1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/cpufreq/cpufreq.c 4 * 5 * Copyright (C) 2001 Russell King 6 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 7 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org> 8 * 9 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 10 * Added handling for CPU hotplug 11 * Feb 2006 - Jacob Shin <jacob.shin@amd.com> 12 * Fix handling for CPU hotplug -- affected CPUs 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/cpu.h> 18 #include <linux/cpufreq.h> 19 #include <linux/cpu_cooling.h> 20 #include <linux/delay.h> 21 #include <linux/device.h> 22 #include <linux/init.h> 23 #include <linux/kernel_stat.h> 24 #include <linux/module.h> 25 #include <linux/mutex.h> 26 #include <linux/pm_qos.h> 27 #include <linux/slab.h> 28 #include <linux/suspend.h> 29 #include <linux/syscore_ops.h> 30 #include <linux/tick.h> 31 #include <linux/units.h> 32 #include <trace/events/power.h> 33 34 static LIST_HEAD(cpufreq_policy_list); 35 36 /* Macros to iterate over CPU policies */ 37 #define for_each_suitable_policy(__policy, __active) \ 38 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \ 39 if ((__active) == !policy_is_inactive(__policy)) 40 41 #define for_each_active_policy(__policy) \ 42 for_each_suitable_policy(__policy, true) 43 #define for_each_inactive_policy(__policy) \ 44 for_each_suitable_policy(__policy, false) 45 46 /* Iterate over governors */ 47 static LIST_HEAD(cpufreq_governor_list); 48 #define for_each_governor(__governor) \ 49 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list) 50 51 static char default_governor[CPUFREQ_NAME_LEN]; 52 53 /* 54 * The "cpufreq driver" - the arch- or hardware-dependent low 55 * level driver of CPUFreq support, and its spinlock. This lock 56 * also protects the cpufreq_cpu_data array. 57 */ 58 static struct cpufreq_driver *cpufreq_driver; 59 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data); 60 static DEFINE_RWLOCK(cpufreq_driver_lock); 61 62 static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance); 63 bool cpufreq_supports_freq_invariance(void) 64 { 65 return static_branch_likely(&cpufreq_freq_invariance); 66 } 67 68 /* Flag to suspend/resume CPUFreq governors */ 69 static bool cpufreq_suspended; 70 71 static inline bool has_target(void) 72 { 73 return cpufreq_driver->target_index || cpufreq_driver->target; 74 } 75 76 bool has_target_index(void) 77 { 78 return !!cpufreq_driver->target_index; 79 } 80 81 /* internal prototypes */ 82 static unsigned int __cpufreq_get(struct cpufreq_policy *policy); 83 static int cpufreq_init_governor(struct cpufreq_policy *policy); 84 static void cpufreq_exit_governor(struct cpufreq_policy *policy); 85 static void cpufreq_governor_limits(struct cpufreq_policy *policy); 86 static int cpufreq_set_policy(struct cpufreq_policy *policy, 87 struct cpufreq_governor *new_gov, 88 unsigned int new_pol); 89 static bool cpufreq_boost_supported(void); 90 91 /* 92 * Two notifier lists: the "policy" list is involved in the 93 * validation process for a new CPU frequency policy; the 94 * "transition" list for kernel code that needs to handle 95 * changes to devices when the CPU clock speed changes. 96 * The mutex locks both lists. 97 */ 98 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list); 99 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list); 100 101 static int off __read_mostly; 102 static int cpufreq_disabled(void) 103 { 104 return off; 105 } 106 void disable_cpufreq(void) 107 { 108 off = 1; 109 } 110 static DEFINE_MUTEX(cpufreq_governor_mutex); 111 112 bool have_governor_per_policy(void) 113 { 114 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY); 115 } 116 EXPORT_SYMBOL_GPL(have_governor_per_policy); 117 118 static struct kobject *cpufreq_global_kobject; 119 120 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy) 121 { 122 if (have_governor_per_policy()) 123 return &policy->kobj; 124 else 125 return cpufreq_global_kobject; 126 } 127 EXPORT_SYMBOL_GPL(get_governor_parent_kobj); 128 129 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) 130 { 131 struct kernel_cpustat kcpustat; 132 u64 cur_wall_time; 133 u64 idle_time; 134 u64 busy_time; 135 136 cur_wall_time = jiffies64_to_nsecs(get_jiffies_64()); 137 138 kcpustat_cpu_fetch(&kcpustat, cpu); 139 140 busy_time = kcpustat.cpustat[CPUTIME_USER]; 141 busy_time += kcpustat.cpustat[CPUTIME_SYSTEM]; 142 busy_time += kcpustat.cpustat[CPUTIME_IRQ]; 143 busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ]; 144 busy_time += kcpustat.cpustat[CPUTIME_STEAL]; 145 busy_time += kcpustat.cpustat[CPUTIME_NICE]; 146 147 idle_time = cur_wall_time - busy_time; 148 if (wall) 149 *wall = div_u64(cur_wall_time, NSEC_PER_USEC); 150 151 return div_u64(idle_time, NSEC_PER_USEC); 152 } 153 154 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy) 155 { 156 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL); 157 158 if (idle_time == -1ULL) 159 return get_cpu_idle_time_jiffy(cpu, wall); 160 else if (!io_busy) 161 idle_time += get_cpu_iowait_time_us(cpu, wall); 162 163 return idle_time; 164 } 165 EXPORT_SYMBOL_GPL(get_cpu_idle_time); 166 167 /* 168 * This is a generic cpufreq init() routine which can be used by cpufreq 169 * drivers of SMP systems. It will do following: 170 * - validate & show freq table passed 171 * - set policies transition latency 172 * - policy->cpus with all possible CPUs 173 */ 174 void cpufreq_generic_init(struct cpufreq_policy *policy, 175 struct cpufreq_frequency_table *table, 176 unsigned int transition_latency) 177 { 178 policy->freq_table = table; 179 policy->cpuinfo.transition_latency = transition_latency; 180 181 /* 182 * The driver only supports the SMP configuration where all processors 183 * share the clock and voltage and clock. 184 */ 185 cpumask_setall(policy->cpus); 186 } 187 EXPORT_SYMBOL_GPL(cpufreq_generic_init); 188 189 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu) 190 { 191 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 192 193 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL; 194 } 195 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw); 196 197 unsigned int cpufreq_generic_get(unsigned int cpu) 198 { 199 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu); 200 201 if (!policy || IS_ERR(policy->clk)) { 202 pr_err("%s: No %s associated to cpu: %d\n", 203 __func__, policy ? "clk" : "policy", cpu); 204 return 0; 205 } 206 207 return clk_get_rate(policy->clk) / 1000; 208 } 209 EXPORT_SYMBOL_GPL(cpufreq_generic_get); 210 211 /** 212 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy. 213 * @cpu: CPU to find the policy for. 214 * 215 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment 216 * the kobject reference counter of that policy. Return a valid policy on 217 * success or NULL on failure. 218 * 219 * The policy returned by this function has to be released with the help of 220 * cpufreq_cpu_put() to balance its kobject reference counter properly. 221 */ 222 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) 223 { 224 struct cpufreq_policy *policy = NULL; 225 unsigned long flags; 226 227 if (WARN_ON(cpu >= nr_cpu_ids)) 228 return NULL; 229 230 /* get the cpufreq driver */ 231 read_lock_irqsave(&cpufreq_driver_lock, flags); 232 233 if (cpufreq_driver) { 234 /* get the CPU */ 235 policy = cpufreq_cpu_get_raw(cpu); 236 if (policy) 237 kobject_get(&policy->kobj); 238 } 239 240 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 241 242 return policy; 243 } 244 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 245 246 /** 247 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy. 248 * @policy: cpufreq policy returned by cpufreq_cpu_get(). 249 */ 250 void cpufreq_cpu_put(struct cpufreq_policy *policy) 251 { 252 kobject_put(&policy->kobj); 253 } 254 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 255 256 /** 257 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter. 258 * @policy: cpufreq policy returned by cpufreq_cpu_acquire(). 259 */ 260 void cpufreq_cpu_release(struct cpufreq_policy *policy) 261 { 262 if (WARN_ON(!policy)) 263 return; 264 265 lockdep_assert_held(&policy->rwsem); 266 267 up_write(&policy->rwsem); 268 269 cpufreq_cpu_put(policy); 270 } 271 272 /** 273 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it. 274 * @cpu: CPU to find the policy for. 275 * 276 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and 277 * if the policy returned by it is not NULL, acquire its rwsem for writing. 278 * Return the policy if it is active or release it and return NULL otherwise. 279 * 280 * The policy returned by this function has to be released with the help of 281 * cpufreq_cpu_release() in order to release its rwsem and balance its usage 282 * counter properly. 283 */ 284 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu) 285 { 286 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 287 288 if (!policy) 289 return NULL; 290 291 down_write(&policy->rwsem); 292 293 if (policy_is_inactive(policy)) { 294 cpufreq_cpu_release(policy); 295 return NULL; 296 } 297 298 return policy; 299 } 300 301 /********************************************************************* 302 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 303 *********************************************************************/ 304 305 /** 306 * adjust_jiffies - Adjust the system "loops_per_jiffy". 307 * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE. 308 * @ci: Frequency change information. 309 * 310 * This function alters the system "loops_per_jiffy" for the clock 311 * speed change. Note that loops_per_jiffy cannot be updated on SMP 312 * systems as each CPU might be scaled differently. So, use the arch 313 * per-CPU loops_per_jiffy value wherever possible. 314 */ 315 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 316 { 317 #ifndef CONFIG_SMP 318 static unsigned long l_p_j_ref; 319 static unsigned int l_p_j_ref_freq; 320 321 if (ci->flags & CPUFREQ_CONST_LOOPS) 322 return; 323 324 if (!l_p_j_ref_freq) { 325 l_p_j_ref = loops_per_jiffy; 326 l_p_j_ref_freq = ci->old; 327 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n", 328 l_p_j_ref, l_p_j_ref_freq); 329 } 330 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) { 331 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, 332 ci->new); 333 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n", 334 loops_per_jiffy, ci->new); 335 } 336 #endif 337 } 338 339 /** 340 * cpufreq_notify_transition - Notify frequency transition and adjust jiffies. 341 * @policy: cpufreq policy to enable fast frequency switching for. 342 * @freqs: contain details of the frequency update. 343 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE. 344 * 345 * This function calls the transition notifiers and adjust_jiffies(). 346 * 347 * It is called twice on all CPU frequency changes that have external effects. 