 	return;
2101 }
2102 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2103 
2104 
2105 /*********************************************************************
2106  *                          POLICY INTERFACE                         *
2107  *********************************************************************/
2108 
2109 /**
2110  * cpufreq_get_policy - get the current cpufreq_policy
2111  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2112  *	is written
2113  *
2114  * Reads the current cpufreq policy.
2115  */
2116 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2117 {
2118 	struct cpufreq_policy *cpu_policy;
2119 	if (!policy)
2120 		return -EINVAL;
2121 
2122 	cpu_policy = cpufreq_cpu_get(cpu);
2123 	if (!cpu_policy)
2124 		return -EINVAL;
2125 
2126 	memcpy(policy, cpu_policy, sizeof(*policy));
2127 
2128 	cpufreq_cpu_put(cpu_policy);
2129 	return 0;
2130 }
2131 EXPORT_SYMBOL(cpufreq_get_policy);
2132 
2133 /*
2134  * policy : current policy.
2135  * new_policy: policy to be set.
2136  */
2137 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2138 				struct cpufreq_policy *new_policy)
2139 {
2140 	struct cpufreq_governor *old_gov;
2141 	int ret;
2142 
2143 	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2144 		 new_policy->cpu, new_policy->min, new_policy->max);
2145 
2146 	memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2147 
2148 	if (new_policy->min > policy->max || new_policy->max < policy->min)
2149 		return -EINVAL;
2150 
2151 	/* verify the cpu speed can be set within this limit */
2152 	ret = cpufreq_driver->verify(new_policy);
2153 	if (ret)
2154 		return ret;
2155 
2156 	/* adjust if necessary - all reasons */
2157 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2158 			CPUFREQ_ADJUST, new_policy);
2159 
2160 	/* adjust if necessary - hardware incompatibility*/
2161 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2162 			CPUFREQ_INCOMPATIBLE, new_policy);
2163 
2164 	/*
2165 	 * verify the cpu speed can be set within this limit, which might be
2166 	 * different to the first one
2167 	 */
2168 	ret = cpufreq_driver->verify(new_policy);
2169 	if (ret)
2170 		return ret;
2171 
2172 	/* notification of the new policy */
2173 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2174 			CPUFREQ_NOTIFY, new_policy);
2175 
2176 	policy->min = new_policy->min;
2177 	policy->max = new_policy->max;
2178 
2179 	pr_debug("new min and max freqs are %u - %u kHz\n",
2180 		 policy->min, policy->max);
2181 
2182 	if (cpufreq_driver->setpolicy) {
2183 		policy->policy = new_policy->policy;
2184 		pr_debug("setting range\n");
2185 		return cpufreq_driver->setpolicy(new_policy);
2186 	}
2187 
2188 	if (new_policy->governor == policy->governor)
2189 		goto out;
2190 
2191 	pr_debug("governor switch\n");
2192 
2193 	/* save old, working values */
2194 	old_gov = policy->governor;
2195 	/* end old governor */
2196 	if (old_gov) {
2197 		__cpufreq_governor(policy, CPUFREQ_GOV_STOP);
2198 		up_write(&policy->rwsem);
2199 		__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
2200 		down_write(&policy->rwsem);
2201 	}
2202 
2203 	/* start new governor */
2204 	policy->governor = new_policy->governor;
2205 	if (!__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT)) {
2206 		if (!__cpufreq_governor(policy, CPUFREQ_GOV_START))
2207 			goto out;
2208 
2209 		up_write(&policy->rwsem);
2210 		__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
2211 		down_write(&policy->rwsem);
2212 	}
2213 
2214 	/* new governor failed, so re-start old one */
2215 	pr_debug("starting governor %s failed\n", policy->governor->name);
2216 	if (old_gov) {
2217 		policy->governor = old_gov;
2218 		__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT);
2219 		__cpufreq_governor(policy, CPUFREQ_GOV_START);
2220 	}
2221 
2222 	return -EINVAL;
2223 
2224  out:
2225 	pr_debug("governor: change or update limits\n");
2226 	return __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
2227 }
2228 
2229 /**
2230  *	cpufreq_update_policy - re-evaluate an existing cpufreq policy
2231  *	@cpu: CPU which shall be re-evaluated
2232  *
2233  *	Useful for policy notifiers which have different necessities
2234  *	at different times.
