1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/cpufreq/cpufreq.c 4 * 5 * Copyright (C) 2001 Russell King 6 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 7 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org> 8 * 9 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 10 * Added handling for CPU hotplug 11 * Feb 2006 - Jacob Shin <jacob.shin@amd.com> 12 * Fix handling for CPU hotplug -- affected CPUs 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/cpu.h> 18 #include <linux/cpufreq.h> 19 #include <linux/cpu_cooling.h> 20 #include <linux/delay.h> 21 #include <linux/device.h> 22 #include <linux/init.h> 23 #include <linux/kernel_stat.h> 24 #include <linux/module.h> 25 #include <linux/mutex.h> 26 #include <linux/pm_qos.h> 27 #include <linux/slab.h> 28 #include <linux/suspend.h> 29 #include <linux/syscore_ops.h> 30 #include <linux/tick.h> 31 #include <trace/events/power.h> 32 33 static LIST_HEAD(cpufreq_policy_list); 34 35 /* Macros to iterate over CPU policies */ 36 #define for_each_suitable_policy(__policy, __active) \ 37 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \ 38 if ((__active) == !policy_is_inactive(__policy)) 39 40 #define for_each_active_policy(__policy) \ 41 for_each_suitable_policy(__policy, true) 42 #define for_each_inactive_policy(__policy) \ 43 for_each_suitable_policy(__policy, false) 44 45 #define for_each_policy(__policy) \ 46 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) 47 48 /* Iterate over governors */ 49 static LIST_HEAD(cpufreq_governor_list); 50 #define for_each_governor(__governor) \ 51 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list) 52 53 /** 54 * The "cpufreq driver" - the arch- or hardware-dependent low 55 * level driver of CPUFreq support, and its spinlock. This lock 56 * also protects the cpufreq_cpu_data array. 57 */ 58 static struct cpufreq_driver *cpufreq_driver; 59 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data); 60 static DEFINE_RWLOCK(cpufreq_driver_lock); 61 62 /* Flag to suspend/resume CPUFreq governors */ 63 static bool cpufreq_suspended; 64 65 static inline bool has_target(void) 66 { 67 return cpufreq_driver->target_index || cpufreq_driver->target; 68 } 69 70 /* internal prototypes */ 71 static unsigned int __cpufreq_get(struct cpufreq_policy *policy); 72 static int cpufreq_init_governor(struct cpufreq_policy *policy); 73 static void cpufreq_exit_governor(struct cpufreq_policy *policy); 74 static int cpufreq_start_governor(struct cpufreq_policy *policy); 75 static void cpufreq_stop_governor(struct cpufreq_policy *policy); 76 static void cpufreq_governor_limits(struct cpufreq_policy *policy); 77 78 /** 79 * Two notifier lists: the "policy" list is involved in the 80 * validation process for a new CPU frequency policy; the 81 * "transition" list for kernel code that needs to handle 82 * changes to devices when the CPU clock speed changes. 83 * The mutex locks both lists. 84 */ 85 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list); 86 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list); 87 88 static int off __read_mostly; 89 static int cpufreq_disabled(void) 90 { 91 return off; 92 } 93 void disable_cpufreq(void) 94 { 95 off = 1; 96 } 97 static DEFINE_MUTEX(cpufreq_governor_mutex); 98 99 bool have_governor_per_policy(void) 100 { 101 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY); 102 } 103 EXPORT_SYMBOL_GPL(have_governor_per_policy); 104 105 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy) 106 { 107 if (have_governor_per_policy()) 108 return &policy->kobj; 109 else 110 return cpufreq_global_kobject; 111 } 112 EXPORT_SYMBOL_GPL(get_governor_parent_kobj); 113 114 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) 115 { 116 u64 idle_time; 117 u64 cur_wall_time; 118 u64 busy_time; 119 120 cur_wall_time = jiffies64_to_nsecs(get_jiffies_64()); 121 122 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER]; 123 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM]; 124 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ]; 125 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ]; 126 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL]; 127 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE]; 128 129 idle_time = cur_wall_time - busy_time; 130 if (wall) 131 *wall = div_u64(cur_wall_time, NSEC_PER_USEC); 132 133 return div_u64(idle_time, NSEC_PER_USEC); 134 } 135 136 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy) 137 { 138 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL); 139 140 if (idle_time == -1ULL) 141 return get_cpu_idle_time_jiffy(cpu, wall); 142 else if (!io_busy) 143 idle_time += get_cpu_iowait_time_us(cpu, wall); 144 145 return idle_time; 146 } 147 EXPORT_SYMBOL_GPL(get_cpu_idle_time); 148 149 __weak void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq, 150 unsigned long max_freq) 151 { 152 } 153 EXPORT_SYMBOL_GPL(arch_set_freq_scale); 154 155 /* 156 * This is a generic cpufreq init() routine which can be used by cpufreq 157 * drivers of SMP systems. It will do following: 158 * - validate & show freq table passed 159 * - set policies transition latency 160 * - policy->cpus with all possible CPUs 161 */ 162 void cpufreq_generic_init(struct cpufreq_policy *policy, 163 struct cpufreq_frequency_table *table, 164 unsigned int transition_latency) 165 { 166 policy->freq_table = table; 167 policy->cpuinfo.transition_latency = transition_latency; 168 169 /* 170 * The driver only supports the SMP configuration where all processors 171 * share the clock and voltage and clock. 172 */ 173 cpumask_setall(policy->cpus); 174 } 175 EXPORT_SYMBOL_GPL(cpufreq_generic_init); 176 177 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu) 178 { 179 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 180 181 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL; 182 } 183 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw); 184 185 unsigned int cpufreq_generic_get(unsigned int cpu) 186 { 187 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu); 188 189 if (!policy || IS_ERR(policy->clk)) { 190 pr_err("%s: No %s associated to cpu: %d\n", 191 __func__, policy ? "clk" : "policy", cpu); 192 return 0; 193 } 194 195 return clk_get_rate(policy->clk) / 1000; 196 } 197 EXPORT_SYMBOL_GPL(cpufreq_generic_get); 198 199 /** 200 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy. 201 * @cpu: CPU to find the policy for. 202 * 203 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment 204 * the kobject reference counter of that policy. Return a valid policy on 205 * success or NULL on failure. 206 * 207 * The policy returned by this function has to be released with the help of 208 * cpufreq_cpu_put() to balance its kobject reference counter properly. 209 */ 210 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) 211 { 212 struct cpufreq_policy *policy = NULL; 213 unsigned long flags; 214 215 if (WARN_ON(cpu >= nr_cpu_ids)) 216 return NULL; 217 218 /* get the cpufreq driver */ 219 read_lock_irqsave(&cpufreq_driver_lock, flags); 220 221 if (cpufreq_driver) { 222 /* get the CPU */ 223 policy = cpufreq_cpu_get_raw(cpu); 224 if (policy) 225 kobject_get(&policy->kobj); 226 } 227 228 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 229 230 return policy; 231 } 232 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 233 234 /** 235 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy. 236 * @policy: cpufreq policy returned by cpufreq_cpu_get(). 237 */ 238 void cpufreq_cpu_put(struct cpufreq_policy *policy) 239 { 240 kobject_put(&policy->kobj); 241 } 242 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 243 244 /** 245 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter. 246 * @policy: cpufreq policy returned by cpufreq_cpu_acquire(). 247 */ 248 void cpufreq_cpu_release(struct cpufreq_policy *policy) 249 { 250 if (WARN_ON(!policy)) 251 return; 252 253 lockdep_assert_held(&policy->rwsem); 254 255 up_write(&policy->rwsem); 256 257 cpufreq_cpu_put(policy); 258 } 259 260 /** 261 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it. 262 * @cpu: CPU to find the policy for. 263 * 264 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and 265 * if the policy returned by it is not NULL, acquire its rwsem for writing. 266 * Return the policy if it is active or release it and return NULL otherwise. 267 * 268 * The policy returned by this function has to be released with the help of 269 * cpufreq_cpu_release() in order to release its rwsem and balance its usage 270 * counter properly. 271 */ 272 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu) 273 { 274 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 275 276 if (!policy) 277 return NULL; 278 279 down_write(&policy->rwsem); 280 281 if (policy_is_inactive(policy)) { 282 cpufreq_cpu_release(policy); 283 return NULL; 284 } 285 286 return policy; 287 } 288 289 /********************************************************************* 290 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 291 *********************************************************************/ 292 293 /** 294 * adjust_jiffies - adjust the system "loops_per_jiffy" 295 * 296 * This function alters the system "loops_per_jiffy" for the clock 297 * speed change. Note that loops_per_jiffy cannot be updated on SMP 298 * systems as each CPU might be scaled differently. So, use the arch 299 * per-CPU loops_per_jiffy value wherever possible. 300 */ 301 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 302 { 303 #ifndef CONFIG_SMP 304 static unsigned long l_p_j_ref; 305 static unsigned int l_p_j_ref_freq; 306 307 if (ci->flags & CPUFREQ_CONST_LOOPS) 308 return; 309 310 if (!l_p_j_ref_freq) { 311 l_p_j_ref = loops_per_jiffy; 312 l_p_j_ref_freq = ci->old; 313 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n", 314 l_p_j_ref, l_p_j_ref_freq); 315 } 316 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) { 317 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, 318 ci->new); 319 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n", 320 loops_per_jiffy, ci->new); 321 } 322 #endif 323 } 324 325 /** 326 * cpufreq_notify_transition - Notify frequency transition and adjust_jiffies. 