348 */ 349 static void cpufreq_notify_transition(struct cpufreq_policy *policy, 350 struct cpufreq_freqs *freqs, 351 unsigned int state) 352 { 353 int cpu; 354 355 BUG_ON(irqs_disabled()); 356 357 if (cpufreq_disabled()) 358 return; 359 360 freqs->policy = policy; 361 freqs->flags = cpufreq_driver->flags; 362 pr_debug("notification %u of frequency transition to %u kHz\n", 363 state, freqs->new); 364 365 switch (state) { 366 case CPUFREQ_PRECHANGE: 367 /* 368 * Detect if the driver reported a value as "old frequency" 369 * which is not equal to what the cpufreq core thinks is 370 * "old frequency". 371 */ 372 if (policy->cur && policy->cur != freqs->old) { 373 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n", 374 freqs->old, policy->cur); 375 freqs->old = policy->cur; 376 } 377 378 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 379 CPUFREQ_PRECHANGE, freqs); 380 381 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 382 break; 383 384 case CPUFREQ_POSTCHANGE: 385 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 386 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new, 387 cpumask_pr_args(policy->cpus)); 388 389 for_each_cpu(cpu, policy->cpus) 390 trace_cpu_frequency(freqs->new, cpu); 391 392 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 393 CPUFREQ_POSTCHANGE, freqs); 394 395 cpufreq_stats_record_transition(policy, freqs->new); 396 policy->cur = freqs->new; 397 } 398 } 399 400 /* Do post notifications when there are chances that transition has failed */ 401 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy, 402 struct cpufreq_freqs *freqs, int transition_failed) 403 { 404 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 405 if (!transition_failed) 406 return; 407 408 swap(freqs->old, freqs->new); 409 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 410 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 411 } 412 413 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy, 414 struct cpufreq_freqs *freqs) 415 { 416 417 /* 418 * Catch double invocations of _begin() which lead to self-deadlock. 419 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core 420 * doesn't invoke _begin() on their behalf, and hence the chances of 421 * double invocations are very low. Moreover, there are scenarios 422 * where these checks can emit false-positive warnings in these 423 * drivers; so we avoid that by skipping them altogether. 424 */ 425 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION) 426 && current == policy->transition_task); 427 428 wait: 429 wait_event(policy->transition_wait, !policy->transition_ongoing); 430 431 spin_lock(&policy->transition_lock); 432 433 if (unlikely(policy->transition_ongoing)) { 434 spin_unlock(&policy->transition_lock); 435 goto wait; 436 } 437 438 policy->transition_ongoing = true; 439 policy->transition_task = current; 440 441 spin_unlock(&policy->transition_lock); 442 443 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 444 } 445 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin); 446 447 void cpufreq_freq_transition_end(struct cpufreq_policy *policy, 448 struct cpufreq_freqs *freqs, int transition_failed) 449 { 450 if (WARN_ON(!policy->transition_ongoing)) 451 return; 452 453 cpufreq_notify_post_transition(policy, freqs, transition_failed); 454 455 arch_set_freq_scale(policy->related_cpus, 456 policy->cur, 457 arch_scale_freq_ref(policy->cpu)); 458 459 spin_lock(&policy->transition_lock); 460 policy->transition_ongoing = false; 461 policy->transition_task = NULL; 462 spin_unlock(&policy->transition_lock); 463 464 wake_up(&policy->transition_wait); 465 } 466 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end); 467 468 /* 469 * Fast frequency switching status count. Positive means "enabled", negative 470 * means "disabled" and 0 means "not decided yet". 471 */ 472 static int cpufreq_fast_switch_count; 473 static DEFINE_MUTEX(cpufreq_fast_switch_lock); 474 475 static void cpufreq_list_transition_notifiers(void) 476 { 477 struct notifier_block *nb; 478 479 pr_info("Registered transition notifiers:\n"); 480 481 mutex_lock(&cpufreq_transition_notifier_list.mutex); 482 483 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next) 484 pr_info("%pS\n", nb->notifier_call); 485 486 mutex_unlock(&cpufreq_transition_notifier_list.mutex); 487 } 488 489 /** 490 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy. 491 * @policy: cpufreq policy to enable fast frequency switching for. 492 * 493 * Try to enable fast frequency switching for @policy. 494 * 495 * The attempt will fail if there is at least one transition notifier registered 496 * at this point, as fast frequency switching is quite fundamentally at odds 497 * with transition notifiers. Thus if successful, it will make registration of 498 * transition notifiers fail going forward. 499 */ 500 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy) 501 { 502 lockdep_assert_held(&policy->rwsem); 503 504 if (!policy->fast_switch_possible) 505 return; 506 507 mutex_lock(&cpufreq_fast_switch_lock); 508 if (cpufreq_fast_switch_count >= 0) { 509 cpufreq_fast_switch_count++; 510 policy->fast_switch_enabled = true; 511 } else { 512 pr_warn("CPU%u: Fast frequency switching not enabled\n", 513 policy->cpu); 514 cpufreq_list_transition_notifiers(); 515 } 516 mutex_unlock(&cpufreq_fast_switch_lock); 517 } 518 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch); 519 520 /** 521 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy. 522 * @policy: cpufreq policy to disable fast frequency switching for. 523 */ 524 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy) 525 { 526 mutex_lock(&cpufreq_fast_switch_lock); 527 if (policy->fast_switch_enabled) { 528 policy->fast_switch_enabled = false; 529 if (!WARN_ON(cpufreq_fast_switch_count <= 0)) 530 cpufreq_fast_switch_count--; 531 } 532 mutex_unlock(&cpufreq_fast_switch_lock); 533 } 534 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch); 535 536 static unsigned int __resolve_freq(struct cpufreq_policy *policy, 537 unsigned int target_freq, unsigned int relation) 538 { 539 unsigned int idx; 540 541 target_freq = clamp_val(target_freq, policy->min, policy->max); 542 543 if (!policy->freq_table) 544 return target_freq; 545 546 idx = cpufreq_frequency_table_target(policy, target_freq, relation); 547 policy->cached_resolved_idx = idx; 548 policy->cached_target_freq = target_freq; 549 return policy->freq_table[idx].frequency; 550 } 551 552 /** 553 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported 554 * one. 555 * @policy: associated policy to interrogate 556 * @target_freq: target frequency to resolve. 557 * 558 * The target to driver frequency mapping is cached in the policy. 559 * 560 * Return: Lowest driver-supported frequency greater than or equal to the 561 * given target_freq, subject to policy (min/max) and driver limitations. 562 */ 563 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy, 564 unsigned int target_freq) 565 { 566 return __resolve_freq(policy, target_freq, CPUFREQ_RELATION_LE); 567 } 568 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq); 569 570 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy) 571 { 572 unsigned int latency; 573 574 if (policy->transition_delay_us) 575 return policy->transition_delay_us; 576 577 latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC; 578 if (latency) 579 /* Give a 50% breathing room between updates */ 580 return latency + (latency >> 1); 581 582 return USEC_PER_MSEC; 583 } 584 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us); 585 586 /********************************************************************* 587 * SYSFS INTERFACE * 588 *********************************************************************/ 589 static ssize_t show_boost(struct kobject *kobj, 590 struct kobj_attribute *attr, char *buf) 591 { 592 return sysfs_emit(buf, "%d\n", cpufreq_driver->boost_enabled); 593 } 594 595 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr, 596 const char *buf, size_t count) 597 { 598 bool enable; 599 600 if (kstrtobool(buf, &enable)) 601 return -EINVAL; 602 603 if (cpufreq_boost_trigger_state(enable)) { 604 pr_err("%s: Cannot %s BOOST!\n", 605 __func__, enable ? "enable" : "disable"); 606 return -EINVAL; 607 } 608 609 pr_debug("%s: cpufreq BOOST %s\n", 610 __func__, enable ? "enabled" : "disabled"); 611 612 return count; 613 } 614 define_one_global_rw(boost); 615 616 static ssize_t show_local_boost(struct cpufreq_policy *policy, char *buf) 617 { 618 return sysfs_emit(buf, "%d\n", policy->boost_enabled); 619 } 620 621 static ssize_t store_local_boost(struct cpufreq_policy *policy, 622 const char *buf, size_t count) 623 { 624 int ret; 625 bool enable; 626 627 if (kstrtobool(buf, &enable)) 628 return -EINVAL; 629 630 if (!cpufreq_driver->boost_enabled) 631 return -EINVAL; 632 633 if (policy->boost_enabled == enable) 634 return count; 635 636 policy->boost_enabled = enable; 637 638 cpus_read_lock(); 639 ret = cpufreq_driver->set_boost(policy, enable); 640 cpus_read_unlock(); 641 642 if (ret) { 643 policy->boost_enabled = !policy->boost_enabled; 644 return ret; 645 } 646 647 return count; 648 } 649 650 static struct freq_attr local_boost = __ATTR(boost, 0644, show_local_boost, store_local_boost); 651 652 static struct cpufreq_governor *find_governor(const char *str_governor) 653 { 654 struct cpufreq_governor *t; 655 656 for_each_governor(t) 657 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN)) 658 return t; 659 660 return NULL; 661 } 662 663 static struct cpufreq_governor *get_governor(const char *str_governor) 664 { 665 struct cpufreq_governor *t; 666 667 mutex_lock(&cpufreq_governor_mutex); 668 t = find_governor(str_governor); 669 if (!t) 670 goto unlock; 671 672 if (!try_module_get(t->owner)) 673 t = NULL; 674 675 unlock: 676 mutex_unlock(&cpufreq_governor_mutex); 677 678 return t; 679 } 680 681 static unsigned int cpufreq_parse_policy(char *str_governor) 682 { 683 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) 684 return CPUFREQ_POLICY_PERFORMANCE; 685 686 if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) 687 return CPUFREQ_POLICY_POWERSAVE; 688 689 return CPUFREQ_POLICY_UNKNOWN; 690 } 691 692 /** 693 * cpufreq_parse_governor - parse a governor string only for has_target() 694 * @str_governor: Governor name. 695 */ 696 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor) 697 { 698 struct cpufreq_governor *t; 699 700 t = get_governor(str_governor); 701 if (t) 702 return t; 703 704 if (request_module("cpufreq_%s", str_governor)) 705 return NULL; 706 707 return get_governor(str_governor); 708 } 709 710 /* 711 * cpufreq_per_cpu_attr_read() / show_##file_name() - 712 * print out cpufreq information 713 * 714 * Write out information from cpufreq_driver->policy[cpu]; object must be 715 * "unsigned int". 