xref: /linux/drivers/cpufreq/cpufreq.c (revision 2fe3c78a2c26dd5ee811024a1b7d6cfb4d654319)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/cpufreq/cpufreq.c
4  *
5  *  Copyright (C) 2001 Russell King
6  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8  *
9  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10  *	Added handling for CPU hotplug
11  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12  *	Fix handling for CPU hotplug -- affected CPUs
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_qos.h>
27 #include <linux/slab.h>
28 #include <linux/suspend.h>
29 #include <linux/syscore_ops.h>
30 #include <linux/tick.h>
31 #include <linux/units.h>
32 #include <trace/events/power.h>
33 
34 static LIST_HEAD(cpufreq_policy_list);
35 
36 /* Macros to iterate over CPU policies */
37 #define for_each_suitable_policy(__policy, __active)			 \
38 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
39 		if ((__active) == !policy_is_inactive(__policy))
40 
41 #define for_each_active_policy(__policy)		\
42 	for_each_suitable_policy(__policy, true)
43 #define for_each_inactive_policy(__policy)		\
44 	for_each_suitable_policy(__policy, false)
45 
46 /* Iterate over governors */
47 static LIST_HEAD(cpufreq_governor_list);
48 #define for_each_governor(__governor)				\
49 	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
50 
51 static char default_governor[CPUFREQ_NAME_LEN];
52 
53 /*
54  * The "cpufreq driver" - the arch- or hardware-dependent low
55  * level driver of CPUFreq support, and its spinlock. This lock
56  * also protects the cpufreq_cpu_data array.
57  */
58 static struct cpufreq_driver *cpufreq_driver;
59 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
60 static DEFINE_RWLOCK(cpufreq_driver_lock);
61 
62 static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance);
63 bool cpufreq_supports_freq_invariance(void)
64 {
65 	return static_branch_likely(&cpufreq_freq_invariance);
66 }
67 
68 /* Flag to suspend/resume CPUFreq governors */
69 static bool cpufreq_suspended;
70 
71 static inline bool has_target(void)
72 {
73 	return cpufreq_driver->target_index || cpufreq_driver->target;
74 }
75 
76 bool has_target_index(void)
77 {
78 	return !!cpufreq_driver->target_index;
79 }
80 
81 /* internal prototypes */
82 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
83 static int cpufreq_init_governor(struct cpufreq_policy *policy);
84 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
85 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
86 static int cpufreq_set_policy(struct cpufreq_policy *policy,
87 			      struct cpufreq_governor *new_gov,
88 			      unsigned int new_pol);
89 static bool cpufreq_boost_supported(void);
90 
91 /*
92  * Two notifier lists: the "policy" list is involved in the
93  * validation process for a new CPU frequency policy; the
94  * "transition" list for kernel code that needs to handle
95  * changes to devices when the CPU clock speed changes.
96  * The mutex locks both lists.
97  */
98 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
99 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
100 
101 static int off __read_mostly;
102 static int cpufreq_disabled(void)
103 {
104 	return off;
105 }
106 void disable_cpufreq(void)
107 {
108 	off = 1;
109 }
110 static DEFINE_MUTEX(cpufreq_governor_mutex);
111 
112 bool have_governor_per_policy(void)
113 {
114 	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
115 }
116 EXPORT_SYMBOL_GPL(have_governor_per_policy);
117 
118 static struct kobject *cpufreq_global_kobject;
119 
120 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
121 {
122 	if (have_governor_per_policy())
123 		return &policy->kobj;
124 	else
125 		return cpufreq_global_kobject;
126 }
127 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
128 
129 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
130 {
131 	struct kernel_cpustat kcpustat;
132 	u64 cur_wall_time;
133 	u64 idle_time;
134 	u64 busy_time;
135 
136 	cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
137 
138 	kcpustat_cpu_fetch(&kcpustat, cpu);
139 
140 	busy_time = kcpustat.cpustat[CPUTIME_USER];
141 	busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
142 	busy_time += kcpustat.cpustat[CPUTIME_IRQ];
143 	busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
144 	busy_time += kcpustat.cpustat[CPUTIME_STEAL];
145 	busy_time += kcpustat.cpustat[CPUTIME_NICE];
146 
147 	idle_time = cur_wall_time - busy_time;
148 	if (wall)
149 		*wall = div_u64(cur_wall_time, NSEC_PER_USEC);
150 
151 	return div_u64(idle_time, NSEC_PER_USEC);
152 }
153 
154 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
155 {
156 	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
157 
158 	if (idle_time == -1ULL)
159 		return get_cpu_idle_time_jiffy(cpu, wall);
160 	else if (!io_busy)
161 		idle_time += get_cpu_iowait_time_us(cpu, wall);
162 
163 	return idle_time;
164 }
165 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
166 
167 /*
168  * This is a generic cpufreq init() routine which can be used by cpufreq
169  * drivers of SMP systems. It will do following:
170  * - validate & show freq table passed
171  * - set policies transition latency
172  * - policy->cpus with all possible CPUs
173  */
174 void cpufreq_generic_init(struct cpufreq_policy *policy,
175 		struct cpufreq_frequency_table *table,
176 		unsigned int transition_latency)
177 {
178 	policy->freq_table = table;
179 	policy->cpuinfo.transition_latency = transition_latency;
180 
181 	/*
182 	 * The driver only supports the SMP configuration where all processors
183 	 * share the clock and voltage and clock.
184 	 */
185 	cpumask_setall(policy->cpus);
186 }
187 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
188 
189 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
190 {
191 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
192 
193 	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
194 }
195 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
196 
197 unsigned int cpufreq_generic_get(unsigned int cpu)
198 {
199 	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
200 
201 	if (!policy || IS_ERR(policy->clk)) {
202 		pr_err("%s: No %s associated to cpu: %d\n",
203 		       __func__, policy ? "clk" : "policy", cpu);
204 		return 0;
205 	}
206 
207 	return clk_get_rate(policy->clk) / 1000;
208 }
209 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
210 
211 /**
212  * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
213  * @cpu: CPU to find the policy for.
214  *
215  * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
216  * the kobject reference counter of that policy.  Return a valid policy on
217  * success or NULL on failure.
218  *
219  * The policy returned by this function has to be released with the help of
220  * cpufreq_cpu_put() to balance its kobject reference counter properly.
221  */
222 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
223 {
224 	struct cpufreq_policy *policy = NULL;
225 	unsigned long flags;
226 
227 	if (WARN_ON(cpu >= nr_cpu_ids))
228 		return NULL;
229 
230 	/* get the cpufreq driver */
231 	read_lock_irqsave(&cpufreq_driver_lock, flags);
232 
233 	if (cpufreq_driver) {
234 		/* get the CPU */
235 		policy = cpufreq_cpu_get_raw(cpu);
236 		if (policy)
237 			kobject_get(&policy->kobj);
238 	}
239 
240 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
241 
242 	return policy;
243 }
244 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
245 
246 /**
247  * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
248  * @policy: cpufreq policy returned by cpufreq_cpu_get().
249  */
250 void cpufreq_cpu_put(struct cpufreq_policy *policy)
251 {
252 	kobject_put(&policy->kobj);
253 }
254 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
255 
256 /**
257  * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
258  * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
259  */
260 void cpufreq_cpu_release(struct cpufreq_policy *policy)
261 {
262 	if (WARN_ON(!policy))
263 		return;
264 
265 	lockdep_assert_held(&policy->rwsem);
266 
267 	up_write(&policy->rwsem);
268 
269 	cpufreq_cpu_put(policy);
270 }
271 
272 /**
273  * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
274  * @cpu: CPU to find the policy for.
275  *
276  * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
277  * if the policy returned by it is not NULL, acquire its rwsem for writing.
278  * Return the policy if it is active or release it and return NULL otherwise.
279  *
280  * The policy returned by this function has to be released with the help of
281  * cpufreq_cpu_release() in order to release its rwsem and balance its usage
282  * counter properly.
283  */
284 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
285 {
286 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
287 
288 	if (!policy)
289 		return NULL;
290 
291 	down_write(&policy->rwsem);
292 
293 	if (policy_is_inactive(policy)) {
294 		cpufreq_cpu_release(policy);
295 		return NULL;
296 	}
297 
298 	return policy;
299 }
300 
301 /*********************************************************************
302  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
303  *********************************************************************/
304 
305 /**
306  * adjust_jiffies - Adjust the system "loops_per_jiffy".
307  * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
308  * @ci: Frequency change information.
309  *
310  * This function alters the system "loops_per_jiffy" for the clock
311  * speed change. Note that loops_per_jiffy cannot be updated on SMP
312  * systems as each CPU might be scaled differently. So, use the arch
313  * per-CPU loops_per_jiffy value wherever possible.
314  */
315 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
316 {
317 #ifndef CONFIG_SMP
318 	static unsigned long l_p_j_ref;
319 	static unsigned int l_p_j_ref_freq;
320 
321 	if (ci->flags & CPUFREQ_CONST_LOOPS)
322 		return;
323 
324 	if (!l_p_j_ref_freq) {
325 		l_p_j_ref = loops_per_jiffy;
326 		l_p_j_ref_freq = ci->old;
327 		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
328 			 l_p_j_ref, l_p_j_ref_freq);
329 	}
330 	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
331 		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
332 								ci->new);
333 		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
334 			 loops_per_jiffy, ci->new);
335 	}
336 #endif
337 }
338 
339 /**
340  * cpufreq_notify_transition - Notify frequency transition and adjust jiffies.
341  * @policy: cpufreq policy to enable fast frequency switching for.
342  * @freqs: contain details of the frequency update.
343  * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
344  *
345  * This function calls the transition notifiers and adjust_jiffies().
346  *
347  * It is called twice on all CPU frequency changes that have external effects.
348  */
349 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
350 				      struct cpufreq_freqs *freqs,
351 				      unsigned int state)
352 {
353 	int cpu;
354 
355 	BUG_ON(irqs_disabled());
356 
357 	if (cpufreq_disabled())
358 		return;
359 
360 	freqs->policy = policy;
361 	freqs->flags = cpufreq_driver->flags;
362 	pr_debug("notification %u of frequency transition to %u kHz\n",
363 		 state, freqs->new);
364 
365 	switch (state) {
366 	case CPUFREQ_PRECHANGE:
367 		/*
368 		 * Detect if the driver reported a value as "old frequency"
369 		 * which is not equal to what the cpufreq core thinks is
370 		 * "old frequency".
371 		 */
372 		if (policy->cur && policy->cur != freqs->old) {
373 			pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
374 				 freqs->old, policy->cur);
375 			freqs->old = policy->cur;
376 		}
377 
378 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
379 					 CPUFREQ_PRECHANGE, freqs);
380 
381 		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
382 		break;
383 
384 	case CPUFREQ_POSTCHANGE:
385 		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
386 		pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
387 			 cpumask_pr_args(policy->cpus));
388 
389 		for_each_cpu(cpu, policy->cpus)
390 			trace_cpu_frequency(freqs->new, cpu);
391 
392 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
393 					 CPUFREQ_POSTCHANGE, freqs);
394 
395 		cpufreq_stats_record_transition(policy, freqs->new);
396 		policy->cur = freqs->new;
397 	}
398 }
399 
400 /* Do post notifications when there are chances that transition has failed */
401 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
402 		struct cpufreq_freqs *freqs, int transition_failed)
403 {
404 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
405 	if (!transition_failed)
406 		return;
407 
408 	swap(freqs->old, freqs->new);
409 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
410 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
411 }
412 
413 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
414 		struct cpufreq_freqs *freqs)
415 {
416 
417 	/*
418 	 * Catch double invocations of _begin() which lead to self-deadlock.
419 	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
420 	 * doesn't invoke _begin() on their behalf, and hence the chances of
421 	 * double invocations are very low. Moreover, there are scenarios
422 	 * where these checks can emit false-positive warnings in these
423 	 * drivers; so we avoid that by skipping them altogether.
