xref: /linux/drivers/cpufreq/cpufreq.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/cpufreq/cpufreq.c
4  *
5  *  Copyright (C) 2001 Russell King
6  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8  *
9  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10  *	Added handling for CPU hotplug
11  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12  *	Fix handling for CPU hotplug -- affected CPUs
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_qos.h>
27 #include <linux/slab.h>
28 #include <linux/suspend.h>
29 #include <linux/syscore_ops.h>
30 #include <linux/tick.h>
31 #include <trace/events/power.h>
32 
33 static LIST_HEAD(cpufreq_policy_list);
34 
35 /* Macros to iterate over CPU policies */
36 #define for_each_suitable_policy(__policy, __active)			 \
37 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
38 		if ((__active) == !policy_is_inactive(__policy))
39 
40 #define for_each_active_policy(__policy)		\
41 	for_each_suitable_policy(__policy, true)
42 #define for_each_inactive_policy(__policy)		\
43 	for_each_suitable_policy(__policy, false)
44 
45 #define for_each_policy(__policy)			\
46 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
47 
48 /* Iterate over governors */
49 static LIST_HEAD(cpufreq_governor_list);
50 #define for_each_governor(__governor)				\
51 	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
52 
53 /**
54  * The "cpufreq driver" - the arch- or hardware-dependent low
55  * level driver of CPUFreq support, and its spinlock. This lock
56  * also protects the cpufreq_cpu_data array.
57  */
58 static struct cpufreq_driver *cpufreq_driver;
59 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
60 static DEFINE_RWLOCK(cpufreq_driver_lock);
61 
62 /* Flag to suspend/resume CPUFreq governors */
63 static bool cpufreq_suspended;
64 
65 static inline bool has_target(void)
66 {
67 	return cpufreq_driver->target_index || cpufreq_driver->target;
68 }
69 
70 /* internal prototypes */
71 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
72 static int cpufreq_init_governor(struct cpufreq_policy *policy);
73 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
74 static int cpufreq_start_governor(struct cpufreq_policy *policy);
75 static void cpufreq_stop_governor(struct cpufreq_policy *policy);
76 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
77 static int cpufreq_set_policy(struct cpufreq_policy *policy,
78 			      struct cpufreq_governor *new_gov,
79 			      unsigned int new_pol);
80 
81 /**
82  * Two notifier lists: the "policy" list is involved in the
83  * validation process for a new CPU frequency policy; the
84  * "transition" list for kernel code that needs to handle
85  * changes to devices when the CPU clock speed changes.
86  * The mutex locks both lists.
87  */
88 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
89 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
90 
91 static int off __read_mostly;
92 static int cpufreq_disabled(void)
93 {
94 	return off;
95 }
96 void disable_cpufreq(void)
97 {
98 	off = 1;
99 }
100 static DEFINE_MUTEX(cpufreq_governor_mutex);
101 
102 bool have_governor_per_policy(void)
103 {
104 	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
105 }
106 EXPORT_SYMBOL_GPL(have_governor_per_policy);
107 
108 static struct kobject *cpufreq_global_kobject;
109 
110 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
111 {
112 	if (have_governor_per_policy())
113 		return &policy->kobj;
114 	else
115 		return cpufreq_global_kobject;
116 }
117 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
118 
119 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
120 {
121 	struct kernel_cpustat kcpustat;
122 	u64 cur_wall_time;
123 	u64 idle_time;
124 	u64 busy_time;
125 
126 	cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
127 
128 	kcpustat_cpu_fetch(&kcpustat, cpu);
129 
130 	busy_time = kcpustat.cpustat[CPUTIME_USER];
131 	busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
132 	busy_time += kcpustat.cpustat[CPUTIME_IRQ];
133 	busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
134 	busy_time += kcpustat.cpustat[CPUTIME_STEAL];
135 	busy_time += kcpustat.cpustat[CPUTIME_NICE];
136 
137 	idle_time = cur_wall_time - busy_time;
138 	if (wall)
139 		*wall = div_u64(cur_wall_time, NSEC_PER_USEC);
140 
141 	return div_u64(idle_time, NSEC_PER_USEC);
142 }
143 
144 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
145 {
146 	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
147 
148 	if (idle_time == -1ULL)
149 		return get_cpu_idle_time_jiffy(cpu, wall);
150 	else if (!io_busy)
151 		idle_time += get_cpu_iowait_time_us(cpu, wall);
152 
153 	return idle_time;
154 }
155 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
156 
157 __weak void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
158 		unsigned long max_freq)
159 {
160 }
161 EXPORT_SYMBOL_GPL(arch_set_freq_scale);
162 
163 /*
164  * This is a generic cpufreq init() routine which can be used by cpufreq
165  * drivers of SMP systems. It will do following:
166  * - validate & show freq table passed
167  * - set policies transition latency
168  * - policy->cpus with all possible CPUs
169  */
170 void cpufreq_generic_init(struct cpufreq_policy *policy,
171 		struct cpufreq_frequency_table *table,
172 		unsigned int transition_latency)
173 {
174 	policy->freq_table = table;
175 	policy->cpuinfo.transition_latency = transition_latency;
176 
177 	/*
178 	 * The driver only supports the SMP configuration where all processors
179 	 * share the clock and voltage and clock.
