xref: /linux/drivers/cpufreq/cpufreq.c (revision 1fb8510cdb5b7befe8a59f533c7fc12ef0dac73e)
1 /*
2  *  linux/drivers/cpufreq/cpufreq.c
3  *
4  *  Copyright (C) 2001 Russell King
5  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
7  *
8  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
9  *	Added handling for CPU hotplug
10  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
11  *	Fix handling for CPU hotplug -- affected CPUs
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License version 2 as
15  * published by the Free Software Foundation.
16  */
17 
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/init.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/module.h>
27 #include <linux/mutex.h>
28 #include <linux/slab.h>
29 #include <linux/suspend.h>
30 #include <linux/tick.h>
31 #include <trace/events/power.h>
32 
33 /**
34  * The "cpufreq driver" - the arch- or hardware-dependent low
35  * level driver of CPUFreq support, and its spinlock. This lock
36  * also protects the cpufreq_cpu_data array.
37  */
38 static struct cpufreq_driver *cpufreq_driver;
39 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
40 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data_fallback);
41 static DEFINE_RWLOCK(cpufreq_driver_lock);
42 DEFINE_MUTEX(cpufreq_governor_lock);
43 static LIST_HEAD(cpufreq_policy_list);
44 
45 /* This one keeps track of the previously set governor of a removed CPU */
46 static DEFINE_PER_CPU(char[CPUFREQ_NAME_LEN], cpufreq_cpu_governor);
47 
48 /* Flag to suspend/resume CPUFreq governors */
49 static bool cpufreq_suspended;
50 
51 static inline bool has_target(void)
52 {
53 	return cpufreq_driver->target_index || cpufreq_driver->target;
54 }
55 
56 /*
57  * rwsem to guarantee that cpufreq driver module doesn't unload during critical
58  * sections
59  */
60 static DECLARE_RWSEM(cpufreq_rwsem);
61 
62 /* internal prototypes */
63 static int __cpufreq_governor(struct cpufreq_policy *policy,
64 		unsigned int event);
65 static unsigned int __cpufreq_get(unsigned int cpu);
66 static void handle_update(struct work_struct *work);
67 
68 /**
69  * Two notifier lists: the "policy" list is involved in the
70  * validation process for a new CPU frequency policy; the
71  * "transition" list for kernel code that needs to handle
72  * changes to devices when the CPU clock speed changes.
73  * The mutex locks both lists.
74  */
75 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
76 static struct srcu_notifier_head cpufreq_transition_notifier_list;
77 
78 static bool init_cpufreq_transition_notifier_list_called;
79 static int __init init_cpufreq_transition_notifier_list(void)
80 {
81 	srcu_init_notifier_head(&cpufreq_transition_notifier_list);
82 	init_cpufreq_transition_notifier_list_called = true;
83 	return 0;
84 }
85 pure_initcall(init_cpufreq_transition_notifier_list);
86 
87 static int off __read_mostly;
88 static int cpufreq_disabled(void)
89 {
90 	return off;
91 }
92 void disable_cpufreq(void)
93 {
94 	off = 1;
95 }
96 static LIST_HEAD(cpufreq_governor_list);
97 static DEFINE_MUTEX(cpufreq_governor_mutex);
98 
99 bool have_governor_per_policy(void)
100 {
101 	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
102 }
103 EXPORT_SYMBOL_GPL(have_governor_per_policy);
104 
105 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
106 {
107 	if (have_governor_per_policy())
108 		return &policy->kobj;
109 	else
110 		return cpufreq_global_kobject;
111 }
112 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
113 
114 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
115 {
116 	u64 idle_time;
117 	u64 cur_wall_time;
118 	u64 busy_time;
119 
120 	cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
121 
122 	busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
123 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
124 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
125 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
126 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
127 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
128 
129 	idle_time = cur_wall_time - busy_time;
130 	if (wall)
131 		*wall = cputime_to_usecs(cur_wall_time);
132 
133 	return cputime_to_usecs(idle_time);
134 }
135 
136 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
137 {
138 	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
139 
140 	if (idle_time == -1ULL)
141 		return get_cpu_idle_time_jiffy(cpu, wall);
142 	else if (!io_busy)
143 		idle_time += get_cpu_iowait_time_us(cpu, wall);
144 
145 	return idle_time;
146 }
147 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
148 
149 /*
150  * This is a generic cpufreq init() routine which can be used by cpufreq
151  * drivers of SMP systems. It will do following:
152  * - validate & show freq table passed
153  * - set policies transition latency
154  * - policy->cpus with all possible CPUs
155  */
156 int cpufreq_generic_init(struct cpufreq_policy *policy,
157 		struct cpufreq_frequency_table *table,
158 		unsigned int transition_latency)
159 {
160 	int ret;
161 
162 	ret = cpufreq_table_validate_and_show(policy, table);
163 	if (ret) {
164 		pr_err("%s: invalid frequency table: %d\n", __func__, ret);
165 		return ret;
166 	}
167 
168 	policy->cpuinfo.transition_latency = transition_latency;
169 
170 	/*
171 	 * The driver only supports the SMP configuartion where all processors
172 	 * share the clock and voltage and clock.
173 	 */
174 	cpumask_setall(policy->cpus);
175 
176 	return 0;
177 }
178 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
179 
180 unsigned int cpufreq_generic_get(unsigned int cpu)
181 {
182 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
183 
184 	if (!policy || IS_ERR(policy->clk)) {
185 		pr_err("%s: No %s associated to cpu: %d\n",
186 		       __func__, policy ? "clk" : "policy", cpu);
187 		return 0;
188 	}
189 
190 	return clk_get_rate(policy->clk) / 1000;
191 }
192 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
193 
194 /* Only for cpufreq core internal use */
195 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
196 {
197 	return per_cpu(cpufreq_cpu_data, cpu);
198 }
199 
200 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
201 {
202 	struct cpufreq_policy *policy = NULL;
203 	unsigned long flags;
204 
205 	if (cpufreq_disabled() || (cpu >= nr_cpu_ids))
206 		return NULL;
207 
208 	if (!down_read_trylock(&cpufreq_rwsem))
209 		return NULL;
210 
211 	/* get the cpufreq driver */
212 	read_lock_irqsave(&cpufreq_driver_lock, flags);
213 
214 	if (cpufreq_driver) {
215 		/* get the CPU */
216 		policy = per_cpu(cpufreq_cpu_data, cpu);
217 		if (policy)
218 			kobject_get(&policy->kobj);
219 	}
220 
221 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
222 
223 	if (!policy)
224 		up_read(&cpufreq_rwsem);
225 
226 	return policy;
227 }
228 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
229 
230 void cpufreq_cpu_put(struct cpufreq_policy *policy)
231 {
232 	if (cpufreq_disabled())
233 		return;
234 
235 	kobject_put(&policy->kobj);
236 	up_read(&cpufreq_rwsem);
237 }
238 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
239 
240 /*********************************************************************
241  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
242  *********************************************************************/
243 
244 /**
245  * adjust_jiffies - adjust the system "loops_per_jiffy"
246  *
247  * This function alters the system "loops_per_jiffy" for the clock
248  * speed change. Note that loops_per_jiffy cannot be updated on SMP
249  * systems as each CPU might be scaled differently. So, use the arch
250  * per-CPU loops_per_jiffy value wherever possible.
251  */
252 #ifndef CONFIG_SMP
253 static unsigned long l_p_j_ref;
254 static unsigned int l_p_j_ref_freq;
255 
256 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
257 {
258 	if (ci->flags & CPUFREQ_CONST_LOOPS)
259 		return;
260 
261 	if (!l_p_j_ref_freq) {
262 		l_p_j_ref = loops_per_jiffy;
263 		l_p_j_ref_freq = ci->old;
264 		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
265 			 l_p_j_ref, l_p_j_ref_freq);
266 	}
267 	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
268 		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
269 								ci->new);
270 		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
271 			 loops_per_jiffy, ci->new);
272 	}
273 }
274 #else
275 static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
276 {
277 	return;
278 }
279 #endif
280 
281 static void __cpufreq_notify_transition(struct cpufreq_policy *policy,
282 		struct cpufreq_freqs *freqs, unsigned int state)
283 {
284 	BUG_ON(irqs_disabled());
285 
286 	if (cpufreq_disabled())
287 		return;
288 
289 	freqs->flags = cpufreq_driver->flags;
290 	pr_debug("notification %u of frequency transition to %u kHz\n",
291 		 state, freqs->new);
292 
293 	switch (state) {
294 
295 	case CPUFREQ_PRECHANGE:
296 		/* detect if the driver reported a value as "old frequency"
297 		 * which is not equal to what the cpufreq core thinks is
298 		 * "old frequency".
299 		 */
300 		if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
301 			if ((policy) && (policy->cpu == freqs->cpu) &&
302 			    (policy->cur) && (policy->cur != freqs->old)) {
303 				pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
304 					 freqs->old, policy->cur);
305 				freqs->old = policy->cur;
306 			}
307 		}
308 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
309 				CPUFREQ_PRECHANGE, freqs);
310 		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
311 		break;
312 
313 	case CPUFREQ_POSTCHANGE:
314 		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
315 		pr_debug("FREQ: %lu - CPU: %lu\n",
316 			 (unsigned long)freqs->new, (unsigned long)freqs->cpu);
317 		trace_cpu_frequency(freqs->new, freqs->cpu);
318 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
319 				CPUFREQ_POSTCHANGE, freqs);
320 		if (likely(policy) && likely(policy->cpu == freqs->cpu))
321 			policy->cur = freqs->new;
322 		break;
323 	}
324 }
325 
326 /**
327  * cpufreq_notify_transition - call notifier chain and adjust_jiffies
328  * on frequency transition.
329  *
330  * This function calls the transition notifiers and the "adjust_jiffies"
331  * function. It is called twice on all CPU frequency changes that have
332  * external effects.
333  */
334 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
335 		struct cpufreq_freqs *freqs, unsigned int state)
336 {
337 	for_each_cpu(freqs->cpu, policy->cpus)
338 		__cpufreq_notify_transition(policy, freqs, state);
339 }
340 
341 /* Do post notifications when there are chances that transition has failed */
342 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
343 		struct cpufreq_freqs *freqs, int transition_failed)
344 {
345 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
346 	if (!transition_failed)
347 		return;
348 
349 	swap(freqs->old, freqs->new);
350 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
351 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
352 }
353 
354 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
355 		struct cpufreq_freqs *freqs)
356 {
357 
358 	/*
359 	 * Catch double invocations of _begin() which lead to self-deadlock.