424 	 */
425 	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
426 				&& current == policy->transition_task);
427 
428 wait:
429 	wait_event(policy->transition_wait, !policy->transition_ongoing);
430 
431 	spin_lock(&policy->transition_lock);
432 
433 	if (unlikely(policy->transition_ongoing)) {
434 		spin_unlock(&policy->transition_lock);
435 		goto wait;
436 	}
437 
438 	policy->transition_ongoing = true;
439 	policy->transition_task = current;
440 
441 	spin_unlock(&policy->transition_lock);
442 
443 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
444 }
445 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
446 
447 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
448 		struct cpufreq_freqs *freqs, int transition_failed)
449 {
450 	if (WARN_ON(!policy->transition_ongoing))
451 		return;
452 
453 	cpufreq_notify_post_transition(policy, freqs, transition_failed);
454 
455 	arch_set_freq_scale(policy->related_cpus,
456 			    policy->cur,
457 			    arch_scale_freq_ref(policy->cpu));
458 
459 	spin_lock(&policy->transition_lock);
460 	policy->transition_ongoing = false;
461 	policy->transition_task = NULL;
462 	spin_unlock(&policy->transition_lock);
463 
464 	wake_up(&policy->transition_wait);
465 }
466 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
467 
468 /*
469  * Fast frequency switching status count.  Positive means "enabled", negative
470  * means "disabled" and 0 means "not decided yet".
471  */
472 static int cpufreq_fast_switch_count;
473 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
474 
475 static void cpufreq_list_transition_notifiers(void)
476 {
477 	struct notifier_block *nb;
478 
479 	pr_info("Registered transition notifiers:\n");
480 
481 	mutex_lock(&cpufreq_transition_notifier_list.mutex);
482 
483 	for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
484 		pr_info("%pS\n", nb->notifier_call);
485 
486 	mutex_unlock(&cpufreq_transition_notifier_list.mutex);
487 }
488 
489 /**
490  * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
491  * @policy: cpufreq policy to enable fast frequency switching for.
492  *
493  * Try to enable fast frequency switching for @policy.
494  *
495  * The attempt will fail if there is at least one transition notifier registered
496  * at this point, as fast frequency switching is quite fundamentally at odds
497  * with transition notifiers.  Thus if successful, it will make registration of
498  * transition notifiers fail going forward.
499  */
500 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
501 {
502 	lockdep_assert_held(&policy->rwsem);
503 
504 	if (!policy->fast_switch_possible)
505 		return;
506 
507 	mutex_lock(&cpufreq_fast_switch_lock);
508 	if (cpufreq_fast_switch_count >= 0) {
509 		cpufreq_fast_switch_count++;
510 		policy->fast_switch_enabled = true;
511 	} else {
512 		pr_warn("CPU%u: Fast frequency switching not enabled\n",
513 			policy->cpu);
514 		cpufreq_list_transition_notifiers();
515 	}
516 	mutex_unlock(&cpufreq_fast_switch_lock);
517 }
518 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
519 
520 /**
521  * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
522  * @policy: cpufreq policy to disable fast frequency switching for.
523  */
524 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
525 {
526 	mutex_lock(&cpufreq_fast_switch_lock);
527 	if (policy->fast_switch_enabled) {
528 		policy->fast_switch_enabled = false;
529 		if (!WARN_ON(cpufreq_fast_switch_count <= 0))
530 			cpufreq_fast_switch_count--;
531 	}
532 	mutex_unlock(&cpufreq_fast_switch_lock);
533 }
534 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
535 
536 static unsigned int __resolve_freq(struct cpufreq_policy *policy,
537 		unsigned int target_freq, unsigned int relation)
538 {
539 	unsigned int idx;
540 
541 	target_freq = clamp_val(target_freq, policy->min, policy->max);
542 
543 	if (!policy->freq_table)
544 		return target_freq;
545 
546 	idx = cpufreq_frequency_table_target(policy, target_freq, relation);
547 	policy->cached_resolved_idx = idx;
548 	policy->cached_target_freq = target_freq;
549 	return policy->freq_table[idx].frequency;
550 }
551 
552 /**
553  * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
554  * one.
555  * @policy: associated policy to interrogate
556  * @target_freq: target frequency to resolve.
557  *
558  * The target to driver frequency mapping is cached in the policy.
559  *
560  * Return: Lowest driver-supported frequency greater than or equal to the
561  * given target_freq, subject to policy (min/max) and driver limitations.
562  */
563 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
564 					 unsigned int target_freq)
565 {
566 	return __resolve_freq(policy, target_freq, CPUFREQ_RELATION_LE);
567 }
568 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
569 
570 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
571 {
572 	unsigned int latency;
573 
574 	if (policy->transition_delay_us)
575 		return policy->transition_delay_us;
576 
577 	latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
578 	if (latency)
579 		/* Give a 50% breathing room between updates */
580 		return latency + (latency >> 1);
581 
582 	return USEC_PER_MSEC;
583 }
584 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
585 
586 /*********************************************************************
587  *                          SYSFS INTERFACE                          *
588  *********************************************************************/
589 static ssize_t show_boost(struct kobject *kobj,
590 			  struct kobj_attribute *attr, char *buf)
591 {
592 	return sysfs_emit(buf, "%d\n", cpufreq_driver->boost_enabled);
593 }
594 
595 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
596 			   const char *buf, size_t count)
597 {
598 	bool enable;
599 
600 	if (kstrtobool(buf, &enable))
601 		return -EINVAL;
602 
603 	if (cpufreq_boost_trigger_state(enable)) {
604 		pr_err("%s: Cannot %s BOOST!\n",
605 		       __func__, enable ? "enable" : "disable");
606 		return -EINVAL;
607 	}
608 
609 	pr_debug("%s: cpufreq BOOST %s\n",
610 		 __func__, enable ? "enabled" : "disabled");
611 
612 	return count;
613 }
614 define_one_global_rw(boost);
615 
616 static ssize_t show_local_boost(struct cpufreq_policy *policy, char *buf)
617 {
618 	return sysfs_emit(buf, "%d\n", policy->boost_enabled);
619 }
620 
621 static ssize_t store_local_boost(struct cpufreq_policy *policy,
622 				 const char *buf, size_t count)
623 {
624 	int ret;
625 	bool enable;
626 
627 	if (kstrtobool(buf, &enable))
628 		return -EINVAL;
629 
630 	if (!cpufreq_driver->boost_enabled)
631 		return -EINVAL;
632 
633 	if (policy->boost_enabled == enable)
634 		return count;
635 
636 	policy->boost_enabled = enable;
637 
638 	cpus_read_lock();
639 	ret = cpufreq_driver->set_boost(policy, enable);
640 	cpus_read_unlock();
641 
642 	if (ret) {
643 		policy->boost_enabled = !policy->boost_enabled;
644 		return ret;
645 	}
646 
647 	return count;
648 }
649 
650 static struct freq_attr local_boost = __ATTR(boost, 0644, show_local_boost, store_local_boost);
651 
652 static struct cpufreq_governor *find_governor(const char *str_governor)
653 {
654 	struct cpufreq_governor *t;
655 
656 	for_each_governor(t)
657 		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
658 			return t;
659 
660 	return NULL;
661 }
662 
663 static struct cpufreq_governor *get_governor(const char *str_governor)
664 {
665 	struct cpufreq_governor *t;
666 
667 	mutex_lock(&cpufreq_governor_mutex);
668 	t = find_governor(str_governor);
669 	if (!t)
670 		goto unlock;
671 
672 	if (!try_module_get(t->owner))
673 		t = NULL;
674 
675 unlock:
676 	mutex_unlock(&cpufreq_governor_mutex);
677 
678 	return t;
679 }
680 
681 static unsigned int cpufreq_parse_policy(char *str_governor)
682 {
683 	if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
684 		return CPUFREQ_POLICY_PERFORMANCE;
685 
686 	if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
687 		return CPUFREQ_POLICY_POWERSAVE;
688 
689 	return CPUFREQ_POLICY_UNKNOWN;
690 }
691 
692 /**
693  * cpufreq_parse_governor - parse a governor string only for has_target()
694  * @str_governor: Governor name.
695  */
696 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
697 {
698 	struct cpufreq_governor *t;
699 
700 	t = get_governor(str_governor);
701 	if (t)
702 		return t;
703 
704 	if (request_module("cpufreq_%s", str_governor))
705 		return NULL;
706 
707 	return get_governor(str_governor);
708 }
709 
710 /*
711  * cpufreq_per_cpu_attr_read() / show_##file_name() -
712  * print out cpufreq information
713  *
714  * Write out information from cpufreq_driver->policy[cpu]; object must be
715  * "unsigned int".
