xref: /linux/drivers/cpufreq/cpufreq.c (revision 2624f124b3b5d550ab2fbef7ee3bc0e1fed09722)
1 /*
2  *  linux/drivers/cpufreq/cpufreq.c
3  *
4  *  Copyright (C) 2001 Russell King
5  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  */
12 
13 #include <linux/config.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/notifier.h>
18 #include <linux/cpufreq.h>
19 #include <linux/delay.h>
20 #include <linux/interrupt.h>
21 #include <linux/spinlock.h>
22 #include <linux/device.h>
23 #include <linux/slab.h>
24 #include <linux/cpu.h>
25 #include <linux/completion.h>
26 
27 #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_CORE, "cpufreq-core", msg)
28 
29 /**
30  * The "cpufreq driver" - the arch- or hardware-dependend low
31  * level driver of CPUFreq support, and its spinlock. This lock
32  * also protects the cpufreq_cpu_data array.
33  */
34 static struct cpufreq_driver   	*cpufreq_driver;
35 static struct cpufreq_policy	*cpufreq_cpu_data[NR_CPUS];
36 static DEFINE_SPINLOCK(cpufreq_driver_lock);
37 
38 
39 /* we keep a copy of all ->add'ed CPU's struct sys_device here;
40  * as it is only accessed in ->add and ->remove, no lock or reference
41  * count is necessary.
42  */
43 static struct sys_device	*cpu_sys_devices[NR_CPUS];
44 
45 
46 /* internal prototypes */
47 static int __cpufreq_governor(struct cpufreq_policy *policy, unsigned int event);
48 static void handle_update(void *data);
49 static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci);
50 
51 /**
52  * Two notifier lists: the "policy" list is involved in the
53  * validation process for a new CPU frequency policy; the
54  * "transition" list for kernel code that needs to handle
55  * changes to devices when the CPU clock speed changes.
56  * The mutex locks both lists.
57  */
58 static struct notifier_block    *cpufreq_policy_notifier_list;
59 static struct notifier_block    *cpufreq_transition_notifier_list;
60 static DECLARE_RWSEM		(cpufreq_notifier_rwsem);
61 
62 
63 static LIST_HEAD(cpufreq_governor_list);
64 static DECLARE_MUTEX		(cpufreq_governor_sem);
65 
66 struct cpufreq_policy * cpufreq_cpu_get(unsigned int cpu)
67 {
68 	struct cpufreq_policy *data;
69 	unsigned long flags;
70 
71 	if (cpu >= NR_CPUS)
72 		goto err_out;
73 
74 	/* get the cpufreq driver */
75 	spin_lock_irqsave(&cpufreq_driver_lock, flags);
76 
77 	if (!cpufreq_driver)
78 		goto err_out_unlock;
79 
80 	if (!try_module_get(cpufreq_driver->owner))
81 		goto err_out_unlock;
82 
83 
84 	/* get the CPU */
85 	data = cpufreq_cpu_data[cpu];
86 
87 	if (!data)
88 		goto err_out_put_module;
89 
90 	if (!kobject_get(&data->kobj))
91 		goto err_out_put_module;
92 
93 
94 	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
95 
96 	return data;
97 
98  err_out_put_module:
99 	module_put(cpufreq_driver->owner);
100  err_out_unlock:
101 	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
102  err_out:
103 	return NULL;
104 }
105 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
106 
107 void cpufreq_cpu_put(struct cpufreq_policy *data)
108 {
109 	kobject_put(&data->kobj);
110 	module_put(cpufreq_driver->owner);
111 }
112 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
113 
114 
115 /*********************************************************************
116  *                     UNIFIED DEBUG HELPERS                         *
117  *********************************************************************/
118 #ifdef CONFIG_CPU_FREQ_DEBUG
119 
120 /* what part(s) of the CPUfreq subsystem are debugged? */
121 static unsigned int debug;
122 
123 /* is the debug output ratelimit'ed using printk_ratelimit? User can
124  * set or modify this value.
125  */
126 static unsigned int debug_ratelimit = 1;
127 
128 /* is the printk_ratelimit'ing enabled? It's enabled after a successful
129  * loading of a cpufreq driver, temporarily disabled when a new policy
130  * is set, and disabled upon cpufreq driver removal
131  */
132 static unsigned int disable_ratelimit = 1;
133 static DEFINE_SPINLOCK(disable_ratelimit_lock);
134 
135 static inline void cpufreq_debug_enable_ratelimit(void)
136 {
137 	unsigned long flags;
138 
139 	spin_lock_irqsave(&disable_ratelimit_lock, flags);
140 	if (disable_ratelimit)
141 		disable_ratelimit--;
142 	spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
143 }
144 
145 static inline void cpufreq_debug_disable_ratelimit(void)
146 {
147 	unsigned long flags;
148 
149 	spin_lock_irqsave(&disable_ratelimit_lock, flags);
150 	disable_ratelimit++;
151 	spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
152 }
153 
154 void cpufreq_debug_printk(unsigned int type, const char *prefix, const char *fmt, ...)
155 {
156 	char s[256];
157 	va_list args;
158 	unsigned int len;
159 	unsigned long flags;
160 
161 	WARN_ON(!prefix);
162 	if (type & debug) {
163 		spin_lock_irqsave(&disable_ratelimit_lock, flags);
164 		if (!disable_ratelimit && debug_ratelimit && !printk_ratelimit()) {
165 			spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
166 			return;
167 		}
168 		spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
169 
170 		len = snprintf(s, 256, KERN_DEBUG "%s: ", prefix);
171 
172 		va_start(args, fmt);
173 		len += vsnprintf(&s[len], (256 - len), fmt, args);
174 		va_end(args);
175 
176 		printk(s);
177 
178 		WARN_ON(len < 5);
179 	}
180 }
181 EXPORT_SYMBOL(cpufreq_debug_printk);
182 
183 
184 module_param(debug, uint, 0644);
185 MODULE_PARM_DESC(debug, "CPUfreq debugging: add 1 to debug core, 2 to debug drivers, and 4 to debug governors.");
186 
187 module_param(debug_ratelimit, uint, 0644);
188 MODULE_PARM_DESC(debug_ratelimit, "CPUfreq debugging: set to 0 to disable ratelimiting.");
189 
190 #else /* !CONFIG_CPU_FREQ_DEBUG */
191 
192 static inline void cpufreq_debug_enable_ratelimit(void) { return; }
193 static inline void cpufreq_debug_disable_ratelimit(void) { return; }
194 
195 #endif /* CONFIG_CPU_FREQ_DEBUG */
196 
197 
198 /*********************************************************************
199  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
200  *********************************************************************/
201 
202 /**
203  * adjust_jiffies - adjust the system "loops_per_jiffy"
204  *
205  * This function alters the system "loops_per_jiffy" for the clock
206  * speed change. Note that loops_per_jiffy cannot be updated on SMP
207  * systems as each CPU might be scaled differently. So, use the arch
208  * per-CPU loops_per_jiffy value wherever possible.
