1 /* 2 * linux/drivers/cpufreq/cpufreq.c 3 * 4 * Copyright (C) 2001 Russell King 5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 6 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org> 7 * 8 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 9 * Added handling for CPU hotplug 10 * Feb 2006 - Jacob Shin <jacob.shin@amd.com> 11 * Fix handling for CPU hotplug -- affected CPUs 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License version 2 as 15 * published by the Free Software Foundation. 16 */ 17 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/cpu.h> 21 #include <linux/cpufreq.h> 22 #include <linux/delay.h> 23 #include <linux/device.h> 24 #include <linux/init.h> 25 #include <linux/kernel_stat.h> 26 #include <linux/module.h> 27 #include <linux/mutex.h> 28 #include <linux/slab.h> 29 #include <linux/suspend.h> 30 #include <linux/tick.h> 31 #include <trace/events/power.h> 32 33 /** 34 * The "cpufreq driver" - the arch- or hardware-dependent low 35 * level driver of CPUFreq support, and its spinlock. This lock 36 * also protects the cpufreq_cpu_data array. 37 */ 38 static struct cpufreq_driver *cpufreq_driver; 39 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data); 40 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data_fallback); 41 static DEFINE_RWLOCK(cpufreq_driver_lock); 42 DEFINE_MUTEX(cpufreq_governor_lock); 43 static LIST_HEAD(cpufreq_policy_list); 44 45 /* This one keeps track of the previously set governor of a removed CPU */ 46 static DEFINE_PER_CPU(char[CPUFREQ_NAME_LEN], cpufreq_cpu_governor); 47 48 /* Flag to suspend/resume CPUFreq governors */ 49 static bool cpufreq_suspended; 50 51 static inline bool has_target(void) 52 { 53 return cpufreq_driver->target_index || cpufreq_driver->target; 54 } 55 56 /* 57 * rwsem to guarantee that cpufreq driver module doesn't unload during critical 58 * sections 59 */ 60 static DECLARE_RWSEM(cpufreq_rwsem); 61 62 /* internal prototypes */ 63 static int __cpufreq_governor(struct cpufreq_policy *policy, 64 unsigned int event); 65 static unsigned int __cpufreq_get(unsigned int cpu); 66 static void handle_update(struct work_struct *work); 67 68 /** 69 * Two notifier lists: the "policy" list is involved in the 70 * validation process for a new CPU frequency policy; the 71 * "transition" list for kernel code that needs to handle 72 * changes to devices when the CPU clock speed changes. 73 * The mutex locks both lists. 74 */ 75 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list); 76 static struct srcu_notifier_head cpufreq_transition_notifier_list; 77 78 static bool init_cpufreq_transition_notifier_list_called; 79 static int __init init_cpufreq_transition_notifier_list(void) 80 { 81 srcu_init_notifier_head(&cpufreq_transition_notifier_list); 82 init_cpufreq_transition_notifier_list_called = true; 83 return 0; 84 } 85 pure_initcall(init_cpufreq_transition_notifier_list); 86 87 static int off __read_mostly; 88 static int cpufreq_disabled(void) 89 { 90 return off; 91 } 92 void disable_cpufreq(void) 93 { 94 off = 1; 95 } 96 static LIST_HEAD(cpufreq_governor_list); 97 static DEFINE_MUTEX(cpufreq_governor_mutex); 98 99 bool have_governor_per_policy(void) 100 { 101 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY); 102 } 103 EXPORT_SYMBOL_GPL(have_governor_per_policy); 104 105 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy) 106 { 107 if (have_governor_per_policy()) 108 return &policy->kobj; 109 else 110 return cpufreq_global_kobject; 111 } 112 EXPORT_SYMBOL_GPL(get_governor_parent_kobj); 113 114 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) 115 { 116 u64 idle_time; 117 u64 cur_wall_time; 118 u64 busy_time; 119 120 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64()); 121 122 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER]; 123 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM]; 124 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ]; 125 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ]; 126 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL]; 127 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE]; 128 129 idle_time = cur_wall_time - busy_time; 130 if (wall) 131 *wall = cputime_to_usecs(cur_wall_time); 132 133 return cputime_to_usecs(idle_time); 134 } 135 136 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy) 137 { 138 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL); 139 140 if (idle_time == -1ULL) 141 return get_cpu_idle_time_jiffy(cpu, wall); 142 else if (!io_busy) 143 idle_time += get_cpu_iowait_time_us(cpu, wall); 144 145 return idle_time; 146 } 147 EXPORT_SYMBOL_GPL(get_cpu_idle_time); 148 149 /* 150 * This is a generic cpufreq init() routine which can be used by cpufreq 151 * drivers of SMP systems. It will do following: 152 * - validate & show freq table passed 153 * - set policies transition latency 154 * - policy->cpus with all possible CPUs 155 */ 156 int cpufreq_generic_init(struct cpufreq_policy *policy, 157 struct cpufreq_frequency_table *table, 158 unsigned int transition_latency) 159 { 160 int ret; 161 162 ret = cpufreq_table_validate_and_show(policy, table); 163 if (ret) { 164 pr_err("%s: invalid frequency table: %d\n", __func__, ret); 165 return ret; 166 } 167 168 policy->cpuinfo.transition_latency = transition_latency; 169 170 /* 171 * The driver only supports the SMP configuartion where all processors 172 * share the clock and voltage and clock. 173 */ 174 cpumask_setall(policy->cpus); 175 176 return 0; 177 } 178 EXPORT_SYMBOL_GPL(cpufreq_generic_init); 179 180 unsigned int cpufreq_generic_get(unsigned int cpu) 181 { 182 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 183 184 if (!policy || IS_ERR(policy->clk)) { 185 pr_err("%s: No %s associated to cpu: %d\n", 186 __func__, policy ? "clk" : "policy", cpu); 187 return 0; 188 } 189 190 return clk_get_rate(policy->clk) / 1000; 191 } 192 EXPORT_SYMBOL_GPL(cpufreq_generic_get); 193 194 /* Only for cpufreq core internal use */ 195 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu) 196 { 197 return per_cpu(cpufreq_cpu_data, cpu); 198 } 199 200 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) 201 { 202 struct cpufreq_policy *policy = NULL; 203 unsigned long flags; 204 205 if (cpufreq_disabled() || (cpu >= nr_cpu_ids)) 206 return NULL; 207 208 if (!down_read_trylock(&cpufreq_rwsem)) 209 return NULL; 210 211 /* get the cpufreq driver */ 212 read_lock_irqsave(&cpufreq_driver_lock, flags); 213 214 if (cpufreq_driver) { 215 /* get the CPU */ 216 policy = per_cpu(cpufreq_cpu_data, cpu); 217 if (policy) 218 kobject_get(&policy->kobj); 219 } 220 221 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 222 223 if (!policy) 224 up_read(&cpufreq_rwsem); 225 226 return policy; 227 } 228 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 229 230 void cpufreq_cpu_put(struct cpufreq_policy *policy) 231 { 232 if (cpufreq_disabled()) 233 return; 234 235 kobject_put(&policy->kobj); 236 up_read(&cpufreq_rwsem); 237 } 238 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 239 240 /********************************************************************* 241 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 242 *********************************************************************/ 243 244 /** 245 * adjust_jiffies - adjust the system "loops_per_jiffy" 246 * 247 * This function alters the system "loops_per_jiffy" for the clock 248 * speed change. Note that loops_per_jiffy cannot be updated on SMP 249 * systems as each CPU might be scaled differently. So, use the arch 250 * per-CPU loops_per_jiffy value wherever possible. 251 */ 252 #ifndef CONFIG_SMP 253 static unsigned long l_p_j_ref; 254 static unsigned int l_p_j_ref_freq; 255 256 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 257 { 258 if (ci->flags & CPUFREQ_CONST_LOOPS) 259 return; 260 261 if (!l_p_j_ref_freq) { 262 l_p_j_ref = loops_per_jiffy; 263 l_p_j_ref_freq = ci->old; 264 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n", 265 l_p_j_ref, l_p_j_ref_freq); 266 } 267 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) { 268 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, 269 ci->new); 270 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n", 271 loops_per_jiffy, ci->new); 272 } 273 } 274 #else 275 static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 276 { 277 return; 278 } 279 #endif 280 281 static void __cpufreq_notify_transition(struct cpufreq_policy *policy, 282 struct cpufreq_freqs *freqs, unsigned int state) 283 { 284 BUG_ON(irqs_disabled()); 285 286 if (cpufreq_disabled()) 287 return; 288 289 freqs->flags = cpufreq_driver->flags; 290 pr_debug("notification %u of frequency transition to %u kHz\n", 291 state, freqs->new); 292 293 switch (state) { 294 295 case CPUFREQ_PRECHANGE: 296 /* detect if the driver reported a value as "old frequency" 297 * which is not equal to what the cpufreq core thinks is 298 * "old frequency". 