327 * @policy: cpufreq policy to enable fast frequency switching for. 328 * @freqs: contain details of the frequency update. 329 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE. 330 * 331 * This function calls the transition notifiers and the "adjust_jiffies" 332 * function. It is called twice on all CPU frequency changes that have 333 * external effects. 334 */ 335 static void cpufreq_notify_transition(struct cpufreq_policy *policy, 336 struct cpufreq_freqs *freqs, 337 unsigned int state) 338 { 339 int cpu; 340 341 BUG_ON(irqs_disabled()); 342 343 if (cpufreq_disabled()) 344 return; 345 346 freqs->policy = policy; 347 freqs->flags = cpufreq_driver->flags; 348 pr_debug("notification %u of frequency transition to %u kHz\n", 349 state, freqs->new); 350 351 switch (state) { 352 case CPUFREQ_PRECHANGE: 353 /* 354 * Detect if the driver reported a value as "old frequency" 355 * which is not equal to what the cpufreq core thinks is 356 * "old frequency". 357 */ 358 if (policy->cur && policy->cur != freqs->old) { 359 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n", 360 freqs->old, policy->cur); 361 freqs->old = policy->cur; 362 } 363 364 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 365 CPUFREQ_PRECHANGE, freqs); 366 367 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 368 break; 369 370 case CPUFREQ_POSTCHANGE: 371 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 372 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new, 373 cpumask_pr_args(policy->cpus)); 374 375 for_each_cpu(cpu, policy->cpus) 376 trace_cpu_frequency(freqs->new, cpu); 377 378 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 379 CPUFREQ_POSTCHANGE, freqs); 380 381 cpufreq_stats_record_transition(policy, freqs->new); 382 policy->cur = freqs->new; 383 } 384 } 385 386 /* Do post notifications when there are chances that transition has failed */ 387 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy, 388 struct cpufreq_freqs *freqs, int transition_failed) 389 { 390 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 391 if (!transition_failed) 392 return; 393 394 swap(freqs->old, freqs->new); 395 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 396 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 397 } 398 399 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy, 400 struct cpufreq_freqs *freqs) 401 { 402 403 /* 404 * Catch double invocations of _begin() which lead to self-deadlock. 405 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core 406 * doesn't invoke _begin() on their behalf, and hence the chances of 407 * double invocations are very low. Moreover, there are scenarios 408 * where these checks can emit false-positive warnings in these 409 * drivers; so we avoid that by skipping them altogether. 410 */ 411 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION) 412 && current == policy->transition_task); 413 414 wait: 415 wait_event(policy->transition_wait, !policy->transition_ongoing); 416 417 spin_lock(&policy->transition_lock); 418 419 if (unlikely(policy->transition_ongoing)) { 420 spin_unlock(&policy->transition_lock); 421 goto wait; 422 } 423 424 policy->transition_ongoing = true; 425 policy->transition_task = current; 426 427 spin_unlock(&policy->transition_lock); 428 429 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 430 } 431 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin); 432 433 void cpufreq_freq_transition_end(struct cpufreq_policy *policy, 434 struct cpufreq_freqs *freqs, int transition_failed) 435 { 436 if (WARN_ON(!policy->transition_ongoing)) 437 return; 438 439 cpufreq_notify_post_transition(policy, freqs, transition_failed); 440 441 policy->transition_ongoing = false; 442 policy->transition_task = NULL; 443 444 wake_up(&policy->transition_wait); 445 } 446 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end); 447 448 /* 449 * Fast frequency switching status count. Positive means "enabled", negative 450 * means "disabled" and 0 means "not decided yet". 451 */ 452 static int cpufreq_fast_switch_count; 453 static DEFINE_MUTEX(cpufreq_fast_switch_lock); 454 455 static void cpufreq_list_transition_notifiers(void) 456 { 457 struct notifier_block *nb; 458 459 pr_info("Registered transition notifiers:\n"); 460 461 mutex_lock(&cpufreq_transition_notifier_list.mutex); 462 463 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next) 464 pr_info("%pS\n", nb->notifier_call); 465 466 mutex_unlock(&cpufreq_transition_notifier_list.mutex); 467 } 468 469 /** 470 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy. 471 * @policy: cpufreq policy to enable fast frequency switching for. 472 * 473 * Try to enable fast frequency switching for @policy. 474 * 475 * The attempt will fail if there is at least one transition notifier registered 476 * at this point, as fast frequency switching is quite fundamentally at odds 477 * with transition notifiers. Thus if successful, it will make registration of 478 * transition notifiers fail going forward. 479 */ 480 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy) 481 { 482 lockdep_assert_held(&policy->rwsem); 483 484 if (!policy->fast_switch_possible) 485 return; 486 487 mutex_lock(&cpufreq_fast_switch_lock); 488 if (cpufreq_fast_switch_count >= 0) { 489 cpufreq_fast_switch_count++; 490 policy->fast_switch_enabled = true; 491 } else { 492 pr_warn("CPU%u: Fast frequency switching not enabled\n", 493 policy->cpu); 494 cpufreq_list_transition_notifiers(); 495 } 496 mutex_unlock(&cpufreq_fast_switch_lock); 497 } 498 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch); 499 500 /** 501 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy. 502 * @policy: cpufreq policy to disable fast frequency switching for. 503 */ 504 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy) 505 { 506 mutex_lock(&cpufreq_fast_switch_lock); 507 if (policy->fast_switch_enabled) { 508 policy->fast_switch_enabled = false; 509 if (!WARN_ON(cpufreq_fast_switch_count <= 0)) 510 cpufreq_fast_switch_count--; 511 } 512 mutex_unlock(&cpufreq_fast_switch_lock); 513 } 514 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch); 515 516 /** 517 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported 518 * one. 519 * @target_freq: target frequency to resolve. 520 * 521 * The target to driver frequency mapping is cached in the policy. 522 * 523 * Return: Lowest driver-supported frequency greater than or equal to the 524 * given target_freq, subject to policy (min/max) and driver limitations. 525 */ 526 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy, 527 unsigned int target_freq) 528 { 529 target_freq = clamp_val(target_freq, policy->min, policy->max); 530 policy->cached_target_freq = target_freq; 531 532 if (cpufreq_driver->target_index) { 533 int idx; 534 535 idx = cpufreq_frequency_table_target(policy, target_freq, 536 CPUFREQ_RELATION_L); 537 policy->cached_resolved_idx = idx; 538 return policy->freq_table[idx].frequency; 539 } 540 541 if (cpufreq_driver->resolve_freq) 542 return cpufreq_driver->resolve_freq(policy, target_freq); 543 544 return target_freq; 545 } 546 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq); 547 548 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy) 549 { 550 unsigned int latency; 551 552 if (policy->transition_delay_us) 553 return policy->transition_delay_us; 554 555 latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC; 556 if (latency) { 557 /* 558 * For platforms that can change the frequency very fast (< 10 559 * us), the above formula gives a decent transition delay. But 560 * for platforms where transition_latency is in milliseconds, it 561 * ends up giving unrealistic values. 562 * 563 * Cap the default transition delay to 10 ms, which seems to be 564 * a reasonable amount of time after which we should reevaluate 565 * the frequency. 566 */ 567 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000); 568 } 569 570 return LATENCY_MULTIPLIER; 571 } 572 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us); 573 574 /********************************************************************* 575 * SYSFS INTERFACE * 576 *********************************************************************/ 577 static ssize_t show_boost(struct kobject *kobj, 578 struct kobj_attribute *attr, char *buf) 579 { 580 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled); 581 } 582 583 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr, 584 const char *buf, size_t count) 585 { 586 int ret, enable; 587 588 ret = sscanf(buf, "%d", &enable); 589 if (ret != 1 || enable < 0 || enable > 1) 590 return -EINVAL; 591 592 if (cpufreq_boost_trigger_state(enable)) { 593 pr_err("%s: Cannot %s BOOST!\n", 594 __func__, enable ? "enable" : "disable"); 595 return -EINVAL; 596 } 597 598 pr_debug("%s: cpufreq BOOST %s\n", 599 __func__, enable ? "enabled" : "disabled"); 600 601 return count; 602 } 603 define_one_global_rw(boost); 604 605 static struct cpufreq_governor *find_governor(const char *str_governor) 606 { 607 struct cpufreq_governor *t; 608 609 for_each_governor(t) 610 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN)) 611 return t; 612 613 return NULL; 614 } 615 616 static int cpufreq_parse_policy(char *str_governor, 617 struct cpufreq_policy *policy) 618 { 619 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) { 620 policy->policy = CPUFREQ_POLICY_PERFORMANCE; 621 return 0; 622 } 623 if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) { 624 policy->policy = CPUFREQ_POLICY_POWERSAVE; 625 return 0; 626 } 627 return -EINVAL; 628 } 629 630 /** 631 * cpufreq_parse_governor - parse a governor string only for has_target() 632 */ 633 static int cpufreq_parse_governor(char *str_governor, 634 struct cpufreq_policy *policy) 635 { 636 struct cpufreq_governor *t; 637 638 mutex_lock(&cpufreq_governor_mutex); 639 640 t = find_governor(str_governor); 641 if (!t) { 642 int ret; 643 644 mutex_unlock(&cpufreq_governor_mutex); 645 646 ret = request_module("cpufreq_%s", str_governor); 647 if (ret) 648 return -EINVAL; 649 650 mutex_lock(&cpufreq_governor_mutex); 651 652 t = find_governor(str_governor); 653 } 654 if (t && !try_module_get(t->owner)) 655 t = NULL; 656 657 mutex_unlock(&cpufreq_governor_mutex); 658 659 if (t) { 660 policy->governor = t; 661 return 0; 662 } 663 664 return -EINVAL; 665 } 666 667 /** 668 * cpufreq_per_cpu_attr_read() / show_##file_name() - 669 * print out cpufreq information 670 * 671 * Write out information from cpufreq_driver->policy[cpu]; object must be 672 * "unsigned int". 