209  */
210 #ifndef CONFIG_SMP
211 static unsigned long l_p_j_ref;
212 static unsigned int  l_p_j_ref_freq;
213 
214 static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
215 {
216 	if (ci->flags & CPUFREQ_CONST_LOOPS)
217 		return;
218 
219 	if (!l_p_j_ref_freq) {
220 		l_p_j_ref = loops_per_jiffy;
221 		l_p_j_ref_freq = ci->old;
222 		dprintk("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n", l_p_j_ref, l_p_j_ref_freq);
223 	}
224 	if ((val == CPUFREQ_PRECHANGE  && ci->old < ci->new) ||
225 	    (val == CPUFREQ_POSTCHANGE && ci->old > ci->new) ||
226 	    (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
227 		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, ci->new);
228 		dprintk("scaling loops_per_jiffy to %lu for frequency %u kHz\n", loops_per_jiffy, ci->new);
229 	}
230 }
231 #else
232 static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) { return; }
233 #endif
234 
235 
236 /**
237  * cpufreq_notify_transition - call notifier chain and adjust_jiffies on frequency transition
238  *
239  * This function calls the transition notifiers and the "adjust_jiffies" function. It is called
240  * twice on all CPU frequency changes that have external effects.
241  */
242 void cpufreq_notify_transition(struct cpufreq_freqs *freqs, unsigned int state)
243 {
244 	BUG_ON(irqs_disabled());
245 
246 	freqs->flags = cpufreq_driver->flags;
247 	dprintk("notification %u of frequency transition to %u kHz\n", state, freqs->new);
248 
249 	down_read(&cpufreq_notifier_rwsem);
250 	switch (state) {
251 	case CPUFREQ_PRECHANGE:
252 		/* detect if the driver reported a value as "old frequency" which
253 		 * is not equal to what the cpufreq core thinks is "old frequency".
254 		 */
255 		if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
256 			if ((likely(cpufreq_cpu_data[freqs->cpu])) &&
257 			    (likely(cpufreq_cpu_data[freqs->cpu]->cpu == freqs->cpu)) &&
258 			    (likely(cpufreq_cpu_data[freqs->cpu]->cur)) &&
259 			    (unlikely(freqs->old != cpufreq_cpu_data[freqs->cpu]->cur)))
260 			{
261 				dprintk(KERN_WARNING "Warning: CPU frequency is %u, "
262 				       "cpufreq assumed %u kHz.\n", freqs->old, cpufreq_cpu_data[freqs->cpu]->cur);
263 				freqs->old = cpufreq_cpu_data[freqs->cpu]->cur;
264 			}
265 		}
266 		notifier_call_chain(&cpufreq_transition_notifier_list, CPUFREQ_PRECHANGE, freqs);
267 		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
268 		break;
269 	case CPUFREQ_POSTCHANGE:
270 		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
271 		notifier_call_chain(&cpufreq_transition_notifier_list, CPUFREQ_POSTCHANGE, freqs);
272 		if ((likely(cpufreq_cpu_data[freqs->cpu])) &&
273 		    (likely(cpufreq_cpu_data[freqs->cpu]->cpu == freqs->cpu)))
274 			cpufreq_cpu_data[freqs->cpu]->cur = freqs->new;
275 		break;
276 	}
277 	up_read(&cpufreq_notifier_rwsem);
278 }
279 EXPORT_SYMBOL_GPL(cpufreq_notify_transition);
280 
281 
282 
283 /*********************************************************************
284  *                          SYSFS INTERFACE                          *
285  *********************************************************************/
286 
287 /**
288  * cpufreq_parse_governor - parse a governor string
289  */
290 static int cpufreq_parse_governor (char *str_governor, unsigned int *policy,
291 				struct cpufreq_governor **governor)
292 {
293 	if (!cpufreq_driver)
294 		return -EINVAL;
295 	if (cpufreq_driver->setpolicy) {
296 		if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
297 			*policy = CPUFREQ_POLICY_PERFORMANCE;
298 			return 0;
299 		} else if (!strnicmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) {
300 			*policy = CPUFREQ_POLICY_POWERSAVE;
301 			return 0;
302 		}
303 		return -EINVAL;
304 	} else {
305 		struct cpufreq_governor *t;
306 		down(&cpufreq_governor_sem);
307 		if (!cpufreq_driver || !cpufreq_driver->target)
308 			goto out;
309 		list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
310 			if (!strnicmp(str_governor,t->name,CPUFREQ_NAME_LEN)) {
311 				*governor = t;
312 				up(&cpufreq_governor_sem);
313 				return 0;
314 			}
315 		}
316 	out:
317 		up(&cpufreq_governor_sem);
318 	}
319 	return -EINVAL;
320 }
321 EXPORT_SYMBOL_GPL(cpufreq_parse_governor);
322 
323 
324 /* drivers/base/cpu.c */
325 extern struct sysdev_class cpu_sysdev_class;
326 
327 
328 /**
329  * cpufreq_per_cpu_attr_read() / show_##file_name() - print out cpufreq information
330  *
331  * Write out information from cpufreq_driver->policy[cpu]; object must be
332  * "unsigned int".