299 */ 300 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 301 if ((policy) && (policy->cpu == freqs->cpu) && 302 (policy->cur) && (policy->cur != freqs->old)) { 303 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n", 304 freqs->old, policy->cur); 305 freqs->old = policy->cur; 306 } 307 } 308 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 309 CPUFREQ_PRECHANGE, freqs); 310 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 311 break; 312 313 case CPUFREQ_POSTCHANGE: 314 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 315 pr_debug("FREQ: %lu - CPU: %lu\n", 316 (unsigned long)freqs->new, (unsigned long)freqs->cpu); 317 trace_cpu_frequency(freqs->new, freqs->cpu); 318 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 319 CPUFREQ_POSTCHANGE, freqs); 320 if (likely(policy) && likely(policy->cpu == freqs->cpu)) 321 policy->cur = freqs->new; 322 break; 323 } 324 } 325 326 /** 327 * cpufreq_notify_transition - call notifier chain and adjust_jiffies 328 * on frequency transition. 329 * 330 * This function calls the transition notifiers and the "adjust_jiffies" 331 * function. It is called twice on all CPU frequency changes that have 332 * external effects. 333 */ 334 static void cpufreq_notify_transition(struct cpufreq_policy *policy, 335 struct cpufreq_freqs *freqs, unsigned int state) 336 { 337 for_each_cpu(freqs->cpu, policy->cpus) 338 __cpufreq_notify_transition(policy, freqs, state); 339 } 340 341 /* Do post notifications when there are chances that transition has failed */ 342 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy, 343 struct cpufreq_freqs *freqs, int transition_failed) 344 { 345 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 346 if (!transition_failed) 347 return; 348 349 swap(freqs->old, freqs->new); 350 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 351 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 352 } 353 354 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy, 355 struct cpufreq_freqs *freqs) 356 { 357 358 /* 359 * Catch double invocations of _begin() which lead to self-deadlock. 360 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core 361 * doesn't invoke _begin() on their behalf, and hence the chances of 362 * double invocations are very low. Moreover, there are scenarios 363 * where these checks can emit false-positive warnings in these 364 * drivers; so we avoid that by skipping them altogether. 365 */ 366 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION) 367 && current == policy->transition_task); 368 369 wait: 370 wait_event(policy->transition_wait, !policy->transition_ongoing); 371 372 spin_lock(&policy->transition_lock); 373 374 if (unlikely(policy->transition_ongoing)) { 375 spin_unlock(&policy->transition_lock); 376 goto wait; 377 } 378 379 policy->transition_ongoing = true; 380 policy->transition_task = current; 381 382 spin_unlock(&policy->transition_lock); 383 384 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 385 } 386 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin); 387 388 void cpufreq_freq_transition_end(struct cpufreq_policy *policy, 389 struct cpufreq_freqs *freqs, int transition_failed) 390 { 391 if (unlikely(WARN_ON(!policy->transition_ongoing))) 392 return; 393 394 cpufreq_notify_post_transition(policy, freqs, transition_failed); 395 396 policy->transition_ongoing = false; 397 policy->transition_task = NULL; 398 399 wake_up(&policy->transition_wait); 400 } 401 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end); 402 403 404 /********************************************************************* 405 * SYSFS INTERFACE * 406 *********************************************************************/ 407 static ssize_t show_boost(struct kobject *kobj, 408 struct attribute *attr, char *buf) 409 { 410 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled); 411 } 412 413 static ssize_t store_boost(struct kobject *kobj, struct attribute *attr, 414 const char *buf, size_t count) 415 { 416 int ret, enable; 417 418 ret = sscanf(buf, "%d", &enable); 419 if (ret != 1 || enable < 0 || enable > 1) 420 return -EINVAL; 421 422 if (cpufreq_boost_trigger_state(enable)) { 423 pr_err("%s: Cannot %s BOOST!\n", 424 __func__, enable ? "enable" : "disable"); 425 return -EINVAL; 426 } 427 428 pr_debug("%s: cpufreq BOOST %s\n", 429 __func__, enable ? "enabled" : "disabled"); 430 431 return count; 432 } 433 define_one_global_rw(boost); 434 435 static struct cpufreq_governor *__find_governor(const char *str_governor) 436 { 437 struct cpufreq_governor *t; 438 439 list_for_each_entry(t, &cpufreq_governor_list, governor_list) 440 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN)) 441 return t; 442 443 return NULL; 444 } 445 446 /** 447 * cpufreq_parse_governor - parse a governor string 448 */ 449 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy, 450 struct cpufreq_governor **governor) 451 { 452 int err = -EINVAL; 453 454 if (!cpufreq_driver) 455 goto out; 456 457 if (cpufreq_driver->setpolicy) { 458 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) { 459 *policy = CPUFREQ_POLICY_PERFORMANCE; 460 err = 0; 461 } else if (!strncasecmp(str_governor, "powersave", 462 CPUFREQ_NAME_LEN)) { 463 *policy = CPUFREQ_POLICY_POWERSAVE; 464 err = 0; 465 } 466 } else if (has_target()) { 467 struct cpufreq_governor *t; 468 469 mutex_lock(&cpufreq_governor_mutex); 470 471 t = __find_governor(str_governor); 472 473 if (t == NULL) { 474 int ret; 475 476 mutex_unlock(&cpufreq_governor_mutex); 477 ret = request_module("cpufreq_%s", str_governor); 478 mutex_lock(&cpufreq_governor_mutex); 479 480 if (ret == 0) 481 t = __find_governor(str_governor); 482 } 483 484 if (t != NULL) { 485 *governor = t; 486 err = 0; 487 } 488 489 mutex_unlock(&cpufreq_governor_mutex); 490 } 491 out: 492 return err; 493 } 494 495 /** 496 * cpufreq_per_cpu_attr_read() / show_##file_name() - 497 * print out cpufreq information 498 * 499 * Write out information from cpufreq_driver->policy[cpu]; object must be 500 * "unsigned int". 501 */ 502 503 #define show_one(file_name, object) \ 504 static ssize_t show_##file_name \ 505 (struct cpufreq_policy *policy, char *buf) \ 506 { \ 507 return sprintf(buf, "%u\n", policy->object); \ 508 } 509 510 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 511 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 512 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency); 513 show_one(scaling_min_freq, min); 514 show_one(scaling_max_freq, max); 515 516 static ssize_t show_scaling_cur_freq( 517 struct cpufreq_policy *policy, char *buf) 518 { 519 ssize_t ret; 520 521 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) 522 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu)); 523 else 524 ret = sprintf(buf, "%u\n", policy->cur); 525 return ret; 526 } 527 528 static int cpufreq_set_policy(struct cpufreq_policy *policy, 529 struct cpufreq_policy *new_policy); 530 531 /** 532 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 533 */ 534 #define store_one(file_name, object) \ 535 static ssize_t store_##file_name \ 536 (struct cpufreq_policy *policy, const char *buf, size_t count) \ 537 { \ 538 int ret; \ 539 struct cpufreq_policy new_policy; \ 540 \ 541 ret = cpufreq_get_policy(&new_policy, policy->cpu); \ 542 if (ret) \ 543 return -EINVAL; \ 544 \ 545 ret = sscanf(buf, "%u", &new_policy.object); \ 546 if (ret != 1) \ 547 return -EINVAL; \ 548 \ 549 ret = cpufreq_set_policy(policy, &new_policy); \ 550 policy->user_policy.object = policy->object; \ 551 \ 552 return ret ? ret : count; \ 553 } 554 555 store_one(scaling_min_freq, min); 556 store_one(scaling_max_freq, max); 557 558 /** 559 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 560 */ 561 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy, 562 char *buf) 563 { 564 unsigned int cur_freq = __cpufreq_get(policy->cpu); 565 if (!cur_freq) 566 return sprintf(buf, "<unknown>"); 567 return sprintf(buf, "%u\n", cur_freq); 568 } 569 570 /** 571 * show_scaling_governor - show the current policy for the specified CPU 572 */ 573 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf) 574 { 575 if (policy->policy == CPUFREQ_POLICY_POWERSAVE) 576 return sprintf(buf, "powersave\n"); 577 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 578 return sprintf(buf, "performance\n"); 579 else if (policy->governor) 580 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", 581 policy->governor->name); 582 return -EINVAL; 583 } 584 585 /** 586 * store_scaling_governor - store policy for the specified CPU 587 */ 588 static ssize_t store_scaling_governor(struct cpufreq_policy *policy, 589 const char *buf, size_t count) 590 { 591 int ret; 592 char str_governor[16]; 593 struct cpufreq_policy new_policy; 594 595 ret = cpufreq_get_policy(&new_policy, policy->cpu); 596 if (ret) 597 return ret; 598 599 ret = sscanf(buf, "%15s", str_governor); 600 if (ret != 1) 601 return -EINVAL; 602 603 if (cpufreq_parse_governor(str_governor, &new_policy.policy, 604 &new_policy.governor)) 605 return -EINVAL; 606 607 ret = cpufreq_set_policy(policy, &new_policy); 608 609 policy->user_policy.policy = policy->policy; 610 policy->user_policy.governor = policy->governor; 611 612 if (ret) 613 return ret; 614 else 615 return count; 616 } 617 618 /** 619 * show_scaling_driver - show the cpufreq driver currently loaded 620 */ 621 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf) 622 { 623 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name); 624 } 625 626 /** 627 * show_scaling_available_governors - show the