716 */ 717 718 #define show_one(file_name, object) \ 719 static ssize_t show_##file_name \ 720 (struct cpufreq_policy *policy, char *buf) \ 721 { \ 722 return sysfs_emit(buf, "%u\n", policy->object); \ 723 } 724 725 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 726 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 727 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency); 728 show_one(scaling_min_freq, min); 729 show_one(scaling_max_freq, max); 730 731 __weak unsigned int arch_freq_get_on_cpu(int cpu) 732 { 733 return 0; 734 } 735 736 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf) 737 { 738 ssize_t ret; 739 unsigned int freq; 740 741 freq = arch_freq_get_on_cpu(policy->cpu); 742 if (freq) 743 ret = sysfs_emit(buf, "%u\n", freq); 744 else if (cpufreq_driver->setpolicy && cpufreq_driver->get) 745 ret = sysfs_emit(buf, "%u\n", cpufreq_driver->get(policy->cpu)); 746 else 747 ret = sysfs_emit(buf, "%u\n", policy->cur); 748 return ret; 749 } 750 751 /* 752 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 753 */ 754 #define store_one(file_name, object) \ 755 static ssize_t store_##file_name \ 756 (struct cpufreq_policy *policy, const char *buf, size_t count) \ 757 { \ 758 unsigned long val; \ 759 int ret; \ 760 \ 761 ret = kstrtoul(buf, 0, &val); \ 762 if (ret) \ 763 return ret; \ 764 \ 765 ret = freq_qos_update_request(policy->object##_freq_req, val);\ 766 return ret >= 0 ? count : ret; \ 767 } 768 769 store_one(scaling_min_freq, min); 770 store_one(scaling_max_freq, max); 771 772 /* 773 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 774 */ 775 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy, 776 char *buf) 777 { 778 unsigned int cur_freq = __cpufreq_get(policy); 779 780 if (cur_freq) 781 return sysfs_emit(buf, "%u\n", cur_freq); 782 783 return sysfs_emit(buf, "<unknown>\n"); 784 } 785 786 /* 787 * show_scaling_governor - show the current policy for the specified CPU 788 */ 789 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf) 790 { 791 if (policy->policy == CPUFREQ_POLICY_POWERSAVE) 792 return sysfs_emit(buf, "powersave\n"); 793 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 794 return sysfs_emit(buf, "performance\n"); 795 else if (policy->governor) 796 return sysfs_emit(buf, "%s\n", policy->governor->name); 797 return -EINVAL; 798 } 799 800 /* 801 * store_scaling_governor - store policy for the specified CPU 802 */ 803 static ssize_t store_scaling_governor(struct cpufreq_policy *policy, 804 const char *buf, size_t count) 805 { 806 char str_governor[16]; 807 int ret; 808 809 ret = sscanf(buf, "%15s", str_governor); 810 if (ret != 1) 811 return -EINVAL; 812 813 if (cpufreq_driver->setpolicy) { 814 unsigned int new_pol; 815 816 new_pol = cpufreq_parse_policy(str_governor); 817 if (!new_pol) 818 return -EINVAL; 819 820 ret = cpufreq_set_policy(policy, NULL, new_pol); 821 } else { 822 struct cpufreq_governor *new_gov; 823 824 new_gov = cpufreq_parse_governor(str_governor); 825 if (!new_gov) 826 return -EINVAL; 827 828 ret = cpufreq_set_policy(policy, new_gov, 829 CPUFREQ_POLICY_UNKNOWN); 830 831 module_put(new_gov->owner); 832 } 833 834 return ret ? ret : count; 835 } 836 837 /* 838 * show_scaling_driver - show the cpufreq driver currently loaded 839 */ 840 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf) 841 { 842 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name); 843 } 844 845 /* 846 * show_scaling_available_governors - show the available CPUfreq governors 847 */ 848 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy, 849 char *buf) 850 { 851 ssize_t i = 0; 852 struct cpufreq_governor *t; 853 854 if (!has_target()) { 855 i += sysfs_emit(buf, "performance powersave"); 856 goto out; 857 } 858 859 mutex_lock(&cpufreq_governor_mutex); 860 for_each_governor(t) { 861 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) 862 - (CPUFREQ_NAME_LEN + 2))) 863 break; 864 i += sysfs_emit_at(buf, i, "%s ", t->name); 865 } 866 mutex_unlock(&cpufreq_governor_mutex); 867 out: 868 i += sysfs_emit_at(buf, i, "\n"); 869 return i; 870 } 871 872 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf) 873 { 874 ssize_t i = 0; 875 unsigned int cpu; 876 877 for_each_cpu(cpu, mask) { 878 i += sysfs_emit_at(buf, i, "%u ", cpu); 879 if (i >= (PAGE_SIZE - 5)) 880 break; 881 } 882 883 /* Remove the extra space at the end */ 884 i--; 885 886 i += sysfs_emit_at(buf, i, "\n"); 887 return i; 888 } 889 EXPORT_SYMBOL_GPL(cpufreq_show_cpus); 890 891 /* 892 * show_related_cpus - show the CPUs affected by each transition even if 893 * hw coordination is in use 894 */ 895 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf) 896 { 897 return cpufreq_show_cpus(policy->related_cpus, buf); 898 } 899 900 /* 901 * show_affected_cpus - show the CPUs affected by each transition 902 */ 903 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf) 904 { 905 return cpufreq_show_cpus(policy->cpus, buf); 906 } 907 908 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy, 909 const char *buf, size_t count) 910 { 911 unsigned int freq = 0; 912 unsigned int ret; 913 914 if (!policy->governor || !policy->governor->store_setspeed) 915 return -EINVAL; 916 917 ret = sscanf(buf, "%u", &freq); 918 if (ret != 1) 919 return -EINVAL; 920 921 policy->governor->store_setspeed(policy, freq); 922 923 return count; 924 } 925 926 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf) 927 { 928 if (!policy->governor || !policy->governor->show_setspeed) 929 return sysfs_emit(buf, "<unsupported>\n"); 930 931 return policy->governor->show_setspeed(policy, buf); 932 } 933 934 /* 935 * show_bios_limit - show the current cpufreq HW/BIOS limitation 936 */ 937 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf) 938 { 939 unsigned int limit; 940 int ret; 941 ret = cpufreq_driver->bios_limit(policy->cpu, &limit); 942 if (!ret) 943 return sysfs_emit(buf, "%u\n", limit); 944 return sysfs_emit(buf, "%u\n", policy->cpuinfo.max_freq); 945 } 946 947 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400); 948 cpufreq_freq_attr_ro(cpuinfo_min_freq); 949 cpufreq_freq_attr_ro(cpuinfo_max_freq); 950 cpufreq_freq_attr_ro(cpuinfo_transition_latency); 951 cpufreq_freq_attr_ro(scaling_available_governors); 952 cpufreq_freq_attr_ro(scaling_driver); 953 cpufreq_freq_attr_ro(scaling_cur_freq); 954 cpufreq_freq_attr_ro(bios_limit); 955 cpufreq_freq_attr_ro(related_cpus); 956 cpufreq_freq_attr_ro(affected_cpus); 957 cpufreq_freq_attr_rw(scaling_min_freq); 958 cpufreq_freq_attr_rw(scaling_max_freq); 959 cpufreq_freq_attr_rw(scaling_governor); 960 cpufreq_freq_attr_rw(scaling_setspeed); 961 962 static struct attribute *cpufreq_attrs[] = { 963 &cpuinfo_min_freq.attr, 964 &cpuinfo_max_freq.attr, 965 &cpuinfo_transition_latency.attr, 966 &scaling_min_freq.attr, 967 &scaling_max_freq.attr, 968 &affected_cpus.attr, 969 &related_cpus.attr, 970 &scaling_governor.attr, 971 &scaling_driver.attr, 972 &scaling_available_governors.attr, 973 &scaling_setspeed.attr, 974 NULL 975 }; 976 ATTRIBUTE_GROUPS(cpufreq); 977 978 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj) 979 #define to_attr(a) container_of(a, struct freq_attr, attr) 980 981 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) 982 { 983 struct cpufreq_policy *policy = to_policy(kobj); 984 struct freq_attr *fattr = to_attr(attr); 985 ssize_t ret = -EBUSY; 986 987 if (!fattr->show) 988 return -EIO; 989 990 down_read(&policy->rwsem); 991 if (likely(!policy_is_inactive(policy))) 992 ret = fattr->show(policy, buf); 993 up_read(&policy->rwsem); 994 995 return ret; 996 } 997 998 static ssize_t store(struct kobject *kobj, struct attribute *attr, 999 const char *buf, size_t count) 1000 { 1001 struct cpufreq_policy *policy = to_policy(kobj); 1002 struct freq_attr *fattr = to_attr(attr); 1003 ssize_t ret = -EBUSY; 1004 1005 if (!fattr->store) 1006 return -EIO; 1007 1008 down_write(&policy->rwsem); 1009 if (likely(!policy_is_inactive(policy))) 1010 ret = fattr->store(policy, buf, count); 1011 up_write(&policy->rwsem); 1012 1013 return ret; 1014 } 1015 1016 static void cpufreq_sysfs_release(struct kobject *kobj) 1017 { 1018 struct cpufreq_policy *policy = to_policy(kobj); 1019 pr_debug("last reference is dropped\n"); 1020 complete(&policy->kobj_unregister); 1021 } 1022 1023 static const struct sysfs_ops sysfs_ops = { 1024 .show = show, 1025 .store = store, 1026 }; 1027 1028 static const struct kobj_type ktype_cpufreq = { 1029 .sysfs_ops = &sysfs_ops, 1030 .default_groups = cpufreq_groups, 1031 .release = cpufreq_sysfs_release, 1032 }; 1033 1034 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu, 1035 struct device *dev) 1036 { 1037 if (unlikely(!dev)) 1038 return; 1039 1040 if (cpumask_test_and_set_cpu(cpu, policy->real_cpus)) 1041 return; 1042 1043 dev_dbg(dev, "%s: Adding symlink\n", __func__); 1044 if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq")) 1045 dev_err(dev, "cpufreq symlink creation failed\n"); 1046 } 1047 1048 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu, 1049 struct device *dev) 1050 { 1051 dev_dbg(dev, "%s: Removing symlink\n", __func__); 1052 sysfs_remove_link(&dev->kobj, "cpufreq"); 1053 cpumask_clear_cpu(cpu, policy->real_cpus); 1054 } 1055 1056 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy) 1057 { 1058 struct freq_attr **drv_attr; 1059 int ret = 0; 1060 1061 /* set up files for this cpu device */ 1062 drv_attr = cpufreq_driver->attr; 1063 while (drv_attr && *drv_attr) { 1064 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 1065 if (ret) 1066 return ret; 1067 drv_attr++; 1068 } 1069 if (cpufreq_driver->get) { 1070 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 1071 if (ret) 1072 return ret; 1073 } 1074 1075 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 1076 if (ret) 1077 return ret; 1078 1079 if (cpufreq_driver->bios_limit) { 1080 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr); 1081 if (ret) 1082 return ret; 1083 } 1084 1085 if (cpufreq_boost_supported()) { 1086 ret = sysfs_create_file(&policy->kobj, &local_boost.attr); 1087 if (ret) 1088 return ret; 1089 } 1090 1091 return 0; 1092 } 1093 1094 static int cpufreq_init_policy(struct cpufreq_policy *policy) 1095 { 1096 struct cpufreq_governor *gov = NULL; 1097 unsigned int pol = CPUFREQ_POLICY_UNKNOWN; 1098 int ret; 1099 1100 if (has_target()) { 1101 /* Update policy governor to the one used before hotplug. */ 1102 gov = get_governor(policy->last_governor); 1103 if (gov) { 1104 pr_debug("Restoring governor %s for cpu %d\n", 1105 gov->name, policy->cpu); 1106 } else { 1107 gov = get_governor(default_governor); 1108 } 1109 1110 if (!gov) { 1111 gov = cpufreq_default_governor(); 1112 __module_get(gov->owner); 1113 } 1114 1115 } else { 1116 1117 /* Use the default policy if there is no last_policy. */ 1118 if (policy->last_policy) { 1119 pol = policy->last_policy; 1120 } else { 1121 pol = cpufreq_parse_policy(default_governor); 1122 /* 1123 * In case the default governor is neither "performance" 1124 * nor "powersave", fall back to the initial policy 1125 * value set by the driver. 