716  */
717 
718 #define show_one(file_name, object)			\
719 static ssize_t show_##file_name				\
720 (struct cpufreq_policy *policy, char *buf)		\
721 {							\
722 	return sysfs_emit(buf, "%u\n", policy->object);	\
723 }
724 
725 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
726 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
727 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
728 show_one(scaling_min_freq, min);
729 show_one(scaling_max_freq, max);
730 
731 __weak unsigned int arch_freq_get_on_cpu(int cpu)
732 {
733 	return 0;
734 }
735 
736 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
737 {
738 	ssize_t ret;
739 	unsigned int freq;
740 
741 	freq = arch_freq_get_on_cpu(policy->cpu);
742 	if (freq)
743 		ret = sysfs_emit(buf, "%u\n", freq);
744 	else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
745 		ret = sysfs_emit(buf, "%u\n", cpufreq_driver->get(policy->cpu));
746 	else
747 		ret = sysfs_emit(buf, "%u\n", policy->cur);
748 	return ret;
749 }
750 
751 /*
752  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
753  */
754 #define store_one(file_name, object)			\
755 static ssize_t store_##file_name					\
756 (struct cpufreq_policy *policy, const char *buf, size_t count)		\
757 {									\
758 	unsigned long val;						\
759 	int ret;							\
760 									\
761 	ret = kstrtoul(buf, 0, &val);					\
762 	if (ret)							\
763 		return ret;						\
764 									\
765 	ret = freq_qos_update_request(policy->object##_freq_req, val);\
766 	return ret >= 0 ? count : ret;					\
767 }
768 
769 store_one(scaling_min_freq, min);
770 store_one(scaling_max_freq, max);
771 
772 /*
773  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
774  */
775 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
776 					char *buf)
777 {
778 	unsigned int cur_freq = __cpufreq_get(policy);
779 
780 	if (cur_freq)
781 		return sysfs_emit(buf, "%u\n", cur_freq);
782 
783 	return sysfs_emit(buf, "<unknown>\n");
784 }
785 
786 /*
787  * show_scaling_governor - show the current policy for the specified CPU
788  */
789 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
790 {
791 	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
792 		return sysfs_emit(buf, "powersave\n");
793 	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
794 		return sysfs_emit(buf, "performance\n");
795 	else if (policy->governor)
796 		return sysfs_emit(buf, "%s\n", policy->governor->name);
797 	return -EINVAL;
798 }
799 
800 /*
801  * store_scaling_governor - store policy for the specified CPU
802  */
803 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
804 					const char *buf, size_t count)
805 {
806 	char str_governor[16];
807 	int ret;
808 
809 	ret = sscanf(buf, "%15s", str_governor);
810 	if (ret != 1)
811 		return -EINVAL;
812 
813 	if (cpufreq_driver->setpolicy) {
814 		unsigned int new_pol;
815 
816 		new_pol = cpufreq_parse_policy(str_governor);
817 		if (!new_pol)
818 			return -EINVAL;
819 
820 		ret = cpufreq_set_policy(policy, NULL, new_pol);
821 	} else {
822 		struct cpufreq_governor *new_gov;
823 
824 		new_gov = cpufreq_parse_governor(str_governor);
825 		if (!new_gov)
826 			return -EINVAL;
827 
828 		ret = cpufreq_set_policy(policy, new_gov,
829 					 CPUFREQ_POLICY_UNKNOWN);
830 
831 		module_put(new_gov->owner);
832 	}
833 
834 	return ret ? ret : count;
835 }
836 
837 /*
838  * show_scaling_driver - show the cpufreq driver currently loaded
839  */
840 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
841 {
842 	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
843 }
844 
845 /*
846  * show_scaling_available_governors - show the available CPUfreq governors
847  */
848 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
849 						char *buf)
850 {
851 	ssize_t i = 0;
852 	struct cpufreq_governor *t;
853 
854 	if (!has_target()) {
855 		i += sysfs_emit(buf, "performance powersave");
856 		goto out;
857 	}
858 
859 	mutex_lock(&cpufreq_governor_mutex);
860 	for_each_governor(t) {
861 		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
862 		    - (CPUFREQ_NAME_LEN + 2)))
863 			break;
864 		i += sysfs_emit_at(buf, i, "%s ", t->name);
865 	}
866 	mutex_unlock(&cpufreq_governor_mutex);
867 out:
868 	i += sysfs_emit_at(buf, i, "\n");
869 	return i;
870 }
871 
872 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
873 {
874 	ssize_t i = 0;
875 	unsigned int cpu;
876 
877 	for_each_cpu(cpu, mask) {
878 		i += sysfs_emit_at(buf, i, "%u ", cpu);
879 		if (i >= (PAGE_SIZE - 5))
880 			break;
881 	}
882 
883 	/* Remove the extra space at the end */
884 	i--;
885 
886 	i += sysfs_emit_at(buf, i, "\n");
887 	return i;
888 }
889 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
890 
891 /*
892  * show_related_cpus - show the CPUs affected by each transition even if
893  * hw coordination is in use
894  */
895 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
896 {
897 	return cpufreq_show_cpus(policy->related_cpus, buf);
898 }
899 
900 /*
901  * show_affected_cpus - show the CPUs affected by each transition
902  */
903 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
904 {
905 	return cpufreq_show_cpus(policy->cpus, buf);
906 }
907 
908 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
909 					const char *buf, size_t count)
910 {
911 	unsigned int freq = 0;
912 	unsigned int ret;
913 
914 	if (!policy->governor || !policy->governor->store_setspeed)
915 		return -EINVAL;
916 
917 	ret = sscanf(buf, "%u", &freq);
918 	if (ret != 1)
919 		return -EINVAL;
920 
921 	policy->governor->store_setspeed(policy, freq);
922 
923 	return count;
924 }
925 
926 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
927 {
928 	if (!policy->governor || !policy->governor->show_setspeed)
929 		return sysfs_emit(buf, "<unsupported>\n");
930 
931 	return policy->governor->show_setspeed(policy, buf);
932 }
933 
934 /*
935  * show_bios_limit - show the current cpufreq HW/BIOS limitation
936  */
937 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
938 {
939 	unsigned int limit;
940 	int ret;
941 	ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
942 	if (!ret)
943 		return sysfs_emit(buf, "%u\n", limit);
944 	return sysfs_emit(buf, "%u\n", policy->cpuinfo.max_freq);
945 }
946 
947 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
948 cpufreq_freq_attr_ro(cpuinfo_min_freq);
949 cpufreq_freq_attr_ro(cpuinfo_max_freq);
950 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
951 cpufreq_freq_attr_ro(scaling_available_governors);
952 cpufreq_freq_attr_ro(scaling_driver);
953 cpufreq_freq_attr_ro(scaling_cur_freq);
954 cpufreq_freq_attr_ro(bios_limit);
955 cpufreq_freq_attr_ro(related_cpus);
956 cpufreq_freq_attr_ro(affected_cpus);
957 cpufreq_freq_attr_rw(scaling_min_freq);
958 cpufreq_freq_attr_rw(scaling_max_freq);
959 cpufreq_freq_attr_rw(scaling_governor);
960 cpufreq_freq_attr_rw(scaling_setspeed);
961 
962 static struct attribute *cpufreq_attrs[] = {
963 	&cpuinfo_min_freq.attr,
964 	&cpuinfo_max_freq.attr,
965 	&cpuinfo_transition_latency.attr,
966 	&scaling_min_freq.attr,
967 	&scaling_max_freq.attr,
968 	&affected_cpus.attr,
969 	&related_cpus.attr,
970 	&scaling_governor.attr,
971 	&scaling_driver.attr,
972 	&scaling_available_governors.attr,
973 	&scaling_setspeed.attr,
974 	NULL
975 };
976 ATTRIBUTE_GROUPS(cpufreq);
977 
978 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
979 #define to_attr(a) container_of(a, struct freq_attr, attr)
980 
981 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
982 {
983 	struct cpufreq_policy *policy = to_policy(kobj);
984 	struct freq_attr *fattr = to_attr(attr);
985 	ssize_t ret = -EBUSY;
986 
987 	if (!fattr->show)
988 		return -EIO;
989 
990 	down_read(&policy->rwsem);
991 	if (likely(!policy_is_inactive(policy)))
992 		ret = fattr->show(policy, buf);
993 	up_read(&policy->rwsem);
994 
995 	return ret;
996 }
997 
998 static ssize_t store(struct kobject *kobj, struct attribute *attr,
999 		     const char *buf, size_t count)
1000 {
1001 	struct cpufreq_policy *policy = to_policy(kobj);
1002 	struct freq_attr *fattr = to_attr(attr);
1003 	ssize_t ret = -EBUSY;
1004 
1005 	if (!fattr->store)
1006 		return -EIO;
1007 
1008 	down_write(&policy->rwsem);
1009 	if (likely(!policy_is_inactive(policy)))
1010 		ret = fattr->store(policy, buf, count);
1011 	up_write(&policy->rwsem);
1012 
1013 	return ret;
1014 }
1015 
1016 static void cpufreq_sysfs_release(struct kobject *kobj)
1017 {
1018 	struct cpufreq_policy *policy = to_policy(kobj);
1019 	pr_debug("last reference is dropped\n");
1020 	complete(&policy->kobj_unregister);
1021 }
1022 
1023 static const struct sysfs_ops sysfs_ops = {
1024 	.show	= show,
1025 	.store	= store,
1026 };
1027 
1028 static const struct kobj_type ktype_cpufreq = {
1029 	.sysfs_ops	= &sysfs_ops,
1030 	.default_groups	= cpufreq_groups,
1031 	.release	= cpufreq_sysfs_release,
1032 };
1033 
1034 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu,
1035 				struct device *dev)
1036 {
1037 	if (unlikely(!dev))
1038 		return;
1039 
1040 	if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1041 		return;
1042 
1043 	dev_dbg(dev, "%s: Adding symlink\n", __func__);
1044 	if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1045 		dev_err(dev, "cpufreq symlink creation failed\n");
1046 }
1047 
1048 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu,
1049 				   struct device *dev)
1050 {
1051 	dev_dbg(dev, "%s: Removing symlink\n", __func__);
1052 	sysfs_remove_link(&dev->kobj, "cpufreq");
1053 	cpumask_clear_cpu(cpu, policy->real_cpus);
1054 }
1055 
1056 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1057 {
1058 	struct freq_attr **drv_attr;
1059 	int ret = 0;
1060 
1061 	/* set up files for this cpu device */
1062 	drv_attr = cpufreq_driver->attr;
1063 	while (drv_attr && *drv_attr) {
1064 		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1065 		if (ret)
1066 			return ret;
1067 		drv_attr++;
1068 	}
1069 	if (cpufreq_driver->get) {
1070 		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1071 		if (ret)
1072 			return ret;
1073 	}
1074 
1075 	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1076 	if (ret)
1077 		return ret;
1078 
1079 	if (cpufreq_driver->bios_limit) {
1080 		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1081 		if (ret)
1082 			return ret;
1083 	}
1084 
1085 	if (cpufreq_boost_supported()) {
1086 		ret = sysfs_create_file(&policy->kobj, &local_boost.attr);
1087 		if (ret)
1088 			return ret;
1089 	}
1090 
1091 	return 0;
1092 }
1093 
1094 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1095 {
1096 	struct cpufreq_governor *gov = NULL;
1097 	unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1098 	int ret;
1099 
1100 	if (has_target()) {
1101 		/* Update policy governor to the one used before hotplug. */
1102 		gov = get_governor(policy->last_governor);
1103 		if (gov) {
1104 			pr_debug("Restoring governor %s for cpu %d\n",
1105 				 gov->name, policy->cpu);
1106 		} else {
1107 			gov = get_governor(default_governor);
1108 		}
1109 
1110 		if (!gov) {
1111 			gov = cpufreq_default_governor();
1112 			__module_get(gov->owner);
1113 		}
1114 
1115 	} else {
1116 
1117 		/* Use the default policy if there is no last_policy. */
1118 		if (policy->last_policy) {
1119 			pol = policy->last_policy;
1120 		} else {
1121 			pol = cpufreq_parse_policy(default_governor);
1122 			/*
1123 			 * In case the default governor is neither "performance"
1124 			 * nor "powersave", fall back to the initial policy
1125 			 * value set by the driver.
1126 			 */
1127 			if (pol == CPUFREQ_POLICY_UNKNOWN)
1128 				pol = policy->policy;
1129 		}
1130 		if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1131 		    pol != CPUFREQ_POLICY_POWERSAVE)
1132 			return -ENODATA;
1133 	}
1134 
1135 	ret = cpufreq_set_policy(policy, gov, pol);
1136 	if (gov)
1137 		module_put(gov->owner);
1138 
1139 	return ret;
1140 }
1141 
1142 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1143 {
1144 	int ret = 0;
1145 
1146 	/* Has this CPU been taken care of already? */
1147 	if (cpumask_test_cpu(cpu, policy->cpus))
1148 		return 0;
1149 
1150 	down_write(&policy->rwsem);
1151 	if (has_target())
1152 		cpufreq_stop_governor(policy);
1153 
1154 	cpumask_set_cpu(cpu, policy->cpus);
1155 
1156 	if (has_target()) {
1157 		ret = cpufreq_start_governor(policy);
1158 		if (ret)
1159 			pr_err("%s: Failed to start governor\n", __func__);
1160 	}
1161 	up_write(&policy->rwsem);
1162 	return ret;
1163 }
1164 
1165 void refresh_frequency_limits(struct cpufreq_policy *policy)
1166 {
1167 	if (!policy_is_inactive(policy)) {
1168 		pr_debug("updating policy for CPU %u\n", policy->cpu);
1169 
1170 		cpufreq_set_policy(policy, policy->governor, policy->policy);
1171 	}
1172 }
1173 EXPORT_SYMBOL(refresh_frequency_limits);
1174 
1175 static void handle_update(struct work_struct *work)
1176 {
1177 	struct cpufreq_policy *policy =
1178 		container_of(work, struct cpufreq_policy, update);
1179 
1180 	pr_debug("handle_update for cpu %u called\n", policy->cpu);
1181 	down_write(&policy->rwsem);
1182 	refresh_frequency_limits(policy);
1183 	up_write(&policy->rwsem);
1184 }
1185 
1186 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1187 				void *data)
1188 {
1189 	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1190 
1191 	schedule_work(&policy->update);
1192 	return 0;
1193 }
1194 
1195 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1196 				void *data)
1197 {
1198 	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1199 
1200 	schedule_work(&policy->update);
1201 	return 0;
1202 }
1203 
1204 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1205 {
1206 	struct kobject *kobj;
1207 	struct completion *cmp;
1208 
1209 	down_write(&policy->rwsem);
1210 	cpufreq_stats_free_table(policy);
1211 	kobj = &policy->kobj;
1212 	cmp = &policy->kobj_unregister;
1213 	up_write(&policy->rwsem);
1214 	kobject_put(kobj);
1215 
1216 	/*
1217 	 * We need to make sure that the underlying kobj is
1218 	 * actually not referenced anymore by anybody before we
1219 	 * proceed with unloading.