available CPUfreq governors 628 */ 629 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy, 630 char *buf) 631 { 632 ssize_t i = 0; 633 struct cpufreq_governor *t; 634 635 if (!has_target()) { 636 i += sprintf(buf, "performance powersave"); 637 goto out; 638 } 639 640 list_for_each_entry(t, &cpufreq_governor_list, governor_list) { 641 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) 642 - (CPUFREQ_NAME_LEN + 2))) 643 goto out; 644 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name); 645 } 646 out: 647 i += sprintf(&buf[i], "\n"); 648 return i; 649 } 650 651 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf) 652 { 653 ssize_t i = 0; 654 unsigned int cpu; 655 656 for_each_cpu(cpu, mask) { 657 if (i) 658 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " "); 659 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu); 660 if (i >= (PAGE_SIZE - 5)) 661 break; 662 } 663 i += sprintf(&buf[i], "\n"); 664 return i; 665 } 666 EXPORT_SYMBOL_GPL(cpufreq_show_cpus); 667 668 /** 669 * show_related_cpus - show the CPUs affected by each transition even if 670 * hw coordination is in use 671 */ 672 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf) 673 { 674 return cpufreq_show_cpus(policy->related_cpus, buf); 675 } 676 677 /** 678 * show_affected_cpus - show the CPUs affected by each transition 679 */ 680 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf) 681 { 682 return cpufreq_show_cpus(policy->cpus, buf); 683 } 684 685 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy, 686 const char *buf, size_t count) 687 { 688 unsigned int freq = 0; 689 unsigned int ret; 690 691 if (!policy->governor || !policy->governor->store_setspeed) 692 return -EINVAL; 693 694 ret = sscanf(buf, "%u", &freq); 695 if (ret != 1) 696 return -EINVAL; 697 698 policy->governor->store_setspeed(policy, freq); 699 700 return count; 701 } 702 703 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf) 704 { 705 if (!policy->governor || !policy->governor->show_setspeed) 706 return sprintf(buf, "<unsupported>\n"); 707 708 return policy->governor->show_setspeed(policy, buf); 709 } 710 711 /** 712 * show_bios_limit - show the current cpufreq HW/BIOS limitation 713 */ 714 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf) 715 { 716 unsigned int limit; 717 int ret; 718 if (cpufreq_driver->bios_limit) { 719 ret = cpufreq_driver->bios_limit(policy->cpu, &limit); 720 if (!ret) 721 return sprintf(buf, "%u\n", limit); 722 } 723 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq); 724 } 725 726 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400); 727 cpufreq_freq_attr_ro(cpuinfo_min_freq); 728 cpufreq_freq_attr_ro(cpuinfo_max_freq); 729 cpufreq_freq_attr_ro(cpuinfo_transition_latency); 730 cpufreq_freq_attr_ro(scaling_available_governors); 731 cpufreq_freq_attr_ro(scaling_driver); 732 cpufreq_freq_attr_ro(scaling_cur_freq); 733 cpufreq_freq_attr_ro(bios_limit); 734 cpufreq_freq_attr_ro(related_cpus); 735 cpufreq_freq_attr_ro(affected_cpus); 736 cpufreq_freq_attr_rw(scaling_min_freq); 737 cpufreq_freq_attr_rw(scaling_max_freq); 738 cpufreq_freq_attr_rw(scaling_governor); 739 cpufreq_freq_attr_rw(scaling_setspeed); 740 741 static struct attribute *default_attrs[] = { 742 &cpuinfo_min_freq.attr, 743 &cpuinfo_max_freq.attr, 744 &cpuinfo_transition_latency.attr, 745 &scaling_min_freq.attr, 746 &scaling_max_freq.attr, 747 &affected_cpus.attr, 748 &related_cpus.attr, 749 &scaling_governor.attr, 750 &scaling_driver.attr, 751 &scaling_available_governors.attr, 752 &scaling_setspeed.attr, 753 NULL 754 }; 755 756 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj) 757 #define to_attr(a) container_of(a, struct freq_attr, attr) 758 759 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) 760 { 761 struct cpufreq_policy *policy = to_policy(kobj); 762 struct freq_attr *fattr = to_attr(attr); 763 ssize_t ret; 764 765 if (!down_read_trylock(&cpufreq_rwsem)) 766 return -EINVAL; 767 768 down_read(&policy->rwsem); 769 770 if (fattr->show) 771 ret = fattr->show(policy, buf); 772 else 773 ret = -EIO; 774 775 up_read(&policy->rwsem); 776 up_read(&cpufreq_rwsem); 777 778 return ret; 779 } 780 781 static ssize_t store(struct kobject *kobj, struct attribute *attr, 782 const char *buf, size_t count) 783 { 784 struct cpufreq_policy *policy = to_policy(kobj); 785 struct freq_attr *fattr = to_attr(attr); 786 ssize_t ret = -EINVAL; 787 788 get_online_cpus(); 789 790 if (!cpu_online(policy->cpu)) 791 goto unlock; 792 793 if (!down_read_trylock(&cpufreq_rwsem)) 794 goto unlock; 795 796 down_write(&policy->rwsem); 797 798 if (fattr->store) 799 ret = fattr->store(policy, buf, count); 800 else 801 ret = -EIO; 802 803 up_write(&policy->rwsem); 804 805 up_read(&cpufreq_rwsem); 806 unlock: 807 put_online_cpus(); 808 809 return ret; 810 } 811 812 static void cpufreq_sysfs_release(struct kobject *kobj) 813 { 814 struct cpufreq_policy *policy = to_policy(kobj); 815 pr_debug("last reference is dropped\n"); 816 complete(&policy->kobj_unregister); 817 } 818 819 static const struct sysfs_ops sysfs_ops = { 820 .show = show, 821 .store = store, 822 }; 823 824 static struct kobj_type ktype_cpufreq = { 825 .sysfs_ops = &sysfs_ops, 826 .default_attrs = default_attrs, 827 .release = cpufreq_sysfs_release, 828 }; 829 830 struct kobject *cpufreq_global_kobject; 831 EXPORT_SYMBOL(cpufreq_global_kobject); 832 833 static int cpufreq_global_kobject_usage; 834 835 int cpufreq_get_global_kobject(void) 836 { 837 if (!cpufreq_global_kobject_usage++) 838 return kobject_add(cpufreq_global_kobject, 839 &cpu_subsys.dev_root->kobj, "%s", "cpufreq"); 840 841 return 0; 842 } 843 EXPORT_SYMBOL(cpufreq_get_global_kobject); 844 845 void cpufreq_put_global_kobject(void) 846 { 847 if (!--cpufreq_global_kobject_usage) 848 kobject_del(cpufreq_global_kobject); 849 } 850 EXPORT_SYMBOL(cpufreq_put_global_kobject); 851 852 int cpufreq_sysfs_create_file(const struct attribute *attr) 853 { 854 int ret = cpufreq_get_global_kobject(); 855 856 if (!ret) { 857 ret = sysfs_create_file(cpufreq_global_kobject, attr); 858 if (ret) 859 cpufreq_put_global_kobject(); 860 } 861 862 return ret; 863 } 864 EXPORT_SYMBOL(cpufreq_sysfs_create_file); 865 866 void cpufreq_sysfs_remove_file(const struct attribute *attr) 867 { 868 sysfs_remove_file(cpufreq_global_kobject, attr); 869 cpufreq_put_global_kobject(); 870 } 871 EXPORT_SYMBOL(cpufreq_sysfs_remove_file); 872 873 /* symlink affected CPUs */ 874 static int cpufreq_add_dev_symlink(struct cpufreq_policy *policy) 875 { 876 unsigned int j; 877 int ret = 0; 878 879 for_each_cpu(j, policy->cpus) { 880 struct device *cpu_dev; 881 882 if (j == policy->cpu) 883 continue; 884 885 pr_debug("Adding link for CPU: %u\n", j); 886 cpu_dev = get_cpu_device(j); 887 ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj, 888 "cpufreq"); 889 if (ret) 890 break; 891 } 892 return ret; 893 } 894 895 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy, 896 struct device *dev) 897 { 898 struct freq_attr **drv_attr; 899 int ret = 0; 900 901 /* prepare interface data */ 902 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, 903 &dev->kobj, "cpufreq"); 904 if (ret) 905 return ret; 906 907 /* set up files for this cpu device */ 908 drv_attr = cpufreq_driver->attr; 909 while ((drv_attr) && (*drv_attr)) { 910 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 911 if (ret) 912 goto err_out_kobj_put; 913 drv_attr++; 914 } 915 if (cpufreq_driver->get) { 916 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 917 if (ret) 918 goto err_out_kobj_put; 919 } 920 921 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 922 if (ret) 923 goto err_out_kobj_put; 924 925 if (cpufreq_driver->bios_limit) { 926 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr); 927 if (ret) 928 goto err_out_kobj_put; 929 } 930 931 ret = cpufreq_add_dev_symlink(policy); 932 if (ret) 933 goto err_out_kobj_put; 934 935 return ret; 936 937 err_out_kobj_put: 938 kobject_put(&policy->kobj); 939 wait_for_completion(&policy->kobj_unregister); 940 return ret; 941 } 942 943 static void cpufreq_init_policy(struct cpufreq_policy *policy) 944 { 945 struct cpufreq_governor *gov = NULL; 946 struct cpufreq_policy new_policy; 947 int ret = 0; 948 949 memcpy(&new_policy, policy, sizeof(*policy)); 950 951 /* Update governor of new_policy to the governor used before hotplug */ 952 gov = __find_governor(per_cpu(cpufreq_cpu_governor, policy->cpu)); 953 if (gov) 954 pr_debug("Restoring governor %s for cpu %d\n", 955 policy->governor->name, policy->cpu); 956 else 957 gov = CPUFREQ_DEFAULT_GOVERNOR; 958 959 new_policy.governor = gov; 960 961 /* Use the default policy if its valid. */ 962 if (cpufreq_driver->setpolicy) 963 cpufreq_parse_governor(gov->name, &new_policy.policy, NULL); 964 965 /* set default policy */ 966 ret = cpufreq_set_policy(policy, &new_policy); 967 if (ret) { 968 pr_debug("setting policy failed\n"); 969 if (cpufreq_driver->exit) 970 cpufreq_driver->exit(policy); 971 } 972 } 973 974 #ifdef CONFIG_HOTPLUG_CPU 975 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, 976 unsigned int cpu, struct device *dev) 977 { 978 int ret = 0; 979 unsigned long flags; 980 981 if (has_target()) { 982 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP); 