360 	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
361 	 * doesn't invoke _begin() on their behalf, and hence the chances of
362 	 * double invocations are very low. Moreover, there are scenarios
363 	 * where these checks can emit false-positive warnings in these
364 	 * drivers; so we avoid that by skipping them altogether.
365 	 */
366 	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
367 				&& current == policy->transition_task);
368 
369 wait:
370 	wait_event(policy->transition_wait, !policy->transition_ongoing);
371 
372 	spin_lock(&policy->transition_lock);
373 
374 	if (unlikely(policy->transition_ongoing)) {
375 		spin_unlock(&policy->transition_lock);
376 		goto wait;
377 	}
378 
379 	policy->transition_ongoing = true;
380 	policy->transition_task = current;
381 
382 	spin_unlock(&policy->transition_lock);
383 
384 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
385 }
386 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
387 
388 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
389 		struct cpufreq_freqs *freqs, int transition_failed)
390 {
391 	if (unlikely(WARN_ON(!policy->transition_ongoing)))
392 		return;
393 
394 	cpufreq_notify_post_transition(policy, freqs, transition_failed);
395 
396 	policy->transition_ongoing = false;
397 	policy->transition_task = NULL;
398 
399 	wake_up(&policy->transition_wait);
400 }
401 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
402 
403 
404 /*********************************************************************
405  *                          SYSFS INTERFACE                          *
406  *********************************************************************/
407 static ssize_t show_boost(struct kobject *kobj,
408 				 struct attribute *attr, char *buf)
409 {
410 	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
411 }
412 
413 static ssize_t store_boost(struct kobject *kobj, struct attribute *attr,
414 				  const char *buf, size_t count)
415 {
416 	int ret, enable;
417 
418 	ret = sscanf(buf, "%d", &enable);
419 	if (ret != 1 || enable < 0 || enable > 1)
420 		return -EINVAL;
421 
422 	if (cpufreq_boost_trigger_state(enable)) {
423 		pr_err("%s: Cannot %s BOOST!\n",
424 		       __func__, enable ? "enable" : "disable");
425 		return -EINVAL;
426 	}
427 
428 	pr_debug("%s: cpufreq BOOST %s\n",
429 		 __func__, enable ? "enabled" : "disabled");
430 
431 	return count;
432 }
433 define_one_global_rw(boost);
434 
435 static struct cpufreq_governor *__find_governor(const char *str_governor)
436 {
437 	struct cpufreq_governor *t;
438 
439 	list_for_each_entry(t, &cpufreq_governor_list, governor_list)
440 		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
441 			return t;
442 
443 	return NULL;
444 }
445 
446 /**
447  * cpufreq_parse_governor - parse a governor string
448  */
449 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
450 				struct cpufreq_governor **governor)
451 {
452 	int err = -EINVAL;
453 
454 	if (!cpufreq_driver)
455 		goto out;
456 
457 	if (cpufreq_driver->setpolicy) {
458 		if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
459 			*policy = CPUFREQ_POLICY_PERFORMANCE;
460 			err = 0;
461 		} else if (!strncasecmp(str_governor, "powersave",
462 						CPUFREQ_NAME_LEN)) {
463 			*policy = CPUFREQ_POLICY_POWERSAVE;
464 			err = 0;
465 		}
466 	} else if (has_target()) {
467 		struct cpufreq_governor *t;
468 
469 		mutex_lock(&cpufreq_governor_mutex);
470 
471 		t = __find_governor(str_governor);
472 
473 		if (t == NULL) {
474 			int ret;
475 
476 			mutex_unlock(&cpufreq_governor_mutex);
477 			ret = request_module("cpufreq_%s", str_governor);
478 			mutex_lock(&cpufreq_governor_mutex);
479 
480 			if (ret == 0)
481 				t = __find_governor(str_governor);
482 		}
483 
484 		if (t != NULL) {
485 			*governor = t;
486 			err = 0;
487 		}
488 
489 		mutex_unlock(&cpufreq_governor_mutex);
490 	}
491 out:
492 	return err;
493 }
494 
495 /**
496  * cpufreq_per_cpu_attr_read() / show_##file_name() -
497  * print out cpufreq information
498  *
499  * Write out information from cpufreq_driver->policy[cpu]; object must be
500  * "unsigned int".
501  */
502 
503 #define show_one(file_name, object)			\
504 static ssize_t show_##file_name				\
505 (struct cpufreq_policy *policy, char *buf)		\
506 {							\
507 	return sprintf(buf, "%u\n", policy->object);	\
508 }
509 
510 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
511 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
512 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
513 show_one(scaling_min_freq, min);
514 show_one(scaling_max_freq, max);
515 
516 static ssize_t show_scaling_cur_freq(
517 	struct cpufreq_policy *policy, char *buf)
518 {
519 	ssize_t ret;
520 
521 	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get)
522 		ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
523 	else
524 		ret = sprintf(buf, "%u\n", policy->cur);
525 	return ret;
526 }
527 
528 static int cpufreq_set_policy(struct cpufreq_policy *policy,
529 				struct cpufreq_policy *new_policy);
530 
531 /**
532  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
533  */
534 #define store_one(file_name, object)			\
535 static ssize_t store_##file_name					\
536 (struct cpufreq_policy *policy, const char *buf, size_t count)		\
537 {									\
538 	int ret;							\
539 	struct cpufreq_policy new_policy;				\
540 									\
541 	ret = cpufreq_get_policy(&new_policy, policy->cpu);		\
542 	if (ret)							\
543 		return -EINVAL;						\
544 									\
545 	ret = sscanf(buf, "%u", &new_policy.object);			\
546 	if (ret != 1)							\
547 		return -EINVAL;						\
548 									\
549 	ret = cpufreq_set_policy(policy, &new_policy);		\
550 	policy->user_policy.object = policy->object;			\
551 									\
552 	return ret ? ret : count;					\
553 }
554 
555 store_one(scaling_min_freq, min);
556 store_one(scaling_max_freq, max);
557 
558 /**
559  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
560  */
561 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
562 					char *buf)
563 {
564 	unsigned int cur_freq = __cpufreq_get(policy->cpu);
565 	if (!cur_freq)
566 		return sprintf(buf, "<unknown>");
567 	return sprintf(buf, "%u\n", cur_freq);
568 }
569 
570 /**
571  * show_scaling_governor - show the current policy for the specified CPU
572  */
573 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
574 {
575 	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
576 		return sprintf(buf, "powersave\n");
577 	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
578 		return sprintf(buf, "performance\n");
579 	else if (policy->governor)
580 		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
581 				policy->governor->name);
582 	return -EINVAL;
583 }
584 
585 /**
586  * store_scaling_governor - store policy for the specified CPU
587  */
588 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
589 					const char *buf, size_t count)
590 {
591 	int ret;
592 	char	str_governor[16];
593 	struct cpufreq_policy new_policy;
594 
595 	ret = cpufreq_get_policy(&new_policy, policy->cpu);
596 	if (ret)
597 		return ret;
598 
599 	ret = sscanf(buf, "%15s", str_governor);
600 	if (ret != 1)
601 		return -EINVAL;
602 
603 	if (cpufreq_parse_governor(str_governor, &new_policy.policy,
604 						&new_policy.governor))
605 		return -EINVAL;
606 
607 	ret = cpufreq_set_policy(policy, &new_policy);
608 
609 	policy->user_policy.policy = policy->policy;
610 	policy->user_policy.governor = policy->governor;
611 
612 	if (ret)
613 		return ret;
614 	else
615 		return count;
616 }
617 
618 /**
619  * show_scaling_driver - show the cpufreq driver currently loaded
620  */
621 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
622 {
623 	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
624 }
625 
626 /**
627  * show_scaling_available_governors - show the available CPUfreq governors
628  */
629 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
630 						char *buf)
631 {
632 	ssize_t i = 0;
633 	struct cpufreq_governor *t;
634 
635 	if (!has_target()) {
636 		i += sprintf(buf, "performance powersave");
637 		goto out;
638 	}
639 
640 	list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
641 		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
642 		    - (CPUFREQ_NAME_LEN + 2)))
643 			goto out;
644 		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
645 	}
646 out:
647 	i += sprintf(&buf[i], "\n");
648 	return i;
649 }
650 
651 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
652 {
653 	ssize_t i = 0;
654 	unsigned int cpu;
655 
656 	for_each_cpu(cpu, mask) {
657 		if (i)
658 			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
659 		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
660 		if (i >= (PAGE_SIZE - 5))
661 			break;
662 	}
663 	i += sprintf(&buf[i], "\n");
664 	return i;
665 }
666 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
667 
668 /**
669  * show_related_cpus - show the CPUs affected by each transition even if
670  * hw coordination is in use
671  */
672 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
673 {
674 	return cpufreq_show_cpus(policy->related_cpus, buf);
675 }
676 
677 /**
678  * show_affected_cpus - show the CPUs affected by each transition
679  */
680 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
681 {
682 	return cpufreq_show_cpus(policy->cpus, buf);
683 }
684 
685 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
686 					const char *buf, size_t count)
687 {
688 	unsigned int freq = 0;
689 	unsigned int ret;
690 
691 	if (!policy->governor || !policy->governor->store_setspeed)
692 		return -EINVAL;
693 
694 	ret = sscanf(buf, "%u", &freq);
695 	if (ret != 1)
696 		return -EINVAL;
697 
698 	policy->governor->store_setspeed(policy, freq);
699 
700 	return count;
701 }
702 
703 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
704 {
705 	if (!policy->governor || !policy->governor->show_setspeed)
706 		return sprintf(buf, "<unsupported>\n");
707 