180 	 */
181 	cpumask_setall(policy->cpus);
182 }
183 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
184 
185 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
186 {
187 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
188 
189 	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
190 }
191 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
192 
193 unsigned int cpufreq_generic_get(unsigned int cpu)
194 {
195 	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
196 
197 	if (!policy || IS_ERR(policy->clk)) {
198 		pr_err("%s: No %s associated to cpu: %d\n",
199 		       __func__, policy ? "clk" : "policy", cpu);
200 		return 0;
201 	}
202 
203 	return clk_get_rate(policy->clk) / 1000;
204 }
205 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
206 
207 /**
208  * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
209  * @cpu: CPU to find the policy for.
210  *
211  * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
212  * the kobject reference counter of that policy.  Return a valid policy on
213  * success or NULL on failure.
214  *
215  * The policy returned by this function has to be released with the help of
216  * cpufreq_cpu_put() to balance its kobject reference counter properly.
217  */
218 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
219 {
220 	struct cpufreq_policy *policy = NULL;
221 	unsigned long flags;
222 
223 	if (WARN_ON(cpu >= nr_cpu_ids))
224 		return NULL;
225 
226 	/* get the cpufreq driver */
227 	read_lock_irqsave(&cpufreq_driver_lock, flags);
228 
229 	if (cpufreq_driver) {
230 		/* get the CPU */
231 		policy = cpufreq_cpu_get_raw(cpu);
232 		if (policy)
233 			kobject_get(&policy->kobj);
234 	}
235 
236 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
237 
238 	return policy;
239 }
240 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
241 
242 /**
243  * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
244  * @policy: cpufreq policy returned by cpufreq_cpu_get().
245  */
246 void cpufreq_cpu_put(struct cpufreq_policy *policy)
247 {
248 	kobject_put(&policy->kobj);
249 }
250 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
251 
252 /**
253  * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
254  * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
255  */
256 void cpufreq_cpu_release(struct cpufreq_policy *policy)
257 {
258 	if (WARN_ON(!policy))
259 		return;
260 
261 	lockdep_assert_held(&policy->rwsem);
262 
263 	up_write(&policy->rwsem);
264 
265 	cpufreq_cpu_put(policy);
266 }
267 
268 /**
269  * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
270  * @cpu: CPU to find the policy for.
271  *
272  * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
273  * if the policy returned by it is not NULL, acquire its rwsem for writing.
274  * Return the policy if it is active or release it and return NULL otherwise.
275  *
276  * The policy returned by this function has to be released with the help of
277  * cpufreq_cpu_release() in order to release its rwsem and balance its usage
278  * counter properly.
279  */
280 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
281 {
282 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
283 
284 	if (!policy)
285 		return NULL;
286 
287 	down_write(&policy->rwsem);
288 
289 	if (policy_is_inactive(policy)) {
290 		cpufreq_cpu_release(policy);
291 		return NULL;
292 	}
293 
294 	return policy;
295 }
296 
297 /*********************************************************************
298  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
299  *********************************************************************/
300 
301 /**
302  * adjust_jiffies - adjust the system "loops_per_jiffy"
303  *
304  * This function alters the system "loops_per_jiffy" for the clock
305  * speed change. Note that loops_per_jiffy cannot be updated on SMP
306  * systems as each CPU might be scaled differently. So, use the arch
307  * per-CPU loops_per_jiffy value wherever possible.
308  */
309 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
310 {
311 #ifndef CONFIG_SMP
312 	static unsigned long l_p_j_ref;
313 	static unsigned int l_p_j_ref_freq;
314 
315 	if (ci->flags & CPUFREQ_CONST_LOOPS)
316 		return;
317 
318 	if (!l_p_j_ref_freq) {
319 		l_p_j_ref = loops_per_jiffy;
320 		l_p_j_ref_freq = ci->old;
321 		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
322 			 l_p_j_ref, l_p_j_ref_freq);
323 	}
324 	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
325 		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
326 								ci->new);
327 		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
328 			 loops_per_jiffy, ci->new);
329 	}
330 #endif
331 }
332 
333 /**
334  * cpufreq_notify_transition - Notify frequency transition and adjust_jiffies.
335  * @policy: cpufreq policy to enable fast frequency switching for.
336  * @freqs: contain details of the frequency update.
337  * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
338  *
339  * This function calls the transition notifiers and the "adjust_jiffies"
340  * function. It is called twice on all CPU frequency changes that have
341  * external effects.
342  */
343 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
344 				      struct cpufreq_freqs *freqs,
345 				      unsigned int state)
346 {
347 	int cpu;
348 
349 	BUG_ON(irqs_disabled());
350 
351 	if (cpufreq_disabled())
352 		return;
353 
354 	freqs->policy = policy;
355 	freqs->flags = cpufreq_driver->flags;
356 	pr_debug("notification %u of frequency transition to %u kHz\n",
357 		 state, freqs->new);
358 
359 	switch (state) {
360 	case CPUFREQ_PRECHANGE:
361 		/*
362 		 * Detect if the driver reported a value as "old frequency"
363 		 * which is not equal to what the cpufreq core thinks is
364 		 * "old frequency".