983 if (ret) { 984 pr_err("%s: Failed to stop governor\n", __func__); 985 return ret; 986 } 987 } 988 989 down_write(&policy->rwsem); 990 991 write_lock_irqsave(&cpufreq_driver_lock, flags); 992 993 cpumask_set_cpu(cpu, policy->cpus); 994 per_cpu(cpufreq_cpu_data, cpu) = policy; 995 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 996 997 up_write(&policy->rwsem); 998 999 if (has_target()) { 1000 ret = __cpufreq_governor(policy, CPUFREQ_GOV_START); 1001 if (!ret) 1002 ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); 1003 1004 if (ret) { 1005 pr_err("%s: Failed to start governor\n", __func__); 1006 return ret; 1007 } 1008 } 1009 1010 return sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"); 1011 } 1012 #endif 1013 1014 static struct cpufreq_policy *cpufreq_policy_restore(unsigned int cpu) 1015 { 1016 struct cpufreq_policy *policy; 1017 unsigned long flags; 1018 1019 read_lock_irqsave(&cpufreq_driver_lock, flags); 1020 1021 policy = per_cpu(cpufreq_cpu_data_fallback, cpu); 1022 1023 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1024 1025 policy->governor = NULL; 1026 1027 return policy; 1028 } 1029 1030 static struct cpufreq_policy *cpufreq_policy_alloc(void) 1031 { 1032 struct cpufreq_policy *policy; 1033 1034 policy = kzalloc(sizeof(*policy), GFP_KERNEL); 1035 if (!policy) 1036 return NULL; 1037 1038 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) 1039 goto err_free_policy; 1040 1041 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) 1042 goto err_free_cpumask; 1043 1044 INIT_LIST_HEAD(&policy->policy_list); 1045 init_rwsem(&policy->rwsem); 1046 spin_lock_init(&policy->transition_lock); 1047 init_waitqueue_head(&policy->transition_wait); 1048 1049 return policy; 1050 1051 err_free_cpumask: 1052 free_cpumask_var(policy->cpus); 1053 err_free_policy: 1054 kfree(policy); 1055 1056 return NULL; 1057 } 1058 1059 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy) 1060 { 1061 struct kobject *kobj; 1062 struct completion *cmp; 1063 1064 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1065 CPUFREQ_REMOVE_POLICY, policy); 1066 1067 down_read(&policy->rwsem); 1068 kobj = &policy->kobj; 1069 cmp = &policy->kobj_unregister; 1070 up_read(&policy->rwsem); 1071 kobject_put(kobj); 1072 1073 /* 1074 * We need to make sure that the underlying kobj is 1075 * actually not referenced anymore by anybody before we 1076 * proceed with unloading. 1077 */ 1078 pr_debug("waiting for dropping of refcount\n"); 1079 wait_for_completion(cmp); 1080 pr_debug("wait complete\n"); 1081 } 1082 1083 static void cpufreq_policy_free(struct cpufreq_policy *policy) 1084 { 1085 free_cpumask_var(policy->related_cpus); 1086 free_cpumask_var(policy->cpus); 1087 kfree(policy); 1088 } 1089 1090 static int update_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu, 1091 struct device *cpu_dev) 1092 { 1093 int ret; 1094 1095 if (WARN_ON(cpu == policy->cpu)) 1096 return 0; 1097 1098 /* Move kobject to the new policy->cpu */ 1099 ret = kobject_move(&policy->kobj, &cpu_dev->kobj); 1100 if (ret) { 1101 pr_err("%s: Failed to move kobj: %d\n", __func__, ret); 1102 return ret; 1103 } 1104 1105 down_write(&policy->rwsem); 1106 1107 policy->last_cpu = policy->cpu; 1108 policy->cpu = cpu; 1109 1110 up_write(&policy->rwsem); 1111 1112 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1113 CPUFREQ_UPDATE_POLICY_CPU, policy); 1114 1115 return 0; 1116 } 1117 1118 static int __cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 1119 { 1120 unsigned int j, cpu = dev->id; 1121 int ret = -ENOMEM; 1122 struct cpufreq_policy *policy; 1123 unsigned long flags; 1124 bool recover_policy = cpufreq_suspended; 1125 #ifdef CONFIG_HOTPLUG_CPU 1126 struct cpufreq_policy *tpolicy; 1127 #endif 1128 1129 if (cpu_is_offline(cpu)) 1130 return 0; 1131 1132 pr_debug("adding CPU %u\n", cpu); 1133 1134 #ifdef CONFIG_SMP 1135 /* check whether a different CPU already registered this 1136 * CPU because it is in the same boat. */ 1137 policy = cpufreq_cpu_get(cpu); 1138 if (unlikely(policy)) { 1139 cpufreq_cpu_put(policy); 1140 return 0; 1141 } 1142 #endif 1143 1144 if (!down_read_trylock(&cpufreq_rwsem)) 1145 return 0; 1146 1147 #ifdef CONFIG_HOTPLUG_CPU 1148 /* Check if this cpu was hot-unplugged earlier and has siblings */ 1149 read_lock_irqsave(&cpufreq_driver_lock, flags); 1150 list_for_each_entry(tpolicy, &cpufreq_policy_list, policy_list) { 1151 if (cpumask_test_cpu(cpu, tpolicy->related_cpus)) { 1152 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1153 ret = cpufreq_add_policy_cpu(tpolicy, cpu, dev); 1154 up_read(&cpufreq_rwsem); 1155 return ret; 1156 } 1157 } 1158 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1159 #endif 1160 1161 /* 1162 * Restore the saved policy when doing light-weight init and fall back 1163 * to the full init if that fails. 1164 */ 1165 policy = recover_policy ? cpufreq_policy_restore(cpu) : NULL; 1166 if (!policy) { 1167 recover_policy = false; 1168 policy = cpufreq_policy_alloc(); 1169 if (!policy) 1170 goto nomem_out; 1171 } 1172 1173 /* 1174 * In the resume path, since we restore a saved policy, the assignment 1175 * to policy->cpu is like an update of the existing policy, rather than 1176 * the creation of a brand new one. So we need to perform this update 1177 * by invoking update_policy_cpu(). 1178 */ 1179 if (recover_policy && cpu != policy->cpu) 1180 WARN_ON(update_policy_cpu(policy, cpu, dev)); 1181 else 1182 policy->cpu = cpu; 1183 1184 cpumask_copy(policy->cpus, cpumask_of(cpu)); 1185 1186 init_completion(&policy->kobj_unregister); 1187 INIT_WORK(&policy->update, handle_update); 1188 1189 /* call driver. From then on the cpufreq must be able 1190 * to accept all calls to ->verify and ->setpolicy for this CPU 1191 */ 1192 ret = cpufreq_driver->init(policy); 1193 if (ret) { 1194 pr_debug("initialization failed\n"); 1195 goto err_set_policy_cpu; 1196 } 1197 1198 /* related cpus should atleast have policy->cpus */ 1199 cpumask_or(policy->related_cpus, policy->related_cpus, policy->cpus); 1200 1201 /* 1202 * affected cpus must always be the one, which are online. We aren't 1203 * managing offline cpus here. 1204 */ 1205 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask); 1206 1207 if (!recover_policy) { 1208 policy->user_policy.min = policy->min; 1209 policy->user_policy.max = policy->max; 1210 } 1211 1212 down_write(&policy->rwsem); 1213 write_lock_irqsave(&cpufreq_driver_lock, flags); 1214 for_each_cpu(j, policy->cpus) 1215 per_cpu(cpufreq_cpu_data, j) = policy; 1216 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1217 1218 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) { 1219 policy->cur = cpufreq_driver->get(policy->cpu); 1220 if (!policy->cur) { 1221 pr_err("%s: ->get() failed\n", __func__); 1222 goto err_get_freq; 1223 } 1224 } 1225 1226 /* 1227 * Sometimes boot loaders set CPU frequency to a value outside of 1228 * frequency table present with cpufreq core. In such cases CPU might be 1229 * unstable if it has to run on that frequency for long duration of time 1230 * and so its better to set it to a frequency which is specified in 1231 * freq-table. This also makes cpufreq stats inconsistent as 1232 * cpufreq-stats would fail to register because current frequency of CPU 1233 * isn't found in freq-table. 1234 * 1235 * Because we don't want this change to effect boot process badly, we go 1236 * for the next freq which is >= policy->cur ('cur' must be set by now, 1237 * otherwise we will end up setting freq to lowest of the table as 'cur' 1238 * is initialized to zero). 1239 * 1240 * We are passing target-freq as "policy->cur - 1" otherwise 1241 * __cpufreq_driver_target() would simply fail, as policy->cur will be 1242 * equal to target-freq. 1243 */ 1244 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK) 1245 && has_target()) { 1246 /* Are we running at unknown frequency ? */ 1247 ret = cpufreq_frequency_table_get_index(policy, policy->cur); 1248 if (ret == -EINVAL) { 1249 /* Warn user and fix it */ 1250 pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n", 1251 __func__, policy->cpu, policy->cur); 1252 ret = __cpufreq_driver_target(policy, policy->cur - 1, 1253 CPUFREQ_RELATION_L); 1254 1255 /* 1256 * Reaching here after boot in a few seconds may not 1257 * mean that system will remain stable at "unknown" 1258 * frequency for longer duration. Hence, a BUG_ON(). 