708 	return policy->governor->show_setspeed(policy, buf);
709 }
710 
711 /**
712  * show_bios_limit - show the current cpufreq HW/BIOS limitation
713  */
714 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
715 {
716 	unsigned int limit;
717 	int ret;
718 	if (cpufreq_driver->bios_limit) {
719 		ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
720 		if (!ret)
721 			return sprintf(buf, "%u\n", limit);
722 	}
723 	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
724 }
725 
726 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
727 cpufreq_freq_attr_ro(cpuinfo_min_freq);
728 cpufreq_freq_attr_ro(cpuinfo_max_freq);
729 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
730 cpufreq_freq_attr_ro(scaling_available_governors);
731 cpufreq_freq_attr_ro(scaling_driver);
732 cpufreq_freq_attr_ro(scaling_cur_freq);
733 cpufreq_freq_attr_ro(bios_limit);
734 cpufreq_freq_attr_ro(related_cpus);
735 cpufreq_freq_attr_ro(affected_cpus);
736 cpufreq_freq_attr_rw(scaling_min_freq);
737 cpufreq_freq_attr_rw(scaling_max_freq);
738 cpufreq_freq_attr_rw(scaling_governor);
739 cpufreq_freq_attr_rw(scaling_setspeed);
740 
741 static struct attribute *default_attrs[] = {
742 	&cpuinfo_min_freq.attr,
743 	&cpuinfo_max_freq.attr,
744 	&cpuinfo_transition_latency.attr,
745 	&scaling_min_freq.attr,
746 	&scaling_max_freq.attr,
747 	&affected_cpus.attr,
748 	&related_cpus.attr,
749 	&scaling_governor.attr,
750 	&scaling_driver.attr,
751 	&scaling_available_governors.attr,
752 	&scaling_setspeed.attr,
753 	NULL
754 };
755 
756 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
757 #define to_attr(a) container_of(a, struct freq_attr, attr)
758 
759 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
760 {
761 	struct cpufreq_policy *policy = to_policy(kobj);
762 	struct freq_attr *fattr = to_attr(attr);
763 	ssize_t ret;
764 
765 	if (!down_read_trylock(&cpufreq_rwsem))
766 		return -EINVAL;
767 
768 	down_read(&policy->rwsem);
769 
770 	if (fattr->show)
771 		ret = fattr->show(policy, buf);
772 	else
773 		ret = -EIO;
774 
775 	up_read(&policy->rwsem);
776 	up_read(&cpufreq_rwsem);
777 
778 	return ret;
779 }
780 
781 static ssize_t store(struct kobject *kobj, struct attribute *attr,
782 		     const char *buf, size_t count)
783 {
784 	struct cpufreq_policy *policy = to_policy(kobj);
785 	struct freq_attr *fattr = to_attr(attr);
786 	ssize_t ret = -EINVAL;
787 
788 	get_online_cpus();
789 
790 	if (!cpu_online(policy->cpu))
791 		goto unlock;
792 
793 	if (!down_read_trylock(&cpufreq_rwsem))
794 		goto unlock;
795 
796 	down_write(&policy->rwsem);
797 
798 	if (fattr->store)
799 		ret = fattr->store(policy, buf, count);
800 	else
801 		ret = -EIO;
802 
803 	up_write(&policy->rwsem);
804 
805 	up_read(&cpufreq_rwsem);
806 unlock:
807 	put_online_cpus();
808 
809 	return ret;
810 }
811 
812 static void cpufreq_sysfs_release(struct kobject *kobj)
813 {
814 	struct cpufreq_policy *policy = to_policy(kobj);
815 	pr_debug("last reference is dropped\n");
816 	complete(&policy->kobj_unregister);
817 }
818 
819 static const struct sysfs_ops sysfs_ops = {
820 	.show	= show,
821 	.store	= store,
822 };
823 
824 static struct kobj_type ktype_cpufreq = {
825 	.sysfs_ops	= &sysfs_ops,
826 	.default_attrs	= default_attrs,
827 	.release	= cpufreq_sysfs_release,
828 };
829 
830 struct kobject *cpufreq_global_kobject;
831 EXPORT_SYMBOL(cpufreq_global_kobject);
832 
833 static int cpufreq_global_kobject_usage;
834 
835 int cpufreq_get_global_kobject(void)
836 {
837 	if (!cpufreq_global_kobject_usage++)
838 		return kobject_add(cpufreq_global_kobject,
839 				&cpu_subsys.dev_root->kobj, "%s", "cpufreq");
840 
841 	return 0;
842 }
843 EXPORT_SYMBOL(cpufreq_get_global_kobject);
844 
845 void cpufreq_put_global_kobject(void)
846 {
847 	if (!--cpufreq_global_kobject_usage)
848 		kobject_del(cpufreq_global_kobject);
849 }
850 EXPORT_SYMBOL(cpufreq_put_global_kobject);
851 
852 int cpufreq_sysfs_create_file(const struct attribute *attr)
853 {
854 	int ret = cpufreq_get_global_kobject();
855 
856 	if (!ret) {
857 		ret = sysfs_create_file(cpufreq_global_kobject, attr);
858 		if (ret)
859 			cpufreq_put_global_kobject();
860 	}
861 
862 	return ret;
863 }
864 EXPORT_SYMBOL(cpufreq_sysfs_create_file);
865 
866 void cpufreq_sysfs_remove_file(const struct attribute *attr)
867 {
868 	sysfs_remove_file(cpufreq_global_kobject, attr);
869 	cpufreq_put_global_kobject();
870 }
871 EXPORT_SYMBOL(cpufreq_sysfs_remove_file);
872 
873 /* symlink affected CPUs */
874 static int cpufreq_add_dev_symlink(struct cpufreq_policy *policy)
875 {
876 	unsigned int j;
877 	int ret = 0;
878 
879 	for_each_cpu(j, policy->cpus) {
880 		struct device *cpu_dev;
881 
882 		if (j == policy->cpu)
883 			continue;
884 
885 		pr_debug("Adding link for CPU: %u\n", j);
886 		cpu_dev = get_cpu_device(j);
887 		ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj,
888 					"cpufreq");
889 		if (ret)
890 			break;
891 	}
892 	return ret;
893 }
894 
895 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy,
896 				     struct device *dev)
897 {
898 	struct freq_attr **drv_attr;
899 	int ret = 0;
900 
901 	/* prepare interface data */
902 	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
903 				   &dev->kobj, "cpufreq");
904 	if (ret)
905 		return ret;
906 
907 	/* set up files for this cpu device */
908 	drv_attr = cpufreq_driver->attr;
909 	while ((drv_attr) && (*drv_attr)) {
910 		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
911 		if (ret)
912 			goto err_out_kobj_put;
913 		drv_attr++;
914 	}
915 	if (cpufreq_driver->get) {
916 		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
917 		if (ret)
918 			goto err_out_kobj_put;
919 	}
920 
921 	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
922 	if (ret)
923 		goto err_out_kobj_put;
924 
925 	if (cpufreq_driver->bios_limit) {
926 		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
927 		if (ret)
928 			goto err_out_kobj_put;
929 	}
930 
931 	ret = cpufreq_add_dev_symlink(policy);
932 	if (ret)
933 		goto err_out_kobj_put;
934 
935 	return ret;
936 
937 err_out_kobj_put:
938 	kobject_put(&policy->kobj);
939 	wait_for_completion(&policy->kobj_unregister);
940 	return ret;
941 }
942 
943 static void cpufreq_init_policy(struct cpufreq_policy *policy)
944 {
945 	struct cpufreq_governor *gov = NULL;
946 	struct cpufreq_policy new_policy;
947 	int ret = 0;
948 
949 	memcpy(&new_policy, policy, sizeof(*policy));
950 
951 	/* Update governor of new_policy to the governor used before hotplug */
952 	gov = __find_governor(per_cpu(cpufreq_cpu_governor, policy->cpu));
953 	if (gov)
954 		pr_debug("Restoring governor %s for cpu %d\n",
955 				policy->governor->name, policy->cpu);
956 	else
957 		gov = CPUFREQ_DEFAULT_GOVERNOR;
958 
959 	new_policy.governor = gov;
960 
961 	/* Use the default policy if its valid. */
962 	if (cpufreq_driver->setpolicy)
963 		cpufreq_parse_governor(gov->name, &new_policy.policy, NULL);
964 
965 	/* set default policy */
966 	ret = cpufreq_set_policy(policy, &new_policy);
967 	if (ret) {
968 		pr_debug("setting policy failed\n");
969 		if (cpufreq_driver->exit)
970 			cpufreq_driver->exit(policy);
971 	}
972 }
973 
974 #ifdef CONFIG_HOTPLUG_CPU
975 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy,
976 				  unsigned int cpu, struct device *dev)
977 {
978 	int ret = 0;
979 	unsigned long flags;
980 
981 	if (has_target()) {
982 		ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
983 		if (ret) {
984 			pr_err("%s: Failed to stop governor\n", __func__);
985 			return ret;
986 		}
987 	}
988 
989 	down_write(&policy->rwsem);
990 
991 	write_lock_irqsave(&cpufreq_driver_lock, flags);
992 
993 	cpumask_set_cpu(cpu, policy->cpus);
994 	per_cpu(cpufreq_cpu_data, cpu) = policy;
995 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
996 
997 	up_write(&policy->rwsem);
998 
999 	if (has_target()) {
1000 		ret = __cpufreq_governor(policy, CPUFREQ_GOV_START);
1001 		if (!ret)
1002 			ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
1003 
1004 		if (ret) {
1005 			pr_err("%s: Failed to start governor\n", __func__);
1006 			return ret;
1007 		}
1008 	}
1009 
1010 	return sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq");
1011 }
1012 #endif
1013 
1014 static struct cpufreq_policy *cpufreq_policy_restore(unsigned int cpu)
1015 {
1016 	struct cpufreq_policy *policy;
1017 	unsigned long flags;
1018 
1019 	read_lock_irqsave(&cpufreq_driver_lock, flags);
1020 
1021 	policy = per_cpu(cpufreq_cpu_data_fallback, cpu);
1022 
1023 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1024 
1025 	policy->governor = NULL;
1026 
1027 	return policy;
1028 }
1029 
1030 static struct cpufreq_policy *cpufreq_policy_alloc(void)
1031 {
1032 	struct cpufreq_policy *policy;
1033 
1034 	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1035 	if (!policy)
1036 		return NULL;
1037 
1038 	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1039 		goto err_free_policy;
1040 
1041 	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1042 		goto err_free_cpumask;
1043 
1044 	INIT_LIST_HEAD(&policy->policy_list);
1045 	init_rwsem(&policy->rwsem);
1046 	spin_lock_init(&policy->transition_lock);
1047 	init_waitqueue_head(&policy->transition_wait);
1048 
1049 	return policy;
1050 
1051 err_free_cpumask:
1052 	free_cpumask_var(policy->cpus);
1053 err_free_policy:
1054 	kfree(policy);
1055 
1056 	return NULL;
1057 }
1058 
1059 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1060 {
1061 	struct kobject *kobj;
1062 	struct completion *cmp;
1063 
1064 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1065 			CPUFREQ_REMOVE_POLICY, policy);
1066 
1067 	down_read(&policy->rwsem);
1068 	kobj = &policy->kobj;
1069 	cmp = &policy->kobj_unregister;
1070 	up_read(&policy->rwsem);
1071 	kobject_put(kobj);
1072 
1073 	/*
1074 	 * We need to make sure that the underlying kobj is
1075 	 * actually not referenced anymore by anybody before we
1076 	 * proceed with unloading.