333  */
334 
335 #define show_one(file_name, object)		 			\
336 static ssize_t show_##file_name 					\
337 (struct cpufreq_policy * policy, char *buf)				\
338 {									\
339 	return sprintf (buf, "%u\n", policy->object);			\
340 }
341 
342 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
343 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
344 show_one(scaling_min_freq, min);
345 show_one(scaling_max_freq, max);
346 show_one(scaling_cur_freq, cur);
347 
348 /**
349  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
350  */
351 #define store_one(file_name, object)			\
352 static ssize_t store_##file_name					\
353 (struct cpufreq_policy * policy, const char *buf, size_t count)		\
354 {									\
355 	unsigned int ret = -EINVAL;					\
356 	struct cpufreq_policy new_policy;				\
357 									\
358 	ret = cpufreq_get_policy(&new_policy, policy->cpu);		\
359 	if (ret)							\
360 		return -EINVAL;						\
361 									\
362 	ret = sscanf (buf, "%u", &new_policy.object);			\
363 	if (ret != 1)							\
364 		return -EINVAL;						\
365 									\
366 	ret = cpufreq_set_policy(&new_policy);				\
367 									\
368 	return ret ? ret : count;					\
369 }
370 
371 store_one(scaling_min_freq,min);
372 store_one(scaling_max_freq,max);
373 
374 /**
375  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
376  */
377 static ssize_t show_cpuinfo_cur_freq (struct cpufreq_policy * policy, char *buf)
378 {
379 	unsigned int cur_freq = cpufreq_get(policy->cpu);
380 	if (!cur_freq)
381 		return sprintf(buf, "<unknown>");
382 	return sprintf(buf, "%u\n", cur_freq);
383 }
384 
385 
386 /**
387  * show_scaling_governor - show the current policy for the specified CPU
388  */
389 static ssize_t show_scaling_governor (struct cpufreq_policy * policy, char *buf)
390 {
391 	if(policy->policy == CPUFREQ_POLICY_POWERSAVE)
392 		return sprintf(buf, "powersave\n");
393 	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
394 		return sprintf(buf, "performance\n");
395 	else if (policy->governor)
396 		return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", policy->governor->name);
397 	return -EINVAL;
398 }
399 
400 
401 /**
402  * store_scaling_governor - store policy for the specified CPU
403  */
404 static ssize_t store_scaling_governor (struct cpufreq_policy * policy,
405 				       const char *buf, size_t count)
406 {
407 	unsigned int ret = -EINVAL;
408 	char	str_governor[16];
409 	struct cpufreq_policy new_policy;
410 
411 	ret = cpufreq_get_policy(&new_policy, policy->cpu);
412 	if (ret)
413 		return ret;
414 
415 	ret = sscanf (buf, "%15s", str_governor);
416 	if (ret != 1)
417 		return -EINVAL;
418 
419 	if (cpufreq_parse_governor(str_governor, &new_policy.policy, &new_policy.governor))
420 		return -EINVAL;
421 
422 	ret = cpufreq_set_policy(&new_policy);
423 
424 	return ret ? ret : count;
425 }
426 
427 /**
428  * show_scaling_driver - show the cpufreq driver currently loaded
429  */
430 static ssize_t show_scaling_driver (struct cpufreq_policy * policy, char *buf)
431 {
432 	return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", cpufreq_driver->name);
433 }
434 
435 /**
436  * show_scaling_available_governors - show the available CPUfreq governors
437  */
438 static ssize_t show_scaling_available_governors (struct cpufreq_policy * policy,
439 				char *buf)
440 {
441 	ssize_t i = 0;
442 	struct cpufreq_governor *t;
443 
444 	if (!cpufreq_driver->target) {
445 		i += sprintf(buf, "performance powersave");
446 		goto out;
447 	}
448 
449 	list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
450 		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) - (CPUFREQ_NAME_LEN + 2)))
451 			goto out;
452 		i += scnprintf(&buf[i], CPUFREQ_NAME_LEN, "%s ", t->name);
453 	}
454  out:
455 	i += sprintf(&buf[i], "\n");
456 	return i;
457 }
458 /**
459  * show_affected_cpus - show the CPUs affected by each transition
460  */
461 static ssize_t show_affected_cpus (struct cpufreq_policy * policy, char *buf)
462 {
463 	ssize_t i = 0;
464 	unsigned int cpu;
465 
466 	for_each_cpu_mask(cpu, policy->cpus) {
467 		if (i)
468 			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
469 		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
470 		if (i >= (PAGE_SIZE - 5))
471 		    break;
472 	}
473 	i += sprintf(&buf[i], "\n");
474 	return i;
475 }
476 
477 
478 #define define_one_ro(_name) \
479 static struct freq_attr _name = \
480 __ATTR(_name, 0444, show_##_name, NULL)
481 
482 #define define_one_ro0400(_name) \
483 static struct freq_attr _name = \
484 __ATTR(_name, 0400, show_##_name, NULL)
485 
486 #define define_one_rw(_name) \
487 static struct freq_attr _name = \
488 __ATTR(_name, 0644, show_##_name, store_##_name)
489 
490 define_one_ro0400(cpuinfo_cur_freq);
491 define_one_ro(cpuinfo_min_freq);
492 define_one_ro(cpuinfo_max_freq);
493 define_one_ro(scaling_available_governors);
494 define_one_ro(scaling_driver);
495 define_one_ro(scaling_cur_freq);
496 define_one_ro(affected_cpus);
497 define_one_rw(scaling_min_freq);
498 define_one_rw(scaling_max_freq);
499 define_one_rw(scaling_governor);
500 
501 static struct attribute * default_attrs[] = {
502 	&cpuinfo_min_freq.attr,
503 	&cpuinfo_max_freq.attr,
504 	&scaling_min_freq.attr,
505 	&scaling_max_freq.attr,
506 	&affected_cpus.attr,
507 	&scaling_governor.attr,
508 	&scaling_driver.attr,
509 	&scaling_available_governors.attr,
510 	NULL
511 };
512 
513 #define to_policy(k) container_of(k,struct cpufreq_policy,kobj)
514 #define to_attr(a) container_of(a,struct freq_attr,attr)
515 
516 static ssize_t show(struct kobject * kobj, struct attribute * attr ,char * buf)
517 {
518 	struct cpufreq_policy * policy = to_policy(kobj);
519 	struct freq_attr * fattr = to_attr(attr);
520 	ssize_t ret;
521 	policy = cpufreq_cpu_get(policy->cpu);
522 	if (!policy)
523 		return -EINVAL;
524 	ret = fattr->show ? fattr->show(policy,buf) : -EIO;
525 	cpufreq_cpu_put(policy);
526 	return ret;
527 }
528 
529 static ssize_t store(struct kobject * kobj, struct attribute * attr,
530 		     const char * buf, size_t count)
531 {
532 	struct cpufreq_policy * policy = to_policy(kobj);
533 	struct freq_attr * fattr = to_attr(attr);
534 	ssize_t ret;
535 	policy = cpufreq_cpu_get(policy->cpu);
536 	if (!policy)
537 		return -EINVAL;
538 	ret = fattr->store ? fattr->store(policy,buf,count) : -EIO;
539 	cpufreq_cpu_put(policy);
540 	return ret;
541 }
542 
543 static void cpufreq_sysfs_release(struct kobject * kobj)
544 {
545 	struct cpufreq_policy * policy = to_policy(kobj);
546 	dprintk("last reference is dropped\n");
547 	complete(&policy->kobj_unregister);
548 }
549 
550 static struct sysfs_ops sysfs_ops = {
551 	.show	= show,
552 	.store	= store,
553 };
554 
555 static struct kobj_type ktype_cpufreq = {
556 	.sysfs_ops	= &sysfs_ops,
557 	.default_attrs	= default_attrs,
558 	.release	= cpufreq_sysfs_release,
559 };
560 
561 
562 /**
563  * cpufreq_add_dev - add a CPU device
564  *
565  * Adds the cpufreq interface for a CPU device.