365 		 */
366 		if (policy->cur && policy->cur != freqs->old) {
367 			pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
368 				 freqs->old, policy->cur);
369 			freqs->old = policy->cur;
370 		}
371 
372 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
373 					 CPUFREQ_PRECHANGE, freqs);
374 
375 		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
376 		break;
377 
378 	case CPUFREQ_POSTCHANGE:
379 		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
380 		pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
381 			 cpumask_pr_args(policy->cpus));
382 
383 		for_each_cpu(cpu, policy->cpus)
384 			trace_cpu_frequency(freqs->new, cpu);
385 
386 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
387 					 CPUFREQ_POSTCHANGE, freqs);
388 
389 		cpufreq_stats_record_transition(policy, freqs->new);
390 		policy->cur = freqs->new;
391 	}
392 }
393 
394 /* Do post notifications when there are chances that transition has failed */
395 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
396 		struct cpufreq_freqs *freqs, int transition_failed)
397 {
398 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
399 	if (!transition_failed)
400 		return;
401 
402 	swap(freqs->old, freqs->new);
403 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
404 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
405 }
406 
407 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
408 		struct cpufreq_freqs *freqs)
409 {
410 
411 	/*
412 	 * Catch double invocations of _begin() which lead to self-deadlock.
413 	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
414 	 * doesn't invoke _begin() on their behalf, and hence the chances of
415 	 * double invocations are very low. Moreover, there are scenarios
416 	 * where these checks can emit false-positive warnings in these
417 	 * drivers; so we avoid that by skipping them altogether.
418 	 */
419 	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
420 				&& current == policy->transition_task);
421 
422 wait:
423 	wait_event(policy->transition_wait, !policy->transition_ongoing);
424 
425 	spin_lock(&policy->transition_lock);
426 
427 	if (unlikely(policy->transition_ongoing)) {
428 		spin_unlock(&policy->transition_lock);
429 		goto wait;
430 	}
431 
432 	policy->transition_ongoing = true;
433 	policy->transition_task = current;
434 
435 	spin_unlock(&policy->transition_lock);
436 
437 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
438 }
439 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
440 
441 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
442 		struct cpufreq_freqs *freqs, int transition_failed)
443 {
444 	if (WARN_ON(!policy->transition_ongoing))
445 		return;
446 
447 	cpufreq_notify_post_transition(policy, freqs, transition_failed);
448 
449 	policy->transition_ongoing = false;
450 	policy->transition_task = NULL;
451 
452 	wake_up(&policy->transition_wait);
453 }
454 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
455 
456 /*
457  * Fast frequency switching status count.  Positive means "enabled", negative
458  * means "disabled" and 0 means "not decided yet".
459  */
460 static int cpufreq_fast_switch_count;
461 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
462 
463 static void cpufreq_list_transition_notifiers(void)
464 {
465 	struct notifier_block *nb;
466 
467 	pr_info("Registered transition notifiers:\n");
468 
469 	mutex_lock(&cpufreq_transition_notifier_list.mutex);
470 
471 	for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
472 		pr_info("%pS\n", nb->notifier_call);
473 
474 	mutex_unlock(&cpufreq_transition_notifier_list.mutex);
475 }
476 
477 /**
478  * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
479  * @policy: cpufreq policy to enable fast frequency switching for.
480  *
481  * Try to enable fast frequency switching for @policy.
482  *
483  * The attempt will fail if there is at least one transition notifier registered
484  * at this point, as fast frequency switching is quite fundamentally at odds
485  * with transition notifiers.  Thus if successful, it will make registration of
486  * transition notifiers fail going forward.
487  */
488 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
489 {
490 	lockdep_assert_held(&policy->rwsem);
491 
492 	if (!policy->fast_switch_possible)
493 		return;
494 
495 	mutex_lock(&cpufreq_fast_switch_lock);
496 	if (cpufreq_fast_switch_count >= 0) {
497 		cpufreq_fast_switch_count++;
498 		policy->fast_switch_enabled = true;
499 	} else {
500 		pr_warn("CPU%u: Fast frequency switching not enabled\n",
501 			policy->cpu);
502 		cpufreq_list_transition_notifiers();
503 	}
504 	mutex_unlock(&cpufreq_fast_switch_lock);
505 }
506 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
507 
508 /**
509  * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
510  * @policy: cpufreq policy to disable fast frequency switching for.
511  */
512 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
513 {
514 	mutex_lock(&cpufreq_fast_switch_lock);
515 	if (policy->fast_switch_enabled) {
516 		policy->fast_switch_enabled = false;
517 		if (!WARN_ON(cpufreq_fast_switch_count <= 0))
518 			cpufreq_fast_switch_count--;
519 	}
520 	mutex_unlock(&cpufreq_fast_switch_lock);
521 }
522 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
523 
524 /**
525  * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
526  * one.
527  * @target_freq: target frequency to resolve.
528  *
529  * The target to driver frequency mapping is cached in the policy.
530  *
531  * Return: Lowest driver-supported frequency greater than or equal to the
532  * given target_freq, subject to policy (min/max) and driver limitations.
533  */
534 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
535 					 unsigned int target_freq)
536 {
537 	target_freq = clamp_val(target_freq, policy->min, policy->max);
538 	policy->cached_target_freq = target_freq;
539 
540 	if (cpufreq_driver->target_index) {
541 		int idx;
542 
543 		idx = cpufreq_frequency_table_target(policy, target_freq,
544 						     CPUFREQ_RELATION_L);
545 		policy->cached_resolved_idx = idx;
546 		return policy->freq_table[idx].frequency;
547 	}
548 
549 	if (cpufreq_driver->resolve_freq)
550 		return cpufreq_driver->resolve_freq(policy, target_freq);
551 
552 	return target_freq;
553 }
554 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
555 
556 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
557 {
558 	unsigned int latency;
559 
560 	if (policy->transition_delay_us)
561 		return policy->transition_delay_us;
562 
563 	latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
564 	if (latency) {
565 		/*
566 		 * For platforms that can change the frequency very fast (< 10
567 		 * us), the above formula gives a decent transition delay. But
568 		 * for platforms where transition_latency is in milliseconds, it
569 		 * ends up giving unrealistic values.