1077 	 */
1078 	pr_debug("waiting for dropping of refcount\n");
1079 	wait_for_completion(cmp);
1080 	pr_debug("wait complete\n");
1081 }
1082 
1083 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1084 {
1085 	free_cpumask_var(policy->related_cpus);
1086 	free_cpumask_var(policy->cpus);
1087 	kfree(policy);
1088 }
1089 
1090 static int update_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu,
1091 			     struct device *cpu_dev)
1092 {
1093 	int ret;
1094 
1095 	if (WARN_ON(cpu == policy->cpu))
1096 		return 0;
1097 
1098 	/* Move kobject to the new policy->cpu */
1099 	ret = kobject_move(&policy->kobj, &cpu_dev->kobj);
1100 	if (ret) {
1101 		pr_err("%s: Failed to move kobj: %d\n", __func__, ret);
1102 		return ret;
1103 	}
1104 
1105 	down_write(&policy->rwsem);
1106 
1107 	policy->last_cpu = policy->cpu;
1108 	policy->cpu = cpu;
1109 
1110 	up_write(&policy->rwsem);
1111 
1112 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1113 			CPUFREQ_UPDATE_POLICY_CPU, policy);
1114 
1115 	return 0;
1116 }
1117 
1118 static int __cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1119 {
1120 	unsigned int j, cpu = dev->id;
1121 	int ret = -ENOMEM;
1122 	struct cpufreq_policy *policy;
1123 	unsigned long flags;
1124 	bool recover_policy = cpufreq_suspended;
1125 #ifdef CONFIG_HOTPLUG_CPU
1126 	struct cpufreq_policy *tpolicy;
1127 #endif
1128 
1129 	if (cpu_is_offline(cpu))
1130 		return 0;
1131 
1132 	pr_debug("adding CPU %u\n", cpu);
1133 
1134 #ifdef CONFIG_SMP
1135 	/* check whether a different CPU already registered this
1136 	 * CPU because it is in the same boat. */
1137 	policy = cpufreq_cpu_get(cpu);
1138 	if (unlikely(policy)) {
1139 		cpufreq_cpu_put(policy);
1140 		return 0;
1141 	}
1142 #endif
1143 
1144 	if (!down_read_trylock(&cpufreq_rwsem))
1145 		return 0;
1146 
1147 #ifdef CONFIG_HOTPLUG_CPU
1148 	/* Check if this cpu was hot-unplugged earlier and has siblings */
1149 	read_lock_irqsave(&cpufreq_driver_lock, flags);
1150 	list_for_each_entry(tpolicy, &cpufreq_policy_list, policy_list) {
1151 		if (cpumask_test_cpu(cpu, tpolicy->related_cpus)) {
1152 			read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1153 			ret = cpufreq_add_policy_cpu(tpolicy, cpu, dev);
1154 			up_read(&cpufreq_rwsem);
1155 			return ret;
1156 		}
1157 	}
1158 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1159 #endif
1160 
1161 	/*
1162 	 * Restore the saved policy when doing light-weight init and fall back
1163 	 * to the full init if that fails.
1164 	 */
1165 	policy = recover_policy ? cpufreq_policy_restore(cpu) : NULL;
1166 	if (!policy) {
1167 		recover_policy = false;
1168 		policy = cpufreq_policy_alloc();
1169 		if (!policy)
1170 			goto nomem_out;
1171 	}
1172 
1173 	/*
1174 	 * In the resume path, since we restore a saved policy, the assignment
1175 	 * to policy->cpu is like an update of the existing policy, rather than
1176 	 * the creation of a brand new one. So we need to perform this update
1177 	 * by invoking update_policy_cpu().
1178 	 */
1179 	if (recover_policy && cpu != policy->cpu)
1180 		WARN_ON(update_policy_cpu(policy, cpu, dev));
1181 	else
1182 		policy->cpu = cpu;
1183 
1184 	cpumask_copy(policy->cpus, cpumask_of(cpu));
1185 
1186 	init_completion(&policy->kobj_unregister);
1187 	INIT_WORK(&policy->update, handle_update);
1188 
1189 	/* call driver. From then on the cpufreq must be able
1190 	 * to accept all calls to ->verify and ->setpolicy for this CPU
1191 	 */
1192 	ret = cpufreq_driver->init(policy);
1193 	if (ret) {
1194 		pr_debug("initialization failed\n");
1195 		goto err_set_policy_cpu;
1196 	}
1197 
1198 	/* related cpus should atleast have policy->cpus */
1199 	cpumask_or(policy->related_cpus, policy->related_cpus, policy->cpus);
1200 
1201 	/*
1202 	 * affected cpus must always be the one, which are online. We aren't
1203 	 * managing offline cpus here.
1204 	 */
1205 	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1206 
1207 	if (!recover_policy) {
1208 		policy->user_policy.min = policy->min;
1209 		policy->user_policy.max = policy->max;
1210 	}
1211 
1212 	down_write(&policy->rwsem);
1213 	write_lock_irqsave(&cpufreq_driver_lock, flags);
1214 	for_each_cpu(j, policy->cpus)
1215 		per_cpu(cpufreq_cpu_data, j) = policy;
1216 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1217 
1218 	if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
1219 		policy->cur = cpufreq_driver->get(policy->cpu);
1220 		if (!policy->cur) {
1221 			pr_err("%s: ->get() failed\n", __func__);
1222 			goto err_get_freq;
1223 		}
1224 	}
1225 
1226 	/*
1227 	 * Sometimes boot loaders set CPU frequency to a value outside of
1228 	 * frequency table present with cpufreq core. In such cases CPU might be
1229 	 * unstable if it has to run on that frequency for long duration of time
1230 	 * and so its better to set it to a frequency which is specified in
1231 	 * freq-table. This also makes cpufreq stats inconsistent as
1232 	 * cpufreq-stats would fail to register because current frequency of CPU
1233 	 * isn't found in freq-table.
1234 	 *
1235 	 * Because we don't want this change to effect boot process badly, we go
1236 	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1237 	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1238 	 * is initialized to zero).
1239 	 *
1240 	 * We are passing target-freq as "policy->cur - 1" otherwise
1241 	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1242 	 * equal to target-freq.
1243 	 */
1244 	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1245 	    && has_target()) {
1246 		/* Are we running at unknown frequency ? */
1247 		ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1248 		if (ret == -EINVAL) {
1249 			/* Warn user and fix it */
1250 			pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1251 				__func__, policy->cpu, policy->cur);
1252 			ret = __cpufreq_driver_target(policy, policy->cur - 1,
1253 				CPUFREQ_RELATION_L);
1254 
1255 			/*
1256 			 * Reaching here after boot in a few seconds may not
1257 			 * mean that system will remain stable at "unknown"
1258 			 * frequency for longer duration. Hence, a BUG_ON().
1259 			 */
1260 			BUG_ON(ret);
1261 			pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1262 				__func__, policy->cpu, policy->cur);
1263 		}
1264 	}
1265 
1266 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1267 				     CPUFREQ_START, policy);
1268 
1269 	if (!recover_policy) {
1270 		ret = cpufreq_add_dev_interface(policy, dev);
1271 		if (ret)
1272 			goto err_out_unregister;
1273 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1274 				CPUFREQ_CREATE_POLICY, policy);
1275 	}
1276 
1277 	write_lock_irqsave(&cpufreq_driver_lock, flags);
1278 	list_add(&policy->policy_list, &cpufreq_policy_list);
1279 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1280 
1281 	cpufreq_init_policy(policy);
1282 
1283 	if (!recover_policy) {
1284 		policy->user_policy.policy = policy->policy;
1285 		policy->user_policy.governor = policy->governor;
1286 	}
1287 	up_write(&policy->rwsem);
1288 
1289 	kobject_uevent(&policy->kobj, KOBJ_ADD);
1290 	up_read(&cpufreq_rwsem);
1291 
1292 	pr_debug("initialization complete\n");
1293 
1294 	return 0;
1295 
1296 err_out_unregister:
1297 err_get_freq:
1298 	write_lock_irqsave(&cpufreq_driver_lock, flags);
1299 	for_each_cpu(j, policy->cpus)
1300 		per_cpu(cpufreq_cpu_data, j) = NULL;
1301 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1302 
1303 	up_write(&policy->rwsem);
1304 
1305 	if (cpufreq_driver->exit)
1306 		cpufreq_driver->exit(policy);
1307 err_set_policy_cpu:
1308 	if (recover_policy) {
1309 		/* Do not leave stale fallback data behind. */
1310 		per_cpu(cpufreq_cpu_data_fallback, cpu) = NULL;
1311 		cpufreq_policy_put_kobj(policy);
1312 	}
1313 	cpufreq_policy_free(policy);
1314 
1315 nomem_out:
1316 	up_read(&cpufreq_rwsem);
1317 
1318 	return ret;
1319 }
1320 
1321 /**
1322  * cpufreq_add_dev - add a CPU device
1323  *
1324  * Adds the cpufreq interface for a CPU device.