2235  */
2236 int cpufreq_update_policy(unsigned int cpu)
2237 {
2238 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
2239 	struct cpufreq_policy new_policy;
2240 	int ret;
2241 
2242 	if (!policy)
2243 		return -ENODEV;
2244 
2245 	down_write(&policy->rwsem);
2246 
2247 	pr_debug("updating policy for CPU %u\n", cpu);
2248 	memcpy(&new_policy, policy, sizeof(*policy));
2249 	new_policy.min = policy->user_policy.min;
2250 	new_policy.max = policy->user_policy.max;
2251 	new_policy.policy = policy->user_policy.policy;
2252 	new_policy.governor = policy->user_policy.governor;
2253 
2254 	/*
2255 	 * BIOS might change freq behind our back
2256 	 * -> ask driver for current freq and notify governors about a change
2257 	 */
2258 	if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
2259 		new_policy.cur = cpufreq_driver->get(cpu);
2260 		if (WARN_ON(!new_policy.cur)) {
2261 			ret = -EIO;
2262 			goto unlock;
2263 		}
2264 
2265 		if (!policy->cur) {
2266 			pr_debug("Driver did not initialize current freq\n");
2267 			policy->cur = new_policy.cur;
2268 		} else {
2269 			if (policy->cur != new_policy.cur && has_target())
2270 				cpufreq_out_of_sync(cpu, policy->cur,
2271 								new_policy.cur);
2272 		}
2273 	}
2274 
2275 	ret = cpufreq_set_policy(policy, &new_policy);
2276 
2277 unlock:
2278 	up_write(&policy->rwsem);
2279 
2280 	cpufreq_cpu_put(policy);
2281 	return ret;
2282 }
2283 EXPORT_SYMBOL(cpufreq_update_policy);
2284 
2285 static int cpufreq_cpu_callback(struct notifier_block *nfb,
2286 					unsigned long action, void *hcpu)
2287 {
2288 	unsigned int cpu = (unsigned long)hcpu;
2289 	struct device *dev;
2290 
2291 	dev = get_cpu_device(cpu);
2292 	if (dev) {
2293 		switch (action & ~CPU_TASKS_FROZEN) {
2294 		case CPU_ONLINE:
2295 			__cpufreq_add_dev(dev, NULL);
2296 			break;
2297 
2298 		case CPU_DOWN_PREPARE:
2299 			__cpufreq_remove_dev_prepare(dev, NULL);
2300 			break;
2301 
2302 		case CPU_POST_DEAD:
2303 			__cpufreq_remove_dev_finish(dev, NULL);
2304 			break;
2305 
2306 		case CPU_DOWN_FAILED:
2307 			__cpufreq_add_dev(dev, NULL);
2308 			break;
2309 		}
2310 	}
2311 	return NOTIFY_OK;
2312 }
2313 
2314 static struct notifier_block __refdata cpufreq_cpu_notifier = {
2315 	.notifier_call = cpufreq_cpu_callback,
2316 };
2317 
2318 /*********************************************************************
2319  *               BOOST						     *
2320  *********************************************************************/
2321 static int cpufreq_boost_set_sw(int state)
2322 {
2323 	struct cpufreq_frequency_table *freq_table;
2324 	struct cpufreq_policy *policy;
2325 	int ret = -EINVAL;
2326 
2327 	list_for_each_entry(policy, &cpufreq_policy_list, policy_list) {
2328 		freq_table = cpufreq_frequency_get_table(policy->cpu);
2329 		if (freq_table) {
2330 			ret = cpufreq_frequency_table_cpuinfo(policy,
2331 							freq_table);
2332 			if (ret) {
2333 				pr_err("%s: Policy frequency update failed\n",
2334 				       __func__);
2335 				break;
2336 			}
2337 			policy->user_policy.max = policy->max;
2338 			__cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
2339 		}
2340 	}
2341 
2342 	return ret;
2343 }
2344 
2345 int cpufreq_boost_trigger_state(int state)
2346 {
2347 	unsigned long flags;
2348 	int ret = 0;
2349 
2350 	if (cpufreq_driver->boost_enabled == state)
2351 		return 0;
2352 
2353 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2354 	cpufreq_driver->boost_enabled = state;
2355 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2356 
2357 	ret = cpufreq_driver->set_boost(state);
2358 	if (ret) {
2359 		write_lock_irqsave(&cpufreq_driver_lock, flags);
2360 		cpufreq_driver->boost_enabled = !state;
2361 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2362 
2363 		pr_err("%s: Cannot %s BOOST\n",
2364 		       __func__, state ? "enable" : "disable");
2365 	}
2366 
2367 	return ret;
2368 }
2369 
2370 int cpufreq_boost_supported(void)
2371 {
2372 	if (likely(cpufreq_driver))
2373 		return cpufreq_driver->boost_supported;
2374 
2375 	return 0;
2376 }
2377 EXPORT_SYMBOL_GPL(cpufreq_boost_supported);
2378 
2379 int cpufreq_boost_enabled(void)
2380 {
2381 	return cpufreq_driver->boost_enabled;
2382 }
2383 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2384 
2385 /*********************************************************************
2386  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2387  *********************************************************************/
2388 
2389 /**
2390  * cpufreq_register_driver - register a CPU Frequency driver
2391  * @driver_data: A struct cpufreq_driver containing the values#
2392  * submitted by the CPU Frequency driver.