1220 	 */
1221 	pr_debug("waiting for dropping of refcount\n");
1222 	wait_for_completion(cmp);
1223 	pr_debug("wait complete\n");
1224 }
1225 
1226 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1227 {
1228 	struct cpufreq_policy *policy;
1229 	struct device *dev = get_cpu_device(cpu);
1230 	int ret;
1231 
1232 	if (!dev)
1233 		return NULL;
1234 
1235 	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1236 	if (!policy)
1237 		return NULL;
1238 
1239 	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1240 		goto err_free_policy;
1241 
1242 	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1243 		goto err_free_cpumask;
1244 
1245 	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1246 		goto err_free_rcpumask;
1247 
1248 	init_completion(&policy->kobj_unregister);
1249 	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1250 				   cpufreq_global_kobject, "policy%u", cpu);
1251 	if (ret) {
1252 		dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1253 		/*
1254 		 * The entire policy object will be freed below, but the extra
1255 		 * memory allocated for the kobject name needs to be freed by
1256 		 * releasing the kobject.
1257 		 */
1258 		kobject_put(&policy->kobj);
1259 		goto err_free_real_cpus;
1260 	}
1261 
1262 	freq_constraints_init(&policy->constraints);
1263 
1264 	policy->nb_min.notifier_call = cpufreq_notifier_min;
1265 	policy->nb_max.notifier_call = cpufreq_notifier_max;
1266 
1267 	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1268 				    &policy->nb_min);
1269 	if (ret) {
1270 		dev_err(dev, "Failed to register MIN QoS notifier: %d (CPU%u)\n",
1271 			ret, cpu);
1272 		goto err_kobj_remove;
1273 	}
1274 
1275 	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1276 				    &policy->nb_max);
1277 	if (ret) {
1278 		dev_err(dev, "Failed to register MAX QoS notifier: %d (CPU%u)\n",
1279 			ret, cpu);
1280 		goto err_min_qos_notifier;
1281 	}
1282 
1283 	INIT_LIST_HEAD(&policy->policy_list);
1284 	init_rwsem(&policy->rwsem);
1285 	spin_lock_init(&policy->transition_lock);
1286 	init_waitqueue_head(&policy->transition_wait);
1287 	INIT_WORK(&policy->update, handle_update);
1288 
1289 	policy->cpu = cpu;
1290 	return policy;
1291 
1292 err_min_qos_notifier:
1293 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1294 				 &policy->nb_min);
1295 err_kobj_remove:
1296 	cpufreq_policy_put_kobj(policy);
1297 err_free_real_cpus:
1298 	free_cpumask_var(policy->real_cpus);
1299 err_free_rcpumask:
1300 	free_cpumask_var(policy->related_cpus);
1301 err_free_cpumask:
1302 	free_cpumask_var(policy->cpus);
1303 err_free_policy:
1304 	kfree(policy);
1305 
1306 	return NULL;
1307 }
1308 
1309 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1310 {
1311 	unsigned long flags;
1312 	int cpu;
1313 
1314 	/*
1315 	 * The callers must ensure the policy is inactive by now, to avoid any
1316 	 * races with show()/store() callbacks.
1317 	 */
1318 	if (unlikely(!policy_is_inactive(policy)))
1319 		pr_warn("%s: Freeing active policy\n", __func__);
1320 
1321 	/* Remove policy from list */
1322 	write_lock_irqsave(&cpufreq_driver_lock, flags);
1323 	list_del(&policy->policy_list);
1324 
1325 	for_each_cpu(cpu, policy->related_cpus)
1326 		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1327 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1328 
1329 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1330 				 &policy->nb_max);
1331 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1332 				 &policy->nb_min);
1333 
1334 	/* Cancel any pending policy->update work before freeing the policy. */
1335 	cancel_work_sync(&policy->update);
1336 
1337 	if (policy->max_freq_req) {
1338 		/*
1339 		 * Remove max_freq_req after sending CPUFREQ_REMOVE_POLICY
1340 		 * notification, since CPUFREQ_CREATE_POLICY notification was
1341 		 * sent after adding max_freq_req earlier.
1342 		 */
1343 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1344 					     CPUFREQ_REMOVE_POLICY, policy);
1345 		freq_qos_remove_request(policy->max_freq_req);
1346 	}
1347 
1348 	freq_qos_remove_request(policy->min_freq_req);
1349 	kfree(policy->min_freq_req);
1350 
1351 	cpufreq_policy_put_kobj(policy);
1352 	free_cpumask_var(policy->real_cpus);
1353 	free_cpumask_var(policy->related_cpus);
1354 	free_cpumask_var(policy->cpus);
1355 	kfree(policy);
1356 }
1357 
1358 static int cpufreq_online(unsigned int cpu)
1359 {
1360 	struct cpufreq_policy *policy;
1361 	bool new_policy;
1362 	unsigned long flags;
1363 	unsigned int j;
1364 	int ret;
1365 
1366 	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1367 
1368 	/* Check if this CPU already has a policy to manage it */
1369 	policy = per_cpu(cpufreq_cpu_data, cpu);
1370 	if (policy) {
1371 		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1372 		if (!policy_is_inactive(policy))
1373 			return cpufreq_add_policy_cpu(policy, cpu);
1374 
1375 		/* This is the only online CPU for the policy.  Start over. */
1376 		new_policy = false;
1377 		down_write(&policy->rwsem);
1378 		policy->cpu = cpu;
1379 		policy->governor = NULL;
1380 	} else {
1381 		new_policy = true;
1382 		policy = cpufreq_policy_alloc(cpu);
1383 		if (!policy)
1384 			return -ENOMEM;
1385 		down_write(&policy->rwsem);
1386 	}
1387 
1388 	if (!new_policy && cpufreq_driver->online) {
1389 		/* Recover policy->cpus using related_cpus */
1390 		cpumask_copy(policy->cpus, policy->related_cpus);
1391 
1392 		ret = cpufreq_driver->online(policy);
1393 		if (ret) {
1394 			pr_debug("%s: %d: initialization failed\n", __func__,
1395 				 __LINE__);
1396 			goto out_exit_policy;
1397 		}
1398 	} else {
1399 		cpumask_copy(policy->cpus, cpumask_of(cpu));
1400 
1401 		/*
1402 		 * Call driver. From then on the cpufreq must be able
1403 		 * to accept all calls to ->verify and ->setpolicy for this CPU.
1404 		 */
1405 		ret = cpufreq_driver->init(policy);
1406 		if (ret) {
1407 			pr_debug("%s: %d: initialization failed\n", __func__,
1408 				 __LINE__);
1409 			goto out_free_policy;
1410 		}
1411 
1412 		/* Let the per-policy boost flag mirror the cpufreq_driver boost during init */
1413 		if (cpufreq_boost_enabled() && policy_has_boost_freq(policy))
1414 			policy->boost_enabled = true;
1415 
1416 		/*
1417 		 * The initialization has succeeded and the policy is online.
1418 		 * If there is a problem with its frequency table, take it
1419 		 * offline and drop it.
1420 		 */
1421 		ret = cpufreq_table_validate_and_sort(policy);
1422 		if (ret)
1423 			goto out_offline_policy;
1424 
1425 		/* related_cpus should at least include policy->cpus. */
1426 		cpumask_copy(policy->related_cpus, policy->cpus);
1427 	}
1428 
1429 	/*
1430 	 * affected cpus must always be the one, which are online. We aren't
1431 	 * managing offline cpus here.
1432 	 */
1433 	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1434 
1435 	if (new_policy) {
1436 		for_each_cpu(j, policy->related_cpus) {
1437 			per_cpu(cpufreq_cpu_data, j) = policy;
1438 			add_cpu_dev_symlink(policy, j, get_cpu_device(j));
1439 		}
1440 
1441 		policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1442 					       GFP_KERNEL);
1443 		if (!policy->min_freq_req) {
1444 			ret = -ENOMEM;
1445 			goto out_destroy_policy;
1446 		}
1447 
1448 		ret = freq_qos_add_request(&policy->constraints,
1449 					   policy->min_freq_req, FREQ_QOS_MIN,
1450 					   FREQ_QOS_MIN_DEFAULT_VALUE);
1451 		if (ret < 0) {
1452 			/*
1453 			 * So we don't call freq_qos_remove_request() for an
1454 			 * uninitialized request.
1455 			 */
1456 			kfree(policy->min_freq_req);
1457 			policy->min_freq_req = NULL;
1458 			goto out_destroy_policy;
1459 		}
1460 
1461 		/*
1462 		 * This must be initialized right here to avoid calling
1463 		 * freq_qos_remove_request() on uninitialized request in case
1464 		 * of errors.
1465 		 */
1466 		policy->max_freq_req = policy->min_freq_req + 1;
1467 
1468 		ret = freq_qos_add_request(&policy->constraints,
1469 					   policy->max_freq_req, FREQ_QOS_MAX,
1470 					   FREQ_QOS_MAX_DEFAULT_VALUE);
1471 		if (ret < 0) {
1472 			policy->max_freq_req = NULL;
1473 			goto out_destroy_policy;
1474 		}
1475 
1476 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1477 				CPUFREQ_CREATE_POLICY, policy);
1478 	}
1479 
1480 	if (cpufreq_driver->get && has_target()) {
1481 		policy->cur = cpufreq_driver->get(policy->cpu);
1482 		if (!policy->cur) {
1483 			ret = -EIO;
1484 			pr_err("%s: ->get() failed\n", __func__);
1485 			goto out_destroy_policy;
1486 		}
1487 	}
1488 
1489 	/*
1490 	 * Sometimes boot loaders set CPU frequency to a value outside of
1491 	 * frequency table present with cpufreq core. In such cases CPU might be
1492 	 * unstable if it has to run on that frequency for long duration of time
1493 	 * and so its better to set it to a frequency which is specified in
1494 	 * freq-table. This also makes cpufreq stats inconsistent as
1495 	 * cpufreq-stats would fail to register because current frequency of CPU
1496 	 * isn't found in freq-table.
1497 	 *
1498 	 * Because we don't want this change to effect boot process badly, we go
1499 	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1500 	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1501 	 * is initialized to zero).
1502 	 *
1503 	 * We are passing target-freq as "policy->cur - 1" otherwise
1504 	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1505 	 * equal to target-freq.
1506 	 */
1507 	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1508 	    && has_target()) {
1509 		unsigned int old_freq = policy->cur;
1510 
1511 		/* Are we running at unknown frequency ? */
1512 		ret = cpufreq_frequency_table_get_index(policy, old_freq);
1513 		if (ret == -EINVAL) {
1514 			ret = __cpufreq_driver_target(policy, old_freq - 1,
1515 						      CPUFREQ_RELATION_L);
1516 
1517 			/*
1518 			 * Reaching here after boot in a few seconds may not
1519 			 * mean that system will remain stable at "unknown"
1520 			 * frequency for longer duration. Hence, a BUG_ON().
1521 			 */
1522 			BUG_ON(ret);
1523 			pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n",
1524 				__func__, policy->cpu, old_freq, policy->cur);
1525 		}
1526 	}
1527 
1528 	if (new_policy) {
1529 		ret = cpufreq_add_dev_interface(policy);
1530 		if (ret)
1531 			goto out_destroy_policy;
1532 
1533 		cpufreq_stats_create_table(policy);
1534 
1535 		write_lock_irqsave(&cpufreq_driver_lock, flags);
1536 		list_add(&policy->policy_list, &cpufreq_policy_list);
1537 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1538 
1539 		/*
1540 		 * Register with the energy model before
1541 		 * sugov_eas_rebuild_sd() is called, which will result
1542 		 * in rebuilding of the sched domains, which should only be done
1543 		 * once the energy model is properly initialized for the policy
1544 		 * first.