570 		 *
571 		 * Cap the default transition delay to 10 ms, which seems to be
572 		 * a reasonable amount of time after which we should reevaluate
573 		 * the frequency.
574 		 */
575 		return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
576 	}
577 
578 	return LATENCY_MULTIPLIER;
579 }
580 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
581 
582 /*********************************************************************
583  *                          SYSFS INTERFACE                          *
584  *********************************************************************/
585 static ssize_t show_boost(struct kobject *kobj,
586 			  struct kobj_attribute *attr, char *buf)
587 {
588 	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
589 }
590 
591 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
592 			   const char *buf, size_t count)
593 {
594 	int ret, enable;
595 
596 	ret = sscanf(buf, "%d", &enable);
597 	if (ret != 1 || enable < 0 || enable > 1)
598 		return -EINVAL;
599 
600 	if (cpufreq_boost_trigger_state(enable)) {
601 		pr_err("%s: Cannot %s BOOST!\n",
602 		       __func__, enable ? "enable" : "disable");
603 		return -EINVAL;
604 	}
605 
606 	pr_debug("%s: cpufreq BOOST %s\n",
607 		 __func__, enable ? "enabled" : "disabled");
608 
609 	return count;
610 }
611 define_one_global_rw(boost);
612 
613 static struct cpufreq_governor *find_governor(const char *str_governor)
614 {
615 	struct cpufreq_governor *t;
616 
617 	for_each_governor(t)
618 		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
619 			return t;
620 
621 	return NULL;
622 }
623 
624 static unsigned int cpufreq_parse_policy(char *str_governor)
625 {
626 	if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
627 		return CPUFREQ_POLICY_PERFORMANCE;
628 
629 	if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
630 		return CPUFREQ_POLICY_POWERSAVE;
631 
632 	return CPUFREQ_POLICY_UNKNOWN;
633 }
634 
635 /**
636  * cpufreq_parse_governor - parse a governor string only for has_target()
637  * @str_governor: Governor name.
638  */
639 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
640 {
641 	struct cpufreq_governor *t;
642 
643 	mutex_lock(&cpufreq_governor_mutex);
644 
645 	t = find_governor(str_governor);
646 	if (!t) {
647 		int ret;
648 
649 		mutex_unlock(&cpufreq_governor_mutex);
650 
651 		ret = request_module("cpufreq_%s", str_governor);
652 		if (ret)
653 			return NULL;
654 
655 		mutex_lock(&cpufreq_governor_mutex);
656 
657 		t = find_governor(str_governor);
658 	}
659 	if (t && !try_module_get(t->owner))
660 		t = NULL;
661 
662 	mutex_unlock(&cpufreq_governor_mutex);
663 
664 	return t;
665 }
666 
667 /**
668  * cpufreq_per_cpu_attr_read() / show_##file_name() -
669  * print out cpufreq information
670  *
671  * Write out information from cpufreq_driver->policy[cpu]; object must be
672  * "unsigned int".
673  */
674 
675 #define show_one(file_name, object)			\
676 static ssize_t show_##file_name				\
677 (struct cpufreq_policy *policy, char *buf)		\
678 {							\
679 	return sprintf(buf, "%u\n", policy->object);	\
680 }
681 
682 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
683 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
684 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
685 show_one(scaling_min_freq, min);
686 show_one(scaling_max_freq, max);
687 
688 __weak unsigned int arch_freq_get_on_cpu(int cpu)
689 {
690 	return 0;
691 }
692 
693 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
694 {
695 	ssize_t ret;
696 	unsigned int freq;
697 
698 	freq = arch_freq_get_on_cpu(policy->cpu);
699 	if (freq)
700 		ret = sprintf(buf, "%u\n", freq);
701 	else if (cpufreq_driver && cpufreq_driver->setpolicy &&
702 			cpufreq_driver->get)
703 		ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
704 	else
705 		ret = sprintf(buf, "%u\n", policy->cur);
706 	return ret;
707 }
708 
709 /**
710  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
711  */
712 #define store_one(file_name, object)			\
713 static ssize_t store_##file_name					\
714 (struct cpufreq_policy *policy, const char *buf, size_t count)		\
715 {									\
716 	unsigned long val;						\
717 	int ret;							\
718 									\
719 	ret = sscanf(buf, "%lu", &val);					\
720 	if (ret != 1)							\
721 		return -EINVAL;						\
722 									\
723 	ret = freq_qos_update_request(policy->object##_freq_req, val);\
724 	return ret >= 0 ? count : ret;					\
725 }
726 
727 store_one(scaling_min_freq, min);
728 store_one(scaling_max_freq, max);
729 
730 /**
731  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
732  */
733 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
734 					char *buf)
735 {
736 	unsigned int cur_freq = __cpufreq_get(policy);
737 
738 	if (cur_freq)
739 		return sprintf(buf, "%u\n", cur_freq);
740 
741 	return sprintf(buf, "<unknown>\n");
742 }
743 
744 /**
745  * show_scaling_governor - show the current policy for the specified CPU
746  */
747 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
748 {
749 	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
750 		return sprintf(buf, "powersave\n");
751 	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
752 		return sprintf(buf, "performance\n");
753 	else if (policy->governor)
754 		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
755 				policy->governor->name);
756 	return -EINVAL;
757 }
758 
759 /**
760  * store_scaling_governor - store policy for the specified CPU
761  */
762 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