673 */ 674 675 #define show_one(file_name, object) \ 676 static ssize_t show_##file_name \ 677 (struct cpufreq_policy *policy, char *buf) \ 678 { \ 679 return sprintf(buf, "%u\n", policy->object); \ 680 } 681 682 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 683 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 684 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency); 685 show_one(scaling_min_freq, min); 686 show_one(scaling_max_freq, max); 687 688 __weak unsigned int arch_freq_get_on_cpu(int cpu) 689 { 690 return 0; 691 } 692 693 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf) 694 { 695 ssize_t ret; 696 unsigned int freq; 697 698 freq = arch_freq_get_on_cpu(policy->cpu); 699 if (freq) 700 ret = sprintf(buf, "%u\n", freq); 701 else if (cpufreq_driver && cpufreq_driver->setpolicy && 702 cpufreq_driver->get) 703 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu)); 704 else 705 ret = sprintf(buf, "%u\n", policy->cur); 706 return ret; 707 } 708 709 /** 710 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 711 */ 712 #define store_one(file_name, object) \ 713 static ssize_t store_##file_name \ 714 (struct cpufreq_policy *policy, const char *buf, size_t count) \ 715 { \ 716 unsigned long val; \ 717 int ret; \ 718 \ 719 ret = sscanf(buf, "%lu", &val); \ 720 if (ret != 1) \ 721 return -EINVAL; \ 722 \ 723 ret = freq_qos_update_request(policy->object##_freq_req, val);\ 724 return ret >= 0 ? count : ret; \ 725 } 726 727 store_one(scaling_min_freq, min); 728 store_one(scaling_max_freq, max); 729 730 /** 731 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 732 */ 733 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy, 734 char *buf) 735 { 736 unsigned int cur_freq = __cpufreq_get(policy); 737 738 if (cur_freq) 739 return sprintf(buf, "%u\n", cur_freq); 740 741 return sprintf(buf, "<unknown>\n"); 742 } 743 744 /** 745 * show_scaling_governor - show the current policy for the specified CPU 746 */ 747 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf) 748 { 749 if (policy->policy == CPUFREQ_POLICY_POWERSAVE) 750 return sprintf(buf, "powersave\n"); 751 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 752 return sprintf(buf, "performance\n"); 753 else if (policy->governor) 754 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", 755 policy->governor->name); 756 return -EINVAL; 757 } 758 759 /** 760 * store_scaling_governor - store policy for the specified CPU 761 */ 762 static ssize_t store_scaling_governor(struct cpufreq_policy *policy, 763 const char *buf, size_t count) 764 { 765 int ret; 766 char str_governor[16]; 767 struct cpufreq_policy new_policy; 768 769 memcpy(&new_policy, policy, sizeof(*policy)); 770 771 ret = sscanf(buf, "%15s", str_governor); 772 if (ret != 1) 773 return -EINVAL; 774 775 if (cpufreq_driver->setpolicy) { 776 if (cpufreq_parse_policy(str_governor, &new_policy)) 777 return -EINVAL; 778 } else { 779 if (cpufreq_parse_governor(str_governor, &new_policy)) 780 return -EINVAL; 781 } 782 783 ret = cpufreq_set_policy(policy, &new_policy); 784 785 if (new_policy.governor) 786 module_put(new_policy.governor->owner); 787 788 return ret ? ret : count; 789 } 790 791 /** 792 * show_scaling_driver - show the cpufreq driver currently loaded 793 */ 794 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf) 795 { 796 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name); 797 } 798 799 /** 800 * show_scaling_available_governors - show the available CPUfreq governors 801 */ 802 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy, 803 char *buf) 804 { 805 ssize_t i = 0; 806 struct cpufreq_governor *t; 807 808 if (!has_target()) { 809 i += sprintf(buf, "performance powersave"); 810 goto out; 811 } 812 813 for_each_governor(t) { 814 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) 815 - (CPUFREQ_NAME_LEN + 2))) 816 goto out; 817 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name); 818 } 819 out: 820 i += sprintf(&buf[i], "\n"); 821 return i; 822 } 823 824 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf) 825 { 826 ssize_t i = 0; 827 unsigned int cpu; 828 829 for_each_cpu(cpu, mask) { 830 if (i) 831 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " "); 832 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu); 833 if (i >= (PAGE_SIZE - 5)) 834 break; 835 } 836 i += sprintf(&buf[i], "\n"); 837 return i; 838 } 839 EXPORT_SYMBOL_GPL(cpufreq_show_cpus); 840 841 /** 842 * show_related_cpus - show the CPUs affected by each transition even if 843 * hw coordination is in use 844 */ 845 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf) 846 { 847 return cpufreq_show_cpus(policy->related_cpus, buf); 848 } 849 850 /** 851 * show_affected_cpus - show the CPUs affected by each transition 852 */ 853 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf) 854 { 855 return cpufreq_show_cpus(policy->cpus, buf); 856 } 857 858 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy, 859 const char *buf, size_t count) 860 { 861 unsigned int freq = 0; 862 unsigned int ret; 863 864 if (!policy->governor || !policy->governor->store_setspeed) 865 return -EINVAL; 866 867 ret = sscanf(buf, "%u", &freq); 868 if (ret != 1) 869 return -EINVAL; 870 871 policy->governor->store_setspeed(policy, freq); 872 873 return count; 874 } 875 876 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf) 877 { 878 if (!policy->governor || !policy->governor->show_setspeed) 879 return sprintf(buf, "<unsupported>\n"); 880 881 return policy->governor->show_setspeed(policy, buf); 882 } 883 884 /** 885 * show_bios_limit - show the current cpufreq HW/BIOS limitation 886 */ 887 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf) 888 { 889 unsigned int limit; 890 int ret; 891 ret = cpufreq_driver->bios_limit(policy->cpu, &limit); 892 if (!ret) 893 return sprintf(buf, "%u\n", limit); 894 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq); 895 } 896 897 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400); 898 cpufreq_freq_attr_ro(cpuinfo_min_freq); 899 cpufreq_freq_attr_ro(cpuinfo_max_freq); 900 cpufreq_freq_attr_ro(cpuinfo_transition_latency); 901 cpufreq_freq_attr_ro(scaling_available_governors); 902 cpufreq_freq_attr_ro(scaling_driver); 903 cpufreq_freq_attr_ro(scaling_cur_freq); 904 cpufreq_freq_attr_ro(bios_limit); 905 cpufreq_freq_attr_ro(related_cpus); 906 cpufreq_freq_attr_ro(affected_cpus); 907 cpufreq_freq_attr_rw(scaling_min_freq); 908 cpufreq_freq_attr_rw(scaling_max_freq); 909 cpufreq_freq_attr_rw(scaling_governor); 910 cpufreq_freq_attr_rw(scaling_setspeed); 911 912 static struct attribute *default_attrs[] = { 913 &cpuinfo_min_freq.attr, 914 &cpuinfo_max_freq.attr, 915 &cpuinfo_transition_latency.attr, 916 &scaling_min_freq.attr, 917 &scaling_max_freq.attr, 918 &affected_cpus.attr, 919 &related_cpus.attr, 920 &scaling_governor.attr, 921 &scaling_driver.attr, 922 &scaling_available_governors.attr, 923 &scaling_setspeed.attr, 924 NULL 925 }; 926 927 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj) 928 #define to_attr(a) container_of(a, struct freq_attr, attr) 929 930 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) 931 { 932 struct cpufreq_policy *policy = to_policy(kobj); 933 struct freq_attr *fattr = to_attr(attr); 934 ssize_t ret; 935 936 down_read(&policy->rwsem); 937 ret = fattr->show(policy, buf); 938 up_read(&policy->rwsem); 939 940 return ret; 941 } 942 943 static ssize_t store(struct kobject *kobj, struct attribute *attr, 944 const char *buf, size_t count) 945 { 946 struct cpufreq_policy *policy = to_policy(kobj); 947 struct freq_attr *fattr = to_attr(attr); 948 ssize_t ret = -EINVAL; 949 950 /* 951 * cpus_read_trylock() is used here to work around a circular lock 952 * dependency problem with respect to the cpufreq_register_driver(). 953 */ 954 if (!cpus_read_trylock()) 955 return -EBUSY; 956 957 if (cpu_online(policy->cpu)) { 958 down_write(&policy->rwsem); 959 ret = fattr->store(policy, buf, count); 960 up_write(&policy->rwsem); 961 } 962 963 cpus_read_unlock(); 964 965 return ret; 966 } 967 968 static void cpufreq_sysfs_release(struct kobject *kobj) 969 { 970 struct cpufreq_policy *policy = to_policy(kobj); 971 pr_debug("last reference is dropped\n"); 972 complete(&policy->kobj_unregister); 973 } 974 975 static const struct sysfs_ops sysfs_ops = { 976 .show = show, 977 .store = store, 978 }; 979 980 static struct kobj_type ktype_cpufreq = { 981 .sysfs_ops = &sysfs_ops, 982 .default_attrs = default_attrs, 983 .release = cpufreq_sysfs_release, 984 }; 985 986 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu) 987 { 988 struct device *dev = get_cpu_device(cpu); 989 990 if (unlikely(!dev)) 991 return; 992 993 if (cpumask_test_and_set_cpu(cpu, policy->real_cpus)) 994 return; 995 996 dev_dbg(dev, "%s: Adding symlink\n", __func__); 997 if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq")) 998 dev_err(dev, "cpufreq symlink creation failed\n"); 999 } 1000 1001 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, 1002 struct device *dev) 1003 { 1004 dev_dbg(dev, "%s: Removing symlink\n", __func__); 1005 sysfs_remove_link(&dev->kobj, "cpufreq"); 1006 } 1007 1008 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy) 1009 { 1010 struct freq_attr **drv_attr; 1011 int ret = 0; 1012 1013 /* set up files for this cpu device */ 1014 drv_attr = cpufreq_driver->attr; 1015 while (drv_attr && *drv_attr) { 1016 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 1017 if (ret) 1018 return ret; 1019 drv_attr++; 1020 } 1021 if (cpufreq_driver->get) { 1022 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 1023 if (ret) 1024 return ret; 1025 } 1026 1027 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 1028 if (ret) 1029 return ret; 1030 1031 if (cpufreq_driver->bios_limit) { 1032 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr); 1033 if (ret) 1034 return ret; 1035 } 1036 1037 return 0; 1038 } 1039 1040 __weak struct cpufreq_governor *cpufreq_default_governor(void) 1041 { 1042 return NULL; 1043 } 1044 1045 static int cpufreq_init_policy(struct cpufreq_policy *policy) 1046 { 1047 struct cpufreq_governor *gov = NULL, *def_gov = NULL; 1048 struct cpufreq_policy new_policy; 1049 1050 memcpy(&new_policy, policy, sizeof(*policy)); 1051 1052 def_gov = cpufreq_default_governor(); 1053 1054 if (has_target()) { 1055 /* 1056 * Update governor of new_policy to the governor used before 1057 * hotplug 1058 */ 1059 gov = find_governor(policy->last_governor); 1060 if (gov) { 1061 pr_debug("Restoring governor %s for cpu %d\n", 1062 policy->governor->name, policy->cpu); 1063 } else { 1064 if (!def_gov) 1065 return -ENODATA; 1066 gov = def_gov; 1067 } 1068 new_policy.governor = gov; 1069 } else { 1070 /* Use the default policy if there is no last_policy. */ 1071 if (policy->last_policy) { 1072 new_policy.policy = policy->last_policy; 1073 } else { 1074 if (!def_gov) 1075 return -ENODATA; 1076 cpufreq_parse_policy(def_gov->name, &new_policy); 1077 } 1078 } 1079 1080 return cpufreq_set_policy(policy, &new_policy); 1081 } 1082 1083 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu) 1084 { 1085 int ret = 0; 1086 1087 /* Has this CPU been taken care of already? */ 1088 if (cpumask_test_cpu(cpu, policy->cpus)) 1089 return 0; 1090 1091 down_write(&policy->rwsem); 1092 if (has_target()) 1093 cpufreq_stop_governor(policy); 1094 1095 cpumask_set_cpu(cpu, policy->cpus); 1096 1097 if (has_target()) { 1098 ret = cpufreq_start_governor(policy); 1099 if (ret) 1100 pr_err("%s: Failed to start governor\n", __func__); 1101 } 1102 up_write(&policy->rwsem); 1103 return ret; 1104 } 1105 1106 void refresh_frequency_limits(struct cpufreq_policy *policy) 1107 { 1108 struct cpufreq_policy new_policy; 1109 1110 if (!policy_is_inactive(policy)) { 1111 new_policy = *policy; 1112 pr_debug("updating policy for CPU %u\n", policy->cpu); 1113 1114 cpufreq_set_policy(policy, &new_policy); 1115 } 1116 } 1117 EXPORT_SYMBOL(refresh_frequency_limits); 1118 1119 static void handle_update(struct work_struct *work) 1120 { 1121 struct cpufreq_policy *policy = 1122 container_of(work, struct cpufreq_policy, update); 1123 1124 pr_debug("handle_update for cpu %u called\n", policy->cpu); 1125 down_write(&policy->rwsem); 1126 refresh_frequency_limits(policy); 1127 up_write(&policy->rwsem); 1128 } 1129 1130 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq, 1131 void *data) 1132 { 1133 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min); 1134 1135 schedule_work(&policy->update); 1136 return 0; 1137 } 1138 1139 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq, 1140 void *data) 1141 { 1142 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max); 1143 1144 schedule_work(&policy->update); 1145 return 0; 1146 } 1147 1148 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy) 1149 { 1150 struct kobject *kobj; 1151 struct completion *cmp; 1152 1153 down_write(&policy->rwsem); 1154 cpufreq_stats_free_table(policy); 1155 kobj = &policy->kobj; 1156 cmp = &policy->kobj_unregister; 1157 up_write(&policy->rwsem); 1158 kobject_put(kobj); 1159 1160 /* 1161 * We need to make sure that the underlying kobj is 1162 * actually not referenced anymore by anybody before we 1163 * proceed with unloading. 1164 */ 1165 pr_debug("waiting for dropping of refcount\n"); 1166 wait_for_completion(cmp); 1167 pr_debug("wait complete\n"); 1168 } 1169 1170 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu) 1171 { 1172 struct cpufreq_policy *policy; 1173 struct device *dev = get_cpu_device(cpu); 1174 int ret; 1175 1176 if (!dev) 1177 return NULL; 1178 1179 policy = kzalloc(sizeof(*policy), GFP_KERNEL); 1180 if (!policy) 1181 return NULL; 1182 1183 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) 1184 goto err_free_policy; 1185 1186 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) 1187 goto err_free_cpumask; 1188 1189 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL)) 1190 goto err_free_rcpumask; 1191 1192 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, 1193 cpufreq_global_kobject, "policy%u", cpu); 1194 if (ret) { 1195 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret); 1196 /* 1197 * The entire policy object will be freed below, but the extra 1198 * memory allocated for the kobject name needs to be freed by 1199 * releasing the kobject. 1200 */ 1201 kobject_put(&policy->kobj); 1202 goto err_free_real_cpus; 1203 } 1204 1205 freq_constraints_init(&policy->constraints); 1206 1207 policy->nb_min.notifier_call = cpufreq_notifier_min; 1208 policy->nb_max.notifier_call = cpufreq_notifier_max; 1209 1210 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN, 1211 &policy->nb_min); 1212 if (ret) { 1213 dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n", 1214 ret, cpumask_pr_args(policy->cpus)); 1215 goto err_kobj_remove; 1216 } 1217 1218 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX, 1219 &policy->nb_max); 1220 if (ret) { 1221 dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n", 1222 ret, cpumask_pr_args(policy->cpus)); 1223 goto err_min_qos_notifier; 1224 } 1225 1226 INIT_LIST_HEAD(&policy->policy_list); 1227 init_rwsem(&policy->rwsem); 1228 spin_lock_init(&policy->transition_lock); 1229 init_waitqueue_head(&policy->transition_wait); 1230 init_completion(&policy->kobj_unregister); 1231 INIT_WORK(&policy->update, handle_update); 1232 1233 policy->cpu = cpu; 1234 return policy; 1235 1236 err_min_qos_notifier: 1237 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN, 1238 &policy->nb_min); 1239 err_kobj_remove: 1240 cpufreq_policy_put_kobj(policy); 1241 err_free_real_cpus: 1242 free_cpumask_var(policy->real_cpus); 1243 err_free_rcpumask: 1244 free_cpumask_var(policy->related_cpus); 1245 err_free_cpumask: 1246 free_cpumask_var(policy->cpus); 1247 err_free_policy: 1248 kfree(policy); 1249 1250 return NULL; 1251 } 1252 1253 static void cpufreq_policy_free(struct cpufreq_policy *policy) 1254 { 1255 unsigned long flags; 1256 int cpu; 1257 1258 /* Remove policy from list */ 1259 write_lock_irqsave(&cpufreq_driver_lock, flags); 1260 list_del(&policy->policy_list); 1261 1262 for_each_cpu(cpu, policy->related_cpus) 1263 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1264 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1265 1266 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX, 1267 &policy->nb_max); 1268 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN, 1269 &policy->nb_min); 1270 1271 /* Cancel any pending policy->update work before freeing the policy. */ 1272 cancel_work_sync(&policy->update); 1273 1274 if (policy->max_freq_req) { 1275 /* 1276 * CPUFREQ_CREATE_POLICY notification is sent only after 1277 * successfully adding max_freq_req request. 1278 */ 1279 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1280 CPUFREQ_REMOVE_POLICY, policy); 1281 freq_qos_remove_request(policy->max_freq_req); 1282 } 1283 1284 freq_qos_remove_request(policy->min_freq_req); 1285 kfree(policy->min_freq_req); 1286 1287 cpufreq_policy_put_kobj(policy); 1288 free_cpumask_var(policy->real_cpus); 1289 free_cpumask_var(policy->related_cpus); 1290 free_cpumask_var(policy->cpus); 1291 kfree(policy); 1292 } 1293 1294 static int cpufreq_online(unsigned int cpu) 1295 { 1296 struct cpufreq_policy *policy; 1297 bool new_policy; 1298 unsigned long flags; 1299 unsigned int j; 1300 int ret; 1301 1302 pr_debug("%s: bringing CPU%u online\n", __func__, cpu); 1303 1304 /* Check if this CPU already has a policy to manage it */ 1305 policy = per_cpu(cpufreq_cpu_data, cpu); 1306 if (policy) { 1307 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus)); 1308 if (!policy_is_inactive(policy)) 1309 return cpufreq_add_policy_cpu(policy, cpu); 1310 1311 /* This is the only online CPU for the policy. Start over. */ 1312 new_policy = false; 1313 down_write(&policy->rwsem); 1314 policy->cpu = cpu; 1315 policy->governor = NULL; 1316 up_write(&policy->rwsem); 1317 } else { 1318 new_policy = true; 1319 policy = cpufreq_policy_alloc(cpu); 1320 if (!policy) 1321 return -ENOMEM; 1322 } 1323 1324 if (!new_policy && cpufreq_driver->online) { 1325 ret = cpufreq_driver->online(policy); 1326 if (ret) { 1327 pr_debug("%s: %d: initialization failed\n", __func__, 1328 __LINE__); 1329 goto out_exit_policy; 1330 } 1331 1332 /* Recover policy->cpus using related_cpus */ 1333 cpumask_copy(policy->cpus, policy->related_cpus); 1334 } else { 1335 cpumask_copy(policy->cpus, cpumask_of(cpu)); 1336 1337 /* 1338 * Call driver. From then on the cpufreq must be able 1339 * to accept all calls to ->verify and ->setpolicy for this CPU. 1340 */ 1341 ret = cpufreq_driver->init(policy); 1342 if (ret) { 1343 pr_debug("%s: %d: initialization failed\n", __func__, 1344 __LINE__); 1345 goto out_free_policy; 1346 } 1347 1348 ret = cpufreq_table_validate_and_sort(policy); 1349 if (ret) 1350 goto out_exit_policy; 1351 1352 /* related_cpus should at least include policy->cpus. */ 1353 cpumask_copy(policy->related_cpus, policy->cpus); 1354 } 1355 1356 down_write(&policy->rwsem); 1357 /* 1358 * affected cpus must always be the one, which are online. We aren't 1359 * managing offline cpus here. 1360 */ 1361 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask); 1362 1363 if (new_policy) { 1364 for_each_cpu(j, policy->related_cpus) { 1365 per_cpu(cpufreq_cpu_data, j) = policy; 1366 add_cpu_dev_symlink(policy, j); 1367 } 1368 1369 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req), 1370 GFP_KERNEL); 1371 if (!policy->min_freq_req) 1372 goto out_destroy_policy; 1373 1374 ret = freq_qos_add_request(&policy->constraints, 1375 policy->min_freq_req, FREQ_QOS_MIN, 1376 policy->min); 1377 if (ret < 0) { 1378 /* 1379 * So we don't call freq_qos_remove_request() for an 1380 * uninitialized request. 