1259 */ 1260 BUG_ON(ret); 1261 pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n", 1262 __func__, policy->cpu, policy->cur); 1263 } 1264 } 1265 1266 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1267 CPUFREQ_START, policy); 1268 1269 if (!recover_policy) { 1270 ret = cpufreq_add_dev_interface(policy, dev); 1271 if (ret) 1272 goto err_out_unregister; 1273 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1274 CPUFREQ_CREATE_POLICY, policy); 1275 } 1276 1277 write_lock_irqsave(&cpufreq_driver_lock, flags); 1278 list_add(&policy->policy_list, &cpufreq_policy_list); 1279 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1280 1281 cpufreq_init_policy(policy); 1282 1283 if (!recover_policy) { 1284 policy->user_policy.policy = policy->policy; 1285 policy->user_policy.governor = policy->governor; 1286 } 1287 up_write(&policy->rwsem); 1288 1289 kobject_uevent(&policy->kobj, KOBJ_ADD); 1290 up_read(&cpufreq_rwsem); 1291 1292 pr_debug("initialization complete\n"); 1293 1294 return 0; 1295 1296 err_out_unregister: 1297 err_get_freq: 1298 write_lock_irqsave(&cpufreq_driver_lock, flags); 1299 for_each_cpu(j, policy->cpus) 1300 per_cpu(cpufreq_cpu_data, j) = NULL; 1301 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1302 1303 up_write(&policy->rwsem); 1304 1305 if (cpufreq_driver->exit) 1306 cpufreq_driver->exit(policy); 1307 err_set_policy_cpu: 1308 if (recover_policy) { 1309 /* Do not leave stale fallback data behind. */ 1310 per_cpu(cpufreq_cpu_data_fallback, cpu) = NULL; 1311 cpufreq_policy_put_kobj(policy); 1312 } 1313 cpufreq_policy_free(policy); 1314 1315 nomem_out: 1316 up_read(&cpufreq_rwsem); 1317 1318 return ret; 1319 } 1320 1321 /** 1322 * cpufreq_add_dev - add a CPU device 1323 * 1324 * Adds the cpufreq interface for a CPU device. 1325 * 1326 * The Oracle says: try running cpufreq registration/unregistration concurrently 1327 * with with cpu hotplugging and all hell will break loose. Tried to clean this 1328 * mess up, but more thorough testing is needed. - Mathieu 1329 */ 1330 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 1331 { 1332 return __cpufreq_add_dev(dev, sif); 1333 } 1334 1335 static int __cpufreq_remove_dev_prepare(struct device *dev, 1336 struct subsys_interface *sif) 1337 { 1338 unsigned int cpu = dev->id, cpus; 1339 int ret; 1340 unsigned long flags; 1341 struct cpufreq_policy *policy; 1342 1343 pr_debug("%s: unregistering CPU %u\n", __func__, cpu); 1344 1345 write_lock_irqsave(&cpufreq_driver_lock, flags); 1346 1347 policy = per_cpu(cpufreq_cpu_data, cpu); 1348 1349 /* Save the policy somewhere when doing a light-weight tear-down */ 1350 if (cpufreq_suspended) 1351 per_cpu(cpufreq_cpu_data_fallback, cpu) = policy; 1352 1353 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1354 1355 if (!policy) { 1356 pr_debug("%s: No cpu_data found\n", __func__); 1357 return -EINVAL; 1358 } 1359 1360 if (has_target()) { 1361 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP); 1362 if (ret) { 1363 pr_err("%s: Failed to stop governor\n", __func__); 1364 return ret; 1365 } 1366 } 1367 1368 if (!cpufreq_driver->setpolicy) 1369 strncpy(per_cpu(cpufreq_cpu_governor, cpu), 1370 policy->governor->name, CPUFREQ_NAME_LEN); 1371 1372 down_read(&policy->rwsem); 1373 cpus = cpumask_weight(policy->cpus); 1374 up_read(&policy->rwsem); 1375 1376 if (cpu != policy->cpu) { 1377 sysfs_remove_link(&dev->kobj, "cpufreq"); 1378 } else if (cpus > 1) { 1379 /* Nominate new CPU */ 1380 int new_cpu = cpumask_any_but(policy->cpus, cpu); 1381 struct device *cpu_dev = get_cpu_device(new_cpu); 1382 1383 sysfs_remove_link(&cpu_dev->kobj, "cpufreq"); 1384 ret = update_policy_cpu(policy, new_cpu, cpu_dev); 1385 if (ret) { 1386 if (sysfs_create_link(&cpu_dev->kobj, &policy->kobj, 1387 "cpufreq")) 1388 pr_err("%s: Failed to restore kobj link to cpu:%d\n", 1389 __func__, cpu_dev->id); 1390 return ret; 1391 } 1392 1393 if (!cpufreq_suspended) 1394 pr_debug("%s: policy Kobject moved to cpu: %d from: %d\n", 1395 __func__, new_cpu, cpu); 1396 } else if (cpufreq_driver->stop_cpu) { 1397 cpufreq_driver->stop_cpu(policy); 1398 } 1399 1400 return 0; 1401 } 1402 1403 static int __cpufreq_remove_dev_finish(struct device *dev, 1404 struct subsys_interface *sif) 1405 { 1406 unsigned int cpu = dev->id, cpus; 1407 int ret; 1408 unsigned long flags; 1409 struct cpufreq_policy *policy; 1410 1411 read_lock_irqsave(&cpufreq_driver_lock, flags); 1412 policy = per_cpu(cpufreq_cpu_data, cpu); 1413 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1414 1415 if (!policy) { 1416 pr_debug("%s: No cpu_data found\n", __func__); 1417 return -EINVAL; 1418 } 1419 1420 down_write(&policy->rwsem); 1421 cpus = cpumask_weight(policy->cpus); 1422 1423 if (cpus > 1) 1424 cpumask_clear_cpu(cpu, policy->cpus); 1425 up_write(&policy->rwsem); 1426 1427 /* If cpu is last user of policy, free policy */ 1428 if (cpus == 1) { 1429 if (has_target()) { 1430 ret = __cpufreq_governor(policy, 1431 CPUFREQ_GOV_POLICY_EXIT); 1432 if (ret) { 1433 pr_err("%s: Failed to exit governor\n", 1434 __func__); 1435 return ret; 1436 } 1437 } 1438 1439 if (!cpufreq_suspended) 1440 cpufreq_policy_put_kobj(policy); 1441 1442 /* 1443 * Perform the ->exit() even during light-weight tear-down, 1444 * since this is a core component, and is essential for the 1445 * subsequent light-weight ->init() to succeed. 1446 */ 1447 if (cpufreq_driver->exit) 1448 cpufreq_driver->exit(policy); 1449 1450 /* Remove policy from list of active policies */ 1451 write_lock_irqsave(&cpufreq_driver_lock, flags); 1452 list_del(&policy->policy_list); 1453 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1454 1455 if (!cpufreq_suspended) 1456 cpufreq_policy_free(policy); 1457 } else if (has_target()) { 1458 ret = __cpufreq_governor(policy, CPUFREQ_GOV_START); 1459 if (!ret) 1460 ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); 1461 1462 if (ret) { 1463 pr_err("%s: Failed to start governor\n", __func__); 1464 return ret; 1465 } 1466 } 1467 1468 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1469 return 0; 1470 } 1471 1472 /** 1473 * cpufreq_remove_dev - remove a CPU device 1474 * 1475 * Removes the cpufreq interface for a CPU device. 1476 */ 1477 static int cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif) 1478 { 1479 unsigned int cpu = dev->id; 1480 int ret; 1481 1482 if (cpu_is_offline(cpu)) 1483 return 0; 1484 1485 ret = __cpufreq_remove_dev_prepare(dev, sif); 1486 1487 if (!ret) 1488 ret = __cpufreq_remove_dev_finish(dev, sif); 1489 1490 return ret; 1491 } 1492 1493 static void handle_update(struct work_struct *work) 1494 { 1495 struct cpufreq_policy *policy = 1496 container_of(work, struct cpufreq_policy, update); 1497 unsigned int cpu = policy->cpu; 1498 pr_debug("handle_update for cpu %u called\n", cpu); 1499 cpufreq_update_policy(cpu); 1500 } 1501 1502 /** 1503 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're 1504 * in deep trouble. 1505 * @cpu: cpu number 1506 * @old_freq: CPU frequency the kernel thinks the CPU runs at 1507 * @new_freq: CPU frequency the CPU actually runs at 1508 * 1509 * We adjust to current frequency first, and need to clean up later. 1510 * So either call to cpufreq_update_policy() or schedule handle_update()). 1511 */ 1512 static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq, 1513 unsigned int new_freq) 1514 { 1515 struct cpufreq_policy *policy; 1516 struct cpufreq_freqs freqs; 1517 unsigned long flags; 1518 1519 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n", 1520 old_freq, new_freq); 1521 1522 freqs.old = old_freq; 1523 freqs.new = new_freq; 1524 1525 read_lock_irqsave(&cpufreq_driver_lock, flags); 1526 policy = per_cpu(cpufreq_cpu_data, cpu); 1527 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1528 1529 cpufreq_freq_transition_begin(policy, &freqs); 1530 cpufreq_freq_transition_end(policy, &freqs, 0); 1531 } 1532 1533 /** 1534 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur 1535 * @cpu: CPU number 1536 * 1537 * This is the last known freq, without actually getting it from the driver. 1538 * Return value will be same as what is shown in scaling_cur_freq in sysfs. 1539 */ 1540 unsigned int cpufreq_quick_get(unsigned int cpu) 1541 { 1542 struct cpufreq_policy *policy; 1543 unsigned int ret_freq = 0; 1544 1545 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) 1546 return cpufreq_driver->get(cpu); 1547 1548 policy = cpufreq_cpu_get(cpu); 1549 if (policy) { 1550 ret_freq = policy->cur; 1551 cpufreq_cpu_put(policy); 1552 } 1553 1554 return ret_freq; 1555 } 1556 EXPORT_SYMBOL(cpufreq_quick_get); 1557 1558 /** 1559 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU 1560 * @cpu: CPU number 1561 * 1562 * Just return the max possible frequency for a given CPU. 1563 */ 1564 unsigned int cpufreq_quick_get_max(unsigned int cpu) 1565 { 1566 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1567 unsigned int ret_freq = 0; 1568 1569 if (policy) { 1570 ret_freq = policy->max; 1571 cpufreq_cpu_put(policy); 1572 } 1573 1574 return ret_freq; 1575 } 1576 EXPORT_SYMBOL(cpufreq_quick_get_max); 1577 1578 static unsigned int __cpufreq_get(unsigned int cpu) 1579 { 1580 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1581 unsigned int ret_freq = 0; 1582 1583 if (!cpufreq_driver->get) 1584 return ret_freq; 1585 1586 ret_freq = cpufreq_driver->get(cpu); 1587 1588 if (ret_freq && policy->cur && 1589 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 1590 /* verify no discrepancy between actual and 1591 saved value exists */ 1592 if (unlikely(ret_freq != policy->cur)) { 1593 cpufreq_out_of_sync(cpu, policy->cur, ret_freq); 1594 schedule_work(&policy->update); 1595 } 1596 } 1597 1598 return ret_freq; 1599 } 1600 1601 /** 1602 * cpufreq_get - get the current CPU frequency (in kHz) 1603 * @cpu: CPU number 1604 * 1605 * Get the CPU current (static) CPU frequency 1606 */ 1607 unsigned int cpufreq_get(unsigned int cpu) 1608 { 1609 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1610 unsigned int ret_freq = 0; 1611 1612 if (policy) { 1613 down_read(&policy->rwsem); 1614 ret_freq = __cpufreq_get(cpu); 1615 up_read(&policy->rwsem); 1616 1617 cpufreq_cpu_put(policy); 1618 } 1619 1620 return ret_freq; 1621 } 1622 EXPORT_SYMBOL(cpufreq_get); 1623 1624 static struct subsys_interface cpufreq_interface = { 1625 .name = "cpufreq", 1626 .subsys = &cpu_subsys, 1627 .add_dev = cpufreq_add_dev, 1628 .remove_dev = cpufreq_remove_dev, 1629 }; 1630 1631 /* 1632 * In case platform wants some specific frequency to be configured 1633 * during suspend.. 