763 					const char *buf, size_t count)
764 {
765 	char str_governor[16];
766 	int ret;
767 
768 	ret = sscanf(buf, "%15s", str_governor);
769 	if (ret != 1)
770 		return -EINVAL;
771 
772 	if (cpufreq_driver->setpolicy) {
773 		unsigned int new_pol;
774 
775 		new_pol = cpufreq_parse_policy(str_governor);
776 		if (!new_pol)
777 			return -EINVAL;
778 
779 		ret = cpufreq_set_policy(policy, NULL, new_pol);
780 	} else {
781 		struct cpufreq_governor *new_gov;
782 
783 		new_gov = cpufreq_parse_governor(str_governor);
784 		if (!new_gov)
785 			return -EINVAL;
786 
787 		ret = cpufreq_set_policy(policy, new_gov,
788 					 CPUFREQ_POLICY_UNKNOWN);
789 
790 		module_put(new_gov->owner);
791 	}
792 
793 	return ret ? ret : count;
794 }
795 
796 /**
797  * show_scaling_driver - show the cpufreq driver currently loaded
798  */
799 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
800 {
801 	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
802 }
803 
804 /**
805  * show_scaling_available_governors - show the available CPUfreq governors
806  */
807 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
808 						char *buf)
809 {
810 	ssize_t i = 0;
811 	struct cpufreq_governor *t;
812 
813 	if (!has_target()) {
814 		i += sprintf(buf, "performance powersave");
815 		goto out;
816 	}
817 
818 	for_each_governor(t) {
819 		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
820 		    - (CPUFREQ_NAME_LEN + 2)))
821 			goto out;
822 		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
823 	}
824 out:
825 	i += sprintf(&buf[i], "\n");
826 	return i;
827 }
828 
829 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
830 {
831 	ssize_t i = 0;
832 	unsigned int cpu;
833 
834 	for_each_cpu(cpu, mask) {
835 		if (i)
836 			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
837 		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
838 		if (i >= (PAGE_SIZE - 5))
839 			break;
840 	}
841 	i += sprintf(&buf[i], "\n");
842 	return i;
843 }
844 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
845 
846 /**
847  * show_related_cpus - show the CPUs affected by each transition even if
848  * hw coordination is in use
849  */
850 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
851 {
852 	return cpufreq_show_cpus(policy->related_cpus, buf);
853 }
854 
855 /**
856  * show_affected_cpus - show the CPUs affected by each transition
857  */
858 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
859 {
860 	return cpufreq_show_cpus(policy->cpus, buf);
861 }
862 
863 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
864 					const char *buf, size_t count)
865 {
866 	unsigned int freq = 0;
867 	unsigned int ret;
868 
869 	if (!policy->governor || !policy->governor->store_setspeed)
870 		return -EINVAL;
871 
872 	ret = sscanf(buf, "%u", &freq);
873 	if (ret != 1)
874 		return -EINVAL;
875 
876 	policy->governor->store_setspeed(policy, freq);
877 
878 	return count;
879 }
880 
881 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
882 {
883 	if (!policy->governor || !policy->governor->show_setspeed)
884 		return sprintf(buf, "<unsupported>\n");
885 
886 	return policy->governor->show_setspeed(policy, buf);
887 }
888 
889 /**
890  * show_bios_limit - show the current cpufreq HW/BIOS limitation
891  */
892 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
893 {
894 	unsigned int limit;
895 	int ret;
896 	ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
897 	if (!ret)
898 		return sprintf(buf, "%u\n", limit);
899 	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
900 }
901 
902 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
903 cpufreq_freq_attr_ro(cpuinfo_min_freq);
904 cpufreq_freq_attr_ro(cpuinfo_max_freq);
905 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
906 cpufreq_freq_attr_ro(scaling_available_governors);
907 cpufreq_freq_attr_ro(scaling_driver);
908 cpufreq_freq_attr_ro(scaling_cur_freq);
909 cpufreq_freq_attr_ro(bios_limit);
910 cpufreq_freq_attr_ro(related_cpus);
911 cpufreq_freq_attr_ro(affected_cpus);
912 cpufreq_freq_attr_rw(scaling_min_freq);
913 cpufreq_freq_attr_rw(scaling_max_freq);
914 cpufreq_freq_attr_rw(scaling_governor);
915 cpufreq_freq_attr_rw(scaling_setspeed);
916 
917 static struct attribute *default_attrs[] = {
918 	&cpuinfo_min_freq.attr,
919 	&cpuinfo_max_freq.attr,
920 	&cpuinfo_transition_latency.attr,
921 	&scaling_min_freq.attr,
922 	&scaling_max_freq.attr,
923 	&affected_cpus.attr,
924 	&related_cpus.attr,
925 	&scaling_governor.attr,
926 	&scaling_driver.attr,
927 	&scaling_available_governors.attr,
928 	&scaling_setspeed.attr,
929 	NULL
930 };
931 
932 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
933 #define to_attr(a) container_of(a, struct freq_attr, attr)
934 
935 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
936 {
937 	struct cpufreq_policy *policy = to_policy(kobj);
938 	struct freq_attr *fattr = to_attr(attr);
939 	ssize_t ret;
940 
941 	if (!fattr->show)
942 		return -EIO;
943 
944 	down_read(&policy->rwsem);
945 	ret = fattr->show(policy, buf);
946 	up_read(&policy->rwsem);
947 
948 	return ret;
949 }
950 
951 static ssize_t store(struct kobject *kobj, struct attribute *attr,
952 		     const char *buf, size_t count)
953 {
954 	struct cpufreq_policy *policy = to_policy(kobj);
955 	struct freq_attr *fattr = to_attr(attr);
956 	ssize_t ret = -EINVAL;
957 
958 	if (!fattr->store)
959 		return -EIO;
960 
961 	/*
962 	 * cpus_read_trylock() is used here to work around a circular lock
963 	 * dependency problem with respect to the cpufreq_register_driver().