1381 */ 1382 kfree(policy->min_freq_req); 1383 policy->min_freq_req = NULL; 1384 goto out_destroy_policy; 1385 } 1386 1387 /* 1388 * This must be initialized right here to avoid calling 1389 * freq_qos_remove_request() on uninitialized request in case 1390 * of errors. 1391 */ 1392 policy->max_freq_req = policy->min_freq_req + 1; 1393 1394 ret = freq_qos_add_request(&policy->constraints, 1395 policy->max_freq_req, FREQ_QOS_MAX, 1396 policy->max); 1397 if (ret < 0) { 1398 policy->max_freq_req = NULL; 1399 goto out_destroy_policy; 1400 } 1401 1402 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1403 CPUFREQ_CREATE_POLICY, policy); 1404 } 1405 1406 if (cpufreq_driver->get && has_target()) { 1407 policy->cur = cpufreq_driver->get(policy->cpu); 1408 if (!policy->cur) { 1409 pr_err("%s: ->get() failed\n", __func__); 1410 goto out_destroy_policy; 1411 } 1412 } 1413 1414 /* 1415 * Sometimes boot loaders set CPU frequency to a value outside of 1416 * frequency table present with cpufreq core. In such cases CPU might be 1417 * unstable if it has to run on that frequency for long duration of time 1418 * and so its better to set it to a frequency which is specified in 1419 * freq-table. This also makes cpufreq stats inconsistent as 1420 * cpufreq-stats would fail to register because current frequency of CPU 1421 * isn't found in freq-table. 1422 * 1423 * Because we don't want this change to effect boot process badly, we go 1424 * for the next freq which is >= policy->cur ('cur' must be set by now, 1425 * otherwise we will end up setting freq to lowest of the table as 'cur' 1426 * is initialized to zero). 1427 * 1428 * We are passing target-freq as "policy->cur - 1" otherwise 1429 * __cpufreq_driver_target() would simply fail, as policy->cur will be 1430 * equal to target-freq. 1431 */ 1432 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK) 1433 && has_target()) { 1434 /* Are we running at unknown frequency ? */ 1435 ret = cpufreq_frequency_table_get_index(policy, policy->cur); 1436 if (ret == -EINVAL) { 1437 /* Warn user and fix it */ 1438 pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n", 1439 __func__, policy->cpu, policy->cur); 1440 ret = __cpufreq_driver_target(policy, policy->cur - 1, 1441 CPUFREQ_RELATION_L); 1442 1443 /* 1444 * Reaching here after boot in a few seconds may not 1445 * mean that system will remain stable at "unknown" 1446 * frequency for longer duration. Hence, a BUG_ON(). 1447 */ 1448 BUG_ON(ret); 1449 pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n", 1450 __func__, policy->cpu, policy->cur); 1451 } 1452 } 1453 1454 if (new_policy) { 1455 ret = cpufreq_add_dev_interface(policy); 1456 if (ret) 1457 goto out_destroy_policy; 1458 1459 cpufreq_stats_create_table(policy); 1460 1461 write_lock_irqsave(&cpufreq_driver_lock, flags); 1462 list_add(&policy->policy_list, &cpufreq_policy_list); 1463 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1464 } 1465 1466 ret = cpufreq_init_policy(policy); 1467 if (ret) { 1468 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n", 1469 __func__, cpu, ret); 1470 goto out_destroy_policy; 1471 } 1472 1473 up_write(&policy->rwsem); 1474 1475 kobject_uevent(&policy->kobj, KOBJ_ADD); 1476 1477 /* Callback for handling stuff after policy is ready */ 1478 if (cpufreq_driver->ready) 1479 cpufreq_driver->ready(policy); 1480 1481 if (cpufreq_thermal_control_enabled(cpufreq_driver)) 1482 policy->cdev = of_cpufreq_cooling_register(policy); 1483 1484 pr_debug("initialization complete\n"); 1485 1486 return 0; 1487 1488 out_destroy_policy: 1489 for_each_cpu(j, policy->real_cpus) 1490 remove_cpu_dev_symlink(policy, get_cpu_device(j)); 1491 1492 up_write(&policy->rwsem); 1493 1494 out_exit_policy: 1495 if (cpufreq_driver->exit) 1496 cpufreq_driver->exit(policy); 1497 1498 out_free_policy: 1499 cpufreq_policy_free(policy); 1500 return ret; 1501 } 1502 1503 /** 1504 * cpufreq_add_dev - the cpufreq interface for a CPU device. 1505 * @dev: CPU device. 1506 * @sif: Subsystem interface structure pointer (not used) 1507 */ 1508 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 1509 { 1510 struct cpufreq_policy *policy; 1511 unsigned cpu = dev->id; 1512 int ret; 1513 1514 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu); 1515 1516 if (cpu_online(cpu)) { 1517 ret = cpufreq_online(cpu); 1518 if (ret) 1519 return ret; 1520 } 1521 1522 /* Create sysfs link on CPU registration */ 1523 policy = per_cpu(cpufreq_cpu_data, cpu); 1524 if (policy) 1525 add_cpu_dev_symlink(policy, cpu); 1526 1527 return 0; 1528 } 1529 1530 static int cpufreq_offline(unsigned int cpu) 1531 { 1532 struct cpufreq_policy *policy; 1533 int ret; 1534 1535 pr_debug("%s: unregistering CPU %u\n", __func__, cpu); 1536 1537 policy = cpufreq_cpu_get_raw(cpu); 1538 if (!policy) { 1539 pr_debug("%s: No cpu_data found\n", __func__); 1540 return 0; 1541 } 1542 1543 down_write(&policy->rwsem); 1544 if (has_target()) 1545 cpufreq_stop_governor(policy); 1546 1547 cpumask_clear_cpu(cpu, policy->cpus); 1548 1549 if (policy_is_inactive(policy)) { 1550 if (has_target()) 1551 strncpy(policy->last_governor, policy->governor->name, 1552 CPUFREQ_NAME_LEN); 1553 else 1554 policy->last_policy = policy->policy; 1555 } else if (cpu == policy->cpu) { 1556 /* Nominate new CPU */ 1557 policy->cpu = cpumask_any(policy->cpus); 1558 } 1559 1560 /* Start governor again for active policy */ 1561 if (!policy_is_inactive(policy)) { 1562 if (has_target()) { 1563 ret = cpufreq_start_governor(policy); 1564 if (ret) 1565 pr_err("%s: Failed to start governor\n", __func__); 1566 } 1567 1568 goto unlock; 1569 } 1570 1571 if (cpufreq_thermal_control_enabled(cpufreq_driver)) { 1572 cpufreq_cooling_unregister(policy->cdev); 1573 policy->cdev = NULL; 1574 } 1575 1576 if (cpufreq_driver->stop_cpu) 1577 cpufreq_driver->stop_cpu(policy); 1578 1579 if (has_target()) 1580 cpufreq_exit_governor(policy); 1581 1582 /* 1583 * Perform the ->offline() during light-weight tear-down, as 1584 * that allows fast recovery when the CPU comes back. 1585 */ 1586 if (cpufreq_driver->offline) { 1587 cpufreq_driver->offline(policy); 1588 } else if (cpufreq_driver->exit) { 1589 cpufreq_driver->exit(policy); 1590 policy->freq_table = NULL; 1591 } 1592 1593 unlock: 1594 up_write(&policy->rwsem); 1595 return 0; 1596 } 1597 1598 /** 1599 * cpufreq_remove_dev - remove a CPU device 1600 * 1601 * Removes the cpufreq interface for a CPU device. 1602 */ 1603 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif) 1604 { 1605 unsigned int cpu = dev->id; 1606 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1607 1608 if (!policy) 1609 return; 1610 1611 if (cpu_online(cpu)) 1612 cpufreq_offline(cpu); 1613 1614 cpumask_clear_cpu(cpu, policy->real_cpus); 1615 remove_cpu_dev_symlink(policy, dev); 1616 1617 if (cpumask_empty(policy->real_cpus)) { 1618 /* We did light-weight exit earlier, do full tear down now */ 1619 if (cpufreq_driver->offline) 1620 cpufreq_driver->exit(policy); 1621 1622 cpufreq_policy_free(policy); 1623 } 1624 } 1625 1626 /** 1627 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're 1628 * in deep trouble. 1629 * @policy: policy managing CPUs 1630 * @new_freq: CPU frequency the CPU actually runs at 1631 * 1632 * We adjust to current frequency first, and need to clean up later. 1633 * So either call to cpufreq_update_policy() or schedule handle_update()). 1634 */ 1635 static void cpufreq_out_of_sync(struct cpufreq_policy *policy, 1636 unsigned int new_freq) 1637 { 1638 struct cpufreq_freqs freqs; 1639 1640 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n", 1641 policy->cur, new_freq); 1642 1643 freqs.old = policy->cur; 1644 freqs.new = new_freq; 1645 1646 cpufreq_freq_transition_begin(policy, &freqs); 1647 cpufreq_freq_transition_end(policy, &freqs, 0); 1648 } 1649 1650 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update) 1651 { 1652 unsigned int new_freq; 1653 1654 new_freq = cpufreq_driver->get(policy->cpu); 1655 if (!new_freq) 1656 return 0; 1657 1658 /* 1659 * If fast frequency switching is used with the given policy, the check 1660 * against policy->cur is pointless, so skip it in that case. 1661 */ 1662 if (policy->fast_switch_enabled || !has_target()) 1663 return new_freq; 1664 1665 if (policy->cur != new_freq) { 1666 cpufreq_out_of_sync(policy, new_freq); 1667 if (update) 1668 schedule_work(&policy->update); 1669 } 1670 1671 return new_freq; 1672 } 1673 1674 /** 1675 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur 1676 * @cpu: CPU number 1677 * 1678 * This is the last known freq, without actually getting it from the driver. 1679 * Return value will be same as what is shown in scaling_cur_freq in sysfs. 