1634 */ 1635 int cpufreq_generic_suspend(struct cpufreq_policy *policy) 1636 { 1637 int ret; 1638 1639 if (!policy->suspend_freq) { 1640 pr_err("%s: suspend_freq can't be zero\n", __func__); 1641 return -EINVAL; 1642 } 1643 1644 pr_debug("%s: Setting suspend-freq: %u\n", __func__, 1645 policy->suspend_freq); 1646 1647 ret = __cpufreq_driver_target(policy, policy->suspend_freq, 1648 CPUFREQ_RELATION_H); 1649 if (ret) 1650 pr_err("%s: unable to set suspend-freq: %u. err: %d\n", 1651 __func__, policy->suspend_freq, ret); 1652 1653 return ret; 1654 } 1655 EXPORT_SYMBOL(cpufreq_generic_suspend); 1656 1657 /** 1658 * cpufreq_suspend() - Suspend CPUFreq governors 1659 * 1660 * Called during system wide Suspend/Hibernate cycles for suspending governors 1661 * as some platforms can't change frequency after this point in suspend cycle. 1662 * Because some of the devices (like: i2c, regulators, etc) they use for 1663 * changing frequency are suspended quickly after this point. 1664 */ 1665 void cpufreq_suspend(void) 1666 { 1667 struct cpufreq_policy *policy; 1668 1669 if (!cpufreq_driver) 1670 return; 1671 1672 if (!has_target()) 1673 goto suspend; 1674 1675 pr_debug("%s: Suspending Governors\n", __func__); 1676 1677 list_for_each_entry(policy, &cpufreq_policy_list, policy_list) { 1678 if (__cpufreq_governor(policy, CPUFREQ_GOV_STOP)) 1679 pr_err("%s: Failed to stop governor for policy: %p\n", 1680 __func__, policy); 1681 else if (cpufreq_driver->suspend 1682 && cpufreq_driver->suspend(policy)) 1683 pr_err("%s: Failed to suspend driver: %p\n", __func__, 1684 policy); 1685 } 1686 1687 suspend: 1688 cpufreq_suspended = true; 1689 } 1690 1691 /** 1692 * cpufreq_resume() - Resume CPUFreq governors 1693 * 1694 * Called during system wide Suspend/Hibernate cycle for resuming governors that 1695 * are suspended with cpufreq_suspend(). 1696 */ 1697 void cpufreq_resume(void) 1698 { 1699 struct cpufreq_policy *policy; 1700 1701 if (!cpufreq_driver) 1702 return; 1703 1704 cpufreq_suspended = false; 1705 1706 if (!has_target()) 1707 return; 1708 1709 pr_debug("%s: Resuming Governors\n", __func__); 1710 1711 list_for_each_entry(policy, &cpufreq_policy_list, policy_list) { 1712 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) 1713 pr_err("%s: Failed to resume driver: %p\n", __func__, 1714 policy); 1715 else if (__cpufreq_governor(policy, CPUFREQ_GOV_START) 1716 || __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS)) 1717 pr_err("%s: Failed to start governor for policy: %p\n", 1718 __func__, policy); 1719 1720 /* 1721 * schedule call cpufreq_update_policy() for boot CPU, i.e. last 1722 * policy in list. It will verify that the current freq is in 1723 * sync with what we believe it to be. 1724 */ 1725 if (list_is_last(&policy->policy_list, &cpufreq_policy_list)) 1726 schedule_work(&policy->update); 1727 } 1728 } 1729 1730 /** 1731 * cpufreq_get_current_driver - return current driver's name 1732 * 1733 * Return the name string of the currently loaded cpufreq driver 1734 * or NULL, if none. 1735 */ 1736 const char *cpufreq_get_current_driver(void) 1737 { 1738 if (cpufreq_driver) 1739 return cpufreq_driver->name; 1740 1741 return NULL; 1742 } 1743 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver); 1744 1745 /** 1746 * cpufreq_get_driver_data - return current driver data 1747 * 1748 * Return the private data of the currently loaded cpufreq 1749 * driver, or NULL if no cpufreq driver is loaded. 1750 */ 1751 void *cpufreq_get_driver_data(void) 1752 { 1753 if (cpufreq_driver) 1754 return cpufreq_driver->driver_data; 1755 1756 return NULL; 1757 } 1758 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data); 1759 1760 /********************************************************************* 1761 * NOTIFIER LISTS INTERFACE * 1762 *********************************************************************/ 1763 1764 /** 1765 * cpufreq_register_notifier - register a driver with cpufreq 1766 * @nb: notifier function to register 1767 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1768 * 1769 * Add a driver to one of two lists: either a list of drivers that 1770 * are notified about clock rate changes (once before and once after 1771 * the transition), or a list of drivers that are notified about 1772 * changes in cpufreq policy. 1773 * 1774 * This function may sleep, and has the same return conditions as 1775 * blocking_notifier_chain_register. 1776 */ 1777 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 1778 { 1779 int ret; 1780 1781 if (cpufreq_disabled()) 1782 return -EINVAL; 1783 1784 WARN_ON(!init_cpufreq_transition_notifier_list_called); 1785 1786 switch (list) { 1787 case CPUFREQ_TRANSITION_NOTIFIER: 1788 ret = srcu_notifier_chain_register( 1789 &cpufreq_transition_notifier_list, nb); 1790 break; 1791 case CPUFREQ_POLICY_NOTIFIER: 1792 ret = blocking_notifier_chain_register( 1793 &cpufreq_policy_notifier_list, nb); 1794 break; 1795 default: 1796 ret = -EINVAL; 1797 } 1798 1799 return ret; 1800 } 1801 EXPORT_SYMBOL(cpufreq_register_notifier); 1802 1803 /** 1804 * cpufreq_unregister_notifier - unregister a driver with cpufreq 1805 * @nb: notifier block to be unregistered 1806 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1807 * 1808 * Remove a driver from the CPU frequency notifier list. 1809 * 1810 * This function may sleep, and has the same return conditions as 1811 * blocking_notifier_chain_unregister. 1812 */ 1813 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 1814 { 1815 int ret; 1816 1817 if (cpufreq_disabled()) 1818 return -EINVAL; 1819 1820 switch (list) { 1821 case CPUFREQ_TRANSITION_NOTIFIER: 1822 ret = srcu_notifier_chain_unregister( 1823 &cpufreq_transition_notifier_list, nb); 1824 break; 1825 case CPUFREQ_POLICY_NOTIFIER: 1826 ret = blocking_notifier_chain_unregister( 1827 &cpufreq_policy_notifier_list, nb); 1828 break; 1829 default: 1830 ret = -EINVAL; 1831 } 1832 1833 return ret; 1834 } 1835 EXPORT_SYMBOL(cpufreq_unregister_notifier); 1836 1837 1838 /********************************************************************* 1839 * GOVERNORS * 1840 *********************************************************************/ 1841 1842 /* Must set freqs->new to intermediate frequency */ 1843 static int __target_intermediate(struct cpufreq_policy *policy, 1844 struct cpufreq_freqs *freqs, int index) 1845 { 1846 int ret; 1847 1848 freqs->new = cpufreq_driver->get_intermediate(policy, index); 1849 1850 /* We don't need to switch to intermediate freq */ 1851 if (!freqs->new) 1852 return 0; 1853 1854 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n", 1855 __func__, policy->cpu, freqs->old, freqs->new); 1856 1857 cpufreq_freq_transition_begin(policy, freqs); 1858 ret = cpufreq_driver->target_intermediate(policy, index); 1859 cpufreq_freq_transition_end(policy, freqs, ret); 1860 1861 if (ret) 1862 pr_err("%s: Failed to change to intermediate frequency: %d\n", 1863 __func__, ret); 1864 1865 return ret; 1866 } 1867 1868 static int __target_index(struct cpufreq_policy *policy, 1869 struct cpufreq_frequency_table *freq_table, int index) 1870 { 1871 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0}; 1872 unsigned int intermediate_freq = 0; 1873 int retval = -EINVAL; 1874 bool notify; 1875 1876 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION); 1877 if (notify) { 1878 /* Handle switching to intermediate frequency */ 1879 if (cpufreq_driver->get_intermediate) { 1880 retval = __target_intermediate(policy, &freqs, index); 1881 if (retval) 1882 return retval; 1883 1884 intermediate_freq = freqs.new; 1885 /* Set old freq to intermediate */ 1886 if (intermediate_freq) 1887 freqs.old = freqs.new; 1888 } 1889 1890 freqs.new = freq_table[index].frequency; 1891 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n", 1892 __func__, policy->cpu, freqs.old, freqs.new); 1893 1894 cpufreq_freq_transition_begin(policy, &freqs); 1895 } 1896 1897 retval = cpufreq_driver->target_index(policy, index); 1898 if (retval) 1899 pr_err("%s: Failed to change cpu frequency: %d\n", __func__, 1900 retval); 1901 1902 if (notify) { 1903 cpufreq_freq_transition_end(policy, &freqs, retval); 1904 1905 /* 1906 * Failed after setting to intermediate freq? Driver should have 1907 * reverted back to initial frequency and so should we. Check 1908 * here for intermediate_freq instead of get_intermediate, in 1909 * case we have't switched to intermediate freq at all. 1910 */ 1911 if (unlikely(retval && intermediate_freq)) { 1912 freqs.old = intermediate_freq; 1913 freqs.new = policy->restore_freq; 1914 cpufreq_freq_transition_begin(policy, &freqs); 1915 cpufreq_freq_transition_end(policy, &freqs, 0); 1916 } 1917 } 1918 1919 return retval; 1920 } 1921 1922 int __cpufreq_driver_target(struct cpufreq_policy *policy, 1923 unsigned int target_freq, 1924 unsigned int relation) 1925 { 1926 unsigned int old_target_freq = target_freq; 1927 int retval = -EINVAL; 1928 1929 if (cpufreq_disabled()) 1930 return -ENODEV; 1931 1932 /* Make sure that target_freq is within supported range */ 1933 if (target_freq > policy->max) 1934 target_freq = policy->max; 1935 if (target_freq < policy->min) 1936 target_freq = policy->min; 1937 1938 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n", 1939 policy->cpu, target_freq, relation, old_target_freq); 1940 1941 /* 1942 * This might look like a redundant call as we are checking it again 1943 * after finding index. But it is left intentionally for cases where 1944 * exactly same freq is called again and so we can save on few function 1945 * calls. 