1126 */ 1127 if (pol == CPUFREQ_POLICY_UNKNOWN) 1128 pol = policy->policy; 1129 } 1130 if (pol != CPUFREQ_POLICY_PERFORMANCE && 1131 pol != CPUFREQ_POLICY_POWERSAVE) 1132 return -ENODATA; 1133 } 1134 1135 ret = cpufreq_set_policy(policy, gov, pol); 1136 if (gov) 1137 module_put(gov->owner); 1138 1139 return ret; 1140 } 1141 1142 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu) 1143 { 1144 int ret = 0; 1145 1146 /* Has this CPU been taken care of already? */ 1147 if (cpumask_test_cpu(cpu, policy->cpus)) 1148 return 0; 1149 1150 down_write(&policy->rwsem); 1151 if (has_target()) 1152 cpufreq_stop_governor(policy); 1153 1154 cpumask_set_cpu(cpu, policy->cpus); 1155 1156 if (has_target()) { 1157 ret = cpufreq_start_governor(policy); 1158 if (ret) 1159 pr_err("%s: Failed to start governor\n", __func__); 1160 } 1161 up_write(&policy->rwsem); 1162 return ret; 1163 } 1164 1165 void refresh_frequency_limits(struct cpufreq_policy *policy) 1166 { 1167 if (!policy_is_inactive(policy)) { 1168 pr_debug("updating policy for CPU %u\n", policy->cpu); 1169 1170 cpufreq_set_policy(policy, policy->governor, policy->policy); 1171 } 1172 } 1173 EXPORT_SYMBOL(refresh_frequency_limits); 1174 1175 static void handle_update(struct work_struct *work) 1176 { 1177 struct cpufreq_policy *policy = 1178 container_of(work, struct cpufreq_policy, update); 1179 1180 pr_debug("handle_update for cpu %u called\n", policy->cpu); 1181 down_write(&policy->rwsem); 1182 refresh_frequency_limits(policy); 1183 up_write(&policy->rwsem); 1184 } 1185 1186 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq, 1187 void *data) 1188 { 1189 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min); 1190 1191 schedule_work(&policy->update); 1192 return 0; 1193 } 1194 1195 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq, 1196 void *data) 1197 { 1198 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max); 1199 1200 schedule_work(&policy->update); 1201 return 0; 1202 } 1203 1204 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy) 1205 { 1206 struct kobject *kobj; 1207 struct completion *cmp; 1208 1209 down_write(&policy->rwsem); 1210 cpufreq_stats_free_table(policy); 1211 kobj = &policy->kobj; 1212 cmp = &policy->kobj_unregister; 1213 up_write(&policy->rwsem); 1214 kobject_put(kobj); 1215 1216 /* 1217 * We need to make sure that the underlying kobj is 1218 * actually not referenced anymore by anybody before we 1219 * proceed with unloading. 1220 */ 1221 pr_debug("waiting for dropping of refcount\n"); 1222 wait_for_completion(cmp); 1223 pr_debug("wait complete\n"); 1224 } 1225 1226 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu) 1227 { 1228 struct cpufreq_policy *policy; 1229 struct device *dev = get_cpu_device(cpu); 1230 int ret; 1231 1232 if (!dev) 1233 return NULL; 1234 1235 policy = kzalloc(sizeof(*policy), GFP_KERNEL); 1236 if (!policy) 1237 return NULL; 1238 1239 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) 1240 goto err_free_policy; 1241 1242 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) 1243 goto err_free_cpumask; 1244 1245 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL)) 1246 goto err_free_rcpumask; 1247 1248 init_completion(&policy->kobj_unregister); 1249 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, 1250 cpufreq_global_kobject, "policy%u", cpu); 1251 if (ret) { 1252 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret); 1253 /* 1254 * The entire policy object will be freed below, but the extra 1255 * memory allocated for the kobject name needs to be freed by 1256 * releasing the kobject. 1257 */ 1258 kobject_put(&policy->kobj); 1259 goto err_free_real_cpus; 1260 } 1261 1262 freq_constraints_init(&policy->constraints); 1263 1264 policy->nb_min.notifier_call = cpufreq_notifier_min; 1265 policy->nb_max.notifier_call = cpufreq_notifier_max; 1266 1267 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN, 1268 &policy->nb_min); 1269 if (ret) { 1270 dev_err(dev, "Failed to register MIN QoS notifier: %d (CPU%u)\n", 1271 ret, cpu); 1272 goto err_kobj_remove; 1273 } 1274 1275 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX, 1276 &policy->nb_max); 1277 if (ret) { 1278 dev_err(dev, "Failed to register MAX QoS notifier: %d (CPU%u)\n", 1279 ret, cpu); 1280 goto err_min_qos_notifier; 1281 } 1282 1283 INIT_LIST_HEAD(&policy->policy_list); 1284 init_rwsem(&policy->rwsem); 1285 spin_lock_init(&policy->transition_lock); 1286 init_waitqueue_head(&policy->transition_wait); 1287 INIT_WORK(&policy->update, handle_update); 1288 1289 policy->cpu = cpu; 1290 return policy; 1291 1292 err_min_qos_notifier: 1293 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN, 1294 &policy->nb_min); 1295 err_kobj_remove: 1296 cpufreq_policy_put_kobj(policy); 1297 err_free_real_cpus: 1298 free_cpumask_var(policy->real_cpus); 1299 err_free_rcpumask: 1300 free_cpumask_var(policy->related_cpus); 1301 err_free_cpumask: 1302 free_cpumask_var(policy->cpus); 1303 err_free_policy: 1304 kfree(policy); 1305 1306 return NULL; 1307 } 1308 1309 static void cpufreq_policy_free(struct cpufreq_policy *policy) 1310 { 1311 unsigned long flags; 1312 int cpu; 1313 1314 /* 1315 * The callers must ensure the policy is inactive by now, to avoid any 1316 * races with show()/store() callbacks. 1317 */ 1318 if (unlikely(!policy_is_inactive(policy))) 1319 pr_warn("%s: Freeing active policy\n", __func__); 1320 1321 /* Remove policy from list */ 1322 write_lock_irqsave(&cpufreq_driver_lock, flags); 1323 list_del(&policy->policy_list); 1324 1325 for_each_cpu(cpu, policy->related_cpus) 1326 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1327 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1328 1329 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX, 1330 &policy->nb_max); 1331 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN, 1332 &policy->nb_min); 1333 1334 /* Cancel any pending policy->update work before freeing the policy. */ 1335 cancel_work_sync(&policy->update); 1336 1337 if (policy->max_freq_req) { 1338 /* 1339 * Remove max_freq_req after sending CPUFREQ_REMOVE_POLICY 1340 * notification, since CPUFREQ_CREATE_POLICY notification was 1341 * sent after adding max_freq_req earlier. 1342 */ 1343 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1344 CPUFREQ_REMOVE_POLICY, policy); 1345 freq_qos_remove_request(policy->max_freq_req); 1346 } 1347 1348 freq_qos_remove_request(policy->min_freq_req); 1349 kfree(policy->min_freq_req); 1350 1351 cpufreq_policy_put_kobj(policy); 1352 free_cpumask_var(policy->real_cpus); 1353 free_cpumask_var(policy->related_cpus); 1354 free_cpumask_var(policy->cpus); 1355 kfree(policy); 1356 } 1357 1358 static int cpufreq_online(unsigned int cpu) 1359 { 1360 struct cpufreq_policy *policy; 1361 bool new_policy; 1362 unsigned long flags; 1363 unsigned int j; 1364 int ret; 1365 1366 pr_debug("%s: bringing CPU%u online\n", __func__, cpu); 1367 1368 /* Check if this CPU already has a policy to manage it */ 1369 policy = per_cpu(cpufreq_cpu_data, cpu); 1370 if (policy) { 1371 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus)); 1372 if (!policy_is_inactive(policy)) 1373 return cpufreq_add_policy_cpu(policy, cpu); 1374 1375 /* This is the only online CPU for the policy. Start over. */ 1376 new_policy = false; 1377 down_write(&policy->rwsem); 1378 policy->cpu = cpu; 1379 policy->governor = NULL; 1380 } else { 1381 new_policy = true; 1382 policy = cpufreq_policy_alloc(cpu); 1383 if (!policy) 1384 return -ENOMEM; 1385 down_write(&policy->rwsem); 1386 } 1387 1388 if (!new_policy && cpufreq_driver->online) { 1389 /* Recover policy->cpus using related_cpus */ 1390 cpumask_copy(policy->cpus, policy->related_cpus); 1391 1392 ret = cpufreq_driver->online(policy); 1393 if (ret) { 1394 pr_debug("%s: %d: initialization failed\n", __func__, 1395 __LINE__); 1396 goto out_exit_policy; 1397 } 1398 } else { 1399 cpumask_copy(policy->cpus, cpumask_of(cpu)); 1400 1401 /* 1402 * Call driver. From then on the cpufreq must be able 1403 * to accept all calls to ->verify and ->setpolicy for this CPU. 1404 */ 1405 ret = cpufreq_driver->init(policy); 1406 if (ret) { 1407 pr_debug("%s: %d: initialization failed\n", __func__, 1408 __LINE__); 1409 goto out_free_policy; 1410 } 1411 1412 /* Let the per-policy boost flag mirror the cpufreq_driver boost during init */ 1413 if (cpufreq_boost_enabled() && policy_has_boost_freq(policy)) 1414 policy->boost_enabled = true; 1415 1416 /* 1417 * The initialization has succeeded and the policy is online. 1418 * If there is a problem with its frequency table, take it 1419 * offline and drop it. 1420 */ 1421 ret = cpufreq_table_validate_and_sort(policy); 1422 if (ret) 1423 goto out_offline_policy; 1424 1425 /* related_cpus should at least include policy->cpus. */ 1426 cpumask_copy(policy->related_cpus, policy->cpus); 1427 } 1428 1429 /* 1430 * affected cpus must always be the one, which are online. We aren't 1431 * managing offline cpus here. 1432 */ 1433 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask); 1434 1435 if (new_policy) { 1436 for_each_cpu(j, policy->related_cpus) { 1437 per_cpu(cpufreq_cpu_data, j) = policy; 1438 add_cpu_dev_symlink(policy, j, get_cpu_device(j)); 1439 } 1440 1441 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req), 1442 GFP_KERNEL); 1443 if (!policy->min_freq_req) { 1444 ret = -ENOMEM; 1445 goto out_destroy_policy; 1446 } 1447 1448 ret = freq_qos_add_request(&policy->constraints, 1449 policy->min_freq_req, FREQ_QOS_MIN, 1450 FREQ_QOS_MIN_DEFAULT_VALUE); 1451 if (ret < 0) { 1452 /* 1453 * So we don't call freq_qos_remove_request() for an 1454 * uninitialized request. 1455 */ 1456 kfree(policy->min_freq_req); 1457 policy->min_freq_req = NULL; 1458 goto out_destroy_policy; 1459 } 1460 1461 /* 1462 * This must be initialized right here to avoid calling 1463 * freq_qos_remove_request() on uninitialized request in case 1464 * of errors. 1465 */ 1466 policy->max_freq_req = policy->min_freq_req + 1; 1467 1468 ret = freq_qos_add_request(&policy->constraints, 1469 policy->max_freq_req, FREQ_QOS_MAX, 1470 FREQ_QOS_MAX_DEFAULT_VALUE); 1471 if (ret < 0) { 1472 policy->max_freq_req = NULL; 1473 goto out_destroy_policy; 1474 } 1475 1476 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1477 CPUFREQ_CREATE_POLICY, policy); 1478 } 1479 1480 if (cpufreq_driver->get && has_target()) { 1481 policy->cur = cpufreq_driver->get(policy->cpu); 1482 if (!policy->cur) { 1483 ret = -EIO; 1484 pr_err("%s: ->get() failed\n", __func__); 1485 goto out_destroy_policy; 1486 } 1487 } 1488 1489 /* 1490 * Sometimes boot loaders set CPU frequency to a value outside of 1491 * frequency table present with cpufreq core. In such cases CPU might be 1492 * unstable if it has to run on that frequency for long duration of time 1493 * and so its better to set it to a frequency which is specified in 1494 * freq-table. This also makes cpufreq stats inconsistent as 1495 * cpufreq-stats would fail to register because current frequency of CPU 1496 * isn't found in freq-table. 1497 * 1498 * Because we don't want this change to effect boot process badly, we go 1499 * for the next freq which is >= policy->cur ('cur' must be set by now, 1500 * otherwise we will end up setting freq to lowest of the table as 'cur' 1501 * is initialized to zero). 1502 * 1503 * We are passing target-freq as "policy->cur - 1" otherwise 1504 * __cpufreq_driver_target() would simply fail, as policy->cur will be 1505 * equal to target-freq. 1506 */ 1507 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK) 1508 && has_target()) { 1509 unsigned int old_freq = policy->cur; 1510 1511 /* Are we running at unknown frequency ? */ 1512 ret = cpufreq_frequency_table_get_index(policy, old_freq); 1513 if (ret == -EINVAL) { 1514 ret = __cpufreq_driver_target(policy, old_freq - 1, 1515 CPUFREQ_RELATION_L); 1516 1517 /* 1518 * Reaching here after boot in a few seconds may not 1519 * mean that system will remain stable at "unknown" 1520 * frequency for longer duration. Hence, a BUG_ON(). 