1545 		 *
1546 		 * Also, this should be called before the policy is registered
1547 		 * with cooling framework.
1548 		 */
1549 		if (cpufreq_driver->register_em)
1550 			cpufreq_driver->register_em(policy);
1551 	}
1552 
1553 	ret = cpufreq_init_policy(policy);
1554 	if (ret) {
1555 		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1556 		       __func__, cpu, ret);
1557 		goto out_destroy_policy;
1558 	}
1559 
1560 	up_write(&policy->rwsem);
1561 
1562 	kobject_uevent(&policy->kobj, KOBJ_ADD);
1563 
1564 	/* Callback for handling stuff after policy is ready */
1565 	if (cpufreq_driver->ready)
1566 		cpufreq_driver->ready(policy);
1567 
1568 	/* Register cpufreq cooling only for a new policy */
1569 	if (new_policy && cpufreq_thermal_control_enabled(cpufreq_driver))
1570 		policy->cdev = of_cpufreq_cooling_register(policy);
1571 
1572 	pr_debug("initialization complete\n");
1573 
1574 	return 0;
1575 
1576 out_destroy_policy:
1577 	for_each_cpu(j, policy->real_cpus)
1578 		remove_cpu_dev_symlink(policy, j, get_cpu_device(j));
1579 
1580 out_offline_policy:
1581 	if (cpufreq_driver->offline)
1582 		cpufreq_driver->offline(policy);
1583 
1584 out_exit_policy:
1585 	if (cpufreq_driver->exit)
1586 		cpufreq_driver->exit(policy);
1587 
1588 out_free_policy:
1589 	cpumask_clear(policy->cpus);
1590 	up_write(&policy->rwsem);
1591 
1592 	cpufreq_policy_free(policy);
1593 	return ret;
1594 }
1595 
1596 /**
1597  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1598  * @dev: CPU device.
1599  * @sif: Subsystem interface structure pointer (not used)
1600  */
1601 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1602 {
1603 	struct cpufreq_policy *policy;
1604 	unsigned cpu = dev->id;
1605 	int ret;
1606 
1607 	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1608 
1609 	if (cpu_online(cpu)) {
1610 		ret = cpufreq_online(cpu);
1611 		if (ret)
1612 			return ret;
1613 	}
1614 
1615 	/* Create sysfs link on CPU registration */
1616 	policy = per_cpu(cpufreq_cpu_data, cpu);
1617 	if (policy)
1618 		add_cpu_dev_symlink(policy, cpu, dev);
1619 
1620 	return 0;
1621 }
1622 
1623 static void __cpufreq_offline(unsigned int cpu, struct cpufreq_policy *policy)
1624 {
1625 	int ret;
1626 
1627 	if (has_target())
1628 		cpufreq_stop_governor(policy);
1629 
1630 	cpumask_clear_cpu(cpu, policy->cpus);
1631 
1632 	if (!policy_is_inactive(policy)) {
1633 		/* Nominate a new CPU if necessary. */
1634 		if (cpu == policy->cpu)
1635 			policy->cpu = cpumask_any(policy->cpus);
1636 
1637 		/* Start the governor again for the active policy. */
1638 		if (has_target()) {
1639 			ret = cpufreq_start_governor(policy);
1640 			if (ret)
1641 				pr_err("%s: Failed to start governor\n", __func__);
1642 		}
1643 
1644 		return;
1645 	}
1646 
1647 	if (has_target())
1648 		strscpy(policy->last_governor, policy->governor->name,
1649 			CPUFREQ_NAME_LEN);
1650 	else
1651 		policy->last_policy = policy->policy;
1652 
1653 	if (has_target())
1654 		cpufreq_exit_governor(policy);
1655 
1656 	/*
1657 	 * Perform the ->offline() during light-weight tear-down, as
1658 	 * that allows fast recovery when the CPU comes back.
1659 	 */
1660 	if (cpufreq_driver->offline) {
1661 		cpufreq_driver->offline(policy);
1662 		return;
1663 	}
1664 
1665 	if (cpufreq_driver->exit)
1666 		cpufreq_driver->exit(policy);
1667 
1668 	policy->freq_table = NULL;
1669 }
1670 
1671 static int cpufreq_offline(unsigned int cpu)
1672 {
1673 	struct cpufreq_policy *policy;
1674 
1675 	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1676 
1677 	policy = cpufreq_cpu_get_raw(cpu);
1678 	if (!policy) {
1679 		pr_debug("%s: No cpu_data found\n", __func__);
1680 		return 0;
1681 	}
1682 
1683 	down_write(&policy->rwsem);
1684 
1685 	__cpufreq_offline(cpu, policy);
1686 
1687 	up_write(&policy->rwsem);
1688 	return 0;
1689 }
1690 
1691 /*
1692  * cpufreq_remove_dev - remove a CPU device
1693  *
1694  * Removes the cpufreq interface for a CPU device.
1695  */
1696 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1697 {
1698 	unsigned int cpu = dev->id;
1699 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1700 
1701 	if (!policy)
1702 		return;
1703 
1704 	down_write(&policy->rwsem);
1705 
1706 	if (cpu_online(cpu))
1707 		__cpufreq_offline(cpu, policy);
1708 
1709 	remove_cpu_dev_symlink(policy, cpu, dev);
1710 
1711 	if (!cpumask_empty(policy->real_cpus)) {
1712 		up_write(&policy->rwsem);
1713 		return;
1714 	}
1715 
1716 	/*
1717 	 * Unregister cpufreq cooling once all the CPUs of the policy are
1718 	 * removed.
1719 	 */
1720 	if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1721 		cpufreq_cooling_unregister(policy->cdev);
1722 		policy->cdev = NULL;
1723 	}
1724 
1725 	/* We did light-weight exit earlier, do full tear down now */
1726 	if (cpufreq_driver->offline && cpufreq_driver->exit)
1727 		cpufreq_driver->exit(policy);
1728 
1729 	up_write(&policy->rwsem);
1730 
1731 	cpufreq_policy_free(policy);
1732 }
1733 
1734 /**
1735  * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference.
1736  * @policy: Policy managing CPUs.
1737  * @new_freq: New CPU frequency.
1738  *
1739  * Adjust to the current frequency first and clean up later by either calling
1740  * cpufreq_update_policy(), or scheduling handle_update().
1741  */
1742 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1743 				unsigned int new_freq)
1744 {
1745 	struct cpufreq_freqs freqs;
1746 
1747 	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1748 		 policy->cur, new_freq);
1749 
1750 	freqs.old = policy->cur;
1751 	freqs.new = new_freq;
1752 
1753 	cpufreq_freq_transition_begin(policy, &freqs);
1754 	cpufreq_freq_transition_end(policy, &freqs, 0);
1755 }
1756 
1757 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1758 {
1759 	unsigned int new_freq;
1760 
1761 	new_freq = cpufreq_driver->get(policy->cpu);
1762 	if (!new_freq)
1763 		return 0;
1764 
1765 	/*
1766 	 * If fast frequency switching is used with the given policy, the check
1767 	 * against policy->cur is pointless, so skip it in that case.
1768 	 */
1769 	if (policy->fast_switch_enabled || !has_target())
1770 		return new_freq;
1771 
1772 	if (policy->cur != new_freq) {
1773 		/*
1774 		 * For some platforms, the frequency returned by hardware may be
1775 		 * slightly different from what is provided in the frequency
1776 		 * table, for example hardware may return 499 MHz instead of 500
1777 		 * MHz. In such cases it is better to avoid getting into
1778 		 * unnecessary frequency updates.
1779 		 */
1780 		if (abs(policy->cur - new_freq) < KHZ_PER_MHZ)
1781 			return policy->cur;
1782 
1783 		cpufreq_out_of_sync(policy, new_freq);
1784 		if (update)
1785 			schedule_work(&policy->update);
1786 	}
1787 
1788 	return new_freq;
1789 }
1790 
1791 /**
1792  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1793  * @cpu: CPU number
1794  *
1795  * This is the last known freq, without actually getting it from the driver.
1796  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1797  */
1798 unsigned int cpufreq_quick_get(unsigned int cpu)
1799 {
1800 	struct cpufreq_policy *policy;
1801 	unsigned int ret_freq = 0;
1802 	unsigned long flags;
1803 
1804 	read_lock_irqsave(&cpufreq_driver_lock, flags);
1805 
1806 	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1807 		ret_freq = cpufreq_driver->get(cpu);
1808 		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1809 		return ret_freq;
1810 	}
1811 
1812 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1813 
1814 	policy = cpufreq_cpu_get(cpu);
1815 	if (policy) {
1816 		ret_freq = policy->cur;
1817 		cpufreq_cpu_put(policy);
1818 	}
1819 
1820 	return ret_freq;
1821 }
1822 EXPORT_SYMBOL(cpufreq_quick_get);
1823 
1824 /**
1825  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1826  * @cpu: CPU number
1827  *
1828  * Just return the max possible frequency for a given CPU.
1829  */
1830 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1831 {
1832 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1833 	unsigned int ret_freq = 0;
1834 
1835 	if (policy) {
1836 		ret_freq = policy->max;
1837 		cpufreq_cpu_put(policy);
1838 	}
1839 
1840 	return ret_freq;
1841 }
1842 EXPORT_SYMBOL(cpufreq_quick_get_max);
1843 
1844 /**
1845  * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1846  * @cpu: CPU number
1847  *
1848  * The default return value is the max_freq field of cpuinfo.
1849  */
1850 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1851 {
1852 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1853 	unsigned int ret_freq = 0;
1854 
1855 	if (policy) {
1856 		ret_freq = policy->cpuinfo.max_freq;
1857 		cpufreq_cpu_put(policy);
1858 	}
1859 
1860 	return ret_freq;
1861 }
1862 EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1863 
1864 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1865 {
1866 	if (unlikely(policy_is_inactive(policy)))
1867 		return 0;
1868 
1869 	return cpufreq_verify_current_freq(policy, true);
1870 }
1871 
1872 /**
1873  * cpufreq_get - get the current CPU frequency (in kHz)
1874  * @cpu: CPU number
1875  *
1876  * Get the CPU current (static) CPU frequency
1877  */
1878 unsigned int cpufreq_get(unsigned int cpu)
1879 {
1880 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1881 	unsigned int ret_freq = 0;
1882 
1883 	if (policy) {
1884 		down_read(&policy->rwsem);
1885 		if (cpufreq_driver->get)
1886 			ret_freq = __cpufreq_get(policy);
1887 		up_read(&policy->rwsem);
1888 
1889 		cpufreq_cpu_put(policy);
1890 	}
1891 
1892 	return ret_freq;
1893 }
1894 EXPORT_SYMBOL(cpufreq_get);
1895 
1896 static struct subsys_interface cpufreq_interface = {
1897 	.name		= "cpufreq",
1898 	.subsys		= &cpu_subsys,
1899 	.add_dev	= cpufreq_add_dev,
1900 	.remove_dev	= cpufreq_remove_dev,
1901 };
1902 
1903 /*
1904  * In case platform wants some specific frequency to be configured
1905  * during suspend..
1906  */
1907 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1908 {
1909 	int ret;
1910 
1911 	if (!policy->suspend_freq) {
1912 		pr_debug("%s: suspend_freq not defined\n", __func__);
1913 		return 0;
1914 	}
1915 
1916 	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1917 			policy->suspend_freq);
1918 
1919 	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1920 			CPUFREQ_RELATION_H);
1921 	if (ret)
1922 		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1923 				__func__, policy->suspend_freq, ret);
1924 
1925 	return ret;
1926 }
1927 EXPORT_SYMBOL(cpufreq_generic_suspend);
1928 
1929 /**
1930  * cpufreq_suspend() - Suspend CPUFreq governors.