1946 */ 1947 if (target_freq == policy->cur) 1948 return 0; 1949 1950 /* Save last value to restore later on errors */ 1951 policy->restore_freq = policy->cur; 1952 1953 if (cpufreq_driver->target) 1954 retval = cpufreq_driver->target(policy, target_freq, relation); 1955 else if (cpufreq_driver->target_index) { 1956 struct cpufreq_frequency_table *freq_table; 1957 int index; 1958 1959 freq_table = cpufreq_frequency_get_table(policy->cpu); 1960 if (unlikely(!freq_table)) { 1961 pr_err("%s: Unable to find freq_table\n", __func__); 1962 goto out; 1963 } 1964 1965 retval = cpufreq_frequency_table_target(policy, freq_table, 1966 target_freq, relation, &index); 1967 if (unlikely(retval)) { 1968 pr_err("%s: Unable to find matching freq\n", __func__); 1969 goto out; 1970 } 1971 1972 if (freq_table[index].frequency == policy->cur) { 1973 retval = 0; 1974 goto out; 1975 } 1976 1977 retval = __target_index(policy, freq_table, index); 1978 } 1979 1980 out: 1981 return retval; 1982 } 1983 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 1984 1985 int cpufreq_driver_target(struct cpufreq_policy *policy, 1986 unsigned int target_freq, 1987 unsigned int relation) 1988 { 1989 int ret = -EINVAL; 1990 1991 down_write(&policy->rwsem); 1992 1993 ret = __cpufreq_driver_target(policy, target_freq, relation); 1994 1995 up_write(&policy->rwsem); 1996 1997 return ret; 1998 } 1999 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 2000 2001 /* 2002 * when "event" is CPUFREQ_GOV_LIMITS 2003 */ 2004 2005 static int __cpufreq_governor(struct cpufreq_policy *policy, 2006 unsigned int event) 2007 { 2008 int ret; 2009 2010 /* Only must be defined when default governor is known to have latency 2011 restrictions, like e.g. conservative or ondemand. 2012 That this is the case is already ensured in Kconfig 2013 */ 2014 #ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE 2015 struct cpufreq_governor *gov = &cpufreq_gov_performance; 2016 #else 2017 struct cpufreq_governor *gov = NULL; 2018 #endif 2019 2020 /* Don't start any governor operations if we are entering suspend */ 2021 if (cpufreq_suspended) 2022 return 0; 2023 2024 if (policy->governor->max_transition_latency && 2025 policy->cpuinfo.transition_latency > 2026 policy->governor->max_transition_latency) { 2027 if (!gov) 2028 return -EINVAL; 2029 else { 2030 pr_warn("%s governor failed, too long transition latency of HW, fallback to %s governor\n", 2031 policy->governor->name, gov->name); 2032 policy->governor = gov; 2033 } 2034 } 2035 2036 if (event == CPUFREQ_GOV_POLICY_INIT) 2037 if (!try_module_get(policy->governor->owner)) 2038 return -EINVAL; 2039 2040 pr_debug("__cpufreq_governor for CPU %u, event %u\n", 2041 policy->cpu, event); 2042 2043 mutex_lock(&cpufreq_governor_lock); 2044 if ((policy->governor_enabled && event == CPUFREQ_GOV_START) 2045 || (!policy->governor_enabled 2046 && (event == CPUFREQ_GOV_LIMITS || event == CPUFREQ_GOV_STOP))) { 2047 mutex_unlock(&cpufreq_governor_lock); 2048 return -EBUSY; 2049 } 2050 2051 if (event == CPUFREQ_GOV_STOP) 2052 policy->governor_enabled = false; 2053 else if (event == CPUFREQ_GOV_START) 2054 policy->governor_enabled = true; 2055 2056 mutex_unlock(&cpufreq_governor_lock); 2057 2058 ret = policy->governor->governor(policy, event); 2059 2060 if (!ret) { 2061 if (event == CPUFREQ_GOV_POLICY_INIT) 2062 policy->governor->initialized++; 2063 else if (event == CPUFREQ_GOV_POLICY_EXIT) 2064 policy->governor->initialized--; 2065 } else { 2066 /* Restore original values */ 2067 mutex_lock(&cpufreq_governor_lock); 2068 if (event == CPUFREQ_GOV_STOP) 2069 policy->governor_enabled = true; 2070 else if (event == CPUFREQ_GOV_START) 2071 policy->governor_enabled = false; 2072 mutex_unlock(&cpufreq_governor_lock); 2073 } 2074 2075 if (((event == CPUFREQ_GOV_POLICY_INIT) && ret) || 2076 ((event == CPUFREQ_GOV_POLICY_EXIT) && !ret)) 2077 module_put(policy->governor->owner); 2078 2079 return ret; 2080 } 2081 2082 int cpufreq_register_governor(struct cpufreq_governor *governor) 2083 { 2084 int err; 2085 2086 if (!governor) 2087 return -EINVAL; 2088 2089 if (cpufreq_disabled()) 2090 return -ENODEV; 2091 2092 mutex_lock(&cpufreq_governor_mutex); 2093 2094 governor->initialized = 0; 2095 err = -EBUSY; 2096 if (__find_governor(governor->name) == NULL) { 2097 err = 0; 2098 list_add(&governor->governor_list, &cpufreq_governor_list); 2099 } 2100 2101 mutex_unlock(&cpufreq_governor_mutex); 2102 return err; 2103 } 2104 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 2105 2106 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 2107 { 2108 int cpu; 2109 2110 if (!governor) 2111 return; 2112 2113 if (cpufreq_disabled()) 2114 return; 2115 2116 for_each_present_cpu(cpu) { 2117 if (cpu_online(cpu)) 2118 continue; 2119 if (!strcmp(per_cpu(cpufreq_cpu_governor, cpu), governor->name)) 2120 strcpy(per_cpu(cpufreq_cpu_governor, cpu), "\0"); 2121 } 2122 2123 mutex_lock(&cpufreq_governor_mutex); 2124 list_del(&governor->governor_list); 2125 mutex_unlock(&cpufreq_governor_mutex); 2126 return; 2127 } 2128 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 2129 2130 2131 /********************************************************************* 2132 * POLICY INTERFACE * 2133 *********************************************************************/ 2134 2135 /** 2136 * cpufreq_get_policy - get the current cpufreq_policy 2137 * @policy: struct cpufreq_policy into which the current cpufreq_policy 2138 * is written 2139 * 2140 * Reads the current cpufreq policy. 2141 */ 2142 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 2143 { 2144 struct cpufreq_policy *cpu_policy; 2145 if (!policy) 2146 return -EINVAL; 2147 2148 cpu_policy = cpufreq_cpu_get(cpu); 2149 if (!cpu_policy) 2150 return -EINVAL; 2151 2152 memcpy(policy, cpu_policy, sizeof(*policy)); 2153 2154 cpufreq_cpu_put(cpu_policy); 2155 return 0; 2156 } 2157 EXPORT_SYMBOL(cpufreq_get_policy); 2158 2159 /* 2160 * policy : current policy. 2161 * new_policy: policy to be set. 2162 */ 2163 static int cpufreq_set_policy(struct cpufreq_policy *policy, 2164 struct cpufreq_policy *new_policy) 2165 { 2166 struct cpufreq_governor *old_gov; 2167 int ret; 2168 2169 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", 2170 new_policy->cpu, new_policy->min, new_policy->max); 2171 2172 memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo)); 2173 2174 if (new_policy->min > policy->max || new_policy->max < policy->min) 2175 return -EINVAL; 2176 2177 /* verify the cpu speed can be set within this limit */ 2178 ret = cpufreq_driver->verify(new_policy); 2179 if (ret) 2180 return ret; 2181 2182 /* adjust if necessary - all reasons */ 2183 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 2184 CPUFREQ_ADJUST, new_policy); 2185 2186 /* adjust if necessary - hardware incompatibility*/ 2187 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 2188 CPUFREQ_INCOMPATIBLE, new_policy); 2189 2190 /* 2191 * verify the cpu speed can be set within this limit, which might be 2192 * different to the first one 2193 */ 2194 ret = cpufreq_driver->verify(new_policy); 2195 if (ret) 2196 return ret; 2197 2198 /* notification of the new policy */ 2199 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 2200 CPUFREQ_NOTIFY, new_policy); 2201 2202 policy->min = new_policy->min; 2203 policy->max = new_policy->max; 2204 2205 pr_debug("new min and max freqs are %u - %u kHz\n", 2206 policy->min, policy->max); 2207 2208 if (cpufreq_driver->setpolicy) { 2209 policy->policy = new_policy->policy; 2210 pr_debug("setting range\n"); 2211 return cpufreq_driver->setpolicy(new_policy); 2212 } 2213 2214 if (new_policy->governor == policy->governor) 2215 goto out; 2216 2217 pr_debug("governor switch\n"); 2218 2219 /* save old, working values */ 2220 old_gov = policy->governor; 2221 /* end old governor */ 2222 if (old_gov) { 2223 __cpufreq_governor(policy, CPUFREQ_GOV_STOP); 2224 up_write(&policy->rwsem); 2225 __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT); 2226 down_write(&policy->rwsem); 2227 } 2228 2229 /* start new governor */ 2230 policy->governor = new_policy->governor; 2231 if (!__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT)) { 2232 if (!