1521 */ 1522 BUG_ON(ret); 1523 pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n", 1524 __func__, policy->cpu, old_freq, policy->cur); 1525 } 1526 } 1527 1528 if (new_policy) { 1529 ret = cpufreq_add_dev_interface(policy); 1530 if (ret) 1531 goto out_destroy_policy; 1532 1533 cpufreq_stats_create_table(policy); 1534 1535 write_lock_irqsave(&cpufreq_driver_lock, flags); 1536 list_add(&policy->policy_list, &cpufreq_policy_list); 1537 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1538 1539 /* 1540 * Register with the energy model before 1541 * sugov_eas_rebuild_sd() is called, which will result 1542 * in rebuilding of the sched domains, which should only be done 1543 * once the energy model is properly initialized for the policy 1544 * first. 1545 * 1546 * Also, this should be called before the policy is registered 1547 * with cooling framework. 1548 */ 1549 if (cpufreq_driver->register_em) 1550 cpufreq_driver->register_em(policy); 1551 } 1552 1553 ret = cpufreq_init_policy(policy); 1554 if (ret) { 1555 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n", 1556 __func__, cpu, ret); 1557 goto out_destroy_policy; 1558 } 1559 1560 up_write(&policy->rwsem); 1561 1562 kobject_uevent(&policy->kobj, KOBJ_ADD); 1563 1564 /* Callback for handling stuff after policy is ready */ 1565 if (cpufreq_driver->ready) 1566 cpufreq_driver->ready(policy); 1567 1568 /* Register cpufreq cooling only for a new policy */ 1569 if (new_policy && cpufreq_thermal_control_enabled(cpufreq_driver)) 1570 policy->cdev = of_cpufreq_cooling_register(policy); 1571 1572 pr_debug("initialization complete\n"); 1573 1574 return 0; 1575 1576 out_destroy_policy: 1577 for_each_cpu(j, policy->real_cpus) 1578 remove_cpu_dev_symlink(policy, j, get_cpu_device(j)); 1579 1580 out_offline_policy: 1581 if (cpufreq_driver->offline) 1582 cpufreq_driver->offline(policy); 1583 1584 out_exit_policy: 1585 if (cpufreq_driver->exit) 1586 cpufreq_driver->exit(policy); 1587 1588 out_free_policy: 1589 cpumask_clear(policy->cpus); 1590 up_write(&policy->rwsem); 1591 1592 cpufreq_policy_free(policy); 1593 return ret; 1594 } 1595 1596 /** 1597 * cpufreq_add_dev - the cpufreq interface for a CPU device. 1598 * @dev: CPU device. 1599 * @sif: Subsystem interface structure pointer (not used) 1600 */ 1601 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 1602 { 1603 struct cpufreq_policy *policy; 1604 unsigned cpu = dev->id; 1605 int ret; 1606 1607 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu); 1608 1609 if (cpu_online(cpu)) { 1610 ret = cpufreq_online(cpu); 1611 if (ret) 1612 return ret; 1613 } 1614 1615 /* Create sysfs link on CPU registration */ 1616 policy = per_cpu(cpufreq_cpu_data, cpu); 1617 if (policy) 1618 add_cpu_dev_symlink(policy, cpu, dev); 1619 1620 return 0; 1621 } 1622 1623 static void __cpufreq_offline(unsigned int cpu, struct cpufreq_policy *policy) 1624 { 1625 int ret; 1626 1627 if (has_target()) 1628 cpufreq_stop_governor(policy); 1629 1630 cpumask_clear_cpu(cpu, policy->cpus); 1631 1632 if (!policy_is_inactive(policy)) { 1633 /* Nominate a new CPU if necessary. */ 1634 if (cpu == policy->cpu) 1635 policy->cpu = cpumask_any(policy->cpus); 1636 1637 /* Start the governor again for the active policy. */ 1638 if (has_target()) { 1639 ret = cpufreq_start_governor(policy); 1640 if (ret) 1641 pr_err("%s: Failed to start governor\n", __func__); 1642 } 1643 1644 return; 1645 } 1646 1647 if (has_target()) 1648 strscpy(policy->last_governor, policy->governor->name, 1649 CPUFREQ_NAME_LEN); 1650 else 1651 policy->last_policy = policy->policy; 1652 1653 if (has_target()) 1654 cpufreq_exit_governor(policy); 1655 1656 /* 1657 * Perform the ->offline() during light-weight tear-down, as 1658 * that allows fast recovery when the CPU comes back. 1659 */ 1660 if (cpufreq_driver->offline) { 1661 cpufreq_driver->offline(policy); 1662 return; 1663 } 1664 1665 if (cpufreq_driver->exit) 1666 cpufreq_driver->exit(policy); 1667 1668 policy->freq_table = NULL; 1669 } 1670 1671 static int cpufreq_offline(unsigned int cpu) 1672 { 1673 struct cpufreq_policy *policy; 1674 1675 pr_debug("%s: unregistering CPU %u\n", __func__, cpu); 1676 1677 policy = cpufreq_cpu_get_raw(cpu); 1678 if (!policy) { 1679 pr_debug("%s: No cpu_data found\n", __func__); 1680 return 0; 1681 } 1682 1683 down_write(&policy->rwsem); 1684 1685 __cpufreq_offline(cpu, policy); 1686 1687 up_write(&policy->rwsem); 1688 return 0; 1689 } 1690 1691 /* 1692 * cpufreq_remove_dev - remove a CPU device 1693 * 1694 * Removes the cpufreq interface for a CPU device. 1695 */ 1696 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif) 1697 { 1698 unsigned int cpu = dev->id; 1699 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1700 1701 if (!policy) 1702 return; 1703 1704 down_write(&policy->rwsem); 1705 1706 if (cpu_online(cpu)) 1707 __cpufreq_offline(cpu, policy); 1708 1709 remove_cpu_dev_symlink(policy, cpu, dev); 1710 1711 if (!cpumask_empty(policy->real_cpus)) { 1712 up_write(&policy->rwsem); 1713 return; 1714 } 1715 1716 /* 1717 * Unregister cpufreq cooling once all the CPUs of the policy are 1718 * removed. 1719 */ 1720 if (cpufreq_thermal_control_enabled(cpufreq_driver)) { 1721 cpufreq_cooling_unregister(policy->cdev); 1722 policy->cdev = NULL; 1723 } 1724 1725 /* We did light-weight exit earlier, do full tear down now */ 1726 if (cpufreq_driver->offline && cpufreq_driver->exit) 1727 cpufreq_driver->exit(policy); 1728 1729 up_write(&policy->rwsem); 1730 1731 cpufreq_policy_free(policy); 1732 } 1733 1734 /** 1735 * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference. 1736 * @policy: Policy managing CPUs. 1737 * @new_freq: New CPU frequency. 1738 * 1739 * Adjust to the current frequency first and clean up later by either calling 1740 * cpufreq_update_policy(), or scheduling handle_update(). 1741 */ 1742 static void cpufreq_out_of_sync(struct cpufreq_policy *policy, 1743 unsigned int new_freq) 1744 { 1745 struct cpufreq_freqs freqs; 1746 1747 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n", 1748 policy->cur, new_freq); 1749 1750 freqs.old = policy->cur; 1751 freqs.new = new_freq; 1752 1753 cpufreq_freq_transition_begin(policy, &freqs); 1754 cpufreq_freq_transition_end(policy, &freqs, 0); 1755 } 1756 1757 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update) 1758 { 1759 unsigned int new_freq; 1760 1761 new_freq = cpufreq_driver->get(policy->cpu); 1762 if (!new_freq) 1763 return 0; 1764 1765 /* 1766 * If fast frequency switching is used with the given policy, the check 1767 * against policy->cur is pointless, so skip it in that case. 1768 */ 1769 if (policy->fast_switch_enabled || !has_target()) 1770 return new_freq; 1771 1772 if (policy->cur != new_freq) { 1773 /* 1774 * For some platforms, the frequency returned by hardware may be 1775 * slightly different from what is provided in the frequency 1776 * table, for example hardware may return 499 MHz instead of 500 1777 * MHz. In such cases it is better to avoid getting into 1778 * unnecessary frequency updates. 1779 */ 1780 if (abs(policy->cur - new_freq) < KHZ_PER_MHZ) 1781 return policy->cur; 1782 1783 cpufreq_out_of_sync(policy, new_freq); 1784 if (update) 1785 schedule_work(&policy->update); 1786 } 1787 1788 return new_freq; 1789 } 1790 1791 /** 1792 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur 1793 * @cpu: CPU number 1794 * 1795 * This is the last known freq, without actually getting it from the driver. 1796 * Return value will be same as what is shown in scaling_cur_freq in sysfs. 1797 */ 1798 unsigned int cpufreq_quick_get(unsigned int cpu) 1799 { 1800 struct cpufreq_policy *policy; 1801 unsigned int ret_freq = 0; 1802 unsigned long flags; 1803 1804 read_lock_irqsave(&cpufreq_driver_lock, flags); 1805 1806 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) { 1807 ret_freq = cpufreq_driver->get(cpu); 1808 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1809 return ret_freq; 1810 } 1811 1812 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1813 1814 policy = cpufreq_cpu_get(cpu); 1815 if (policy) { 1816 ret_freq = policy->cur; 1817 cpufreq_cpu_put(policy); 1818 } 1819 1820 return ret_freq; 1821 } 1822 EXPORT_SYMBOL(cpufreq_quick_get); 1823 1824 /** 1825 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU 1826 * @cpu: CPU number 1827 * 1828 * Just return the max possible frequency for a given CPU. 1829 */ 1830 unsigned int cpufreq_quick_get_max(unsigned int cpu) 1831 { 1832 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1833 unsigned int ret_freq = 0; 1834 1835 if (policy) { 1836 ret_freq = policy->max; 1837 cpufreq_cpu_put(policy); 1838 } 1839 1840 return ret_freq; 1841 } 1842 EXPORT_SYMBOL(cpufreq_quick_get_max); 1843 1844 /** 1845 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU 1846 * @cpu: CPU number 1847 * 1848 * The default return value is the max_freq field of cpuinfo. 1849 */ 1850 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu) 1851 { 1852 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1853 unsigned int ret_freq = 0; 1854 1855 if (policy) { 1856 ret_freq = policy->cpuinfo.max_freq; 1857 cpufreq_cpu_put(policy); 1858 } 1859 1860 return ret_freq; 1861 } 1862 EXPORT_SYMBOL(cpufreq_get_hw_max_freq); 1863 1864 static unsigned int __cpufreq_get(struct cpufreq_policy *policy) 1865 { 1866 if (unlikely(policy_is_inactive(policy))) 1867 return 0; 1868 1869 return cpufreq_verify_current_freq(policy, true); 1870 } 1871 1872 /** 1873 * cpufreq_get - get the current CPU frequency (in kHz) 1874 * @cpu: CPU number 1875 * 1876 * Get the CPU current (static) CPU frequency 1877 */ 1878 unsigned int cpufreq_get(unsigned int cpu) 1879 { 1880 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1881 unsigned int ret_freq = 0; 1882 1883 if (policy) { 1884 down_read(&policy->rwsem); 1885 if (cpufreq_driver->get) 1886 ret_freq = __cpufreq_get(policy); 1887 up_read(&policy->rwsem); 1888 1889 cpufreq_cpu_put(policy); 1890 } 1891 1892 return ret_freq; 1893 } 1894 EXPORT_SYMBOL(cpufreq_get); 1895 1896 static struct subsys_interface cpufreq_interface = { 1897 .name = "cpufreq", 1898 .subsys = &cpu_subsys, 1899 .add_dev = cpufreq_add_dev, 1900 .remove_dev = cpufreq_remove_dev, 1901 }; 1902 1903 /* 1904 * In case platform wants some specific frequency to be configured 1905 * during suspend.. 1906 */ 1907 int cpufreq_generic_suspend(struct cpufreq_policy *policy) 1908 { 1909 int ret; 1910 1911 if (!policy->suspend_freq) { 1912 pr_debug("%s: suspend_freq not defined\n", __func__); 1913 return 0; 1914 } 1915 1916 pr_debug("%s: Setting suspend-freq: %u\n", __func__, 1917 policy->suspend_freq); 1918 1919 ret = __cpufreq_driver_target(policy, policy->suspend_freq, 1920 CPUFREQ_RELATION_H); 1921 if (ret) 1922 pr_err("%s: unable to set suspend-freq: %u. err: %d\n", 1923 __func__, policy->suspend_freq, ret); 1924 1925 return ret; 1926 } 1927 EXPORT_SYMBOL(cpufreq_generic_suspend); 1928 1929 /** 1930 * cpufreq_suspend() - Suspend CPUFreq governors. 