1325  *
1326  * The Oracle says: try running cpufreq registration/unregistration concurrently
1327  * with with cpu hotplugging and all hell will break loose. Tried to clean this
1328  * mess up, but more thorough testing is needed. - Mathieu
1329  */
1330 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1331 {
1332 	return __cpufreq_add_dev(dev, sif);
1333 }
1334 
1335 static int __cpufreq_remove_dev_prepare(struct device *dev,
1336 					struct subsys_interface *sif)
1337 {
1338 	unsigned int cpu = dev->id, cpus;
1339 	int ret;
1340 	unsigned long flags;
1341 	struct cpufreq_policy *policy;
1342 
1343 	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1344 
1345 	write_lock_irqsave(&cpufreq_driver_lock, flags);
1346 
1347 	policy = per_cpu(cpufreq_cpu_data, cpu);
1348 
1349 	/* Save the policy somewhere when doing a light-weight tear-down */
1350 	if (cpufreq_suspended)
1351 		per_cpu(cpufreq_cpu_data_fallback, cpu) = policy;
1352 
1353 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1354 
1355 	if (!policy) {
1356 		pr_debug("%s: No cpu_data found\n", __func__);
1357 		return -EINVAL;
1358 	}
1359 
1360 	if (has_target()) {
1361 		ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
1362 		if (ret) {
1363 			pr_err("%s: Failed to stop governor\n", __func__);
1364 			return ret;
1365 		}
1366 	}
1367 
1368 	if (!cpufreq_driver->setpolicy)
1369 		strncpy(per_cpu(cpufreq_cpu_governor, cpu),
1370 			policy->governor->name, CPUFREQ_NAME_LEN);
1371 
1372 	down_read(&policy->rwsem);
1373 	cpus = cpumask_weight(policy->cpus);
1374 	up_read(&policy->rwsem);
1375 
1376 	if (cpu != policy->cpu) {
1377 		sysfs_remove_link(&dev->kobj, "cpufreq");
1378 	} else if (cpus > 1) {
1379 		/* Nominate new CPU */
1380 		int new_cpu = cpumask_any_but(policy->cpus, cpu);
1381 		struct device *cpu_dev = get_cpu_device(new_cpu);
1382 
1383 		sysfs_remove_link(&cpu_dev->kobj, "cpufreq");
1384 		ret = update_policy_cpu(policy, new_cpu, cpu_dev);
1385 		if (ret) {
1386 			if (sysfs_create_link(&cpu_dev->kobj, &policy->kobj,
1387 					      "cpufreq"))
1388 				pr_err("%s: Failed to restore kobj link to cpu:%d\n",
1389 				       __func__, cpu_dev->id);
1390 			return ret;
1391 		}
1392 
1393 		if (!cpufreq_suspended)
1394 			pr_debug("%s: policy Kobject moved to cpu: %d from: %d\n",
1395 				 __func__, new_cpu, cpu);
1396 	} else if (cpufreq_driver->stop_cpu) {
1397 		cpufreq_driver->stop_cpu(policy);
1398 	}
1399 
1400 	return 0;
1401 }
1402 
1403 static int __cpufreq_remove_dev_finish(struct device *dev,
1404 				       struct subsys_interface *sif)
1405 {
1406 	unsigned int cpu = dev->id, cpus;
1407 	int ret;
1408 	unsigned long flags;
1409 	struct cpufreq_policy *policy;
1410 
1411 	read_lock_irqsave(&cpufreq_driver_lock, flags);
1412 	policy = per_cpu(cpufreq_cpu_data, cpu);
1413 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1414 
1415 	if (!policy) {
1416 		pr_debug("%s: No cpu_data found\n", __func__);
1417 		return -EINVAL;
1418 	}
1419 
1420 	down_write(&policy->rwsem);
1421 	cpus = cpumask_weight(policy->cpus);
1422 
1423 	if (cpus > 1)
1424 		cpumask_clear_cpu(cpu, policy->cpus);
1425 	up_write(&policy->rwsem);
1426 
1427 	/* If cpu is last user of policy, free policy */
1428 	if (cpus == 1) {
1429 		if (has_target()) {
1430 			ret = __cpufreq_governor(policy,
1431 					CPUFREQ_GOV_POLICY_EXIT);
1432 			if (ret) {
1433 				pr_err("%s: Failed to exit governor\n",
1434 				       __func__);
1435 				return ret;
1436 			}
1437 		}
1438 
1439 		if (!cpufreq_suspended)
1440 			cpufreq_policy_put_kobj(policy);
1441 
1442 		/*
1443 		 * Perform the ->exit() even during light-weight tear-down,
1444 		 * since this is a core component, and is essential for the
1445 		 * subsequent light-weight ->init() to succeed.
1446 		 */
1447 		if (cpufreq_driver->exit)
1448 			cpufreq_driver->exit(policy);
1449 
1450 		/* Remove policy from list of active policies */
1451 		write_lock_irqsave(&cpufreq_driver_lock, flags);
1452 		list_del(&policy->policy_list);
1453 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1454 
1455 		if (!cpufreq_suspended)
1456 			cpufreq_policy_free(policy);
1457 	} else if (has_target()) {
1458 		ret = __cpufreq_governor(policy, CPUFREQ_GOV_START);
1459 		if (!ret)
1460 			ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
1461 
1462 		if (ret) {
1463 			pr_err("%s: Failed to start governor\n", __func__);
1464 			return ret;
1465 		}
1466 	}
1467 
1468 	per_cpu(cpufreq_cpu_data, cpu) = NULL;
1469 	return 0;
1470 }
1471 
1472 /**
1473  * cpufreq_remove_dev - remove a CPU device
1474  *
1475  * Removes the cpufreq interface for a CPU device.
1476  */
1477 static int cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1478 {
1479 	unsigned int cpu = dev->id;
1480 	int ret;
1481 
1482 	if (cpu_is_offline(cpu))
1483 		return 0;
1484 
1485 	ret = __cpufreq_remove_dev_prepare(dev, sif);
1486 
1487 	if (!ret)
1488 		ret = __cpufreq_remove_dev_finish(dev, sif);
1489 
1490 	return ret;
1491 }
1492 
1493 static void handle_update(struct work_struct *work)
1494 {
1495 	struct cpufreq_policy *policy =
1496 		container_of(work, struct cpufreq_policy, update);
1497 	unsigned int cpu = policy->cpu;
1498 	pr_debug("handle_update for cpu %u called\n", cpu);
1499 	cpufreq_update_policy(cpu);
1500 }
1501 
1502 /**
1503  *	cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1504  *	in deep trouble.
1505  *	@cpu: cpu number
1506  *	@old_freq: CPU frequency the kernel thinks the CPU runs at
1507  *	@new_freq: CPU frequency the CPU actually runs at
1508  *
1509  *	We adjust to current frequency first, and need to clean up later.
1510  *	So either call to cpufreq_update_policy() or schedule handle_update()).
1511  */
1512 static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq,
1513 				unsigned int new_freq)
1514 {
1515 	struct cpufreq_policy *policy;
1516 	struct cpufreq_freqs freqs;
1517 	unsigned long flags;
1518 
1519 	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1520 		 old_freq, new_freq);
1521 
1522 	freqs.old = old_freq;
1523 	freqs.new = new_freq;
1524 
1525 	read_lock_irqsave(&cpufreq_driver_lock, flags);
1526 	policy = per_cpu(cpufreq_cpu_data, cpu);
1527 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1528 
1529 	cpufreq_freq_transition_begin(policy, &freqs);
1530 	cpufreq_freq_transition_end(policy, &freqs, 0);
1531 }
1532 
1533 /**
1534  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1535  * @cpu: CPU number
1536  *
1537  * This is the last known freq, without actually getting it from the driver.
1538  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1539  */
1540 unsigned int cpufreq_quick_get(unsigned int cpu)
1541 {
1542 	struct cpufreq_policy *policy;
1543 	unsigned int ret_freq = 0;
1544 
1545 	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get)
1546 		return cpufreq_driver->get(cpu);
1547 
1548 	policy = cpufreq_cpu_get(cpu);
1549 	if (policy) {
1550 		ret_freq = policy->cur;
1551 		cpufreq_cpu_put(policy);
1552 	}
1553 
1554 	return ret_freq;
1555 }
1556 EXPORT_SYMBOL(cpufreq_quick_get);
1557 
1558 /**
1559  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1560  * @cpu: CPU number
1561  *
1562  * Just return the max possible frequency for a given CPU.
1563  */
1564 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1565 {
1566 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1567 	unsigned int ret_freq = 0;
1568 
1569 	if (policy) {
1570 		ret_freq = policy->max;
1571 		cpufreq_cpu_put(policy);
1572 	}
1573 
1574 	return ret_freq;
1575 }
1576 EXPORT_SYMBOL(cpufreq_quick_get_max);
1577 
1578 static unsigned int __cpufreq_get(unsigned int cpu)
1579 {
1580 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1581 	unsigned int ret_freq = 0;
1582 
1583 	if (!cpufreq_driver->get)
1584 		return ret_freq;
1585 
1586 	ret_freq = cpufreq_driver->get(cpu);
1587 
1588 	if (ret_freq && policy->cur &&
1589 		!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1590 		/* verify no discrepancy between actual and
1591 					saved value exists */
1592 		if (unlikely(ret_freq != policy->cur)) {
1593 			cpufreq_out_of_sync(cpu, policy->cur, ret_freq);
1594 			schedule_work(&policy->update);
1595 		}
1596 	}
1597 
1598 	return ret_freq;
1599 }
1600 
1601 /**
1602  * cpufreq_get - get the current CPU frequency (in kHz)
1603  * @cpu: CPU number
1604  *
1605  * Get the CPU current (static) CPU frequency
1606  */
1607 unsigned int cpufreq_get(unsigned int cpu)
1608 {
1609 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1610 	unsigned int ret_freq = 0;
1611 
1612 	if (policy) {
1613 		down_read(&policy->rwsem);
1614 		ret_freq = __cpufreq_get(cpu);
1615 		up_read(&policy->rwsem);
1616 
1617 		cpufreq_cpu_put(policy);
1618 	}
1619 
1620 	return ret_freq;
1621 }
1622 EXPORT_SYMBOL(cpufreq_get);
1623 
1624 static struct subsys_interface cpufreq_interface = {
1625 	.name		= "cpufreq",
1626 	.subsys		= &cpu_subsys,
1627 	.add_dev	= cpufreq_add_dev,
1628 	.remove_dev	= cpufreq_remove_dev,
1629 };
1630 
1631 /*
1632  * In case platform wants some specific frequency to be configured
1633  * during suspend..