566  */
567 static int cpufreq_add_dev (struct sys_device * sys_dev)
568 {
569 	unsigned int cpu = sys_dev->id;
570 	int ret = 0;
571 	struct cpufreq_policy new_policy;
572 	struct cpufreq_policy *policy;
573 	struct freq_attr **drv_attr;
574 	unsigned long flags;
575 	unsigned int j;
576 
577 	cpufreq_debug_disable_ratelimit();
578 	dprintk("adding CPU %u\n", cpu);
579 
580 #ifdef CONFIG_SMP
581 	/* check whether a different CPU already registered this
582 	 * CPU because it is in the same boat. */
583 	policy = cpufreq_cpu_get(cpu);
584 	if (unlikely(policy)) {
585 		cpu_sys_devices[cpu] = sys_dev;
586 		dprintk("CPU already managed, adding link\n");
587 		sysfs_create_link(&sys_dev->kobj, &policy->kobj, "cpufreq");
588 		cpufreq_debug_enable_ratelimit();
589 		return 0;
590 	}
591 #endif
592 
593 	if (!try_module_get(cpufreq_driver->owner)) {
594 		ret = -EINVAL;
595 		goto module_out;
596 	}
597 
598 	policy = kmalloc(sizeof(struct cpufreq_policy), GFP_KERNEL);
599 	if (!policy) {
600 		ret = -ENOMEM;
601 		goto nomem_out;
602 	}
603 	memset(policy, 0, sizeof(struct cpufreq_policy));
604 
605 	policy->cpu = cpu;
606 	policy->cpus = cpumask_of_cpu(cpu);
607 
608 	init_MUTEX_LOCKED(&policy->lock);
609 	init_completion(&policy->kobj_unregister);
610 	INIT_WORK(&policy->update, handle_update, (void *)(long)cpu);
611 
612 	/* call driver. From then on the cpufreq must be able
613 	 * to accept all calls to ->verify and ->setpolicy for this CPU
614 	 */
615 	ret = cpufreq_driver->init(policy);
616 	if (ret) {
617 		dprintk("initialization failed\n");
618 		goto err_out;
619 	}
620 
621 	memcpy(&new_policy, policy, sizeof(struct cpufreq_policy));
622 
623 	/* prepare interface data */
624 	policy->kobj.parent = &sys_dev->kobj;
625 	policy->kobj.ktype = &ktype_cpufreq;
626 	strlcpy(policy->kobj.name, "cpufreq", KOBJ_NAME_LEN);
627 
628 	ret = kobject_register(&policy->kobj);
629 	if (ret)
630 		goto err_out_driver_exit;
631 
632 	/* set up files for this cpu device */
633 	drv_attr = cpufreq_driver->attr;
634 	while ((drv_attr) && (*drv_attr)) {
635 		sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
636 		drv_attr++;
637 	}
638 	if (cpufreq_driver->get)
639 		sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
640 	if (cpufreq_driver->target)
641 		sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
642 
643 	spin_lock_irqsave(&cpufreq_driver_lock, flags);
644 	for_each_cpu_mask(j, policy->cpus)
645 		cpufreq_cpu_data[j] = policy;
646 	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
647 	policy->governor = NULL; /* to assure that the starting sequence is
648 				  * run in cpufreq_set_policy */
649 	up(&policy->lock);
650 
651 	/* set default policy */
652 
653 	ret = cpufreq_set_policy(&new_policy);
654 	if (ret) {
655 		dprintk("setting policy failed\n");
656 		goto err_out_unregister;
657 	}
658 
659 	module_put(cpufreq_driver->owner);
660 	cpu_sys_devices[cpu] = sys_dev;
661 	dprintk("initialization complete\n");
662 	cpufreq_debug_enable_ratelimit();
663 
664 	return 0;
665 
666 
667 err_out_unregister:
668 	spin_lock_irqsave(&cpufreq_driver_lock, flags);
669 	for_each_cpu_mask(j, policy->cpus)
670 		cpufreq_cpu_data[j] = NULL;
671 	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
672 
673 	kobject_unregister(&policy->kobj);
674 	wait_for_completion(&policy->kobj_unregister);
675 
676 err_out_driver_exit:
677 	if (cpufreq_driver->exit)
678 		cpufreq_driver->exit(policy);
679 
680 err_out:
681 	kfree(policy);
682 
683 nomem_out:
684 	module_put(cpufreq_driver->owner);
685  module_out:
686 	cpufreq_debug_enable_ratelimit();
687 	return ret;
688 }
689 
690 
691 /**
692  * cpufreq_remove_dev - remove a CPU device
693  *
694  * Removes the cpufreq interface for a CPU device.
695  */
696 static int cpufreq_remove_dev (struct sys_device * sys_dev)
697 {
698 	unsigned int cpu = sys_dev->id;
699 	unsigned long flags;
700 	struct cpufreq_policy *data;
701 #ifdef CONFIG_SMP
702 	unsigned int j;
703 #endif
704 
705 	cpufreq_debug_disable_ratelimit();
706 	dprintk("unregistering CPU %u\n", cpu);
707 
708 	spin_lock_irqsave(&cpufreq_driver_lock, flags);
709 	data = cpufreq_cpu_data[cpu];
710 
711 	if (!data) {
712 		spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
713 		cpu_sys_devices[cpu] = NULL;
714 		cpufreq_debug_enable_ratelimit();
715 		return -EINVAL;
716 	}
717 	cpufreq_cpu_data[cpu] = NULL;
718 
719 
720 #ifdef CONFIG_SMP
721 	/* if this isn't the CPU which is the parent of the kobj, we
722 	 * only need to unlink, put and exit
723 	 */
724 	if (unlikely(cpu != data->cpu)) {
725 		dprintk("removing link\n");
726 		spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
727 		sysfs_remove_link(&sys_dev->kobj, "cpufreq");
728 		cpu_sys_devices[cpu] = NULL;
729 		cpufreq_cpu_put(data);
730 		cpufreq_debug_enable_ratelimit();
731 		return 0;
732 	}
733 #endif
734 
735 	cpu_sys_devices[cpu] = NULL;
736 
737 	if (!kobject_get(&data->kobj)) {
738 		spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
739 		cpufreq_debug_enable_ratelimit();
740  		return -EFAULT;
741 	}
742 
743 #ifdef CONFIG_SMP
744 	/* if we have other CPUs still registered, we need to unlink them,
745 	 * or else wait_for_completion below will lock up. Clean the
746 	 * cpufreq_cpu_data[] while holding the lock, and remove the sysfs
747 	 * links afterwards.