1931 * 1932 * Called during system wide Suspend/Hibernate cycles for suspending governors 1933 * as some platforms can't change frequency after this point in suspend cycle. 1934 * Because some of the devices (like: i2c, regulators, etc) they use for 1935 * changing frequency are suspended quickly after this point. 1936 */ 1937 void cpufreq_suspend(void) 1938 { 1939 struct cpufreq_policy *policy; 1940 1941 if (!cpufreq_driver) 1942 return; 1943 1944 if (!has_target() && !cpufreq_driver->suspend) 1945 goto suspend; 1946 1947 pr_debug("%s: Suspending Governors\n", __func__); 1948 1949 for_each_active_policy(policy) { 1950 if (has_target()) { 1951 down_write(&policy->rwsem); 1952 cpufreq_stop_governor(policy); 1953 up_write(&policy->rwsem); 1954 } 1955 1956 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy)) 1957 pr_err("%s: Failed to suspend driver: %s\n", __func__, 1958 cpufreq_driver->name); 1959 } 1960 1961 suspend: 1962 cpufreq_suspended = true; 1963 } 1964 1965 /** 1966 * cpufreq_resume() - Resume CPUFreq governors. 1967 * 1968 * Called during system wide Suspend/Hibernate cycle for resuming governors that 1969 * are suspended with cpufreq_suspend(). 1970 */ 1971 void cpufreq_resume(void) 1972 { 1973 struct cpufreq_policy *policy; 1974 int ret; 1975 1976 if (!cpufreq_driver) 1977 return; 1978 1979 if (unlikely(!cpufreq_suspended)) 1980 return; 1981 1982 cpufreq_suspended = false; 1983 1984 if (!has_target() && !cpufreq_driver->resume) 1985 return; 1986 1987 pr_debug("%s: Resuming Governors\n", __func__); 1988 1989 for_each_active_policy(policy) { 1990 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) { 1991 pr_err("%s: Failed to resume driver: %s\n", __func__, 1992 cpufreq_driver->name); 1993 } else if (has_target()) { 1994 down_write(&policy->rwsem); 1995 ret = cpufreq_start_governor(policy); 1996 up_write(&policy->rwsem); 1997 1998 if (ret) 1999 pr_err("%s: Failed to start governor for CPU%u's policy\n", 2000 __func__, policy->cpu); 2001 } 2002 } 2003 } 2004 2005 /** 2006 * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones. 2007 * @flags: Flags to test against the current cpufreq driver's flags. 2008 * 2009 * Assumes that the driver is there, so callers must ensure that this is the 2010 * case. 2011 */ 2012 bool cpufreq_driver_test_flags(u16 flags) 2013 { 2014 return !!(cpufreq_driver->flags & flags); 2015 } 2016 2017 /** 2018 * cpufreq_get_current_driver - Return the current driver's name. 2019 * 2020 * Return the name string of the currently registered cpufreq driver or NULL if 2021 * none. 2022 */ 2023 const char *cpufreq_get_current_driver(void) 2024 { 2025 if (cpufreq_driver) 2026 return cpufreq_driver->name; 2027 2028 return NULL; 2029 } 2030 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver); 2031 2032 /** 2033 * cpufreq_get_driver_data - Return current driver data. 2034 * 2035 * Return the private data of the currently registered cpufreq driver, or NULL 2036 * if no cpufreq driver has been registered. 2037 */ 2038 void *cpufreq_get_driver_data(void) 2039 { 2040 if (cpufreq_driver) 2041 return cpufreq_driver->driver_data; 2042 2043 return NULL; 2044 } 2045 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data); 2046 2047 /********************************************************************* 2048 * NOTIFIER LISTS INTERFACE * 2049 *********************************************************************/ 2050 2051 /** 2052 * cpufreq_register_notifier - Register a notifier with cpufreq. 2053 * @nb: notifier function to register. 2054 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER. 2055 * 2056 * Add a notifier to one of two lists: either a list of notifiers that run on 2057 * clock rate changes (once before and once after every transition), or a list 2058 * of notifiers that ron on cpufreq policy changes. 2059 * 2060 * This function may sleep and it has the same return values as 2061 * blocking_notifier_chain_register(). 2062 */ 2063 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 2064 { 2065 int ret; 2066 2067 if (cpufreq_disabled()) 2068 return -EINVAL; 2069 2070 switch (list) { 2071 case CPUFREQ_TRANSITION_NOTIFIER: 2072 mutex_lock(&cpufreq_fast_switch_lock); 2073 2074 if (cpufreq_fast_switch_count > 0) { 2075 mutex_unlock(&cpufreq_fast_switch_lock); 2076 return -EBUSY; 2077 } 2078 ret = srcu_notifier_chain_register( 2079 &cpufreq_transition_notifier_list, nb); 2080 if (!ret) 2081 cpufreq_fast_switch_count--; 2082 2083 mutex_unlock(&cpufreq_fast_switch_lock); 2084 break; 2085 case CPUFREQ_POLICY_NOTIFIER: 2086 ret = blocking_notifier_chain_register( 2087 &cpufreq_policy_notifier_list, nb); 2088 break; 2089 default: 2090 ret = -EINVAL; 2091 } 2092 2093 return ret; 2094 } 2095 EXPORT_SYMBOL(cpufreq_register_notifier); 2096 2097 /** 2098 * cpufreq_unregister_notifier - Unregister a notifier from cpufreq. 2099 * @nb: notifier block to be unregistered. 2100 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER. 2101 * 2102 * Remove a notifier from one of the cpufreq notifier lists. 2103 * 2104 * This function may sleep and it has the same return values as 2105 * blocking_notifier_chain_unregister(). 2106 */ 2107 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 2108 { 2109 int ret; 2110 2111 if (cpufreq_disabled()) 2112 return -EINVAL; 2113 2114 switch (list) { 2115 case CPUFREQ_TRANSITION_NOTIFIER: 2116 mutex_lock(&cpufreq_fast_switch_lock); 2117 2118 ret = srcu_notifier_chain_unregister( 2119 &cpufreq_transition_notifier_list, nb); 2120 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0)) 2121 cpufreq_fast_switch_count++; 2122 2123 mutex_unlock(&cpufreq_fast_switch_lock); 2124 break; 2125 case CPUFREQ_POLICY_NOTIFIER: 2126 ret = blocking_notifier_chain_unregister( 2127 &cpufreq_policy_notifier_list, nb); 2128 break; 2129 default: 2130 ret = -EINVAL; 2131 } 2132 2133 return ret; 2134 } 2135 EXPORT_SYMBOL(cpufreq_unregister_notifier); 2136 2137 2138 /********************************************************************* 2139 * GOVERNORS * 2140 *********************************************************************/ 2141 2142 /** 2143 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch. 2144 * @policy: cpufreq policy to switch the frequency for. 2145 * @target_freq: New frequency to set (may be approximate). 2146 * 2147 * Carry out a fast frequency switch without sleeping. 2148 * 2149 * The driver's ->fast_switch() callback invoked by this function must be 2150 * suitable for being called from within RCU-sched read-side critical sections 2151 * and it is expected to select the minimum available frequency greater than or 2152 * equal to @target_freq (CPUFREQ_RELATION_L). 2153 * 2154 * This function must not be called if policy->fast_switch_enabled is unset. 2155 * 2156 * Governors calling this function must guarantee that it will never be invoked 2157 * twice in parallel for the same policy and that it will never be called in 2158 * parallel with either ->target() or ->target_index() for the same policy. 2159 * 2160 * Returns the actual frequency set for the CPU. 2161 * 2162 * If 0 is returned by the driver's ->fast_switch() callback to indicate an 2163 * error condition, the hardware configuration must be preserved. 2164 */ 2165 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy, 2166 unsigned int target_freq) 2167 { 2168 unsigned int freq; 2169 int cpu; 2170 2171 target_freq = clamp_val(target_freq, policy->min, policy->max); 2172 freq = cpufreq_driver->fast_switch(policy, target_freq); 2173 2174 if (!freq) 2175 return 0; 2176 2177 policy->cur = freq; 2178 arch_set_freq_scale(policy->related_cpus, freq, 2179 arch_scale_freq_ref(policy->cpu)); 2180 cpufreq_stats_record_transition(policy, freq); 2181 2182 if (trace_cpu_frequency_enabled()) { 2183 for_each_cpu(cpu, policy->cpus) 2184 trace_cpu_frequency(freq, cpu); 2185 } 2186 2187 return freq; 2188 } 2189 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch); 2190 2191 /** 2192 * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go. 2193 * @cpu: Target CPU. 2194 * @min_perf: Minimum (required) performance level (units of @capacity). 2195 * @target_perf: Target (desired) performance level (units of @capacity). 2196 * @capacity: Capacity of the target CPU. 2197 * 2198 * Carry out a fast performance level switch of @cpu without sleeping. 2199 * 2200 * The driver's ->adjust_perf() callback invoked by this function must be 2201 * suitable for being called from within RCU-sched read-side critical sections 2202 * and it is expected to select a suitable performance level equal to or above 2203 * @min_perf and preferably equal to or below @target_perf. 2204 * 2205 * This function must not be called if policy->fast_switch_enabled is unset. 2206 * 2207 * Governors calling this function must guarantee that it will never be invoked 2208 * twice in parallel for the same CPU and that it will never be called in 2209 * parallel with either ->target() or ->target_index() or ->fast_switch() for 2210 * the same CPU. 2211 */ 2212 void cpufreq_driver_adjust_perf(unsigned int cpu, 2213 unsigned long min_perf, 2214 unsigned long target_perf, 2215 unsigned long capacity) 2216 { 2217 cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity); 2218 } 2219 2220 /** 2221 * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback. 2222 * 2223 * Return 'true' if the ->adjust_perf callback is present for the 2224 * current driver or 'false' otherwise. 2225 */ 2226 bool cpufreq_driver_has_adjust_perf(void) 2227 { 2228 return !!cpufreq_driver->adjust_perf; 2229 } 2230 2231 /* Must set freqs->new to intermediate frequency */ 2232 static int __target_intermediate(struct cpufreq_policy *policy, 2233 struct cpufreq_freqs *freqs, int index) 2234 { 2235 int ret; 2236 2237 freqs->new = cpufreq_driver->get_intermediate(policy, index); 2238 2239 /* We don't need to switch to intermediate freq */ 2240 if (!freqs->new) 2241 return 0; 2242 2243 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n", 2244 __func__, policy->cpu, freqs->old, freqs->new); 2245 2246 cpufreq_freq_transition_begin(policy, freqs); 2247 ret = cpufreq_driver->target_intermediate(policy, index); 2248 cpufreq_freq_transition_end(policy, freqs, ret); 2249 2250 if (ret) 2251 pr_err("%s: Failed to change to intermediate frequency: %d\n", 2252 __func__, ret); 2253 2254 return ret; 2255 } 2256 2257 static int __target_index(struct cpufreq_policy *policy, int index) 2258 { 2259 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0}; 2260 unsigned int restore_freq, intermediate_freq = 0; 2261 unsigned int newfreq = policy->freq_table[index].frequency; 2262 int retval = -EINVAL; 2263 bool notify; 2264 2265 if (newfreq == policy->cur) 2266 return 0; 2267 2268 /* Save last value to restore later on errors */ 2269 restore_freq = policy->cur; 2270 2271 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION); 2272 if (notify) { 2273 /* Handle switching to intermediate frequency */ 2274 if (cpufreq_driver->get_intermediate) { 2275 retval = __target_intermediate(policy, &freqs, index); 2276 if (retval) 2277 return retval; 2278 2279 intermediate_freq = freqs.new; 2280 /* Set old freq to intermediate */ 2281 if (intermediate_freq) 2282 freqs.old = freqs.new; 2283 } 2284 2285 freqs.new = newfreq; 2286 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n", 2287 __func__, policy->cpu, freqs.old, freqs.new); 2288 2289 cpufreq_freq_transition_begin(policy, &freqs); 2290 } 2291 2292 retval = cpufreq_driver->target_index(policy, index); 2293 if (retval) 2294 pr_err("%s: Failed to change cpu frequency: %d\n", __func__, 2295 retval); 2296 2297 if (notify) { 2298 cpufreq_freq_transition_end(policy, &freqs, retval); 2299 2300 /* 2301 * Failed after setting to intermediate freq? Driver should have 2302 * reverted back to initial frequency and so should we. Check 2303 * here for intermediate_freq instead of get_intermediate, in 2304 * case we haven't switched to intermediate freq at all. 2305 */ 2306 if (unlikely(retval && intermediate_freq)) { 2307 freqs.old = intermediate_freq; 2308 freqs.new = restore_freq; 2309 cpufreq_freq_transition_begin(policy, &freqs); 2310 cpufreq_freq_transition_end(policy, &freqs, 0); 2311 } 2312 } 2313 2314 return retval; 2315 } 2316 2317 int __cpufreq_driver_target(struct cpufreq_policy *policy, 2318 unsigned int target_freq, 2319 unsigned int relation) 2320 { 2321 unsigned int old_target_freq = target_freq; 2322 2323 if (cpufreq_disabled()) 2324 return -ENODEV; 2325 2326 target_freq = __resolve_freq(policy, target_freq, relation); 2327 2328 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n", 2329 policy->cpu, target_freq, relation, old_target_freq); 2330 2331 /* 2332 * This might look like a redundant call as we are checking it again 2333 * after finding index. But it is left intentionally for cases where 2334 * exactly same freq is called again and so we can save on few function 2335 * calls. 2336 */ 2337 if (target_freq == policy->cur && 2338 !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS)) 2339 return 0; 2340 2341 if (cpufreq_driver->target) { 2342 /* 2343 * If the driver hasn't setup a single inefficient frequency, 2344 * it's unlikely it knows how to decode CPUFREQ_RELATION_E. 2345 */ 2346 if (!policy->efficiencies_available) 2347 relation &= ~CPUFREQ_RELATION_E; 2348 2349 return cpufreq_driver->target(policy, target_freq, relation); 2350 } 2351 2352 if (!cpufreq_driver->target_index) 2353 return -EINVAL; 2354 2355 return __target_index(policy, policy->cached_resolved_idx); 2356 } 2357 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 2358 2359 int cpufreq_driver_target(struct cpufreq_policy *policy, 2360 unsigned int target_freq, 2361 unsigned int relation) 2362 { 2363 int ret; 2364 2365 down_write(&policy->rwsem); 2366 2367 ret = __cpufreq_driver_target(policy, target_freq, relation); 2368 2369 up_write(&policy->rwsem); 2370 2371 return ret; 2372 } 2373 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 2374 2375 __weak struct cpufreq_governor *cpufreq_fallback_governor(void) 2376 { 2377 return NULL; 2378 } 2379 2380 static int cpufreq_init_governor(struct cpufreq_policy *policy) 2381 { 2382 int ret; 2383 2384 /* Don't start any governor operations if we are entering suspend */ 2385 if (cpufreq_suspended) 2386 return 0; 2387 /* 2388 * Governor might not be initiated here if ACPI _PPC changed 2389 * notification happened, so check it. 2390 */ 2391 if (!policy->governor) 2392 return -EINVAL; 2393 2394 /* Platform doesn't want dynamic frequency switching ? */ 2395 if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING && 2396 cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) { 2397 struct cpufreq_governor *gov = cpufreq_fallback_governor(); 2398 2399 if (gov) { 2400 pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n", 2401 policy->governor->name, gov->name); 2402 policy->governor = gov; 2403 } else { 2404 return -EINVAL; 2405 } 2406 } 2407 2408 if (!try_module_get(policy->governor->owner)) 2409 return -EINVAL; 2410 2411 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2412 2413 if (policy->governor->init) { 2414 ret = policy->governor->init(policy); 2415 if (ret) { 2416 module_put(policy->governor->owner); 2417 return ret; 2418 } 2419 } 2420 2421 policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET); 2422 2423 return 0; 2424 } 2425 2426 static void cpufreq_exit_governor(struct cpufreq_policy *policy) 2427 { 2428 if (cpufreq_suspended || !policy->governor) 2429 return; 2430 2431 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2432 2433 if (policy->governor->exit) 2434 policy->governor->exit(policy); 2435 2436 module_put(policy->governor->owner); 2437 } 2438 2439 int cpufreq_start_governor(struct cpufreq_policy *policy) 2440 { 2441 int ret; 2442 2443 if (cpufreq_suspended) 2444 return 0; 2445 2446 if (!policy->governor) 2447 return -EINVAL; 2448 2449 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2450 2451 if (cpufreq_driver->get) 2452 cpufreq_verify_current_freq(policy, false); 2453 2454 if (policy->governor->start) { 2455 ret = policy->governor->start(policy); 2456 if (ret) 2457 return ret; 2458 } 2459 2460 if (policy->governor->limits) 2461 policy->governor->limits(policy); 2462 2463 return 0; 2464 } 2465 2466 void cpufreq_stop_governor(struct cpufreq_policy *policy) 2467 { 2468 if (cpufreq_suspended || !policy->governor) 2469 return; 2470 2471 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2472 2473 if (policy->governor->stop) 2474 policy->governor->stop(policy); 2475 } 2476 2477 static void cpufreq_governor_limits(struct cpufreq_policy *policy) 2478 { 2479 if (cpufreq_suspended || !policy->governor) 2480 return; 2481 2482 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2483 2484 if (policy->governor->limits) 2485 policy->governor->limits(policy); 2486 } 2487 2488 int cpufreq_register_governor(struct cpufreq_governor *governor) 2489 { 2490 int err; 2491 2492 if (!governor) 2493 return -EINVAL; 2494 2495 if (cpufreq_disabled()) 2496 return -ENODEV; 2497 2498 mutex_lock(&cpufreq_governor_mutex); 2499 2500 err = -EBUSY; 2501 if (!find_governor(governor->name)) { 2502 err = 0; 2503 list_add(&governor->governor_list, &cpufreq_governor_list); 2504 } 2505 2506 mutex_unlock(&cpufreq_governor_mutex); 2507 return err; 2508 } 2509 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 2510 2511 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 2512 { 2513 struct cpufreq_policy *policy; 2514 unsigned long flags; 2515 2516 if (!governor) 2517 return; 2518 2519 if (cpufreq_disabled()) 2520 return; 2521 2522 /* clear last_governor for all inactive policies */ 2523 read_lock_irqsave(&cpufreq_driver_lock, flags); 2524 for_each_inactive_policy(policy) { 2525 if (!strcmp(policy->last_governor, governor->name)) { 2526 policy->governor = NULL; 2527 strcpy(policy->last_governor, "\0"); 2528 } 2529 } 2530 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 2531 2532 mutex_lock(&cpufreq_governor_mutex); 2533 list_del(&governor->governor_list); 2534 mutex_unlock(&cpufreq_governor_mutex); 2535 } 2536 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 2537 2538 2539 /********************************************************************* 2540 * POLICY INTERFACE * 2541 *********************************************************************/ 2542 2543 /** 2544 * cpufreq_get_policy - get the current cpufreq_policy 2545 * @policy: struct cpufreq_policy into which the current cpufreq_policy 2546 * is written 2547 * @cpu: CPU to find the policy for 2548 * 2549 * Reads the current cpufreq policy. 2550 */ 2551 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 2552 { 2553 struct cpufreq_policy *cpu_policy; 2554 if (!policy) 2555 return -EINVAL; 2556 2557 cpu_policy = cpufreq_cpu_get(cpu); 2558 if (!cpu_policy) 2559 return -EINVAL; 2560 2561 memcpy(policy, cpu_policy, sizeof(*policy)); 2562 2563 cpufreq_cpu_put(cpu_policy); 2564 return 0; 2565 } 2566 EXPORT_SYMBOL(cpufreq_get_policy); 2567 2568 DEFINE_PER_CPU(unsigned long, cpufreq_pressure); 2569 2570 /** 2571 * cpufreq_update_pressure() - Update cpufreq pressure for CPUs 2572 * @policy: cpufreq policy of the CPUs. 2573 * 2574 * Update the value of cpufreq pressure for all @cpus in the policy. 2575 */ 2576 static void cpufreq_update_pressure(struct cpufreq_policy *policy) 2577 { 2578 unsigned long max_capacity, capped_freq, pressure; 2579 u32 max_freq; 2580 int cpu; 2581 2582 cpu = cpumask_first(policy->related_cpus); 2583 max_freq = arch_scale_freq_ref(cpu); 2584 capped_freq = policy->max; 2585 2586 /* 2587 * Handle properly the boost frequencies, which should simply clean 2588 * the cpufreq pressure value. 2589 */ 2590 if (max_freq <= capped_freq) { 2591 pressure = 0; 2592 } else { 2593 max_capacity = arch_scale_cpu_capacity(cpu); 2594 pressure = max_capacity - 2595 mult_frac(max_capacity, capped_freq, max_freq); 2596 } 2597 2598 for_each_cpu(cpu, policy->related_cpus) 2599 WRITE_ONCE(per_cpu(cpufreq_pressure, cpu), pressure); 2600 } 2601 2602 /** 2603 * cpufreq_set_policy - Modify cpufreq policy parameters. 2604 * @policy: Policy object to modify. 2605 * @new_gov: Policy governor pointer. 2606 * @new_pol: Policy value (for drivers with built-in governors). 2607 * 2608 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency 2609 * limits to be set for the policy, update @policy with the verified limits 2610 * values and either invoke the driver's ->setpolicy() callback (if present) or 2611 * carry out a governor update for @policy. That is, run the current governor's 2612 * ->limits() callback (if @new_gov points to the same object as the one in 2613 * @policy) or replace the governor for @policy with @new_gov. 2614 * 2615 * The cpuinfo part of @policy is not updated by this function. 2616 */ 2617 static int cpufreq_set_policy(struct cpufreq_policy *policy, 2618 struct cpufreq_governor *new_gov, 2619 unsigned int new_pol) 2620 { 2621 struct cpufreq_policy_data new_data; 2622 struct cpufreq_governor *old_gov; 2623 int ret; 2624 2625 memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo)); 2626 new_data.freq_table = policy->freq_table; 2627 new_data.cpu = policy->cpu; 2628 /* 2629 * PM QoS framework collects all the requests from users and provide us 2630 * the final aggregated value here. 2631 */ 2632 new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN); 2633 new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX); 2634 2635 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", 2636 new_data.cpu, new_data.min, new_data.max); 2637 2638 /* 2639 * Verify that the CPU speed can be set within these limits and make sure 2640 * that min <= max. 2641 */ 2642 ret = cpufreq_driver->verify(&new_data); 2643 if (ret) 2644 return ret; 2645 2646 /* 2647 * Resolve policy min/max to available frequencies. It ensures 2648 * no frequency resolution will neither overshoot the requested maximum 2649 * nor undershoot the requested minimum. 