1680 */ 1681 unsigned int cpufreq_quick_get(unsigned int cpu) 1682 { 1683 struct cpufreq_policy *policy; 1684 unsigned int ret_freq = 0; 1685 unsigned long flags; 1686 1687 read_lock_irqsave(&cpufreq_driver_lock, flags); 1688 1689 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) { 1690 ret_freq = cpufreq_driver->get(cpu); 1691 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1692 return ret_freq; 1693 } 1694 1695 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1696 1697 policy = cpufreq_cpu_get(cpu); 1698 if (policy) { 1699 ret_freq = policy->cur; 1700 cpufreq_cpu_put(policy); 1701 } 1702 1703 return ret_freq; 1704 } 1705 EXPORT_SYMBOL(cpufreq_quick_get); 1706 1707 /** 1708 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU 1709 * @cpu: CPU number 1710 * 1711 * Just return the max possible frequency for a given CPU. 1712 */ 1713 unsigned int cpufreq_quick_get_max(unsigned int cpu) 1714 { 1715 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1716 unsigned int ret_freq = 0; 1717 1718 if (policy) { 1719 ret_freq = policy->max; 1720 cpufreq_cpu_put(policy); 1721 } 1722 1723 return ret_freq; 1724 } 1725 EXPORT_SYMBOL(cpufreq_quick_get_max); 1726 1727 static unsigned int __cpufreq_get(struct cpufreq_policy *policy) 1728 { 1729 if (unlikely(policy_is_inactive(policy))) 1730 return 0; 1731 1732 return cpufreq_verify_current_freq(policy, true); 1733 } 1734 1735 /** 1736 * cpufreq_get - get the current CPU frequency (in kHz) 1737 * @cpu: CPU number 1738 * 1739 * Get the CPU current (static) CPU frequency 1740 */ 1741 unsigned int cpufreq_get(unsigned int cpu) 1742 { 1743 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1744 unsigned int ret_freq = 0; 1745 1746 if (policy) { 1747 down_read(&policy->rwsem); 1748 if (cpufreq_driver->get) 1749 ret_freq = __cpufreq_get(policy); 1750 up_read(&policy->rwsem); 1751 1752 cpufreq_cpu_put(policy); 1753 } 1754 1755 return ret_freq; 1756 } 1757 EXPORT_SYMBOL(cpufreq_get); 1758 1759 static struct subsys_interface cpufreq_interface = { 1760 .name = "cpufreq", 1761 .subsys = &cpu_subsys, 1762 .add_dev = cpufreq_add_dev, 1763 .remove_dev = cpufreq_remove_dev, 1764 }; 1765 1766 /* 1767 * In case platform wants some specific frequency to be configured 1768 * during suspend.. 1769 */ 1770 int cpufreq_generic_suspend(struct cpufreq_policy *policy) 1771 { 1772 int ret; 1773 1774 if (!policy->suspend_freq) { 1775 pr_debug("%s: suspend_freq not defined\n", __func__); 1776 return 0; 1777 } 1778 1779 pr_debug("%s: Setting suspend-freq: %u\n", __func__, 1780 policy->suspend_freq); 1781 1782 ret = __cpufreq_driver_target(policy, policy->suspend_freq, 1783 CPUFREQ_RELATION_H); 1784 if (ret) 1785 pr_err("%s: unable to set suspend-freq: %u. err: %d\n", 1786 __func__, policy->suspend_freq, ret); 1787 1788 return ret; 1789 } 1790 EXPORT_SYMBOL(cpufreq_generic_suspend); 1791 1792 /** 1793 * cpufreq_suspend() - Suspend CPUFreq governors 1794 * 1795 * Called during system wide Suspend/Hibernate cycles for suspending governors 1796 * as some platforms can't change frequency after this point in suspend cycle. 1797 * Because some of the devices (like: i2c, regulators, etc) they use for 1798 * changing frequency are suspended quickly after this point. 1799 */ 1800 void cpufreq_suspend(void) 1801 { 1802 struct cpufreq_policy *policy; 1803 1804 if (!cpufreq_driver) 1805 return; 1806 1807 if (!has_target() && !cpufreq_driver->suspend) 1808 goto suspend; 1809 1810 pr_debug("%s: Suspending Governors\n", __func__); 1811 1812 for_each_active_policy(policy) { 1813 if (has_target()) { 1814 down_write(&policy->rwsem); 1815 cpufreq_stop_governor(policy); 1816 up_write(&policy->rwsem); 1817 } 1818 1819 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy)) 1820 pr_err("%s: Failed to suspend driver: %s\n", __func__, 1821 cpufreq_driver->name); 1822 } 1823 1824 suspend: 1825 cpufreq_suspended = true; 1826 } 1827 1828 /** 1829 * cpufreq_resume() - Resume CPUFreq governors 1830 * 1831 * Called during system wide Suspend/Hibernate cycle for resuming governors that 1832 * are suspended with cpufreq_suspend(). 1833 */ 1834 void cpufreq_resume(void) 1835 { 1836 struct cpufreq_policy *policy; 1837 int ret; 1838 1839 if (!cpufreq_driver) 1840 return; 1841 1842 if (unlikely(!cpufreq_suspended)) 1843 return; 1844 1845 cpufreq_suspended = false; 1846 1847 if (!has_target() && !cpufreq_driver->resume) 1848 return; 1849 1850 pr_debug("%s: Resuming Governors\n", __func__); 1851 1852 for_each_active_policy(policy) { 1853 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) { 1854 pr_err("%s: Failed to resume driver: %p\n", __func__, 1855 policy); 1856 } else if (has_target()) { 1857 down_write(&policy->rwsem); 1858 ret = cpufreq_start_governor(policy); 1859 up_write(&policy->rwsem); 1860 1861 if (ret) 1862 pr_err("%s: Failed to start governor for policy: %p\n", 1863 __func__, policy); 1864 } 1865 } 1866 } 1867 1868 /** 1869 * cpufreq_get_current_driver - return current driver's name 1870 * 1871 * Return the name string of the currently loaded cpufreq driver 1872 * or NULL, if none. 1873 */ 1874 const char *cpufreq_get_current_driver(void) 1875 { 1876 if (cpufreq_driver) 1877 return cpufreq_driver->name; 1878 1879 return NULL; 1880 } 1881 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver); 1882 1883 /** 1884 * cpufreq_get_driver_data - return current driver data 1885 * 1886 * Return the private data of the currently loaded cpufreq 1887 * driver, or NULL if no cpufreq driver is loaded. 1888 */ 1889 void *cpufreq_get_driver_data(void) 1890 { 1891 if (cpufreq_driver) 1892 return cpufreq_driver->driver_data; 1893 1894 return NULL; 1895 } 1896 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data); 1897 1898 /********************************************************************* 1899 * NOTIFIER LISTS INTERFACE * 1900 *********************************************************************/ 1901 1902 /** 1903 * cpufreq_register_notifier - register a driver with cpufreq 1904 * @nb: notifier function to register 1905 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1906 * 1907 * Add a driver to one of two lists: either a list of drivers that 1908 * are notified about clock rate changes (once before and once after 1909 * the transition), or a list of drivers that are notified about 1910 * changes in cpufreq policy. 1911 * 1912 * This function may sleep, and has the same return conditions as 1913 * blocking_notifier_chain_register. 1914 */ 1915 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 1916 { 1917 int ret; 1918 1919 if (cpufreq_disabled()) 1920 return -EINVAL; 1921 1922 switch (list) { 1923 case CPUFREQ_TRANSITION_NOTIFIER: 1924 mutex_lock(&cpufreq_fast_switch_lock); 1925 1926 if (cpufreq_fast_switch_count > 0) { 1927 mutex_unlock(&cpufreq_fast_switch_lock); 1928 return -EBUSY; 1929 } 1930 ret = srcu_notifier_chain_register( 1931 &cpufreq_transition_notifier_list, nb); 1932 if (!ret) 1933 cpufreq_fast_switch_count--; 1934 1935 mutex_unlock(&cpufreq_fast_switch_lock); 1936 break; 1937 case CPUFREQ_POLICY_NOTIFIER: 1938 ret = blocking_notifier_chain_register( 1939 &cpufreq_policy_notifier_list, nb); 1940 break; 1941 default: 1942 ret = -EINVAL; 1943 } 1944 1945 return ret; 1946 } 1947 EXPORT_SYMBOL(cpufreq_register_notifier); 1948 1949 /** 1950 * cpufreq_unregister_notifier - unregister a driver with cpufreq 1951 * @nb: notifier block to be unregistered 1952 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1953 * 1954 * Remove a driver from the CPU frequency notifier list. 1955 * 1956 * This function may sleep, and has the same return conditions as 1957 * blocking_notifier_chain_unregister. 1958 */ 1959 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 1960 { 1961 int ret; 1962 1963 if (cpufreq_disabled()) 1964 return -EINVAL; 1965 1966 switch (list) { 1967 case CPUFREQ_TRANSITION_NOTIFIER: 1968 mutex_lock(&cpufreq_fast_switch_lock); 1969 1970 ret = srcu_notifier_chain_unregister( 1971 &cpufreq_transition_notifier_list, nb); 1972 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0)) 1973 cpufreq_fast_switch_count++; 1974 1975 mutex_unlock(&cpufreq_fast_switch_lock); 1976 break; 1977 case CPUFREQ_POLICY_NOTIFIER: 1978 ret = blocking_notifier_chain_unregister( 1979 &cpufreq_policy_notifier_list, nb); 1980 break; 1981 default: 1982 ret = -EINVAL; 1983 } 1984 1985 return ret; 1986 } 1987 EXPORT_SYMBOL(cpufreq_unregister_notifier); 1988 1989 1990 /********************************************************************* 1991 * GOVERNORS * 1992 *********************************************************************/ 1993 1994 /** 1995 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch. 1996 * @policy: cpufreq policy to switch the frequency for. 1997 * @target_freq: New frequency to set (may be approximate). 1998 * 1999 * Carry out a fast frequency switch without sleeping. 2000 * 2001 * The driver's ->fast_switch() callback invoked by this function must be 2002 * suitable for being called from within RCU-sched read-side critical sections 2003 * and it is expected to select the minimum available frequency greater than or 2004 * equal to @target_freq (CPUFREQ_RELATION_L). 2005 * 2006 * This function must not be called if policy->fast_switch_enabled is unset. 2007 * 2008 * Governors calling this function must guarantee that it will never be invoked 2009 * twice in parallel for the same policy and that it will never be called in 2010 * parallel with either ->target() or ->target_index() for the same policy. 2011 * 2012 * Returns the actual frequency set for the CPU. 2013 * 2014 * If 0 is returned by the driver's ->fast_switch() callback to indicate an 2015 * error condition, the hardware configuration must be preserved. 