748 	 */
749 	if (unlikely(cpus_weight(data->cpus) > 1)) {
750 		for_each_cpu_mask(j, data->cpus) {
751 			if (j == cpu)
752 				continue;
753 			cpufreq_cpu_data[j] = NULL;
754 		}
755 	}
756 
757 	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
758 
759 	if (unlikely(cpus_weight(data->cpus) > 1)) {
760 		for_each_cpu_mask(j, data->cpus) {
761 			if (j == cpu)
762 				continue;
763 			dprintk("removing link for cpu %u\n", j);
764 			sysfs_remove_link(&cpu_sys_devices[j]->kobj, "cpufreq");
765 			cpufreq_cpu_put(data);
766 		}
767 	}
768 #else
769 	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
770 #endif
771 
772 	down(&data->lock);
773 	if (cpufreq_driver->target)
774 		__cpufreq_governor(data, CPUFREQ_GOV_STOP);
775 	cpufreq_driver->target = NULL;
776 	up(&data->lock);
777 
778 	kobject_unregister(&data->kobj);
779 
780 	kobject_put(&data->kobj);
781 
782 	/* we need to make sure that the underlying kobj is actually
783 	 * not referenced anymore by anybody before we proceed with
784 	 * unloading.
785 	 */
786 	dprintk("waiting for dropping of refcount\n");
787 	wait_for_completion(&data->kobj_unregister);
788 	dprintk("wait complete\n");
789 
790 	if (cpufreq_driver->exit)
791 		cpufreq_driver->exit(data);
792 
793 	kfree(data);
794 
795 	cpufreq_debug_enable_ratelimit();
796 
797 	return 0;
798 }
799 
800 
801 static void handle_update(void *data)
802 {
803 	unsigned int cpu = (unsigned int)(long)data;
804 	dprintk("handle_update for cpu %u called\n", cpu);
805 	cpufreq_update_policy(cpu);
806 }
807 
808 /**
809  *	cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're in deep trouble.
810  *	@cpu: cpu number
811  *	@old_freq: CPU frequency the kernel thinks the CPU runs at
812  *	@new_freq: CPU frequency the CPU actually runs at
813  *
814  *	We adjust to current frequency first, and need to clean up later. So either call
815  *	to cpufreq_update_policy() or schedule handle_update()).
816  */
817 static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq, unsigned int new_freq)
818 {
819 	struct cpufreq_freqs freqs;
820 
821 	dprintk(KERN_WARNING "Warning: CPU frequency out of sync: cpufreq and timing "
822 	       "core thinks of %u, is %u kHz.\n", old_freq, new_freq);
823 
824 	freqs.cpu = cpu;
825 	freqs.old = old_freq;
826 	freqs.new = new_freq;
827 	cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
828 	cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
829 }
830 
831 
832 /**
833  * cpufreq_get - get the current CPU frequency (in kHz)
834  * @cpu: CPU number
835  *
836  * Get the CPU current (static) CPU frequency
837  */
838 unsigned int cpufreq_get(unsigned int cpu)
839 {
840 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
841 	unsigned int ret = 0;
842 
843 	if (!policy)
844 		return 0;
845 
846 	if (!cpufreq_driver->get)
847 		goto out;
848 
849 	down(&policy->lock);
850 
851 	ret = cpufreq_driver->get(cpu);
852 
853 	if (ret && policy->cur && !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS))
854 	{
855 		/* verify no discrepancy between actual and saved value exists */
856 		if (unlikely(ret != policy->cur)) {
857 			cpufreq_out_of_sync(cpu, policy->cur, ret);
858 			schedule_work(&policy->update);
859 		}
860 	}
861 
862 	up(&policy->lock);
863 
864  out:
865 	cpufreq_cpu_put(policy);
866 
867 	return (ret);
868 }
869 EXPORT_SYMBOL(cpufreq_get);
870 
871 
872 /**
873  *	cpufreq_suspend - let the low level driver prepare for suspend
874  */
875 
876 static int cpufreq_suspend(struct sys_device * sysdev, pm_message_t pmsg)
877 {
878 	int cpu = sysdev->id;
879 	unsigned int ret = 0;
880 	unsigned int cur_freq = 0;
881 	struct cpufreq_policy *cpu_policy;
882 
883 	dprintk("resuming cpu %u\n", cpu);
884 
885 	if (!cpu_online(cpu))
886 		return 0;
887 
888 	/* we may be lax here as interrupts are off. Nonetheless
889 	 * we need to grab the correct cpu policy, as to check
890 	 * whether we really run on this CPU.
891 	 */
892 
893 	cpu_policy = cpufreq_cpu_get(cpu);
894 	if (!cpu_policy)
895 		return -EINVAL;
896 
897 	/* only handle each CPU group once */
898 	if (unlikely(cpu_policy->cpu != cpu)) {
899 		cpufreq_cpu_put(cpu_policy);
900 		return 0;
901 	}
902 
903 	if (cpufreq_driver->suspend) {
904 		ret = cpufreq_driver->suspend(cpu_policy, pmsg);
905 		if (ret) {
906 			printk(KERN_ERR "cpufreq: suspend failed in ->suspend "
907 					"step on CPU %u\n", cpu_policy->cpu);
908 			cpufreq_cpu_put(cpu_policy);
909 			return ret;
910 		}
911 	}
912 
913 
914 	if (cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)
915 		goto out;
916 
917 	if (cpufreq_driver->get)
918 		cur_freq = cpufreq_driver->get(cpu_policy->cpu);
919 
920 	if (!cur_freq || !cpu_policy->cur) {
921 		printk(KERN_ERR "cpufreq: suspend failed to assert current "
922 		       "frequency is what timing core thinks it is.\n");
923 		goto out;
924 	}
925 
926 	if (unlikely(cur_freq != cpu_policy->cur)) {
927 		struct cpufreq_freqs freqs;
928 
929 		if (!(cpufreq_driver->flags & CPUFREQ_PM_NO_WARN))
930 			dprintk(KERN_DEBUG "Warning: CPU frequency is %u, "
931 			       "cpufreq assumed %u kHz.\n",
932 			       cur_freq, cpu_policy->cur);
933 
934 		freqs.cpu = cpu;
935 		freqs.old = cpu_policy->cur;
936 		freqs.new = cur_freq;
937 
938 		notifier_call_chain(&cpufreq_transition_notifier_list,
939 				    CPUFREQ_SUSPENDCHANGE, &freqs);
940 		adjust_jiffies(CPUFREQ_SUSPENDCHANGE, &freqs);
941 
942 		cpu_policy->cur = cur_freq;
943 	}
944 
945  out:
946 	cpufreq_cpu_put(cpu_policy);
947 	return 0;
948 }
949 
950 /**
951  *	cpufreq_resume -  restore proper CPU frequency handling after resume
952  *
953  *	1.) resume CPUfreq hardware support (cpufreq_driver->resume())
954  *	2.) if ->target and !CPUFREQ_CONST_LOOPS: verify we're in sync
955  *	3.) schedule call cpufreq_update_policy() ASAP as interrupts are
956  *	    restored.