1634  */
1635 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1636 {
1637 	int ret;
1638 
1639 	if (!policy->suspend_freq) {
1640 		pr_err("%s: suspend_freq can't be zero\n", __func__);
1641 		return -EINVAL;
1642 	}
1643 
1644 	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1645 			policy->suspend_freq);
1646 
1647 	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1648 			CPUFREQ_RELATION_H);
1649 	if (ret)
1650 		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1651 				__func__, policy->suspend_freq, ret);
1652 
1653 	return ret;
1654 }
1655 EXPORT_SYMBOL(cpufreq_generic_suspend);
1656 
1657 /**
1658  * cpufreq_suspend() - Suspend CPUFreq governors
1659  *
1660  * Called during system wide Suspend/Hibernate cycles for suspending governors
1661  * as some platforms can't change frequency after this point in suspend cycle.
1662  * Because some of the devices (like: i2c, regulators, etc) they use for
1663  * changing frequency are suspended quickly after this point.
1664  */
1665 void cpufreq_suspend(void)
1666 {
1667 	struct cpufreq_policy *policy;
1668 
1669 	if (!cpufreq_driver)
1670 		return;
1671 
1672 	if (!has_target())
1673 		goto suspend;
1674 
1675 	pr_debug("%s: Suspending Governors\n", __func__);
1676 
1677 	list_for_each_entry(policy, &cpufreq_policy_list, policy_list) {
1678 		if (__cpufreq_governor(policy, CPUFREQ_GOV_STOP))
1679 			pr_err("%s: Failed to stop governor for policy: %p\n",
1680 				__func__, policy);
1681 		else if (cpufreq_driver->suspend
1682 		    && cpufreq_driver->suspend(policy))
1683 			pr_err("%s: Failed to suspend driver: %p\n", __func__,
1684 				policy);
1685 	}
1686 
1687 suspend:
1688 	cpufreq_suspended = true;
1689 }
1690 
1691 /**
1692  * cpufreq_resume() - Resume CPUFreq governors
1693  *
1694  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1695  * are suspended with cpufreq_suspend().
1696  */
1697 void cpufreq_resume(void)
1698 {
1699 	struct cpufreq_policy *policy;
1700 
1701 	if (!cpufreq_driver)
1702 		return;
1703 
1704 	cpufreq_suspended = false;
1705 
1706 	if (!has_target())
1707 		return;
1708 
1709 	pr_debug("%s: Resuming Governors\n", __func__);
1710 
1711 	list_for_each_entry(policy, &cpufreq_policy_list, policy_list) {
1712 		if (cpufreq_driver->resume && cpufreq_driver->resume(policy))
1713 			pr_err("%s: Failed to resume driver: %p\n", __func__,
1714 				policy);
1715 		else if (__cpufreq_governor(policy, CPUFREQ_GOV_START)
1716 		    || __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS))
1717 			pr_err("%s: Failed to start governor for policy: %p\n",
1718 				__func__, policy);
1719 
1720 		/*
1721 		 * schedule call cpufreq_update_policy() for boot CPU, i.e. last
1722 		 * policy in list. It will verify that the current freq is in
1723 		 * sync with what we believe it to be.
1724 		 */
1725 		if (list_is_last(&policy->policy_list, &cpufreq_policy_list))
1726 			schedule_work(&policy->update);
1727 	}
1728 }
1729 
1730 /**
1731  *	cpufreq_get_current_driver - return current driver's name
1732  *
1733  *	Return the name string of the currently loaded cpufreq driver
1734  *	or NULL, if none.
1735  */
1736 const char *cpufreq_get_current_driver(void)
1737 {
1738 	if (cpufreq_driver)
1739 		return cpufreq_driver->name;
1740 
1741 	return NULL;
1742 }
1743 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1744 
1745 /**
1746  *	cpufreq_get_driver_data - return current driver data
1747  *
1748  *	Return the private data of the currently loaded cpufreq
1749  *	driver, or NULL if no cpufreq driver is loaded.
1750  */
1751 void *cpufreq_get_driver_data(void)
1752 {
1753 	if (cpufreq_driver)
1754 		return cpufreq_driver->driver_data;
1755 
1756 	return NULL;
1757 }
1758 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1759 
1760 /*********************************************************************
1761  *                     NOTIFIER LISTS INTERFACE                      *
1762  *********************************************************************/
1763 
1764 /**
1765  *	cpufreq_register_notifier - register a driver with cpufreq
1766  *	@nb: notifier function to register
1767  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1768  *
1769  *	Add a driver to one of two lists: either a list of drivers that
1770  *      are notified about clock rate changes (once before and once after
1771  *      the transition), or a list of drivers that are notified about
1772  *      changes in cpufreq policy.
1773  *
1774  *	This function may sleep, and has the same return conditions as
1775  *	blocking_notifier_chain_register.
1776  */
1777 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1778 {
1779 	int ret;
1780 
1781 	if (cpufreq_disabled())
1782 		return -EINVAL;
1783 
1784 	WARN_ON(!init_cpufreq_transition_notifier_list_called);
1785 
1786 	switch (list) {
1787 	case CPUFREQ_TRANSITION_NOTIFIER:
1788 		ret = srcu_notifier_chain_register(
1789 				&cpufreq_transition_notifier_list, nb);
1790 		break;
1791 	case CPUFREQ_POLICY_NOTIFIER:
1792 		ret = blocking_notifier_chain_register(
1793 				&cpufreq_policy_notifier_list, nb);
1794 		break;
1795 	default:
1796 		ret = -EINVAL;
1797 	}
1798 
1799 	return ret;
1800 }
1801 EXPORT_SYMBOL(cpufreq_register_notifier);
1802 
1803 /**
1804  *	cpufreq_unregister_notifier - unregister a driver with cpufreq
1805  *	@nb: notifier block to be unregistered
1806  *	@list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1807  *
1808  *	Remove a driver from the CPU frequency notifier list.
1809  *
1810  *	This function may sleep, and has the same return conditions as
1811  *	blocking_notifier_chain_unregister.
1812  */
1813 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1814 {
1815 	int ret;
1816 
1817 	if (cpufreq_disabled())
1818 		return -EINVAL;
1819 
1820 	switch (list) {
1821 	case CPUFREQ_TRANSITION_NOTIFIER:
1822 		ret = srcu_notifier_chain_unregister(
1823 				&cpufreq_transition_notifier_list, nb);
1824 		break;
1825 	case CPUFREQ_POLICY_NOTIFIER:
1826 		ret = blocking_notifier_chain_unregister(
1827 				&cpufreq_policy_notifier_list, nb);
1828 		break;
1829 	default:
1830 		ret = -EINVAL;
1831 	}
1832 
1833 	return ret;
1834 }
1835 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1836 
1837 
1838 /*********************************************************************
1839  *                              GOVERNORS                            *
1840  *********************************************************************/
1841 
1842 /* Must set freqs->new to intermediate frequency */
1843 static int __target_intermediate(struct cpufreq_policy *policy,
1844 				 struct cpufreq_freqs *freqs, int index)
1845 {
1846 	int ret;
1847 
1848 	freqs->new = cpufreq_driver->get_intermediate(policy, index);
1849 
1850 	/* We don't need to switch to intermediate freq */
1851 	if (!freqs->new)
1852 		return 0;
1853 
1854 	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
1855 		 __func__, policy->cpu, freqs->old, freqs->new);
1856 
1857 	cpufreq_freq_transition_begin(policy, freqs);
1858 	ret = cpufreq_driver->target_intermediate(policy, index);
1859 	cpufreq_freq_transition_end(policy, freqs, ret);
1860 
1861 	if (ret)
1862 		pr_err("%s: Failed to change to intermediate frequency: %d\n",
1863 		       __func__, ret);
1864 
1865 	return ret;
1866 }
1867 
1868 static int __target_index(struct cpufreq_policy *policy,
1869 			  struct cpufreq_frequency_table *freq_table, int index)
1870 {
1871 	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
1872 	unsigned int intermediate_freq = 0;
1873 	int retval = -EINVAL;
1874 	bool notify;
1875 
1876 	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
1877 	if (notify) {
1878 		/* Handle switching to intermediate frequency */
1879 		if (cpufreq_driver->get_intermediate) {
1880 			retval = __target_intermediate(policy, &freqs, index);
1881 			if (retval)
1882 				return retval;
1883 
1884 			intermediate_freq = freqs.new;
1885 			/* Set old freq to intermediate */
1886 			if (intermediate_freq)
1887 				freqs.old = freqs.new;
1888 		}
1889 
1890 		freqs.new = freq_table[index].frequency;
1891 		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
1892 			 __func__, policy->cpu, freqs.old, freqs.new);
1893 
1894 		cpufreq_freq_transition_begin(policy, &freqs);
1895 	}
1896 
1897 	retval = cpufreq_driver->target_index(policy, index);
1898 	if (retval)
1899 		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
1900 		       retval);
1901 
1902 	if (notify) {
1903 		cpufreq_freq_transition_end(policy, &freqs, retval);
1904 
1905 		/*
1906 		 * Failed after setting to intermediate freq? Driver should have
1907 		 * reverted back to initial frequency and so should we. Check
1908 		 * here for intermediate_freq instead of get_intermediate, in
1909 		 * case we have't switched to intermediate freq at all.
1910 		 */
1911 		if (unlikely(retval && intermediate_freq)) {
1912 			freqs.old = intermediate_freq;
1913 			freqs.new = policy->restore_freq;
1914 			cpufreq_freq_transition_begin(policy, &freqs);
1915 			cpufreq_freq_transition_end(policy, &freqs, 0);
1916 		}
1917 	}
1918 
1919 	return retval;
1920 }
1921 
1922 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1923 			    unsigned int target_freq,
1924 			    unsigned int relation)
1925 {
1926 	unsigned int old_target_freq = target_freq;
1927 	int retval = -EINVAL;
1928 
1929 	if (cpufreq_disabled())
1930 		return -ENODEV;
1931 
1932 	/* Make sure that target_freq is within supported range */
1933 	if (target_freq > policy->max)
1934 		target_freq = policy->max;
1935 	if (target_freq < policy->min)
1936 		target_freq = policy->min;
1937 
1938 	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
1939 		 policy->cpu, target_freq, relation, old_target_freq);
1940 
1941 	/*
1942 	 * This might look like a redundant call as we are checking it again
1943 	 * after finding index. But it is left intentionally for cases where
1944 	 * exactly same freq is called again and so we can save on few function
1945 	 * calls.