__cpufreq_governor(policy, CPUFREQ_GOV_START)) 2233 goto out; 2234 2235 up_write(&policy->rwsem); 2236 __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT); 2237 down_write(&policy->rwsem); 2238 } 2239 2240 /* new governor failed, so re-start old one */ 2241 pr_debug("starting governor %s failed\n", policy->governor->name); 2242 if (old_gov) { 2243 policy->governor = old_gov; 2244 __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT); 2245 __cpufreq_governor(policy, CPUFREQ_GOV_START); 2246 } 2247 2248 return -EINVAL; 2249 2250 out: 2251 pr_debug("governor: change or update limits\n"); 2252 return __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); 2253 } 2254 2255 /** 2256 * cpufreq_update_policy - re-evaluate an existing cpufreq policy 2257 * @cpu: CPU which shall be re-evaluated 2258 * 2259 * Useful for policy notifiers which have different necessities 2260 * at different times. 2261 */ 2262 int cpufreq_update_policy(unsigned int cpu) 2263 { 2264 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 2265 struct cpufreq_policy new_policy; 2266 int ret; 2267 2268 if (!policy) 2269 return -ENODEV; 2270 2271 down_write(&policy->rwsem); 2272 2273 pr_debug("updating policy for CPU %u\n", cpu); 2274 memcpy(&new_policy, policy, sizeof(*policy)); 2275 new_policy.min = policy->user_policy.min; 2276 new_policy.max = policy->user_policy.max; 2277 new_policy.policy = policy->user_policy.policy; 2278 new_policy.governor = policy->user_policy.governor; 2279 2280 /* 2281 * BIOS might change freq behind our back 2282 * -> ask driver for current freq and notify governors about a change 2283 */ 2284 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) { 2285 new_policy.cur = cpufreq_driver->get(cpu); 2286 if (WARN_ON(!new_policy.cur)) { 2287 ret = -EIO; 2288 goto unlock; 2289 } 2290 2291 if (!policy->cur) { 2292 pr_debug("Driver did not initialize current freq\n"); 2293 policy->cur = new_policy.cur; 2294 } else { 2295 if (policy->cur != new_policy.cur && has_target()) 2296 cpufreq_out_of_sync(cpu, policy->cur, 2297 new_policy.cur); 2298 } 2299 } 2300 2301 ret = cpufreq_set_policy(policy, &new_policy); 2302 2303 unlock: 2304 up_write(&policy->rwsem); 2305 2306 cpufreq_cpu_put(policy); 2307 return ret; 2308 } 2309 EXPORT_SYMBOL(cpufreq_update_policy); 2310 2311 static int cpufreq_cpu_callback(struct notifier_block *nfb, 2312 unsigned long action, void *hcpu) 2313 { 2314 unsigned int cpu = (unsigned long)hcpu; 2315 struct device *dev; 2316 2317 dev = get_cpu_device(cpu); 2318 if (dev) { 2319 switch (action & ~CPU_TASKS_FROZEN) { 2320 case CPU_ONLINE: 2321 __cpufreq_add_dev(dev, NULL); 2322 break; 2323 2324 case CPU_DOWN_PREPARE: 2325 __cpufreq_remove_dev_prepare(dev, NULL); 2326 break; 2327 2328 case CPU_POST_DEAD: 2329 __cpufreq_remove_dev_finish(dev, NULL); 2330 break; 2331 2332 case CPU_DOWN_FAILED: 2333 __cpufreq_add_dev(dev, NULL); 2334 break; 2335 } 2336 } 2337 return NOTIFY_OK; 2338 } 2339 2340 static struct notifier_block __refdata cpufreq_cpu_notifier = { 2341 .notifier_call = cpufreq_cpu_callback, 2342 }; 2343 2344 /********************************************************************* 2345 * BOOST * 2346 *********************************************************************/ 2347 static int cpufreq_boost_set_sw(int state) 2348 { 2349 struct cpufreq_frequency_table *freq_table; 2350 struct cpufreq_policy *policy; 2351 int ret = -EINVAL; 2352 2353 list_for_each_entry(policy, &cpufreq_policy_list, policy_list) { 2354 freq_table = cpufreq_frequency_get_table(policy->cpu); 2355 if (freq_table) { 2356 ret = cpufreq_frequency_table_cpuinfo(policy, 2357 freq_table); 2358 if (ret) { 2359 pr_err("%s: Policy frequency update failed\n", 2360 __func__); 2361 break; 2362 } 2363 policy->user_policy.max = policy->max; 2364 __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); 2365 } 2366 } 2367 2368 return ret; 2369 } 2370 2371 int cpufreq_boost_trigger_state(int state) 2372 { 2373 unsigned long flags; 2374 int ret = 0; 2375 2376 if (cpufreq_driver->boost_enabled == state) 2377 return 0; 2378 2379 write_lock_irqsave(&cpufreq_driver_lock, flags); 2380 cpufreq_driver->boost_enabled = state; 2381 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2382 2383 ret = cpufreq_driver->set_boost(state); 2384 if (ret) { 2385 write_lock_irqsave(&cpufreq_driver_lock, flags); 2386 cpufreq_driver->boost_enabled = !state; 2387 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2388 2389 pr_err("%s: Cannot %s BOOST\n", 2390 __func__, state ? "enable" : "disable"); 2391 } 2392 2393 return ret; 2394 } 2395 2396 int cpufreq_boost_supported(void) 2397 { 2398 if (likely(cpufreq_driver)) 2399 return cpufreq_driver->boost_supported; 2400 2401 return 0; 2402 } 2403 EXPORT_SYMBOL_GPL(cpufreq_boost_supported); 2404 2405 int cpufreq_boost_enabled(void) 2406 { 2407 return cpufreq_driver->boost_enabled; 2408 } 2409 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled); 2410 2411 /********************************************************************* 2412 * REGISTER / UNREGISTER CPUFREQ DRIVER * 2413 *********************************************************************/ 2414 2415 /** 2416 * cpufreq_register_driver - register a CPU Frequency driver 2417 * @driver_data: A struct cpufreq_driver containing the values# 2418 * submitted by the CPU Frequency driver. 2419 * 2420 * Registers a CPU Frequency driver to this core code. This code 2421 * returns zero on success, -EBUSY when another driver got here first 2422 * (and isn't unregistered in the meantime). 2423 * 2424 */ 2425 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 2426 { 2427 unsigned long flags; 2428 int ret; 2429 2430 if (cpufreq_disabled()) 2431 return -ENODEV; 2432 2433 if (!driver_data || !driver_data->verify || !driver_data->init || 2434 !(driver_data->setpolicy || driver_data->target_index || 2435 driver_data->target) || 2436 (driver_data->setpolicy && (driver_data->target_index || 2437 driver_data->target)) || 2438 (!!driver_data->get_intermediate != !!driver_data->target_intermediate)) 2439 return -EINVAL; 2440 2441 pr_debug("trying to register driver %s\n", driver_data->name); 2442 2443 if (driver_data->setpolicy) 2444 driver_data->flags |= CPUFREQ_CONST_LOOPS; 2445 2446 write_lock_irqsave(&cpufreq_driver_lock, flags); 2447 if (cpufreq_driver) { 2448 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2449 return -EEXIST; 2450 } 2451 cpufreq_driver = driver_data; 2452 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2453 2454 if (cpufreq_boost_supported()) { 2455 /* 2456 * Check if driver provides function to enable boost - 2457 * if not, use cpufreq_boost_set_sw as default 2458 */ 2459 if (!cpufreq_driver->set_boost) 2460 cpufreq_driver->set_boost = cpufreq_boost_set_sw; 2461 2462 ret = cpufreq_sysfs_create_file(&boost.attr); 2463 if (ret) { 2464 pr_err("%s: cannot register global BOOST sysfs file\n", 2465 __func__); 2466 goto err_null_driver; 2467 } 2468 } 2469 2470 ret = subsys_interface_register(&cpufreq_interface); 2471 if (ret) 2472 goto err_boost_unreg; 2473 2474 if (!(cpufreq_driver->flags & CPUFREQ_STICKY)) { 2475 int i; 2476 ret = -ENODEV; 2477 2478 /* check for at least one working CPU */ 2479 for (i = 0; i < nr_cpu_ids; i++) 2480 if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) { 2481 ret = 0; 2482 break; 2483 } 2484 2485 /* if all ->init() calls failed, unregister */ 2486 if (ret) { 2487 pr_debug("no CPU initialized for driver %s\n", 2488 driver_data->name); 2489 goto err_if_unreg; 2490 } 2491 } 2492 2493 register_hotcpu_notifier(&cpufreq_cpu_notifier); 2494 pr_debug("driver %s up and running\n", driver_data->name); 2495 2496 return 0; 2497 err_if_unreg: 2498 subsys_interface_unregister(&cpufreq_interface); 2499 err_boost_unreg: 2500 if (cpufreq_boost_supported()) 2501 cpufreq_sysfs_remove_file(&boost.attr); 2502 err_null_driver: 2503 write_lock_irqsave(&cpufreq_driver_lock, flags); 2504 cpufreq_driver = NULL; 2505 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2506 return ret; 2507 } 2508 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 2509 2510 /** 2511 * cpufreq_unregister_driver - unregister the current CPUFreq driver 2512 * 2513 * Unregister the current CPUFreq driver. Only call this if you have 2514 * the right to do so, i.e. if you have succeeded in initialising before! 2515 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 2516 * currently not initialised. 2517 */ 2518 int cpufreq_unregister_driver(struct cpufreq_driver *driver) 2519 { 2520 unsigned long flags; 2521 2522 if (!cpufreq_driver || (driver != cpufreq_driver)) 2523 return -EINVAL; 2524 2525 pr_debug("unregistering driver %s\n", driver->name); 2526 2527 subsys_interface_unregister(&cpufreq_interface); 2528 if (cpufreq_boost_supported()) 2529 cpufreq_sysfs_remove_file(&boost.attr); 2530 2531 unregister_hotcpu_notifier(&cpufreq_cpu_notifier); 2532 2533 down_write(&cpufreq_rwsem); 2534 write_lock_irqsave(&cpufreq_driver_lock, flags); 2535 2536 cpufreq_driver = NULL; 2537 2538 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2539 up_write(&cpufreq_rwsem); 2540 2541 return 0; 2542 } 2543 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 2544 2545 static int __init cpufreq_core_init(void) 2546 { 2547 if (cpufreq_disabled()) 2548 return -ENODEV; 2549 2550 cpufreq_global_kobject = kobject_create(); 2551 BUG_ON(!cpufreq_global_kobject); 2552 2553 return 0; 2554 } 2555 core_initcall(cpufreq_core_init); 2556