957  */
958 static int cpufreq_resume(struct sys_device * sysdev)
959 {
960 	int cpu = sysdev->id;
961 	unsigned int ret = 0;
962 	struct cpufreq_policy *cpu_policy;
963 
964 	dprintk("resuming cpu %u\n", cpu);
965 
966 	if (!cpu_online(cpu))
967 		return 0;
968 
969 	/* we may be lax here as interrupts are off. Nonetheless
970 	 * we need to grab the correct cpu policy, as to check
971 	 * whether we really run on this CPU.
972 	 */
973 
974 	cpu_policy = cpufreq_cpu_get(cpu);
975 	if (!cpu_policy)
976 		return -EINVAL;
977 
978 	/* only handle each CPU group once */
979 	if (unlikely(cpu_policy->cpu != cpu)) {
980 		cpufreq_cpu_put(cpu_policy);
981 		return 0;
982 	}
983 
984 	if (cpufreq_driver->resume) {
985 		ret = cpufreq_driver->resume(cpu_policy);
986 		if (ret) {
987 			printk(KERN_ERR "cpufreq: resume failed in ->resume "
988 					"step on CPU %u\n", cpu_policy->cpu);
989 			cpufreq_cpu_put(cpu_policy);
990 			return ret;
991 		}
992 	}
993 
994 	if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
995 		unsigned int cur_freq = 0;
996 
997 		if (cpufreq_driver->get)
998 			cur_freq = cpufreq_driver->get(cpu_policy->cpu);
999 
1000 		if (!cur_freq || !cpu_policy->cur) {
1001 			printk(KERN_ERR "cpufreq: resume failed to assert "
1002 					"current frequency is what timing core "
1003 					"thinks it is.\n");
1004 			goto out;
1005 		}
1006 
1007 		if (unlikely(cur_freq != cpu_policy->cur)) {
1008 			struct cpufreq_freqs freqs;
1009 
1010 			if (!(cpufreq_driver->flags & CPUFREQ_PM_NO_WARN))
1011 				dprintk(KERN_WARNING "Warning: CPU frequency"
1012 				       "is %u, cpufreq assumed %u kHz.\n",
1013 				       cur_freq, cpu_policy->cur);
1014 
1015 			freqs.cpu = cpu;
1016 			freqs.old = cpu_policy->cur;
1017 			freqs.new = cur_freq;
1018 
1019 			notifier_call_chain(&cpufreq_transition_notifier_list,
1020 					CPUFREQ_RESUMECHANGE, &freqs);
1021 			adjust_jiffies(CPUFREQ_RESUMECHANGE, &freqs);
1022 
1023 			cpu_policy->cur = cur_freq;
1024 		}
1025 	}
1026 
1027 out:
1028 	schedule_work(&cpu_policy->update);
1029 	cpufreq_cpu_put(cpu_policy);
1030 	return ret;
1031 }
1032 
1033 static struct sysdev_driver cpufreq_sysdev_driver = {
1034 	.add		= cpufreq_add_dev,
1035 	.remove		= cpufreq_remove_dev,
1036 	.suspend	= cpufreq_suspend,
1037 	.resume		= cpufreq_resume,
1038 };
1039 
1040 
1041 /*********************************************************************
1042  *                     NOTIFIER LISTS INTERFACE                      *
1043  *********************************************************************/
1044 
1045 /**
1046  *	cpufreq_register_notifier - register a driver with cpufreq
1047  *	@nb: notifier function to register
1048  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1049  *
1050  *	Add a driver to one of two lists: either a list of drivers that
1051  *      are notified about clock rate changes (once before and once after
1052  *      the transition), or a list of drivers that are notified about
1053  *      changes in cpufreq policy.
1054  *
1055  *	This function may sleep, and has the same return conditions as
1056  *	notifier_chain_register.
1057  */
1058 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1059 {
1060 	int ret;
1061 
1062 	down_write(&cpufreq_notifier_rwsem);
1063 	switch (list) {
1064 	case CPUFREQ_TRANSITION_NOTIFIER:
1065 		ret = notifier_chain_register(&cpufreq_transition_notifier_list, nb);
1066 		break;
1067 	case CPUFREQ_POLICY_NOTIFIER:
1068 		ret = notifier_chain_register(&cpufreq_policy_notifier_list, nb);
1069 		break;
1070 	default:
1071 		ret = -EINVAL;
1072 	}
1073 	up_write(&cpufreq_notifier_rwsem);
1074 
1075 	return ret;
1076 }
1077 EXPORT_SYMBOL(cpufreq_register_notifier);
1078 
1079 
1080 /**
1081  *	cpufreq_unregister_notifier - unregister a driver with cpufreq
1082  *	@nb: notifier block to be unregistered
1083  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1084  *
1085  *	Remove a driver from the CPU frequency notifier list.
1086  *
1087  *	This function may sleep, and has the same return conditions as
1088  *	notifier_chain_unregister.