2016 */ 2017 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy, 2018 unsigned int target_freq) 2019 { 2020 target_freq = clamp_val(target_freq, policy->min, policy->max); 2021 2022 return cpufreq_driver->fast_switch(policy, target_freq); 2023 } 2024 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch); 2025 2026 /* Must set freqs->new to intermediate frequency */ 2027 static int __target_intermediate(struct cpufreq_policy *policy, 2028 struct cpufreq_freqs *freqs, int index) 2029 { 2030 int ret; 2031 2032 freqs->new = cpufreq_driver->get_intermediate(policy, index); 2033 2034 /* We don't need to switch to intermediate freq */ 2035 if (!freqs->new) 2036 return 0; 2037 2038 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n", 2039 __func__, policy->cpu, freqs->old, freqs->new); 2040 2041 cpufreq_freq_transition_begin(policy, freqs); 2042 ret = cpufreq_driver->target_intermediate(policy, index); 2043 cpufreq_freq_transition_end(policy, freqs, ret); 2044 2045 if (ret) 2046 pr_err("%s: Failed to change to intermediate frequency: %d\n", 2047 __func__, ret); 2048 2049 return ret; 2050 } 2051 2052 static int __target_index(struct cpufreq_policy *policy, int index) 2053 { 2054 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0}; 2055 unsigned int intermediate_freq = 0; 2056 unsigned int newfreq = policy->freq_table[index].frequency; 2057 int retval = -EINVAL; 2058 bool notify; 2059 2060 if (newfreq == policy->cur) 2061 return 0; 2062 2063 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION); 2064 if (notify) { 2065 /* Handle switching to intermediate frequency */ 2066 if (cpufreq_driver->get_intermediate) { 2067 retval = __target_intermediate(policy, &freqs, index); 2068 if (retval) 2069 return retval; 2070 2071 intermediate_freq = freqs.new; 2072 /* Set old freq to intermediate */ 2073 if (intermediate_freq) 2074 freqs.old = freqs.new; 2075 } 2076 2077 freqs.new = newfreq; 2078 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n", 2079 __func__, policy->cpu, freqs.old, freqs.new); 2080 2081 cpufreq_freq_transition_begin(policy, &freqs); 2082 } 2083 2084 retval = cpufreq_driver->target_index(policy, index); 2085 if (retval) 2086 pr_err("%s: Failed to change cpu frequency: %d\n", __func__, 2087 retval); 2088 2089 if (notify) { 2090 cpufreq_freq_transition_end(policy, &freqs, retval); 2091 2092 /* 2093 * Failed after setting to intermediate freq? Driver should have 2094 * reverted back to initial frequency and so should we. Check 2095 * here for intermediate_freq instead of get_intermediate, in 2096 * case we haven't switched to intermediate freq at all. 2097 */ 2098 if (unlikely(retval && intermediate_freq)) { 2099 freqs.old = intermediate_freq; 2100 freqs.new = policy->restore_freq; 2101 cpufreq_freq_transition_begin(policy, &freqs); 2102 cpufreq_freq_transition_end(policy, &freqs, 0); 2103 } 2104 } 2105 2106 return retval; 2107 } 2108 2109 int __cpufreq_driver_target(struct cpufreq_policy *policy, 2110 unsigned int target_freq, 2111 unsigned int relation) 2112 { 2113 unsigned int old_target_freq = target_freq; 2114 int index; 2115 2116 if (cpufreq_disabled()) 2117 return -ENODEV; 2118 2119 /* Make sure that target_freq is within supported range */ 2120 target_freq = clamp_val(target_freq, policy->min, policy->max); 2121 2122 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n", 2123 policy->cpu, target_freq, relation, old_target_freq); 2124 2125 /* 2126 * This might look like a redundant call as we are checking it again 2127 * after finding index. But it is left intentionally for cases where 2128 * exactly same freq is called again and so we can save on few function 2129 * calls. 2130 */ 2131 if (target_freq == policy->cur) 2132 return 0; 2133 2134 /* Save last value to restore later on errors */ 2135 policy->restore_freq = policy->cur; 2136 2137 if (cpufreq_driver->target) 2138 return cpufreq_driver->target(policy, target_freq, relation); 2139 2140 if (!cpufreq_driver->target_index) 2141 return -EINVAL; 2142 2143 index = cpufreq_frequency_table_target(policy, target_freq, relation); 2144 2145 return __target_index(policy, index); 2146 } 2147 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 2148 2149 int cpufreq_driver_target(struct cpufreq_policy *policy, 2150 unsigned int target_freq, 2151 unsigned int relation) 2152 { 2153 int ret; 2154 2155 down_write(&policy->rwsem); 2156 2157 ret = __cpufreq_driver_target(policy, target_freq, relation); 2158 2159 up_write(&policy->rwsem); 2160 2161 return ret; 2162 } 2163 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 2164 2165 __weak struct cpufreq_governor *cpufreq_fallback_governor(void) 2166 { 2167 return NULL; 2168 } 2169 2170 static int cpufreq_init_governor(struct cpufreq_policy *policy) 2171 { 2172 int ret; 2173 2174 /* Don't start any governor operations if we are entering suspend */ 2175 if (cpufreq_suspended) 2176 return 0; 2177 /* 2178 * Governor might not be initiated here if ACPI _PPC changed 2179 * notification happened, so check it. 2180 */ 2181 if (!policy->governor) 2182 return -EINVAL; 2183 2184 /* Platform doesn't want dynamic frequency switching ? */ 2185 if (policy->governor->dynamic_switching && 2186 cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) { 2187 struct cpufreq_governor *gov = cpufreq_fallback_governor(); 2188 2189 if (gov) { 2190 pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n", 2191 policy->governor->name, gov->name); 2192 policy->governor = gov; 2193 } else { 2194 return -EINVAL; 2195 } 2196 } 2197 2198 if (!try_module_get(policy->governor->owner)) 2199 return -EINVAL; 2200 2201 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2202 2203 if (policy->governor->init) { 2204 ret = policy->governor->init(policy); 2205 if (ret) { 2206 module_put(policy->governor->owner); 2207 return ret; 2208 } 2209 } 2210 2211 return 0; 2212 } 2213 2214 static void cpufreq_exit_governor(struct cpufreq_policy *policy) 2215 { 2216 if (cpufreq_suspended || !policy->governor) 2217 return; 2218 2219 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2220 2221 if (policy->governor->exit) 2222 policy->governor->exit(policy); 2223 2224 module_put(policy->governor->owner); 2225 } 2226 2227 static int cpufreq_start_governor(struct cpufreq_policy *policy) 2228 { 2229 int ret; 2230 2231 if (cpufreq_suspended) 2232 return 0; 2233 2234 if (!policy->governor) 2235 return -EINVAL; 2236 2237 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2238 2239 if (cpufreq_driver->get) 2240 cpufreq_verify_current_freq(policy, false); 2241 2242 if (policy->governor->start) { 2243 ret = policy->governor->start(policy); 2244 if (ret) 2245 return ret; 2246 } 2247 2248 if (policy->governor->limits) 2249 policy->governor->limits(policy); 2250 2251 return 0; 2252 } 2253 2254 static void cpufreq_stop_governor(struct cpufreq_policy *policy) 2255 { 2256 if (cpufreq_suspended || !policy->governor) 2257 return; 2258 2259 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2260 2261 if (policy->governor->stop) 2262 policy->governor->stop(policy); 2263 } 2264 2265 static void cpufreq_governor_limits(struct cpufreq_policy *policy) 2266 { 2267 if (cpufreq_suspended || !policy->governor) 2268 return; 2269 2270 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2271 2272 if (policy->governor->limits) 2273 policy->governor->limits(policy); 2274 } 2275 2276 int cpufreq_register_governor(struct cpufreq_governor *governor) 2277 { 2278 int err; 2279 2280 if (!governor) 2281 return -EINVAL; 2282 2283 if (cpufreq_disabled()) 2284 return -ENODEV; 2285 2286 mutex_lock(&cpufreq_governor_mutex); 2287 2288 err = -EBUSY; 2289 if (!find_governor(governor->name)) { 2290 err = 0; 2291 list_add(&governor->governor_list, &cpufreq_governor_list); 2292 } 2293 2294 mutex_unlock(&cpufreq_governor_mutex); 2295 return err; 2296 } 2297 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 2298 2299 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 2300 { 2301 struct cpufreq_policy *policy; 2302 unsigned long flags; 2303 2304 if (!governor) 2305 return; 2306 2307 if (cpufreq_disabled()) 2308 return; 2309 2310 /* clear last_governor for all inactive policies */ 2311 read_lock_irqsave(&cpufreq_driver_lock, flags); 2312 for_each_inactive_policy(policy) { 2313 if (!strcmp(policy->last_governor, governor->name)) { 2314 policy->governor = NULL; 2315 strcpy(policy->last_governor, "\0"); 2316 } 2317 } 2318 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 2319 2320 mutex_lock(&cpufreq_governor_mutex); 2321 list_del(&governor->governor_list); 2322 mutex_unlock(&cpufreq_governor_mutex); 2323 } 2324 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 2325 2326 2327 /********************************************************************* 2328 * POLICY INTERFACE * 2329 *********************************************************************/ 2330 2331 /** 2332 * cpufreq_get_policy - get the current cpufreq_policy 2333 * @policy: struct cpufreq_policy into which the current cpufreq_policy 2334 * is written 2335 * 2336 * Reads the current cpufreq policy. 2337 */ 2338 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 2339 { 2340 struct cpufreq_policy *cpu_policy; 2341 if (!policy) 2342 return -EINVAL; 2343 2344 cpu_policy = cpufreq_cpu_get(cpu); 2345 if (!cpu_policy) 2346 return -EINVAL; 2347 2348 memcpy(policy, cpu_policy, sizeof(*policy)); 2349 2350 cpufreq_cpu_put(cpu_policy); 2351 return 0; 2352 } 2353 EXPORT_SYMBOL(cpufreq_get_policy); 2354 2355 /** 2356 * cpufreq_set_policy - Modify cpufreq policy parameters. 2357 * @policy: Policy object to modify. 2358 * @new_policy: New policy data. 2359 * 2360 * Pass @new_policy to the cpufreq driver's ->verify() callback. Next, copy the 2361 * min and max parameters of @new_policy to @policy and either invoke the 2362 * driver's ->setpolicy() callback (if present) or carry out a governor update 2363 * for @policy. That is, run the current governor's ->limits() callback (if the 2364 * governor field in @new_policy points to the same object as the one in 2365 * @policy) or replace the governor for @policy with the new one stored in 2366 * @new_policy. 2367 * 2368 * The cpuinfo part of @policy is not updated by this function. 