2393  *
2394  * Registers a CPU Frequency driver to this core code. This code
2395  * returns zero on success, -EBUSY when another driver got here first
2396  * (and isn't unregistered in the meantime).
2397  *
2398  */
2399 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2400 {
2401 	unsigned long flags;
2402 	int ret;
2403 
2404 	if (cpufreq_disabled())
2405 		return -ENODEV;
2406 
2407 	if (!driver_data || !driver_data->verify || !driver_data->init ||
2408 	    !(driver_data->setpolicy || driver_data->target_index ||
2409 		    driver_data->target) ||
2410 	     (driver_data->setpolicy && (driver_data->target_index ||
2411 		    driver_data->target)) ||
2412 	     (!!driver_data->get_intermediate != !!driver_data->target_intermediate))
2413 		return -EINVAL;
2414 
2415 	pr_debug("trying to register driver %s\n", driver_data->name);
2416 
2417 	if (driver_data->setpolicy)
2418 		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2419 
2420 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2421 	if (cpufreq_driver) {
2422 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2423 		return -EEXIST;
2424 	}
2425 	cpufreq_driver = driver_data;
2426 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2427 
2428 	if (cpufreq_boost_supported()) {
2429 		/*
2430 		 * Check if driver provides function to enable boost -
2431 		 * if not, use cpufreq_boost_set_sw as default
2432 		 */
2433 		if (!cpufreq_driver->set_boost)
2434 			cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2435 
2436 		ret = cpufreq_sysfs_create_file(&boost.attr);
2437 		if (ret) {
2438 			pr_err("%s: cannot register global BOOST sysfs file\n",
2439 			       __func__);
2440 			goto err_null_driver;
2441 		}
2442 	}
2443 
2444 	ret = subsys_interface_register(&cpufreq_interface);
2445 	if (ret)
2446 		goto err_boost_unreg;
2447 
2448 	if (!(cpufreq_driver->flags & CPUFREQ_STICKY)) {
2449 		int i;
2450 		ret = -ENODEV;
2451 
2452 		/* check for at least one working CPU */
2453 		for (i = 0; i < nr_cpu_ids; i++)
2454 			if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) {
2455 				ret = 0;
2456 				break;
2457 			}
2458 
2459 		/* if all ->init() calls failed, unregister */
2460 		if (ret) {
2461 			pr_debug("no CPU initialized for driver %s\n",
2462 				 driver_data->name);
2463 			goto err_if_unreg;
2464 		}
2465 	}
2466 
2467 	register_hotcpu_notifier(&cpufreq_cpu_notifier);
2468 	pr_debug("driver %s up and running\n", driver_data->name);
2469 
2470 	return 0;
2471 err_if_unreg:
2472 	subsys_interface_unregister(&cpufreq_interface);
2473 err_boost_unreg:
2474 	if (cpufreq_boost_supported())
2475 		cpufreq_sysfs_remove_file(&boost.attr);
2476 err_null_driver:
2477 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2478 	cpufreq_driver = NULL;
2479 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2480 	return ret;
2481 }
2482 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2483 
2484 /**
2485  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2486  *
2487  * Unregister the current CPUFreq driver. Only call this if you have
2488  * the right to do so, i.e. if you have succeeded in initialising before!
2489  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2490  * currently not initialised.
2491  */
2492 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2493 {
2494 	unsigned long flags;
2495 
2496 	if (!cpufreq_driver || (driver != cpufreq_driver))
2497 		return -EINVAL;
2498 
2499 	pr_debug("unregistering driver %s\n", driver->name);
2500 
2501 	subsys_interface_unregister(&cpufreq_interface);
2502 	if (cpufreq_boost_supported())
2503 		cpufreq_sysfs_remove_file(&boost.attr);
2504 
2505 	unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
2506 
2507 	down_write(&cpufreq_rwsem);
2508 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2509 
2510 	cpufreq_driver = NULL;
2511 
2512 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2513 	up_write(&cpufreq_rwsem);
2514 
2515 	return 0;
2516 }
2517 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2518 
2519 static int __init cpufreq_core_init(void)
2520 {
2521 	if (cpufreq_disabled())
2522 		return -ENODEV;
2523 
2524 	cpufreq_global_kobject = kobject_create();
2525 	BUG_ON(!cpufreq_global_kobject);
2526 
2527 	return 0;
2528 }
2529 core_initcall(cpufreq_core_init);
2530