1931  *
1932  * Called during system wide Suspend/Hibernate cycles for suspending governors
1933  * as some platforms can't change frequency after this point in suspend cycle.
1934  * Because some of the devices (like: i2c, regulators, etc) they use for
1935  * changing frequency are suspended quickly after this point.
1936  */
1937 void cpufreq_suspend(void)
1938 {
1939 	struct cpufreq_policy *policy;
1940 
1941 	if (!cpufreq_driver)
1942 		return;
1943 
1944 	if (!has_target() && !cpufreq_driver->suspend)
1945 		goto suspend;
1946 
1947 	pr_debug("%s: Suspending Governors\n", __func__);
1948 
1949 	for_each_active_policy(policy) {
1950 		if (has_target()) {
1951 			down_write(&policy->rwsem);
1952 			cpufreq_stop_governor(policy);
1953 			up_write(&policy->rwsem);
1954 		}
1955 
1956 		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1957 			pr_err("%s: Failed to suspend driver: %s\n", __func__,
1958 				cpufreq_driver->name);
1959 	}
1960 
1961 suspend:
1962 	cpufreq_suspended = true;
1963 }
1964 
1965 /**
1966  * cpufreq_resume() - Resume CPUFreq governors.
1967  *
1968  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1969  * are suspended with cpufreq_suspend().
1970  */
1971 void cpufreq_resume(void)
1972 {
1973 	struct cpufreq_policy *policy;
1974 	int ret;
1975 
1976 	if (!cpufreq_driver)
1977 		return;
1978 
1979 	if (unlikely(!cpufreq_suspended))
1980 		return;
1981 
1982 	cpufreq_suspended = false;
1983 
1984 	if (!has_target() && !cpufreq_driver->resume)
1985 		return;
1986 
1987 	pr_debug("%s: Resuming Governors\n", __func__);
1988 
1989 	for_each_active_policy(policy) {
1990 		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1991 			pr_err("%s: Failed to resume driver: %s\n", __func__,
1992 				cpufreq_driver->name);
1993 		} else if (has_target()) {
1994 			down_write(&policy->rwsem);
1995 			ret = cpufreq_start_governor(policy);
1996 			up_write(&policy->rwsem);
1997 
1998 			if (ret)
1999 				pr_err("%s: Failed to start governor for CPU%u's policy\n",
2000 				       __func__, policy->cpu);
2001 		}
2002 	}
2003 }
2004 
2005 /**
2006  * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones.
2007  * @flags: Flags to test against the current cpufreq driver's flags.
2008  *
2009  * Assumes that the driver is there, so callers must ensure that this is the
2010  * case.
2011  */
2012 bool cpufreq_driver_test_flags(u16 flags)
2013 {
2014 	return !!(cpufreq_driver->flags & flags);
2015 }
2016 
2017 /**
2018  * cpufreq_get_current_driver - Return the current driver's name.
2019  *
2020  * Return the name string of the currently registered cpufreq driver or NULL if
2021  * none.
2022  */
2023 const char *cpufreq_get_current_driver(void)
2024 {
2025 	if (cpufreq_driver)
2026 		return cpufreq_driver->name;
2027 
2028 	return NULL;
2029 }
2030 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
2031 
2032 /**
2033  * cpufreq_get_driver_data - Return current driver data.
2034  *
2035  * Return the private data of the currently registered cpufreq driver, or NULL
2036  * if no cpufreq driver has been registered.
2037  */
2038 void *cpufreq_get_driver_data(void)
2039 {
2040 	if (cpufreq_driver)
2041 		return cpufreq_driver->driver_data;
2042 
2043 	return NULL;
2044 }
2045 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
2046 
2047 /*********************************************************************
2048  *                     NOTIFIER LISTS INTERFACE                      *
2049  *********************************************************************/
2050 
2051 /**
2052  * cpufreq_register_notifier - Register a notifier with cpufreq.
2053  * @nb: notifier function to register.
2054  * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2055  *
2056  * Add a notifier to one of two lists: either a list of notifiers that run on
2057  * clock rate changes (once before and once after every transition), or a list
2058  * of notifiers that ron on cpufreq policy changes.
2059  *
2060  * This function may sleep and it has the same return values as
2061  * blocking_notifier_chain_register().
2062  */
2063 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
2064 {
2065 	int ret;
2066 
2067 	if (cpufreq_disabled())
2068 		return -EINVAL;
2069 
2070 	switch (list) {
2071 	case CPUFREQ_TRANSITION_NOTIFIER:
2072 		mutex_lock(&cpufreq_fast_switch_lock);
2073 
2074 		if (cpufreq_fast_switch_count > 0) {
2075 			mutex_unlock(&cpufreq_fast_switch_lock);
2076 			return -EBUSY;
2077 		}
2078 		ret = srcu_notifier_chain_register(
2079 				&cpufreq_transition_notifier_list, nb);
2080 		if (!ret)
2081 			cpufreq_fast_switch_count--;
2082 
2083 		mutex_unlock(&cpufreq_fast_switch_lock);
2084 		break;
2085 	case CPUFREQ_POLICY_NOTIFIER:
2086 		ret = blocking_notifier_chain_register(
2087 				&cpufreq_policy_notifier_list, nb);
2088 		break;
2089 	default:
2090 		ret = -EINVAL;
2091 	}
2092 
2093 	return ret;
2094 }
2095 EXPORT_SYMBOL(cpufreq_register_notifier);
2096 
2097 /**
2098  * cpufreq_unregister_notifier - Unregister a notifier from cpufreq.
2099  * @nb: notifier block to be unregistered.
2100  * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2101  *
2102  * Remove a notifier from one of the cpufreq notifier lists.
2103  *
2104  * This function may sleep and it has the same return values as
2105  * blocking_notifier_chain_unregister().
2106  */
2107 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2108 {
2109 	int ret;
2110 
2111 	if (cpufreq_disabled())
2112 		return -EINVAL;
2113 
2114 	switch (list) {
2115 	case CPUFREQ_TRANSITION_NOTIFIER:
2116 		mutex_lock(&cpufreq_fast_switch_lock);
2117 
2118 		ret = srcu_notifier_chain_unregister(
2119 				&cpufreq_transition_notifier_list, nb);
2120 		if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2121 			cpufreq_fast_switch_count++;
2122 
2123 		mutex_unlock(&cpufreq_fast_switch_lock);
2124 		break;
2125 	case CPUFREQ_POLICY_NOTIFIER:
2126 		ret = blocking_notifier_chain_unregister(
2127 				&cpufreq_policy_notifier_list, nb);
2128 		break;
2129 	default:
2130 		ret = -EINVAL;
2131 	}
2132 
2133 	return ret;
2134 }
2135 EXPORT_SYMBOL(cpufreq_unregister_notifier);
2136 
2137 
2138 /*********************************************************************
2139  *                              GOVERNORS                            *
2140  *********************************************************************/
2141 
2142 /**
2143  * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2144  * @policy: cpufreq policy to switch the frequency for.
2145  * @target_freq: New frequency to set (may be approximate).
2146  *
2147  * Carry out a fast frequency switch without sleeping.
2148  *
2149  * The driver's ->fast_switch() callback invoked by this function must be
2150  * suitable for being called from within RCU-sched read-side critical sections
2151  * and it is expected to select the minimum available frequency greater than or
2152  * equal to @target_freq (CPUFREQ_RELATION_L).
2153  *
2154  * This function must not be called if policy->fast_switch_enabled is unset.
2155  *
2156  * Governors calling this function must guarantee that it will never be invoked
2157  * twice in parallel for the same policy and that it will never be called in
2158  * parallel with either ->target() or ->target_index() for the same policy.
2159  *
2160  * Returns the actual frequency set for the CPU.
2161  *
2162  * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2163  * error condition, the hardware configuration must be preserved.
2164  */
2165 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2166 					unsigned int target_freq)
2167 {
2168 	unsigned int freq;
2169 	int cpu;
2170 
2171 	target_freq = clamp_val(target_freq, policy->min, policy->max);
2172 	freq = cpufreq_driver->fast_switch(policy, target_freq);
2173 
2174 	if (!freq)
2175 		return 0;
2176 
2177 	policy->cur = freq;
2178 	arch_set_freq_scale(policy->related_cpus, freq,
2179 			    arch_scale_freq_ref(policy->cpu));
2180 	cpufreq_stats_record_transition(policy, freq);
2181 
2182 	if (trace_cpu_frequency_enabled()) {
2183 		for_each_cpu(cpu, policy->cpus)
2184 			trace_cpu_frequency(freq, cpu);
2185 	}
2186 
2187 	return freq;
2188 }
2189 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2190 
2191 /**
2192  * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go.
2193  * @cpu: Target CPU.
2194  * @min_perf: Minimum (required) performance level (units of @capacity).
2195  * @target_perf: Target (desired) performance level (units of @capacity).
2196  * @capacity: Capacity of the target CPU.
2197  *
2198  * Carry out a fast performance level switch of @cpu without sleeping.
2199  *
2200  * The driver's ->adjust_perf() callback invoked by this function must be
2201  * suitable for being called from within RCU-sched read-side critical sections
2202  * and it is expected to select a suitable performance level equal to or above
2203  * @min_perf and preferably equal to or below @target_perf.
2204  *
2205  * This function must not be called if policy->fast_switch_enabled is unset.
2206  *
2207  * Governors calling this function must guarantee that it will never be invoked
2208  * twice in parallel for the same CPU and that it will never be called in
2209  * parallel with either ->target() or ->target_index() or ->fast_switch() for
2210  * the same CPU.
2211  */
2212 void cpufreq_driver_adjust_perf(unsigned int cpu,
2213 				 unsigned long min_perf,
2214 				 unsigned long target_perf,
2215 				 unsigned long capacity)
2216 {
2217 	cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity);
2218 }
2219 
2220 /**
2221  * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback.
2222  *
2223  * Return 'true' if the ->adjust_perf callback is present for the
2224  * current driver or 'false' otherwise.
2225  */
2226 bool cpufreq_driver_has_adjust_perf(void)
2227 {
2228 	return !!cpufreq_driver->adjust_perf;
2229 }
2230 
2231 /* Must set freqs->new to intermediate frequency */
2232 static int __target_intermediate(struct cpufreq_policy *policy,
2233 				 struct cpufreq_freqs *freqs, int index)
2234 {
2235 	int ret;
2236 
2237 	freqs->new = cpufreq_driver->get_intermediate(policy, index);
2238 
2239 	/* We don't need to switch to intermediate freq */
2240 	if (!freqs->new)
2241 		return 0;
2242 
2243 	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2244 		 __func__, policy->cpu, freqs->old, freqs->new);
2245 
2246 	cpufreq_freq_transition_begin(policy, freqs);
2247 	ret = cpufreq_driver->target_intermediate(policy, index);
2248 	cpufreq_freq_transition_end(policy, freqs, ret);
2249 
2250 	if (ret)
2251 		pr_err("%s: Failed to change to intermediate frequency: %d\n",
2252 		       __func__, ret);
2253 
2254 	return ret;
2255 }
2256 
2257 static int __target_index(struct cpufreq_policy *policy, int index)
2258 {
2259 	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2260 	unsigned int restore_freq, intermediate_freq = 0;
2261 	unsigned int newfreq = policy->freq_table[index].frequency;
2262 	int retval = -EINVAL;
2263 	bool notify;
2264 
2265 	if (newfreq == policy->cur)
2266 		return 0;
2267 
2268 	/* Save last value to restore later on errors */
2269 	restore_freq = policy->cur;
2270 
2271 	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2272 	if (notify) {
2273 		/* Handle switching to intermediate frequency */
2274 		if (cpufreq_driver->get_intermediate) {
2275 			retval = __target_intermediate(policy, &freqs, index);
2276 			if (retval)
2277 				return retval;
2278 
2279 			intermediate_freq = freqs.new;
2280 			/* Set old freq to intermediate */
2281 			if (intermediate_freq)
2282 				freqs.old = freqs.new;
2283 		}
2284 
2285 		freqs.new = newfreq;
2286 		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2287 			 __func__, policy->cpu, freqs.old, freqs.new);
2288 
2289 		cpufreq_freq_transition_begin(policy, &freqs);
2290 	}
2291 
2292 	retval = cpufreq_driver->target_index(policy, index);
2293 	if (retval)
2294 		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2295 		       retval);
2296 
2297 	if (notify) {
2298 		cpufreq_freq_transition_end(policy, &freqs, retval);
2299 
2300 		/*
2301 		 * Failed after setting to intermediate freq? Driver should have
2302 		 * reverted back to initial frequency and so should we. Check
2303 		 * here for intermediate_freq instead of get_intermediate, in
2304 		 * case we haven't switched to intermediate freq at all.