1946 	 */
1947 	if (target_freq == policy->cur)
1948 		return 0;
1949 
1950 	/* Save last value to restore later on errors */
1951 	policy->restore_freq = policy->cur;
1952 
1953 	if (cpufreq_driver->target)
1954 		retval = cpufreq_driver->target(policy, target_freq, relation);
1955 	else if (cpufreq_driver->target_index) {
1956 		struct cpufreq_frequency_table *freq_table;
1957 		int index;
1958 
1959 		freq_table = cpufreq_frequency_get_table(policy->cpu);
1960 		if (unlikely(!freq_table)) {
1961 			pr_err("%s: Unable to find freq_table\n", __func__);
1962 			goto out;
1963 		}
1964 
1965 		retval = cpufreq_frequency_table_target(policy, freq_table,
1966 				target_freq, relation, &index);
1967 		if (unlikely(retval)) {
1968 			pr_err("%s: Unable to find matching freq\n", __func__);
1969 			goto out;
1970 		}
1971 
1972 		if (freq_table[index].frequency == policy->cur) {
1973 			retval = 0;
1974 			goto out;
1975 		}
1976 
1977 		retval = __target_index(policy, freq_table, index);
1978 	}
1979 
1980 out:
1981 	return retval;
1982 }
1983 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1984 
1985 int cpufreq_driver_target(struct cpufreq_policy *policy,
1986 			  unsigned int target_freq,
1987 			  unsigned int relation)
1988 {
1989 	int ret = -EINVAL;
1990 
1991 	down_write(&policy->rwsem);
1992 
1993 	ret = __cpufreq_driver_target(policy, target_freq, relation);
1994 
1995 	up_write(&policy->rwsem);
1996 
1997 	return ret;
1998 }
1999 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2000 
2001 /*
2002  * when "event" is CPUFREQ_GOV_LIMITS
2003  */
2004 
2005 static int __cpufreq_governor(struct cpufreq_policy *policy,
2006 					unsigned int event)
2007 {
2008 	int ret;
2009 
2010 	/* Only must be defined when default governor is known to have latency
2011 	   restrictions, like e.g. conservative or ondemand.
2012 	   That this is the case is already ensured in Kconfig
2013 	*/
2014 #ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE
2015 	struct cpufreq_governor *gov = &cpufreq_gov_performance;
2016 #else
2017 	struct cpufreq_governor *gov = NULL;
2018 #endif
2019 
2020 	/* Don't start any governor operations if we are entering suspend */
2021 	if (cpufreq_suspended)
2022 		return 0;
2023 
2024 	if (policy->governor->max_transition_latency &&
2025 	    policy->cpuinfo.transition_latency >
2026 	    policy->governor->max_transition_latency) {
2027 		if (!gov)
2028 			return -EINVAL;
2029 		else {
2030 			pr_warn("%s governor failed, too long transition latency of HW, fallback to %s governor\n",
2031 				policy->governor->name, gov->name);
2032 			policy->governor = gov;
2033 		}
2034 	}
2035 
2036 	if (event == CPUFREQ_GOV_POLICY_INIT)
2037 		if (!try_module_get(policy->governor->owner))
2038 			return -EINVAL;
2039 
2040 	pr_debug("__cpufreq_governor for CPU %u, event %u\n",
2041 		 policy->cpu, event);
2042 
2043 	mutex_lock(&cpufreq_governor_lock);
2044 	if ((policy->governor_enabled && event == CPUFREQ_GOV_START)
2045 	    || (!policy->governor_enabled
2046 	    && (event == CPUFREQ_GOV_LIMITS || event == CPUFREQ_GOV_STOP))) {
2047 		mutex_unlock(&cpufreq_governor_lock);
2048 		return -EBUSY;
2049 	}
2050 
2051 	if (event == CPUFREQ_GOV_STOP)
2052 		policy->governor_enabled = false;
2053 	else if (event == CPUFREQ_GOV_START)
2054 		policy->governor_enabled = true;
2055 
2056 	mutex_unlock(&cpufreq_governor_lock);
2057 
2058 	ret = policy->governor->governor(policy, event);
2059 
2060 	if (!ret) {
2061 		if (event == CPUFREQ_GOV_POLICY_INIT)
2062 			policy->governor->initialized++;
2063 		else if (event == CPUFREQ_GOV_POLICY_EXIT)
2064 			policy->governor->initialized--;
2065 	} else {
2066 		/* Restore original values */
2067 		mutex_lock(&cpufreq_governor_lock);
2068 		if (event == CPUFREQ_GOV_STOP)
2069 			policy->governor_enabled = true;
2070 		else if (event == CPUFREQ_GOV_START)
2071 			policy->governor_enabled = false;
2072 		mutex_unlock(&cpufreq_governor_lock);
2073 	}
2074 
2075 	if (((event == CPUFREQ_GOV_POLICY_INIT) && ret) ||
2076 			((event == CPUFREQ_GOV_POLICY_EXIT) && !ret))
2077 		module_put(policy->governor->owner);
2078 
2079 	return ret;
2080 }
2081 
2082 int cpufreq_register_governor(struct cpufreq_governor *governor)
2083 {
2084 	int err;
2085 
2086 	if (!governor)
2087 		return -EINVAL;
2088 
2089 	if (cpufreq_disabled())
2090 		return -ENODEV;
2091 
2092 	mutex_lock(&cpufreq_governor_mutex);
2093 
2094 	governor->initialized = 0;
2095 	err = -EBUSY;
2096 	if (__find_governor(governor->name) == NULL) {
2097 		err = 0;
2098 		list_add(&governor->governor_list, &cpufreq_governor_list);
2099 	}
2100 
2101 	mutex_unlock(&cpufreq_governor_mutex);
2102 	return err;
2103 }
2104 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2105 
2106 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2107 {
2108 	int cpu;
2109 
2110 	if (!governor)
2111 		return;
2112 
2113 	if (cpufreq_disabled())
2114 		return;
2115 
2116 	for_each_present_cpu(cpu) {
2117 		if (cpu_online(cpu))
2118 			continue;
2119 		if (!strcmp(per_cpu(cpufreq_cpu_governor, cpu), governor->name))
2120 			strcpy(per_cpu(cpufreq_cpu_governor, cpu), "\0");
2121 	}
2122 
2123 	mutex_lock(&cpufreq_governor_mutex);
2124 	list_del(&governor->governor_list);
2125 	mutex_unlock(&cpufreq_governor_mutex);
2126 	return;
2127 }
2128 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2129 
2130 
2131 /*********************************************************************
2132  *                          POLICY INTERFACE                         *
2133  *********************************************************************/
2134 
2135 /**
2136  * cpufreq_get_policy - get the current cpufreq_policy
2137  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2138  *	is written
2139  *
2140  * Reads the current cpufreq policy.
2141  */
2142 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2143 {
2144 	struct cpufreq_policy *cpu_policy;
2145 	if (!policy)
2146 		return -EINVAL;
2147 
2148 	cpu_policy = cpufreq_cpu_get(cpu);
2149 	if (!cpu_policy)
2150 		return -EINVAL;
2151 
2152 	memcpy(policy, cpu_policy, sizeof(*policy));
2153 
2154 	cpufreq_cpu_put(cpu_policy);
2155 	return 0;
2156 }
2157 EXPORT_SYMBOL(cpufreq_get_policy);
2158 
2159 /*
2160  * policy : current policy.
2161  * new_policy: policy to be set.
2162  */
2163 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2164 				struct cpufreq_policy *new_policy)
2165 {
2166 	struct cpufreq_governor *old_gov;
2167 	int ret;
2168 
2169 	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2170 		 new_policy->cpu, new_policy->min, new_policy->max);
2171 
2172 	memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2173 
2174 	if (new_policy->min > policy->max || new_policy->max < policy->min)
2175 		return -EINVAL;
2176 
2177 	/* verify the cpu speed can be set within this limit */
2178 	ret = cpufreq_driver->verify(new_policy);
2179 	if (ret)
2180 		return ret;
2181 
2182 	/* adjust if necessary - all reasons */
2183 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2184 			CPUFREQ_ADJUST, new_policy);
2185 
2186 	/* adjust if necessary - hardware incompatibility*/
2187 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2188 			CPUFREQ_INCOMPATIBLE, new_policy);
2189 
2190 	/*
2191 	 * verify the cpu speed can be set within this limit, which might be
2192 	 * different to the first one
2193 	 */
2194 	ret = cpufreq_driver->verify(new_policy);
2195 	if (ret)
2196 		return ret;
2197 
2198 	/* notification of the new policy */
2199 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2200 			CPUFREQ_NOTIFY, new_policy);
2201 
2202 	policy->min = new_policy->min;
2203 	policy->max = new_policy->max;
2204 
2205 	pr_debug("new min and max freqs are %u - %u kHz\n",
2206 		 policy->min, policy->max);
2207 
2208 	if (cpufreq_driver->setpolicy) {
2209 		policy->policy = new_policy->policy;
2210 		pr_debug("setting range\n");
2211 		return cpufreq_driver->setpolicy(new_policy);
2212 	}
2213 
2214 	if (new_policy->governor == policy->governor)
2215 		goto out;
2216 
2217 	pr_debug("governor switch\n");
2218 
2219 	/* save old, working values */
2220 	old_gov = policy->governor;
2221 	/* end old governor */
2222 	if (old_gov) {
2223 		__cpufreq_governor(policy, CPUFREQ_GOV_STOP);
2224 		up_write(&policy->rwsem);
2225 		__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
2226 		down_write(&policy->rwsem);
2227 	}
2228 
2229 	/* start new governor */
2230 	policy->governor = new_policy->governor;
2231 	if (!__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT)) {
2232 		if (!__cpufreq_governor(policy, CPUFREQ_GOV_START))
2233 			goto out;
2234 
2235 		up_write(&policy->rwsem);
2236 		__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
2237 		down_write(&policy->rwsem);
2238 	}
2239 
2240 	/* new governor failed, so re-start old one */
2241 	pr_debug("starting governor %s failed\n", policy->governor->name);
2242 	if (old_gov) {
2243 		policy->governor = old_gov;
2244 		__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT);
2245 		__cpufreq_governor(policy, CPUFREQ_GOV_START);
2246 	}
2247 
2248 	return -EINVAL;
2249 
2250  out:
2251 	pr_debug("governor: change or update limits\n");
2252 	return __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
2253 }
2254 
2255 /**
2256  *	cpufreq_update_policy - re-evaluate an existing cpufreq policy
2257  *	@cpu: CPU which shall be re-evaluated
2258  *
2259  *	Useful for policy notifiers which have different necessities
2260  *	at different times.