964 	 */
965 	if (!cpus_read_trylock())
966 		return -EBUSY;
967 
968 	if (cpu_online(policy->cpu)) {
969 		down_write(&policy->rwsem);
970 		ret = fattr->store(policy, buf, count);
971 		up_write(&policy->rwsem);
972 	}
973 
974 	cpus_read_unlock();
975 
976 	return ret;
977 }
978 
979 static void cpufreq_sysfs_release(struct kobject *kobj)
980 {
981 	struct cpufreq_policy *policy = to_policy(kobj);
982 	pr_debug("last reference is dropped\n");
983 	complete(&policy->kobj_unregister);
984 }
985 
986 static const struct sysfs_ops sysfs_ops = {
987 	.show	= show,
988 	.store	= store,
989 };
990 
991 static struct kobj_type ktype_cpufreq = {
992 	.sysfs_ops	= &sysfs_ops,
993 	.default_attrs	= default_attrs,
994 	.release	= cpufreq_sysfs_release,
995 };
996 
997 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu)
998 {
999 	struct device *dev = get_cpu_device(cpu);
1000 
1001 	if (unlikely(!dev))
1002 		return;
1003 
1004 	if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1005 		return;
1006 
1007 	dev_dbg(dev, "%s: Adding symlink\n", __func__);
1008 	if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1009 		dev_err(dev, "cpufreq symlink creation failed\n");
1010 }
1011 
1012 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
1013 				   struct device *dev)
1014 {
1015 	dev_dbg(dev, "%s: Removing symlink\n", __func__);
1016 	sysfs_remove_link(&dev->kobj, "cpufreq");
1017 }
1018 
1019 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1020 {
1021 	struct freq_attr **drv_attr;
1022 	int ret = 0;
1023 
1024 	/* set up files for this cpu device */
1025 	drv_attr = cpufreq_driver->attr;
1026 	while (drv_attr && *drv_attr) {
1027 		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1028 		if (ret)
1029 			return ret;
1030 		drv_attr++;
1031 	}
1032 	if (cpufreq_driver->get) {
1033 		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1034 		if (ret)
1035 			return ret;
1036 	}
1037 
1038 	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1039 	if (ret)
1040 		return ret;
1041 
1042 	if (cpufreq_driver->bios_limit) {
1043 		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1044 		if (ret)
1045 			return ret;
1046 	}
1047 
1048 	return 0;
1049 }
1050 
1051 __weak struct cpufreq_governor *cpufreq_default_governor(void)
1052 {
1053 	return NULL;
1054 }
1055 
1056 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1057 {
1058 	struct cpufreq_governor *def_gov = cpufreq_default_governor();
1059 	struct cpufreq_governor *gov = NULL;
1060 	unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1061 
1062 	if (has_target()) {
1063 		/* Update policy governor to the one used before hotplug. */
1064 		gov = find_governor(policy->last_governor);
1065 		if (gov) {
1066 			pr_debug("Restoring governor %s for cpu %d\n",
1067 				 policy->governor->name, policy->cpu);
1068 		} else if (def_gov) {
1069 			gov = def_gov;
1070 		} else {
1071 			return -ENODATA;
1072 		}
1073 	} else {
1074 		/* Use the default policy if there is no last_policy. */
1075 		if (policy->last_policy) {
1076 			pol = policy->last_policy;
1077 		} else if (def_gov) {
1078 			pol = cpufreq_parse_policy(def_gov->name);
1079 		} else {
1080 			return -ENODATA;
1081 		}
1082 	}
1083 
1084 	return cpufreq_set_policy(policy, gov, pol);
1085 }
1086 
1087 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1088 {
1089 	int ret = 0;
1090 
1091 	/* Has this CPU been taken care of already? */
1092 	if (cpumask_test_cpu(cpu, policy->cpus))
1093 		return 0;
1094 
1095 	down_write(&policy->rwsem);
1096 	if (has_target())
1097 		cpufreq_stop_governor(policy);
1098 
1099 	cpumask_set_cpu(cpu, policy->cpus);
1100 
1101 	if (has_target()) {
1102 		ret = cpufreq_start_governor(policy);
1103 		if (ret)
1104 			pr_err("%s: Failed to start governor\n", __func__);
1105 	}
1106 	up_write(&policy->rwsem);
1107 	return ret;
1108 }
1109 
1110 void refresh_frequency_limits(struct cpufreq_policy *policy)
1111 {
1112 	if (!policy_is_inactive(policy)) {
1113 		pr_debug("updating policy for CPU %u\n", policy->cpu);
1114 
1115 		cpufreq_set_policy(policy, policy->governor, policy->policy);
1116 	}
1117 }
1118 EXPORT_SYMBOL(refresh_frequency_limits);
1119 
1120 static void handle_update(struct work_struct *work)
1121 {
1122 	struct cpufreq_policy *policy =
1123 		container_of(work, struct cpufreq_policy, update);
1124 
1125 	pr_debug("handle_update for cpu %u called\n", policy->cpu);
1126 	down_write(&policy->rwsem);
1127 	refresh_frequency_limits(policy);
1128 	up_write(&policy->rwsem);
1129 }
1130 
1131 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1132 				void *data)
1133 {
1134 	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1135 
1136 	schedule_work(&policy->update);
1137 	return 0;
1138 }
1139 
1140 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1141 				void *data)
1142 {
1143 	struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1144 
1145 	schedule_work(&policy->update);
1146 	return 0;
1147 }
1148 
1149 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1150 {
1151 	struct kobject *kobj;
1152 	struct completion *cmp;
1153 
1154 	down_write(&policy->rwsem);
1155 	cpufreq_stats_free_table(policy);
1156 	kobj = &policy->kobj;
1157 	cmp = &policy->kobj_unregister;
1158 	up_write(&policy->rwsem);
1159 	kobject_put(kobj);
1160 
1161 	/*
1162 	 * We need to make sure that the underlying kobj is
1163 	 * actually not referenced anymore by anybody before we
1164 	 * proceed with unloading.