2650 */ 2651 policy->min = new_data.min; 2652 policy->max = new_data.max; 2653 policy->min = __resolve_freq(policy, policy->min, CPUFREQ_RELATION_L); 2654 policy->max = __resolve_freq(policy, policy->max, CPUFREQ_RELATION_H); 2655 trace_cpu_frequency_limits(policy); 2656 2657 cpufreq_update_pressure(policy); 2658 2659 policy->cached_target_freq = UINT_MAX; 2660 2661 pr_debug("new min and max freqs are %u - %u kHz\n", 2662 policy->min, policy->max); 2663 2664 if (cpufreq_driver->setpolicy) { 2665 policy->policy = new_pol; 2666 pr_debug("setting range\n"); 2667 return cpufreq_driver->setpolicy(policy); 2668 } 2669 2670 if (new_gov == policy->governor) { 2671 pr_debug("governor limits update\n"); 2672 cpufreq_governor_limits(policy); 2673 return 0; 2674 } 2675 2676 pr_debug("governor switch\n"); 2677 2678 /* save old, working values */ 2679 old_gov = policy->governor; 2680 /* end old governor */ 2681 if (old_gov) { 2682 cpufreq_stop_governor(policy); 2683 cpufreq_exit_governor(policy); 2684 } 2685 2686 /* start new governor */ 2687 policy->governor = new_gov; 2688 ret = cpufreq_init_governor(policy); 2689 if (!ret) { 2690 ret = cpufreq_start_governor(policy); 2691 if (!ret) { 2692 pr_debug("governor change\n"); 2693 return 0; 2694 } 2695 cpufreq_exit_governor(policy); 2696 } 2697 2698 /* new governor failed, so re-start old one */ 2699 pr_debug("starting governor %s failed\n", policy->governor->name); 2700 if (old_gov) { 2701 policy->governor = old_gov; 2702 if (cpufreq_init_governor(policy)) 2703 policy->governor = NULL; 2704 else 2705 cpufreq_start_governor(policy); 2706 } 2707 2708 return ret; 2709 } 2710 2711 /** 2712 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy. 2713 * @cpu: CPU to re-evaluate the policy for. 2714 * 2715 * Update the current frequency for the cpufreq policy of @cpu and use 2716 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the 2717 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback 2718 * for the policy in question, among other things. 2719 */ 2720 void cpufreq_update_policy(unsigned int cpu) 2721 { 2722 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu); 2723 2724 if (!policy) 2725 return; 2726 2727 /* 2728 * BIOS might change freq behind our back 2729 * -> ask driver for current freq and notify governors about a change 2730 */ 2731 if (cpufreq_driver->get && has_target() && 2732 (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false)))) 2733 goto unlock; 2734 2735 refresh_frequency_limits(policy); 2736 2737 unlock: 2738 cpufreq_cpu_release(policy); 2739 } 2740 EXPORT_SYMBOL(cpufreq_update_policy); 2741 2742 /** 2743 * cpufreq_update_limits - Update policy limits for a given CPU. 2744 * @cpu: CPU to update the policy limits for. 2745 * 2746 * Invoke the driver's ->update_limits callback if present or call 2747 * cpufreq_update_policy() for @cpu. 2748 */ 2749 void cpufreq_update_limits(unsigned int cpu) 2750 { 2751 if (cpufreq_driver->update_limits) 2752 cpufreq_driver->update_limits(cpu); 2753 else 2754 cpufreq_update_policy(cpu); 2755 } 2756 EXPORT_SYMBOL_GPL(cpufreq_update_limits); 2757 2758 /********************************************************************* 2759 * BOOST * 2760 *********************************************************************/ 2761 static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state) 2762 { 2763 int ret; 2764 2765 if (!policy->freq_table) 2766 return -ENXIO; 2767 2768 ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table); 2769 if (ret) { 2770 pr_err("%s: Policy frequency update failed\n", __func__); 2771 return ret; 2772 } 2773 2774 ret = freq_qos_update_request(policy->max_freq_req, policy->max); 2775 if (ret < 0) 2776 return ret; 2777 2778 return 0; 2779 } 2780 2781 int cpufreq_boost_trigger_state(int state) 2782 { 2783 struct cpufreq_policy *policy; 2784 unsigned long flags; 2785 int ret = 0; 2786 2787 if (cpufreq_driver->boost_enabled == state) 2788 return 0; 2789 2790 write_lock_irqsave(&cpufreq_driver_lock, flags); 2791 cpufreq_driver->boost_enabled = state; 2792 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2793 2794 cpus_read_lock(); 2795 for_each_active_policy(policy) { 2796 policy->boost_enabled = state; 2797 ret = cpufreq_driver->set_boost(policy, state); 2798 if (ret) { 2799 policy->boost_enabled = !policy->boost_enabled; 2800 goto err_reset_state; 2801 } 2802 } 2803 cpus_read_unlock(); 2804 2805 return 0; 2806 2807 err_reset_state: 2808 cpus_read_unlock(); 2809 2810 write_lock_irqsave(&cpufreq_driver_lock, flags); 2811 cpufreq_driver->boost_enabled = !state; 2812 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2813 2814 pr_err("%s: Cannot %s BOOST\n", 2815 __func__, state ? "enable" : "disable"); 2816 2817 return ret; 2818 } 2819 2820 static bool cpufreq_boost_supported(void) 2821 { 2822 return cpufreq_driver->set_boost; 2823 } 2824 2825 static int create_boost_sysfs_file(void) 2826 { 2827 int ret; 2828 2829 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr); 2830 if (ret) 2831 pr_err("%s: cannot register global BOOST sysfs file\n", 2832 __func__); 2833 2834 return ret; 2835 } 2836 2837 static void remove_boost_sysfs_file(void) 2838 { 2839 if (cpufreq_boost_supported()) 2840 sysfs_remove_file(cpufreq_global_kobject, &boost.attr); 2841 } 2842 2843 int cpufreq_enable_boost_support(void) 2844 { 2845 if (!cpufreq_driver) 2846 return -EINVAL; 2847 2848 if (cpufreq_boost_supported()) 2849 return 0; 2850 2851 cpufreq_driver->set_boost = cpufreq_boost_set_sw; 2852 2853 /* This will get removed on driver unregister */ 2854 return create_boost_sysfs_file(); 2855 } 2856 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support); 2857 2858 bool cpufreq_boost_enabled(void) 2859 { 2860 return cpufreq_driver->boost_enabled; 2861 } 2862 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled); 2863 2864 /********************************************************************* 2865 * REGISTER / UNREGISTER CPUFREQ DRIVER * 2866 *********************************************************************/ 2867 static enum cpuhp_state hp_online; 2868 2869 static int cpuhp_cpufreq_online(unsigned int cpu) 2870 { 2871 cpufreq_online(cpu); 2872 2873 return 0; 2874 } 2875 2876 static int cpuhp_cpufreq_offline(unsigned int cpu) 2877 { 2878 cpufreq_offline(cpu); 2879 2880 return 0; 2881 } 2882 2883 /** 2884 * cpufreq_register_driver - register a CPU Frequency driver 2885 * @driver_data: A struct cpufreq_driver containing the values# 2886 * submitted by the CPU Frequency driver. 2887 * 2888 * Registers a CPU Frequency driver to this core code. This code 2889 * returns zero on success, -EEXIST when another driver got here first 2890 * (and isn't unregistered in the meantime). 2891 * 2892 */ 2893 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 2894 { 2895 unsigned long flags; 2896 int ret; 2897 2898 if (cpufreq_disabled()) 2899 return -ENODEV; 2900 2901 /* 2902 * The cpufreq core depends heavily on the availability of device 2903 * structure, make sure they are available before proceeding further. 2904 */ 2905 if (!get_cpu_device(0)) 2906 return -EPROBE_DEFER; 2907 2908 if (!driver_data || !driver_data->verify || !driver_data->init || 2909 !(driver_data->setpolicy || driver_data->target_index || 2910 driver_data->target) || 2911 (driver_data->setpolicy && (driver_data->target_index || 2912 driver_data->target)) || 2913 (!driver_data->get_intermediate != !driver_data->target_intermediate) || 2914 (!driver_data->online != !driver_data->offline) || 2915 (driver_data->adjust_perf && !driver_data->fast_switch)) 2916 return -EINVAL; 2917 2918 pr_debug("trying to register driver %s\n", driver_data->name); 2919 2920 /* Protect against concurrent CPU online/offline. */ 2921 cpus_read_lock(); 2922 2923 write_lock_irqsave(&cpufreq_driver_lock, flags); 2924 if (cpufreq_driver) { 2925 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2926 ret = -EEXIST; 2927 goto out; 2928 } 2929 cpufreq_driver = driver_data; 2930 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2931 2932 /* 2933 * Mark support for the scheduler's frequency invariance engine for 2934 * drivers that implement target(), target_index() or fast_switch(). 2935 */ 2936 if (!cpufreq_driver->setpolicy) { 2937 static_branch_enable_cpuslocked(&cpufreq_freq_invariance); 2938 pr_debug("supports frequency invariance"); 2939 } 2940 2941 if (driver_data->setpolicy) 2942 driver_data->flags |= CPUFREQ_CONST_LOOPS; 2943 2944 if (cpufreq_boost_supported()) { 2945 ret = create_boost_sysfs_file(); 2946 if (ret) 2947 goto err_null_driver; 2948 } 2949 2950 ret = subsys_interface_register(&cpufreq_interface); 2951 if (ret) 2952 goto err_boost_unreg; 2953 2954 if (unlikely(list_empty(&cpufreq_policy_list))) { 2955 /* if all ->init() calls failed, unregister */ 2956 ret = -ENODEV; 2957 pr_debug("%s: No CPU initialized for driver %s\n", __func__, 2958 driver_data->name); 2959 goto err_if_unreg; 2960 } 2961 2962 ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN, 2963 "cpufreq:online", 2964 cpuhp_cpufreq_online, 2965 cpuhp_cpufreq_offline); 2966 if (ret < 0) 2967 goto err_if_unreg; 2968 hp_online = ret; 2969 ret = 0; 2970 2971 pr_debug("driver %s up and running\n", driver_data->name); 2972 goto out; 2973 2974 err_if_unreg: 2975 subsys_interface_unregister(&cpufreq_interface); 2976 err_boost_unreg: 2977 remove_boost_sysfs_file(); 2978 err_null_driver: 2979 write_lock_irqsave(&cpufreq_driver_lock, flags); 2980 cpufreq_driver = NULL; 2981 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2982 out: 2983 cpus_read_unlock(); 2984 return ret; 2985 } 2986 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 2987 2988 /* 2989 * cpufreq_unregister_driver - unregister the current CPUFreq driver 2990 * 2991 * Unregister the current CPUFreq driver. Only call this if you have 2992 * the right to do so, i.e. if you have succeeded in initialising before! 2993 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 2994 * currently not initialised. 2995 */ 2996 void cpufreq_unregister_driver(struct cpufreq_driver *driver) 2997 { 2998 unsigned long flags; 2999 3000 if (WARN_ON(!cpufreq_driver || (driver != cpufreq_driver))) 3001 return; 3002 3003 pr_debug("unregistering driver %s\n", driver->name); 3004 3005 /* Protect against concurrent cpu hotplug */ 3006 cpus_read_lock(); 3007 subsys_interface_unregister(&cpufreq_interface); 3008 remove_boost_sysfs_file(); 3009 static_branch_disable_cpuslocked(&cpufreq_freq_invariance); 3010 cpuhp_remove_state_nocalls_cpuslocked(hp_online); 3011 3012 write_lock_irqsave(&cpufreq_driver_lock, flags); 3013 3014 cpufreq_driver = NULL; 3015 3016 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 3017 cpus_read_unlock(); 3018 } 3019 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 3020 3021 static int __init cpufreq_core_init(void) 3022 { 3023 struct cpufreq_governor *gov = cpufreq_default_governor(); 3024 struct device *dev_root; 3025 3026 if (cpufreq_disabled()) 3027 return -ENODEV; 3028 3029 dev_root = bus_get_dev_root(&cpu_subsys); 3030 if (dev_root) { 3031 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &dev_root->kobj); 3032 put_device(dev_root); 3033 } 3034 BUG_ON(!cpufreq_global_kobject); 3035 3036 if (!strlen(default_governor)) 3037 strscpy(default_governor, gov->name, CPUFREQ_NAME_LEN); 3038 3039 return 0; 3040 } 3041 module_param(off, int, 0444); 3042 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444); 3043 core_initcall(cpufreq_core_init); 3044