2261  */
2262 int cpufreq_update_policy(unsigned int cpu)
2263 {
2264 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
2265 	struct cpufreq_policy new_policy;
2266 	int ret;
2267 
2268 	if (!policy)
2269 		return -ENODEV;
2270 
2271 	down_write(&policy->rwsem);
2272 
2273 	pr_debug("updating policy for CPU %u\n", cpu);
2274 	memcpy(&new_policy, policy, sizeof(*policy));
2275 	new_policy.min = policy->user_policy.min;
2276 	new_policy.max = policy->user_policy.max;
2277 	new_policy.policy = policy->user_policy.policy;
2278 	new_policy.governor = policy->user_policy.governor;
2279 
2280 	/*
2281 	 * BIOS might change freq behind our back
2282 	 * -> ask driver for current freq and notify governors about a change
2283 	 */
2284 	if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
2285 		new_policy.cur = cpufreq_driver->get(cpu);
2286 		if (WARN_ON(!new_policy.cur)) {
2287 			ret = -EIO;
2288 			goto unlock;
2289 		}
2290 
2291 		if (!policy->cur) {
2292 			pr_debug("Driver did not initialize current freq\n");
2293 			policy->cur = new_policy.cur;
2294 		} else {
2295 			if (policy->cur != new_policy.cur && has_target())
2296 				cpufreq_out_of_sync(cpu, policy->cur,
2297 								new_policy.cur);
2298 		}
2299 	}
2300 
2301 	ret = cpufreq_set_policy(policy, &new_policy);
2302 
2303 unlock:
2304 	up_write(&policy->rwsem);
2305 
2306 	cpufreq_cpu_put(policy);
2307 	return ret;
2308 }
2309 EXPORT_SYMBOL(cpufreq_update_policy);
2310 
2311 static int cpufreq_cpu_callback(struct notifier_block *nfb,
2312 					unsigned long action, void *hcpu)
2313 {
2314 	unsigned int cpu = (unsigned long)hcpu;
2315 	struct device *dev;
2316 
2317 	dev = get_cpu_device(cpu);
2318 	if (dev) {
2319 		switch (action & ~CPU_TASKS_FROZEN) {
2320 		case CPU_ONLINE:
2321 			__cpufreq_add_dev(dev, NULL);
2322 			break;
2323 
2324 		case CPU_DOWN_PREPARE:
2325 			__cpufreq_remove_dev_prepare(dev, NULL);
2326 			break;
2327 
2328 		case CPU_POST_DEAD:
2329 			__cpufreq_remove_dev_finish(dev, NULL);
2330 			break;
2331 
2332 		case CPU_DOWN_FAILED:
2333 			__cpufreq_add_dev(dev, NULL);
2334 			break;
2335 		}
2336 	}
2337 	return NOTIFY_OK;
2338 }
2339 
2340 static struct notifier_block __refdata cpufreq_cpu_notifier = {
2341 	.notifier_call = cpufreq_cpu_callback,
2342 };
2343 
2344 /*********************************************************************
2345  *               BOOST						     *
2346  *********************************************************************/
2347 static int cpufreq_boost_set_sw(int state)
2348 {
2349 	struct cpufreq_frequency_table *freq_table;
2350 	struct cpufreq_policy *policy;
2351 	int ret = -EINVAL;
2352 
2353 	list_for_each_entry(policy, &cpufreq_policy_list, policy_list) {
2354 		freq_table = cpufreq_frequency_get_table(policy->cpu);
2355 		if (freq_table) {
2356 			ret = cpufreq_frequency_table_cpuinfo(policy,
2357 							freq_table);
2358 			if (ret) {
2359 				pr_err("%s: Policy frequency update failed\n",
2360 				       __func__);
2361 				break;
2362 			}
2363 			policy->user_policy.max = policy->max;
2364 			__cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
2365 		}
2366 	}
2367 
2368 	return ret;
2369 }
2370 
2371 int cpufreq_boost_trigger_state(int state)
2372 {
2373 	unsigned long flags;
2374 	int ret = 0;
2375 
2376 	if (cpufreq_driver->boost_enabled == state)
2377 		return 0;
2378 
2379 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2380 	cpufreq_driver->boost_enabled = state;
2381 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2382 
2383 	ret = cpufreq_driver->set_boost(state);
2384 	if (ret) {
2385 		write_lock_irqsave(&cpufreq_driver_lock, flags);
2386 		cpufreq_driver->boost_enabled = !state;
2387 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2388 
2389 		pr_err("%s: Cannot %s BOOST\n",
2390 		       __func__, state ? "enable" : "disable");
2391 	}
2392 
2393 	return ret;
2394 }
2395 
2396 int cpufreq_boost_supported(void)
2397 {
2398 	if (likely(cpufreq_driver))
2399 		return cpufreq_driver->boost_supported;
2400 
2401 	return 0;
2402 }
2403 EXPORT_SYMBOL_GPL(cpufreq_boost_supported);
2404 
2405 int cpufreq_boost_enabled(void)
2406 {
2407 	return cpufreq_driver->boost_enabled;
2408 }
2409 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2410 
2411 /*********************************************************************
2412  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2413  *********************************************************************/
2414 
2415 /**
2416  * cpufreq_register_driver - register a CPU Frequency driver
2417  * @driver_data: A struct cpufreq_driver containing the values#
2418  * submitted by the CPU Frequency driver.
2419  *
2420  * Registers a CPU Frequency driver to this core code. This code
2421  * returns zero on success, -EBUSY when another driver got here first
2422  * (and isn't unregistered in the meantime).
2423  *
2424  */
2425 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2426 {
2427 	unsigned long flags;
2428 	int ret;
2429 
2430 	if (cpufreq_disabled())
2431 		return -ENODEV;
2432 
2433 	if (!driver_data || !driver_data->verify || !driver_data->init ||
2434 	    !(driver_data->setpolicy || driver_data->target_index ||
2435 		    driver_data->target) ||
2436 	     (driver_data->setpolicy && (driver_data->target_index ||
2437 		    driver_data->target)) ||
2438 	     (!!driver_data->get_intermediate != !!driver_data->target_intermediate))
2439 		return -EINVAL;
2440 
2441 	pr_debug("trying to register driver %s\n", driver_data->name);
2442 
2443 	if (driver_data->setpolicy)
2444 		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2445 
2446 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2447 	if (cpufreq_driver) {
2448 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2449 		return -EEXIST;
2450 	}
2451 	cpufreq_driver = driver_data;
2452 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2453 
2454 	if (cpufreq_boost_supported()) {
2455 		/*
2456 		 * Check if driver provides function to enable boost -
2457 		 * if not, use cpufreq_boost_set_sw as default
2458 		 */
2459 		if (!cpufreq_driver->set_boost)
2460 			cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2461 
2462 		ret = cpufreq_sysfs_create_file(&boost.attr);
2463 		if (ret) {
2464 			pr_err("%s: cannot register global BOOST sysfs file\n",
2465 			       __func__);
2466 			goto err_null_driver;
2467 		}
2468 	}
2469 
2470 	ret = subsys_interface_register(&cpufreq_interface);
2471 	if (ret)
2472 		goto err_boost_unreg;
2473 
2474 	if (!(cpufreq_driver->flags & CPUFREQ_STICKY)) {
2475 		int i;
2476 		ret = -ENODEV;
2477 
2478 		/* check for at least one working CPU */
2479 		for (i = 0; i < nr_cpu_ids; i++)
2480 			if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) {
2481 				ret = 0;
2482 				break;
2483 			}
2484 
2485 		/* if all ->init() calls failed, unregister */
2486 		if (ret) {
2487 			pr_debug("no CPU initialized for driver %s\n",
2488 				 driver_data->name);
2489 			goto err_if_unreg;
2490 		}
2491 	}
2492 
2493 	register_hotcpu_notifier(&cpufreq_cpu_notifier);
2494 	pr_debug("driver %s up and running\n", driver_data->name);
2495 
2496 	return 0;
2497 err_if_unreg:
2498 	subsys_interface_unregister(&cpufreq_interface);
2499 err_boost_unreg:
2500 	if (cpufreq_boost_supported())
2501 		cpufreq_sysfs_remove_file(&boost.attr);
2502 err_null_driver:
2503 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2504 	cpufreq_driver = NULL;
2505 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2506 	return ret;
2507 }
2508 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2509 
2510 /**
2511  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2512  *
2513  * Unregister the current CPUFreq driver. Only call this if you have
2514  * the right to do so, i.e. if you have succeeded in initialising before!
2515  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2516  * currently not initialised.
2517  */
2518 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2519 {
2520 	unsigned long flags;
2521 
2522 	if (!cpufreq_driver || (driver != cpufreq_driver))
2523 		return -EINVAL;
2524 
2525 	pr_debug("unregistering driver %s\n", driver->name);
2526 
2527 	subsys_interface_unregister(&cpufreq_interface);
2528 	if (cpufreq_boost_supported())
2529 		cpufreq_sysfs_remove_file(&boost.attr);
2530 
2531 	unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
2532 
2533 	down_write(&cpufreq_rwsem);
2534 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2535 
2536 	cpufreq_driver = NULL;
2537 
2538 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2539 	up_write(&cpufreq_rwsem);
2540 
2541 	return 0;
2542 }
2543 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2544 
2545 static int __init cpufreq_core_init(void)
2546 {
2547 	if (cpufreq_disabled())
2548 		return -ENODEV;
2549 
2550 	cpufreq_global_kobject = kobject_create();
2551 	BUG_ON(!cpufreq_global_kobject);
2552 
2553 	return 0;
2554 }
2555 core_initcall(cpufreq_core_init);
2556