2369 */ 2370 int cpufreq_set_policy(struct cpufreq_policy *policy, 2371 struct cpufreq_policy *new_policy) 2372 { 2373 struct cpufreq_governor *old_gov; 2374 int ret; 2375 2376 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", 2377 new_policy->cpu, new_policy->min, new_policy->max); 2378 2379 memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo)); 2380 2381 /* 2382 * PM QoS framework collects all the requests from users and provide us 2383 * the final aggregated value here. 2384 */ 2385 new_policy->min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN); 2386 new_policy->max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX); 2387 2388 /* verify the cpu speed can be set within this limit */ 2389 ret = cpufreq_driver->verify(new_policy); 2390 if (ret) 2391 return ret; 2392 2393 policy->min = new_policy->min; 2394 policy->max = new_policy->max; 2395 trace_cpu_frequency_limits(policy); 2396 2397 policy->cached_target_freq = UINT_MAX; 2398 2399 pr_debug("new min and max freqs are %u - %u kHz\n", 2400 policy->min, policy->max); 2401 2402 if (cpufreq_driver->setpolicy) { 2403 policy->policy = new_policy->policy; 2404 pr_debug("setting range\n"); 2405 return cpufreq_driver->setpolicy(policy); 2406 } 2407 2408 if (new_policy->governor == policy->governor) { 2409 pr_debug("governor limits update\n"); 2410 cpufreq_governor_limits(policy); 2411 return 0; 2412 } 2413 2414 pr_debug("governor switch\n"); 2415 2416 /* save old, working values */ 2417 old_gov = policy->governor; 2418 /* end old governor */ 2419 if (old_gov) { 2420 cpufreq_stop_governor(policy); 2421 cpufreq_exit_governor(policy); 2422 } 2423 2424 /* start new governor */ 2425 policy->governor = new_policy->governor; 2426 ret = cpufreq_init_governor(policy); 2427 if (!ret) { 2428 ret = cpufreq_start_governor(policy); 2429 if (!ret) { 2430 pr_debug("governor change\n"); 2431 sched_cpufreq_governor_change(policy, old_gov); 2432 return 0; 2433 } 2434 cpufreq_exit_governor(policy); 2435 } 2436 2437 /* new governor failed, so re-start old one */ 2438 pr_debug("starting governor %s failed\n", policy->governor->name); 2439 if (old_gov) { 2440 policy->governor = old_gov; 2441 if (cpufreq_init_governor(policy)) 2442 policy->governor = NULL; 2443 else 2444 cpufreq_start_governor(policy); 2445 } 2446 2447 return ret; 2448 } 2449 2450 /** 2451 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy. 2452 * @cpu: CPU to re-evaluate the policy for. 2453 * 2454 * Update the current frequency for the cpufreq policy of @cpu and use 2455 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the 2456 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback 2457 * for the policy in question, among other things. 2458 */ 2459 void cpufreq_update_policy(unsigned int cpu) 2460 { 2461 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu); 2462 2463 if (!policy) 2464 return; 2465 2466 /* 2467 * BIOS might change freq behind our back 2468 * -> ask driver for current freq and notify governors about a change 2469 */ 2470 if (cpufreq_driver->get && has_target() && 2471 (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false)))) 2472 goto unlock; 2473 2474 refresh_frequency_limits(policy); 2475 2476 unlock: 2477 cpufreq_cpu_release(policy); 2478 } 2479 EXPORT_SYMBOL(cpufreq_update_policy); 2480 2481 /** 2482 * cpufreq_update_limits - Update policy limits for a given CPU. 2483 * @cpu: CPU to update the policy limits for. 2484 * 2485 * Invoke the driver's ->update_limits callback if present or call 2486 * cpufreq_update_policy() for @cpu. 2487 */ 2488 void cpufreq_update_limits(unsigned int cpu) 2489 { 2490 if (cpufreq_driver->update_limits) 2491 cpufreq_driver->update_limits(cpu); 2492 else 2493 cpufreq_update_policy(cpu); 2494 } 2495 EXPORT_SYMBOL_GPL(cpufreq_update_limits); 2496 2497 /********************************************************************* 2498 * BOOST * 2499 *********************************************************************/ 2500 static int cpufreq_boost_set_sw(int state) 2501 { 2502 struct cpufreq_policy *policy; 2503 int ret = -EINVAL; 2504 2505 for_each_active_policy(policy) { 2506 if (!policy->freq_table) 2507 continue; 2508 2509 ret = cpufreq_frequency_table_cpuinfo(policy, 2510 policy->freq_table); 2511 if (ret) { 2512 pr_err("%s: Policy frequency update failed\n", 2513 __func__); 2514 break; 2515 } 2516 2517 ret = freq_qos_update_request(policy->max_freq_req, policy->max); 2518 if (ret < 0) 2519 break; 2520 } 2521 2522 return ret; 2523 } 2524 2525 int cpufreq_boost_trigger_state(int state) 2526 { 2527 unsigned long flags; 2528 int ret = 0; 2529 2530 if (cpufreq_driver->boost_enabled == state) 2531 return 0; 2532 2533 write_lock_irqsave(&cpufreq_driver_lock, flags); 2534 cpufreq_driver->boost_enabled = state; 2535 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2536 2537 ret = cpufreq_driver->set_boost(state); 2538 if (ret) { 2539 write_lock_irqsave(&cpufreq_driver_lock, flags); 2540 cpufreq_driver->boost_enabled = !state; 2541 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2542 2543 pr_err("%s: Cannot %s BOOST\n", 2544 __func__, state ? "enable" : "disable"); 2545 } 2546 2547 return ret; 2548 } 2549 2550 static bool cpufreq_boost_supported(void) 2551 { 2552 return cpufreq_driver->set_boost; 2553 } 2554 2555 static int create_boost_sysfs_file(void) 2556 { 2557 int ret; 2558 2559 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr); 2560 if (ret) 2561 pr_err("%s: cannot register global BOOST sysfs file\n", 2562 __func__); 2563 2564 return ret; 2565 } 2566 2567 static void remove_boost_sysfs_file(void) 2568 { 2569 if (cpufreq_boost_supported()) 2570 sysfs_remove_file(cpufreq_global_kobject, &boost.attr); 2571 } 2572 2573 int cpufreq_enable_boost_support(void) 2574 { 2575 if (!cpufreq_driver) 2576 return -EINVAL; 2577 2578 if (cpufreq_boost_supported()) 2579 return 0; 2580 2581 cpufreq_driver->set_boost = cpufreq_boost_set_sw; 2582 2583 /* This will get removed on driver unregister */ 2584 return create_boost_sysfs_file(); 2585 } 2586 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support); 2587 2588 int cpufreq_boost_enabled(void) 2589 { 2590 return cpufreq_driver->boost_enabled; 2591 } 2592 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled); 2593 2594 /********************************************************************* 2595 * REGISTER / UNREGISTER CPUFREQ DRIVER * 2596 *********************************************************************/ 2597 static enum cpuhp_state hp_online; 2598 2599 static int cpuhp_cpufreq_online(unsigned int cpu) 2600 { 2601 cpufreq_online(cpu); 2602 2603 return 0; 2604 } 2605 2606 static int cpuhp_cpufreq_offline(unsigned int cpu) 2607 { 2608 cpufreq_offline(cpu); 2609 2610 return 0; 2611 } 2612 2613 /** 2614 * cpufreq_register_driver - register a CPU Frequency driver 2615 * @driver_data: A struct cpufreq_driver containing the values# 2616 * submitted by the CPU Frequency driver. 2617 * 2618 * Registers a CPU Frequency driver to this core code. This code 2619 * returns zero on success, -EEXIST when another driver got here first 2620 * (and isn't unregistered in the meantime). 2621 * 2622 */ 2623 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 2624 { 2625 unsigned long flags; 2626 int ret; 2627 2628 if (cpufreq_disabled()) 2629 return -ENODEV; 2630 2631 if (!driver_data || !driver_data->verify || !driver_data->init || 2632 !(driver_data->setpolicy || driver_data->target_index || 2633 driver_data->target) || 2634 (driver_data->setpolicy && (driver_data->target_index || 2635 driver_data->target)) || 2636 (!driver_data->get_intermediate != !driver_data->target_intermediate) || 2637 (!driver_data->online != !driver_data->offline)) 2638 return -EINVAL; 2639 2640 pr_debug("trying to register driver %s\n", driver_data->name); 2641 2642 /* Protect against concurrent CPU online/offline. */ 2643 cpus_read_lock(); 2644 2645 write_lock_irqsave(&cpufreq_driver_lock, flags); 2646 if (cpufreq_driver) { 2647 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2648 ret = -EEXIST; 2649 goto out; 2650 } 2651 cpufreq_driver = driver_data; 2652 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2653 2654 if (driver_data->setpolicy) 2655 driver_data->flags |= CPUFREQ_CONST_LOOPS; 2656 2657 if (cpufreq_boost_supported()) { 2658 ret = create_boost_sysfs_file(); 2659 if (ret) 2660 goto err_null_driver; 2661 } 2662 2663 ret = subsys_interface_register(&cpufreq_interface); 2664 if (ret) 2665 goto err_boost_unreg; 2666 2667 if (!(cpufreq_driver->flags & CPUFREQ_STICKY) && 2668 list_empty(&cpufreq_policy_list)) { 2669 /* if all ->init() calls failed, unregister */ 2670 ret = -ENODEV; 2671 pr_debug("%s: No CPU initialized for driver %s\n", __func__, 2672 driver_data->name); 2673 goto err_if_unreg; 2674 } 2675 2676 ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN, 2677 "cpufreq:online", 2678 cpuhp_cpufreq_online, 2679 cpuhp_cpufreq_offline); 2680 if (ret < 0) 2681 goto err_if_unreg; 2682 hp_online = ret; 2683 ret = 0; 2684 2685 pr_debug("driver %s up and running\n", driver_data->name); 2686 goto out; 2687 2688 err_if_unreg: 2689 subsys_interface_unregister(&cpufreq_interface); 2690 err_boost_unreg: 2691 remove_boost_sysfs_file(); 2692 err_null_driver: 2693 write_lock_irqsave(&cpufreq_driver_lock, flags); 2694 cpufreq_driver = NULL; 2695 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2696 out: 2697 cpus_read_unlock(); 2698 return ret; 2699 } 2700 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 2701 2702 /** 2703 * cpufreq_unregister_driver - unregister the current CPUFreq driver 2704 * 2705 * Unregister the current CPUFreq driver. Only call this if you have 2706 * the right to do so, i.e. if you have succeeded in initialising before! 2707 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 2708 * currently not initialised. 2709 */ 2710 int cpufreq_unregister_driver(struct cpufreq_driver *driver) 2711 { 2712 unsigned long flags; 2713 2714 if (!cpufreq_driver || (driver != cpufreq_driver)) 2715 return -EINVAL; 2716 2717 pr_debug("unregistering driver %s\n", driver->name); 2718 2719 /* Protect against concurrent cpu hotplug */ 2720 cpus_read_lock(); 2721 subsys_interface_unregister(&cpufreq_interface); 2722 remove_boost_sysfs_file(); 2723 cpuhp_remove_state_nocalls_cpuslocked(hp_online); 2724 2725 write_lock_irqsave(&cpufreq_driver_lock, flags); 2726 2727 cpufreq_driver = NULL; 2728 2729 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2730 cpus_read_unlock(); 2731 2732 return 0; 2733 } 2734 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 2735 2736 struct kobject *cpufreq_global_kobject; 2737 EXPORT_SYMBOL(cpufreq_global_kobject); 2738 2739 static int __init cpufreq_core_init(void) 2740 { 2741 if (cpufreq_disabled()) 2742 return -ENODEV; 2743 2744 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj); 2745 BUG_ON(!cpufreq_global_kobject); 2746 2747 return 0; 2748 } 2749 module_param(off, int, 0444); 2750 core_initcall(cpufreq_core_init); 2751