1165 	 */
1166 	pr_debug("waiting for dropping of refcount\n");
1167 	wait_for_completion(cmp);
1168 	pr_debug("wait complete\n");
1169 }
1170 
1171 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1172 {
1173 	struct cpufreq_policy *policy;
1174 	struct device *dev = get_cpu_device(cpu);
1175 	int ret;
1176 
1177 	if (!dev)
1178 		return NULL;
1179 
1180 	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1181 	if (!policy)
1182 		return NULL;
1183 
1184 	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1185 		goto err_free_policy;
1186 
1187 	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1188 		goto err_free_cpumask;
1189 
1190 	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1191 		goto err_free_rcpumask;
1192 
1193 	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1194 				   cpufreq_global_kobject, "policy%u", cpu);
1195 	if (ret) {
1196 		dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1197 		/*
1198 		 * The entire policy object will be freed below, but the extra
1199 		 * memory allocated for the kobject name needs to be freed by
1200 		 * releasing the kobject.
1201 		 */
1202 		kobject_put(&policy->kobj);
1203 		goto err_free_real_cpus;
1204 	}
1205 
1206 	freq_constraints_init(&policy->constraints);
1207 
1208 	policy->nb_min.notifier_call = cpufreq_notifier_min;
1209 	policy->nb_max.notifier_call = cpufreq_notifier_max;
1210 
1211 	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1212 				    &policy->nb_min);
1213 	if (ret) {
1214 		dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n",
1215 			ret, cpumask_pr_args(policy->cpus));
1216 		goto err_kobj_remove;
1217 	}
1218 
1219 	ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1220 				    &policy->nb_max);
1221 	if (ret) {
1222 		dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n",
1223 			ret, cpumask_pr_args(policy->cpus));
1224 		goto err_min_qos_notifier;
1225 	}
1226 
1227 	INIT_LIST_HEAD(&policy->policy_list);
1228 	init_rwsem(&policy->rwsem);
1229 	spin_lock_init(&policy->transition_lock);
1230 	init_waitqueue_head(&policy->transition_wait);
1231 	init_completion(&policy->kobj_unregister);
1232 	INIT_WORK(&policy->update, handle_update);
1233 
1234 	policy->cpu = cpu;
1235 	return policy;
1236 
1237 err_min_qos_notifier:
1238 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1239 				 &policy->nb_min);
1240 err_kobj_remove:
1241 	cpufreq_policy_put_kobj(policy);
1242 err_free_real_cpus:
1243 	free_cpumask_var(policy->real_cpus);
1244 err_free_rcpumask:
1245 	free_cpumask_var(policy->related_cpus);
1246 err_free_cpumask:
1247 	free_cpumask_var(policy->cpus);
1248 err_free_policy:
1249 	kfree(policy);
1250 
1251 	return NULL;
1252 }
1253 
1254 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1255 {
1256 	unsigned long flags;
1257 	int cpu;
1258 
1259 	/* Remove policy from list */
1260 	write_lock_irqsave(&cpufreq_driver_lock, flags);
1261 	list_del(&policy->policy_list);
1262 
1263 	for_each_cpu(cpu, policy->related_cpus)
1264 		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1265 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1266 
1267 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1268 				 &policy->nb_max);
1269 	freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1270 				 &policy->nb_min);
1271 
1272 	/* Cancel any pending policy->update work before freeing the policy. */
1273 	cancel_work_sync(&policy->update);
1274 
1275 	if (policy->max_freq_req) {
1276 		/*
1277 		 * CPUFREQ_CREATE_POLICY notification is sent only after
1278 		 * successfully adding max_freq_req request.