1089  */
1090 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1091 {
1092 	int ret;
1093 
1094 	down_write(&cpufreq_notifier_rwsem);
1095 	switch (list) {
1096 	case CPUFREQ_TRANSITION_NOTIFIER:
1097 		ret = notifier_chain_unregister(&cpufreq_transition_notifier_list, nb);
1098 		break;
1099 	case CPUFREQ_POLICY_NOTIFIER:
1100 		ret = notifier_chain_unregister(&cpufreq_policy_notifier_list, nb);
1101 		break;
1102 	default:
1103 		ret = -EINVAL;
1104 	}
1105 	up_write(&cpufreq_notifier_rwsem);
1106 
1107 	return ret;
1108 }
1109 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1110 
1111 
1112 /*********************************************************************
1113  *                              GOVERNORS                            *
1114  *********************************************************************/
1115 
1116 
1117 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1118 			    unsigned int target_freq,
1119 			    unsigned int relation)
1120 {
1121 	int retval = -EINVAL;
1122 	lock_cpu_hotplug();
1123 	dprintk("target for CPU %u: %u kHz, relation %u\n", policy->cpu,
1124 		target_freq, relation);
1125 	if (cpu_online(policy->cpu) && cpufreq_driver->target)
1126 		retval = cpufreq_driver->target(policy, target_freq, relation);
1127 	unlock_cpu_hotplug();
1128 	return retval;
1129 }
1130 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1131 
1132 
1133 int cpufreq_driver_target(struct cpufreq_policy *policy,
1134 			  unsigned int target_freq,
1135 			  unsigned int relation)
1136 {
1137 	int ret;
1138 
1139 	policy = cpufreq_cpu_get(policy->cpu);
1140 	if (!policy)
1141 		return -EINVAL;
1142 
1143 	down(&policy->lock);
1144 
1145 	ret = __cpufreq_driver_target(policy, target_freq, relation);
1146 
1147 	up(&policy->lock);
1148 
1149 	cpufreq_cpu_put(policy);
1150 
1151 	return ret;
1152 }
1153 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1154 
1155 
1156 static int __cpufreq_governor(struct cpufreq_policy *policy, unsigned int event)
1157 {
1158 	int ret;
1159 
1160 	if (!try_module_get(policy->governor->owner))
1161 		return -EINVAL;
1162 
1163 	dprintk("__cpufreq_governor for CPU %u, event %u\n", policy->cpu, event);
1164 	ret = policy->governor->governor(policy, event);
1165 
1166 	/* we keep one module reference alive for each CPU governed by this CPU */
1167 	if ((event != CPUFREQ_GOV_START) || ret)
1168 		module_put(policy->governor->owner);
1169 	if ((event == CPUFREQ_GOV_STOP) && !ret)
1170 		module_put(policy->governor->owner);
1171 
1172 	return ret;
1173 }
1174 
1175 
1176 int cpufreq_governor(unsigned int cpu, unsigned int event)
1177 {
1178 	int ret = 0;
1179 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1180 
1181 	if (!policy)
1182 		return -EINVAL;
1183 
1184 	down(&policy->lock);
1185 	ret = __cpufreq_governor(policy, event);
1186 	up(&policy->lock);
1187 
1188 	cpufreq_cpu_put(policy);
1189 
1190 	return ret;
1191 }
1192 EXPORT_SYMBOL_GPL(cpufreq_governor);
1193 
1194 
1195 int cpufreq_register_governor(struct cpufreq_governor *governor)
1196 {
1197 	struct cpufreq_governor *t;
1198 
1199 	if (!governor)
1200 		return -EINVAL;
1201 
1202 	down(&cpufreq_governor_sem);
1203 
1204 	list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
1205 		if (!strnicmp(governor->name,t->name,CPUFREQ_NAME_LEN)) {
1206 			up(&cpufreq_governor_sem);
1207 			return -EBUSY;
1208 		}
1209 	}
1210 	list_add(&governor->governor_list, &cpufreq_governor_list);
1211 
1212  	up(&cpufreq_governor_sem);
1213 
1214 	return 0;
1215 }
1216 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
1217 
1218 
1219 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
1220 {
1221 	if (!governor)
1222 		return;
1223 
1224 	down(&cpufreq_governor_sem);
1225 	list_del(&governor->governor_list);
1226 	up(&cpufreq_governor_sem);
1227 	return;
1228 }
1229 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
1230 
1231 
1232 
1233 /*********************************************************************
1234  *                          POLICY INTERFACE                         *
1235  *********************************************************************/
1236 
1237 /**
1238  * cpufreq_get_policy - get the current cpufreq_policy
1239  * @policy: struct cpufreq_policy into which the current cpufreq_policy is written
1240  *
1241  * Reads the current cpufreq policy.
1242  */
1243 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
1244 {
1245 	struct cpufreq_policy *cpu_policy;
1246 	if (!policy)
1247 		return -EINVAL;
1248 
1249 	cpu_policy = cpufreq_cpu_get(cpu);
1250 	if (!cpu_policy)
1251 		return -EINVAL;
1252 
1253 	down(&cpu_policy->lock);
1254 	memcpy(policy, cpu_policy, sizeof(struct cpufreq_policy));
1255 	up(&cpu_policy->lock);
1256 
1257 	cpufreq_cpu_put(cpu_policy);
1258 
1259 	return 0;
1260 }
1261 EXPORT_SYMBOL(cpufreq_get_policy);
1262 
1263 
1264 static int __cpufreq_set_policy(struct cpufreq_policy *data, struct cpufreq_policy *policy)
1265 {
1266 	int ret = 0;
1267 
1268 	cpufreq_debug_disable_ratelimit();
1269 	dprintk("setting new policy for CPU %u: %u - %u kHz\n", policy->cpu,
1270 		policy->min, policy->max);
1271 
1272 	memcpy(&policy->cpuinfo,
1273 	       &data->cpuinfo,
1274 	       sizeof(struct cpufreq_cpuinfo));
1275 
1276 	/* verify the cpu speed can be set within this limit */
1277 	ret = cpufreq_driver->verify(policy);
1278 	if (ret)
1279 		goto error_out;
1280 
1281 	down_read(&cpufreq_notifier_rwsem);
1282 
1283 	/* adjust if necessary - all reasons */
1284 	notifier_call_chain(&cpufreq_policy_notifier_list, CPUFREQ_ADJUST,
1285 			    policy);
1286 
1287 	/* adjust if necessary - hardware incompatibility*/
1288 	notifier_call_chain(&cpufreq_policy_notifier_list, CPUFREQ_INCOMPATIBLE,
1289 			    policy);
1290 
1291 	/* verify the cpu speed can be set within this limit,
1292 	   which might be different to the first one */
1293 	ret = cpufreq_driver->verify(policy);
1294 	if (ret) {
1295 		up_read(&cpufreq_notifier_rwsem);
1296 		goto error_out;
1297 	}
1298 
1299 	/* notification of the new policy */
1300 	notifier_call_chain(&cpufreq_policy_notifier_list, CPUFREQ_NOTIFY,
1301 			    policy);
1302 
1303 	up_read(&cpufreq_notifier_rwsem);
1304 
1305 	data->min    = policy->min;
1306 	data->max    = policy->max;
1307 
1308 	dprintk("new min and max freqs are %u - %u kHz\n", data->min, data->max);
1309 
1310 	if (cpufreq_driver->setpolicy) {
1311 		data->policy = policy->policy;
1312 		dprintk("setting range\n");
1313 		ret = cpufreq_driver->setpolicy(policy);
1314 	} else {
1315 		if (policy->governor != data->governor) {
1316 			/* save old, working values */
1317 			struct cpufreq_governor *old_gov = data->governor;
1318 
1319 			dprintk("governor switch\n");
1320 
1321 			/* end old governor */
1322 			if (data->governor)
1323 				__cpufreq_governor(data, CPUFREQ_GOV_STOP);
1324 
1325 			/* start new governor */
1326 			data->governor = policy->governor;
1327 			if (__cpufreq_governor(data, CPUFREQ_GOV_START)) {
1328 				/* new governor failed, so re-start old one */
1329 				dprintk("starting governor %s failed\n", data->governor->name);
1330 				if (old_gov) {
1331 					data->governor = old_gov;
1332 					__cpufreq_governor(data, CPUFREQ_GOV_START);
1333 				}
1334 				ret = -EINVAL;
1335 				goto error_out;
1336 			}
1337 			/* might be a policy change, too, so fall through */
1338 		}
1339 		dprintk("governor: change or update limits\n");
1340 		__cpufreq_governor(data, CPUFREQ_GOV_LIMITS);
1341 	}
1342 
1343  error_out:
1344 	cpufreq_debug_enable_ratelimit();
1345 	return ret;
1346 }
1347 
1348 /**
1349  *	cpufreq_set_policy - set a new CPUFreq policy
1350  *	@policy: policy to be set.