2305 		 */
2306 		if (unlikely(retval && intermediate_freq)) {
2307 			freqs.old = intermediate_freq;
2308 			freqs.new = restore_freq;
2309 			cpufreq_freq_transition_begin(policy, &freqs);
2310 			cpufreq_freq_transition_end(policy, &freqs, 0);
2311 		}
2312 	}
2313 
2314 	return retval;
2315 }
2316 
2317 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2318 			    unsigned int target_freq,
2319 			    unsigned int relation)
2320 {
2321 	unsigned int old_target_freq = target_freq;
2322 
2323 	if (cpufreq_disabled())
2324 		return -ENODEV;
2325 
2326 	target_freq = __resolve_freq(policy, target_freq, relation);
2327 
2328 	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2329 		 policy->cpu, target_freq, relation, old_target_freq);
2330 
2331 	/*
2332 	 * This might look like a redundant call as we are checking it again
2333 	 * after finding index. But it is left intentionally for cases where
2334 	 * exactly same freq is called again and so we can save on few function
2335 	 * calls.
2336 	 */
2337 	if (target_freq == policy->cur &&
2338 	    !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS))
2339 		return 0;
2340 
2341 	if (cpufreq_driver->target) {
2342 		/*
2343 		 * If the driver hasn't setup a single inefficient frequency,
2344 		 * it's unlikely it knows how to decode CPUFREQ_RELATION_E.
2345 		 */
2346 		if (!policy->efficiencies_available)
2347 			relation &= ~CPUFREQ_RELATION_E;
2348 
2349 		return cpufreq_driver->target(policy, target_freq, relation);
2350 	}
2351 
2352 	if (!cpufreq_driver->target_index)
2353 		return -EINVAL;
2354 
2355 	return __target_index(policy, policy->cached_resolved_idx);
2356 }
2357 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2358 
2359 int cpufreq_driver_target(struct cpufreq_policy *policy,
2360 			  unsigned int target_freq,
2361 			  unsigned int relation)
2362 {
2363 	int ret;
2364 
2365 	down_write(&policy->rwsem);
2366 
2367 	ret = __cpufreq_driver_target(policy, target_freq, relation);
2368 
2369 	up_write(&policy->rwsem);
2370 
2371 	return ret;
2372 }
2373 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2374 
2375 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2376 {
2377 	return NULL;
2378 }
2379 
2380 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2381 {
2382 	int ret;
2383 
2384 	/* Don't start any governor operations if we are entering suspend */
2385 	if (cpufreq_suspended)
2386 		return 0;
2387 	/*
2388 	 * Governor might not be initiated here if ACPI _PPC changed
2389 	 * notification happened, so check it.
2390 	 */
2391 	if (!policy->governor)
2392 		return -EINVAL;
2393 
2394 	/* Platform doesn't want dynamic frequency switching ? */
2395 	if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING &&
2396 	    cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2397 		struct cpufreq_governor *gov = cpufreq_fallback_governor();
2398 
2399 		if (gov) {
2400 			pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2401 				policy->governor->name, gov->name);
2402 			policy->governor = gov;
2403 		} else {
2404 			return -EINVAL;
2405 		}
2406 	}
2407 
2408 	if (!try_module_get(policy->governor->owner))
2409 		return -EINVAL;
2410 
2411 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2412 
2413 	if (policy->governor->init) {
2414 		ret = policy->governor->init(policy);
2415 		if (ret) {
2416 			module_put(policy->governor->owner);
2417 			return ret;
2418 		}
2419 	}
2420 
2421 	policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET);
2422 
2423 	return 0;
2424 }
2425 
2426 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2427 {
2428 	if (cpufreq_suspended || !policy->governor)
2429 		return;
2430 
2431 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2432 
2433 	if (policy->governor->exit)
2434 		policy->governor->exit(policy);
2435 
2436 	module_put(policy->governor->owner);
2437 }
2438 
2439 int cpufreq_start_governor(struct cpufreq_policy *policy)
2440 {
2441 	int ret;
2442 
2443 	if (cpufreq_suspended)
2444 		return 0;
2445 
2446 	if (!policy->governor)
2447 		return -EINVAL;
2448 
2449 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2450 
2451 	if (cpufreq_driver->get)
2452 		cpufreq_verify_current_freq(policy, false);
2453 
2454 	if (policy->governor->start) {
2455 		ret = policy->governor->start(policy);
2456 		if (ret)
2457 			return ret;
2458 	}
2459 
2460 	if (policy->governor->limits)
2461 		policy->governor->limits(policy);
2462 
2463 	return 0;
2464 }
2465 
2466 void cpufreq_stop_governor(struct cpufreq_policy *policy)
2467 {
2468 	if (cpufreq_suspended || !policy->governor)
2469 		return;
2470 
2471 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2472 
2473 	if (policy->governor->stop)
2474 		policy->governor->stop(policy);
2475 }
2476 
2477 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2478 {
2479 	if (cpufreq_suspended || !policy->governor)
2480 		return;
2481 
2482 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2483 
2484 	if (policy->governor->limits)
2485 		policy->governor->limits(policy);
2486 }
2487 
2488 int cpufreq_register_governor(struct cpufreq_governor *governor)
2489 {
2490 	int err;
2491 
2492 	if (!governor)
2493 		return -EINVAL;
2494 
2495 	if (cpufreq_disabled())
2496 		return -ENODEV;
2497 
2498 	mutex_lock(&cpufreq_governor_mutex);
2499 
2500 	err = -EBUSY;
2501 	if (!find_governor(governor->name)) {
2502 		err = 0;
2503 		list_add(&governor->governor_list, &cpufreq_governor_list);
2504 	}
2505 
2506 	mutex_unlock(&cpufreq_governor_mutex);
2507 	return err;
2508 }
2509 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2510 
2511 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2512 {
2513 	struct cpufreq_policy *policy;
2514 	unsigned long flags;
2515 
2516 	if (!governor)
2517 		return;
2518 
2519 	if (cpufreq_disabled())
2520 		return;
2521 
2522 	/* clear last_governor for all inactive policies */
2523 	read_lock_irqsave(&cpufreq_driver_lock, flags);
2524 	for_each_inactive_policy(policy) {
2525 		if (!strcmp(policy->last_governor, governor->name)) {
2526 			policy->governor = NULL;
2527 			strcpy(policy->last_governor, "\0");
2528 		}
2529 	}
2530 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2531 
2532 	mutex_lock(&cpufreq_governor_mutex);
2533 	list_del(&governor->governor_list);
2534 	mutex_unlock(&cpufreq_governor_mutex);
2535 }
2536 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2537 
2538 
2539 /*********************************************************************
2540  *                          POLICY INTERFACE                         *
2541  *********************************************************************/
2542 
2543 /**
2544  * cpufreq_get_policy - get the current cpufreq_policy
2545  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2546  *	is written
2547  * @cpu: CPU to find the policy for
2548  *
2549  * Reads the current cpufreq policy.
2550  */
2551 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2552 {
2553 	struct cpufreq_policy *cpu_policy;
2554 	if (!policy)
2555 		return -EINVAL;
2556 
2557 	cpu_policy = cpufreq_cpu_get(cpu);
2558 	if (!cpu_policy)
2559 		return -EINVAL;
2560 
2561 	memcpy(policy, cpu_policy, sizeof(*policy));
2562 
2563 	cpufreq_cpu_put(cpu_policy);
2564 	return 0;
2565 }
2566 EXPORT_SYMBOL(cpufreq_get_policy);
2567 
2568 DEFINE_PER_CPU(unsigned long, cpufreq_pressure);
2569 
2570 /**
2571  * cpufreq_update_pressure() - Update cpufreq pressure for CPUs
2572  * @policy: cpufreq policy of the CPUs.
2573  *
2574  * Update the value of cpufreq pressure for all @cpus in the policy.
2575  */
2576 static void cpufreq_update_pressure(struct cpufreq_policy *policy)
2577 {
2578 	unsigned long max_capacity, capped_freq, pressure;
2579 	u32 max_freq;
2580 	int cpu;
2581 
2582 	cpu = cpumask_first(policy->related_cpus);
2583 	max_freq = arch_scale_freq_ref(cpu);
2584 	capped_freq = policy->max;
2585 
2586 	/*
2587 	 * Handle properly the boost frequencies, which should simply clean
2588 	 * the cpufreq pressure value.
2589 	 */
2590 	if (max_freq <= capped_freq) {
2591 		pressure = 0;
2592 	} else {
2593 		max_capacity = arch_scale_cpu_capacity(cpu);
2594 		pressure = max_capacity -
2595 			   mult_frac(max_capacity, capped_freq, max_freq);
2596 	}
2597 
2598 	for_each_cpu(cpu, policy->related_cpus)
2599 		WRITE_ONCE(per_cpu(cpufreq_pressure, cpu), pressure);
2600 }
2601 
2602 /**
2603  * cpufreq_set_policy - Modify cpufreq policy parameters.
2604  * @policy: Policy object to modify.
2605  * @new_gov: Policy governor pointer.
2606  * @new_pol: Policy value (for drivers with built-in governors).
2607  *
2608  * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2609  * limits to be set for the policy, update @policy with the verified limits
2610  * values and either invoke the driver's ->setpolicy() callback (if present) or
2611  * carry out a governor update for @policy.  That is, run the current governor's
2612  * ->limits() callback (if @new_gov points to the same object as the one in
2613  * @policy) or replace the governor for @policy with @new_gov.
2614  *
2615  * The cpuinfo part of @policy is not updated by this function.
2616  */
2617 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2618 			      struct cpufreq_governor *new_gov,
2619 			      unsigned int new_pol)
2620 {
2621 	struct cpufreq_policy_data new_data;
2622 	struct cpufreq_governor *old_gov;
2623 	int ret;
2624 
2625 	memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2626 	new_data.freq_table = policy->freq_table;
2627 	new_data.cpu = policy->cpu;
2628 	/*
2629 	 * PM QoS framework collects all the requests from users and provide us
2630 	 * the final aggregated value here.
2631 	 */
2632 	new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2633 	new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2634 
2635 	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2636 		 new_data.cpu, new_data.min, new_data.max);
2637 
2638 	/*
2639 	 * Verify that the CPU speed can be set within these limits and make sure
2640 	 * that min <= max.
2641 	 */
2642 	ret = cpufreq_driver->verify(&new_data);
2643 	if (ret)
2644 		return ret;
2645 
2646 	/*
2647 	 * Resolve policy min/max to available frequencies. It ensures
2648 	 * no frequency resolution will neither overshoot the requested maximum
2649 	 * nor undershoot the requested minimum.