1351  *
1352  *	Sets a new CPU frequency and voltage scaling policy.
1353  */
1354 int cpufreq_set_policy(struct cpufreq_policy *policy)
1355 {
1356 	int ret = 0;
1357 	struct cpufreq_policy *data;
1358 
1359 	if (!policy)
1360 		return -EINVAL;
1361 
1362 	data = cpufreq_cpu_get(policy->cpu);
1363 	if (!data)
1364 		return -EINVAL;
1365 
1366 	/* lock this CPU */
1367 	down(&data->lock);
1368 
1369 	ret = __cpufreq_set_policy(data, policy);
1370 	data->user_policy.min = data->min;
1371 	data->user_policy.max = data->max;
1372 	data->user_policy.policy = data->policy;
1373 	data->user_policy.governor = data->governor;
1374 
1375 	up(&data->lock);
1376 	cpufreq_cpu_put(data);
1377 
1378 	return ret;
1379 }
1380 EXPORT_SYMBOL(cpufreq_set_policy);
1381 
1382 
1383 /**
1384  *	cpufreq_update_policy - re-evaluate an existing cpufreq policy
1385  *	@cpu: CPU which shall be re-evaluated
1386  *
1387  *	Usefull for policy notifiers which have different necessities
1388  *	at different times.
1389  */
1390 int cpufreq_update_policy(unsigned int cpu)
1391 {
1392 	struct cpufreq_policy *data = cpufreq_cpu_get(cpu);
1393 	struct cpufreq_policy policy;
1394 	int ret = 0;
1395 
1396 	if (!data)
1397 		return -ENODEV;
1398 
1399 	down(&data->lock);
1400 
1401 	dprintk("updating policy for CPU %u\n", cpu);
1402 	memcpy(&policy,
1403 	       data,
1404 	       sizeof(struct cpufreq_policy));
1405 	policy.min = data->user_policy.min;
1406 	policy.max = data->user_policy.max;
1407 	policy.policy = data->user_policy.policy;
1408 	policy.governor = data->user_policy.governor;
1409 
1410 	ret = __cpufreq_set_policy(data, &policy);
1411 
1412 	up(&data->lock);
1413 
1414 	cpufreq_cpu_put(data);
1415 	return ret;
1416 }
1417 EXPORT_SYMBOL(cpufreq_update_policy);
1418 
1419 
1420 /*********************************************************************
1421  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
1422  *********************************************************************/
1423 
1424 /**
1425  * cpufreq_register_driver - register a CPU Frequency driver
1426  * @driver_data: A struct cpufreq_driver containing the values#
1427  * submitted by the CPU Frequency driver.
1428  *
1429  *   Registers a CPU Frequency driver to this core code. This code
1430  * returns zero on success, -EBUSY when another driver got here first
1431  * (and isn't unregistered in the meantime).
1432  *
1433  */
1434 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
1435 {
1436 	unsigned long flags;
1437 	int ret;
1438 
1439 	if (!driver_data || !driver_data->verify || !driver_data->init ||
1440 	    ((!driver_data->setpolicy) && (!driver_data->target)))
1441 		return -EINVAL;
1442 
1443 	dprintk("trying to register driver %s\n", driver_data->name);
1444 
1445 	if (driver_data->setpolicy)
1446 		driver_data->flags |= CPUFREQ_CONST_LOOPS;
1447 
1448 	spin_lock_irqsave(&cpufreq_driver_lock, flags);
1449 	if (cpufreq_driver) {
1450 		spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1451 		return -EBUSY;
1452 	}
1453 	cpufreq_driver = driver_data;
1454 	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1455 
1456 	ret = sysdev_driver_register(&cpu_sysdev_class,&cpufreq_sysdev_driver);
1457 
1458 	if ((!ret) && !(cpufreq_driver->flags & CPUFREQ_STICKY)) {
1459 		int i;
1460 		ret = -ENODEV;
1461 
1462 		/* check for at least one working CPU */
1463 		for (i=0; i<NR_CPUS; i++)
1464 			if (cpufreq_cpu_data[i])
1465 				ret = 0;
1466 
1467 		/* if all ->init() calls failed, unregister */
1468 		if (ret) {
1469 			dprintk("no CPU initialized for driver %s\n", driver_data->name);
1470 			sysdev_driver_unregister(&cpu_sysdev_class, &cpufreq_sysdev_driver);
1471 
1472 			spin_lock_irqsave(&cpufreq_driver_lock, flags);
1473 			cpufreq_driver = NULL;
1474 			spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1475 		}
1476 	}
1477 
1478 	if (!ret) {
1479 		dprintk("driver %s up and running\n", driver_data->name);
1480 		cpufreq_debug_enable_ratelimit();
1481 	}
1482 
1483 	return (ret);
1484 }
1485 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
1486 
1487 
1488 /**
1489  * cpufreq_unregister_driver - unregister the current CPUFreq driver
1490  *
1491  *    Unregister the current CPUFreq driver. Only call this if you have
1492  * the right to do so, i.e. if you have succeeded in initialising before!
1493  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
1494  * currently not initialised.
1495  */
1496 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
1497 {
1498 	unsigned long flags;
1499 
1500 	cpufreq_debug_disable_ratelimit();
1501 
1502 	if (!cpufreq_driver || (driver != cpufreq_driver)) {
1503 		cpufreq_debug_enable_ratelimit();
1504 		return -EINVAL;
1505 	}
1506 
1507 	dprintk("unregistering driver %s\n", driver->name);
1508 
1509 	sysdev_driver_unregister(&cpu_sysdev_class, &cpufreq_sysdev_driver);
1510 
1511 	spin_lock_irqsave(&cpufreq_driver_lock, flags);
1512 	cpufreq_driver = NULL;
1513 	spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1514 
1515 	return 0;
1516 }
1517 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
1518