2650 	 */
2651 	policy->min = new_data.min;
2652 	policy->max = new_data.max;
2653 	policy->min = __resolve_freq(policy, policy->min, CPUFREQ_RELATION_L);
2654 	policy->max = __resolve_freq(policy, policy->max, CPUFREQ_RELATION_H);
2655 	trace_cpu_frequency_limits(policy);
2656 
2657 	cpufreq_update_pressure(policy);
2658 
2659 	policy->cached_target_freq = UINT_MAX;
2660 
2661 	pr_debug("new min and max freqs are %u - %u kHz\n",
2662 		 policy->min, policy->max);
2663 
2664 	if (cpufreq_driver->setpolicy) {
2665 		policy->policy = new_pol;
2666 		pr_debug("setting range\n");
2667 		return cpufreq_driver->setpolicy(policy);
2668 	}
2669 
2670 	if (new_gov == policy->governor) {
2671 		pr_debug("governor limits update\n");
2672 		cpufreq_governor_limits(policy);
2673 		return 0;
2674 	}
2675 
2676 	pr_debug("governor switch\n");
2677 
2678 	/* save old, working values */
2679 	old_gov = policy->governor;
2680 	/* end old governor */
2681 	if (old_gov) {
2682 		cpufreq_stop_governor(policy);
2683 		cpufreq_exit_governor(policy);
2684 	}
2685 
2686 	/* start new governor */
2687 	policy->governor = new_gov;
2688 	ret = cpufreq_init_governor(policy);
2689 	if (!ret) {
2690 		ret = cpufreq_start_governor(policy);
2691 		if (!ret) {
2692 			pr_debug("governor change\n");
2693 			return 0;
2694 		}
2695 		cpufreq_exit_governor(policy);
2696 	}
2697 
2698 	/* new governor failed, so re-start old one */
2699 	pr_debug("starting governor %s failed\n", policy->governor->name);
2700 	if (old_gov) {
2701 		policy->governor = old_gov;
2702 		if (cpufreq_init_governor(policy))
2703 			policy->governor = NULL;
2704 		else
2705 			cpufreq_start_governor(policy);
2706 	}
2707 
2708 	return ret;
2709 }
2710 
2711 /**
2712  * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2713  * @cpu: CPU to re-evaluate the policy for.
2714  *
2715  * Update the current frequency for the cpufreq policy of @cpu and use
2716  * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2717  * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2718  * for the policy in question, among other things.
2719  */
2720 void cpufreq_update_policy(unsigned int cpu)
2721 {
2722 	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2723 
2724 	if (!policy)
2725 		return;
2726 
2727 	/*
2728 	 * BIOS might change freq behind our back
2729 	 * -> ask driver for current freq and notify governors about a change
2730 	 */
2731 	if (cpufreq_driver->get && has_target() &&
2732 	    (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2733 		goto unlock;
2734 
2735 	refresh_frequency_limits(policy);
2736 
2737 unlock:
2738 	cpufreq_cpu_release(policy);
2739 }
2740 EXPORT_SYMBOL(cpufreq_update_policy);
2741 
2742 /**
2743  * cpufreq_update_limits - Update policy limits for a given CPU.
2744  * @cpu: CPU to update the policy limits for.
2745  *
2746  * Invoke the driver's ->update_limits callback if present or call
2747  * cpufreq_update_policy() for @cpu.
2748  */
2749 void cpufreq_update_limits(unsigned int cpu)
2750 {
2751 	if (cpufreq_driver->update_limits)
2752 		cpufreq_driver->update_limits(cpu);
2753 	else
2754 		cpufreq_update_policy(cpu);
2755 }
2756 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2757 
2758 /*********************************************************************
2759  *               BOOST						     *
2760  *********************************************************************/
2761 static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2762 {
2763 	int ret;
2764 
2765 	if (!policy->freq_table)
2766 		return -ENXIO;
2767 
2768 	ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2769 	if (ret) {
2770 		pr_err("%s: Policy frequency update failed\n", __func__);
2771 		return ret;
2772 	}
2773 
2774 	ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2775 	if (ret < 0)
2776 		return ret;
2777 
2778 	return 0;
2779 }
2780 
2781 int cpufreq_boost_trigger_state(int state)
2782 {
2783 	struct cpufreq_policy *policy;
2784 	unsigned long flags;
2785 	int ret = 0;
2786 
2787 	if (cpufreq_driver->boost_enabled == state)
2788 		return 0;
2789 
2790 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2791 	cpufreq_driver->boost_enabled = state;
2792 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2793 
2794 	cpus_read_lock();
2795 	for_each_active_policy(policy) {
2796 		policy->boost_enabled = state;
2797 		ret = cpufreq_driver->set_boost(policy, state);
2798 		if (ret) {
2799 			policy->boost_enabled = !policy->boost_enabled;
2800 			goto err_reset_state;
2801 		}
2802 	}
2803 	cpus_read_unlock();
2804 
2805 	return 0;
2806 
2807 err_reset_state:
2808 	cpus_read_unlock();
2809 
2810 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2811 	cpufreq_driver->boost_enabled = !state;
2812 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2813 
2814 	pr_err("%s: Cannot %s BOOST\n",
2815 	       __func__, state ? "enable" : "disable");
2816 
2817 	return ret;
2818 }
2819 
2820 static bool cpufreq_boost_supported(void)
2821 {
2822 	return cpufreq_driver->set_boost;
2823 }
2824 
2825 static int create_boost_sysfs_file(void)
2826 {
2827 	int ret;
2828 
2829 	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2830 	if (ret)
2831 		pr_err("%s: cannot register global BOOST sysfs file\n",
2832 		       __func__);
2833 
2834 	return ret;
2835 }
2836 
2837 static void remove_boost_sysfs_file(void)
2838 {
2839 	if (cpufreq_boost_supported())
2840 		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2841 }
2842 
2843 int cpufreq_enable_boost_support(void)
2844 {
2845 	if (!cpufreq_driver)
2846 		return -EINVAL;
2847 
2848 	if (cpufreq_boost_supported())
2849 		return 0;
2850 
2851 	cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2852 
2853 	/* This will get removed on driver unregister */
2854 	return create_boost_sysfs_file();
2855 }
2856 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2857 
2858 bool cpufreq_boost_enabled(void)
2859 {
2860 	return cpufreq_driver->boost_enabled;
2861 }
2862 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2863 
2864 /*********************************************************************
2865  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2866  *********************************************************************/
2867 static enum cpuhp_state hp_online;
2868 
2869 static int cpuhp_cpufreq_online(unsigned int cpu)
2870 {
2871 	cpufreq_online(cpu);
2872 
2873 	return 0;
2874 }
2875 
2876 static int cpuhp_cpufreq_offline(unsigned int cpu)
2877 {
2878 	cpufreq_offline(cpu);
2879 
2880 	return 0;
2881 }
2882 
2883 /**
2884  * cpufreq_register_driver - register a CPU Frequency driver
2885  * @driver_data: A struct cpufreq_driver containing the values#
2886  * submitted by the CPU Frequency driver.
2887  *
2888  * Registers a CPU Frequency driver to this core code. This code
2889  * returns zero on success, -EEXIST when another driver got here first
2890  * (and isn't unregistered in the meantime).
2891  *
2892  */
2893 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2894 {
2895 	unsigned long flags;
2896 	int ret;
2897 
2898 	if (cpufreq_disabled())
2899 		return -ENODEV;
2900 
2901 	/*
2902 	 * The cpufreq core depends heavily on the availability of device
2903 	 * structure, make sure they are available before proceeding further.
2904 	 */
2905 	if (!get_cpu_device(0))
2906 		return -EPROBE_DEFER;
2907 
2908 	if (!driver_data || !driver_data->verify || !driver_data->init ||
2909 	    !(driver_data->setpolicy || driver_data->target_index ||
2910 		    driver_data->target) ||
2911 	     (driver_data->setpolicy && (driver_data->target_index ||
2912 		    driver_data->target)) ||
2913 	     (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2914 	     (!driver_data->online != !driver_data->offline) ||
2915 		 (driver_data->adjust_perf && !driver_data->fast_switch))
2916 		return -EINVAL;
2917 
2918 	pr_debug("trying to register driver %s\n", driver_data->name);
2919 
2920 	/* Protect against concurrent CPU online/offline. */
2921 	cpus_read_lock();
2922 
2923 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2924 	if (cpufreq_driver) {
2925 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2926 		ret = -EEXIST;
2927 		goto out;
2928 	}
2929 	cpufreq_driver = driver_data;
2930 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2931 
2932 	/*
2933 	 * Mark support for the scheduler's frequency invariance engine for
2934 	 * drivers that implement target(), target_index() or fast_switch().
2935 	 */
2936 	if (!cpufreq_driver->setpolicy) {
2937 		static_branch_enable_cpuslocked(&cpufreq_freq_invariance);
2938 		pr_debug("supports frequency invariance");
2939 	}
2940 
2941 	if (driver_data->setpolicy)
2942 		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2943 
2944 	if (cpufreq_boost_supported()) {
2945 		ret = create_boost_sysfs_file();
2946 		if (ret)
2947 			goto err_null_driver;
2948 	}
2949 
2950 	ret = subsys_interface_register(&cpufreq_interface);
2951 	if (ret)
2952 		goto err_boost_unreg;
2953 
2954 	if (unlikely(list_empty(&cpufreq_policy_list))) {
2955 		/* if all ->init() calls failed, unregister */
2956 		ret = -ENODEV;
2957 		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2958 			 driver_data->name);
2959 		goto err_if_unreg;
2960 	}
2961 
2962 	ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2963 						   "cpufreq:online",
2964 						   cpuhp_cpufreq_online,
2965 						   cpuhp_cpufreq_offline);
2966 	if (ret < 0)
2967 		goto err_if_unreg;
2968 	hp_online = ret;
2969 	ret = 0;
2970 
2971 	pr_debug("driver %s up and running\n", driver_data->name);
2972 	goto out;
2973 
2974 err_if_unreg:
2975 	subsys_interface_unregister(&cpufreq_interface);
2976 err_boost_unreg:
2977 	remove_boost_sysfs_file();
2978 err_null_driver:
2979 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2980 	cpufreq_driver = NULL;
2981 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2982 out:
2983 	cpus_read_unlock();
2984 	return ret;
2985 }
2986 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2987 
2988 /*
2989  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2990  *
2991  * Unregister the current CPUFreq driver. Only call this if you have
2992  * the right to do so, i.e. if you have succeeded in initialising before!
2993  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2994  * currently not initialised.
2995  */
2996 void cpufreq_unregister_driver(struct cpufreq_driver *driver)
2997 {
2998 	unsigned long flags;
2999 
3000 	if (WARN_ON(!cpufreq_driver || (driver != cpufreq_driver)))
3001 		return;
3002 
3003 	pr_debug("unregistering driver %s\n", driver->name);
3004 
3005 	/* Protect against concurrent cpu hotplug */
3006 	cpus_read_lock();
3007 	subsys_interface_unregister(&cpufreq_interface);
3008 	remove_boost_sysfs_file();
3009 	static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
3010 	cpuhp_remove_state_nocalls_cpuslocked(hp_online);
3011 
3012 	write_lock_irqsave(&cpufreq_driver_lock, flags);
3013 
3014 	cpufreq_driver = NULL;
3015 
3016 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
3017 	cpus_read_unlock();
3018 }
3019 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
3020 
3021 static int __init cpufreq_core_init(void)
3022 {
3023 	struct cpufreq_governor *gov = cpufreq_default_governor();
3024 	struct device *dev_root;
3025 
3026 	if (cpufreq_disabled())
3027 		return -ENODEV;
3028 
3029 	dev_root = bus_get_dev_root(&cpu_subsys);
3030 	if (dev_root) {
3031 		cpufreq_global_kobject = kobject_create_and_add("cpufreq", &dev_root->kobj);
3032 		put_device(dev_root);
3033 	}
3034 	BUG_ON(!cpufreq_global_kobject);
3035 
3036 	if (!strlen(default_governor))
3037 		strscpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
3038 
3039 	return 0;
3040 }
3041 module_param(off, int, 0444);
3042 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
3043 core_initcall(cpufreq_core_init);
3044