1279 		 */
1280 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1281 					     CPUFREQ_REMOVE_POLICY, policy);
1282 		freq_qos_remove_request(policy->max_freq_req);
1283 	}
1284 
1285 	freq_qos_remove_request(policy->min_freq_req);
1286 	kfree(policy->min_freq_req);
1287 
1288 	cpufreq_policy_put_kobj(policy);
1289 	free_cpumask_var(policy->real_cpus);
1290 	free_cpumask_var(policy->related_cpus);
1291 	free_cpumask_var(policy->cpus);
1292 	kfree(policy);
1293 }
1294 
1295 static int cpufreq_online(unsigned int cpu)
1296 {
1297 	struct cpufreq_policy *policy;
1298 	bool new_policy;
1299 	unsigned long flags;
1300 	unsigned int j;
1301 	int ret;
1302 
1303 	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1304 
1305 	/* Check if this CPU already has a policy to manage it */
1306 	policy = per_cpu(cpufreq_cpu_data, cpu);
1307 	if (policy) {
1308 		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1309 		if (!policy_is_inactive(policy))
1310 			return cpufreq_add_policy_cpu(policy, cpu);
1311 
1312 		/* This is the only online CPU for the policy.  Start over. */
1313 		new_policy = false;
1314 		down_write(&policy->rwsem);
1315 		policy->cpu = cpu;
1316 		policy->governor = NULL;
1317 		up_write(&policy->rwsem);
1318 	} else {
1319 		new_policy = true;
1320 		policy = cpufreq_policy_alloc(cpu);
1321 		if (!policy)
1322 			return -ENOMEM;
1323 	}
1324 
1325 	if (!new_policy && cpufreq_driver->online) {
1326 		ret = cpufreq_driver->online(policy);
1327 		if (ret) {
1328 			pr_debug("%s: %d: initialization failed\n", __func__,
1329 				 __LINE__);
1330 			goto out_exit_policy;
1331 		}
1332 
1333 		/* Recover policy->cpus using related_cpus */
1334 		cpumask_copy(policy->cpus, policy->related_cpus);
1335 	} else {
1336 		cpumask_copy(policy->cpus, cpumask_of(cpu));
1337 
1338 		/*
1339 		 * Call driver. From then on the cpufreq must be able
1340 		 * to accept all calls to ->verify and ->setpolicy for this CPU.
1341 		 */
1342 		ret = cpufreq_driver->init(policy);
1343 		if (ret) {
1344 			pr_debug("%s: %d: initialization failed\n", __func__,
1345 				 __LINE__);
1346 			goto out_free_policy;
1347 		}
1348 
1349 		ret = cpufreq_table_validate_and_sort(policy);
1350 		if (ret)
1351 			goto out_exit_policy;
1352 
1353 		/* related_cpus should at least include policy->cpus. */
1354 		cpumask_copy(policy->related_cpus, policy->cpus);
1355 	}
1356 
1357 	down_write(&policy->rwsem);
1358 	/*
1359 	 * affected cpus must always be the one, which are online. We aren't
1360 	 * managing offline cpus here.
1361 	 */
1362 	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1363 
1364 	if (new_policy) {
1365 		for_each_cpu(j, policy->related_cpus) {
1366 			per_cpu(cpufreq_cpu_data, j) = policy;
1367 			add_cpu_dev_symlink(policy, j);
1368 		}
1369 
1370 		policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1371 					       GFP_KERNEL);
1372 		if (!policy->min_freq_req)
1373 			goto out_destroy_policy;
1374 
1375 		ret = freq_qos_add_request(&policy->constraints,
1376 					   policy->min_freq_req, FREQ_QOS_MIN,
1377 					   policy->min);
1378 		if (ret < 0) {
1379 			/*
1380 			 * So we don't call freq_qos_remove_request() for an
1381 			 * uninitialized request.
1382 			 */
1383 			kfree(policy->min_freq_req);
1384 			policy->min_freq_req = NULL;
1385 			goto out_destroy_policy;
1386 		}
1387 
1388 		/*
1389 		 * This must be initialized right here to avoid calling
1390 		 * freq_qos_remove_request() on uninitialized request in case
1391 		 * of errors.
1392 		 */
1393 		policy->max_freq_req = policy->min_freq_req + 1;
1394 
1395 		ret = freq_qos_add_request(&policy->constraints,
1396 					   policy->max_freq_req, FREQ_QOS_MAX,
1397 					   policy->max);
1398 		if (ret < 0) {
1399 			policy->max_freq_req = NULL;
1400 			goto out_destroy_policy;
1401 		}
1402 
1403 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1404 				CPUFREQ_CREATE_POLICY, policy);
1405 	}
1406 
1407 	if (cpufreq_driver->get && has_target()) {
1408 		policy->cur = cpufreq_driver->get(policy->cpu);
1409 		if (!policy->cur) {
1410 			pr_err("%s: ->get() failed\n", __func__);
1411 			goto out_destroy_policy;
1412 		}
1413 	}
1414 
1415 	/*
1416 	 * Sometimes boot loaders set CPU frequency to a value outside of
1417 	 * frequency table present with cpufreq core. In such cases CPU might be
1418 	 * unstable if it has to run on that frequency for long duration of time
1419 	 * and so its better to set it to a frequency which is specified in
1420 	 * freq-table. This also makes cpufreq stats inconsistent as
1421 	 * cpufreq-stats would fail to register because current frequency of CPU
1422 	 * isn't found in freq-table.
1423 	 *
1424 	 * Because we don't want this change to effect boot process badly, we go
1425 	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1426 	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1427 	 * is initialized to zero).
1428 	 *
1429 	 * We are passing target-freq as "policy->cur - 1" otherwise
1430 	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1431 	 * equal to target-freq.
1432 	 */
1433 	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1434 	    && has_target()) {
1435 		/* Are we running at unknown frequency ? */
1436 		ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1437 		if (ret == -EINVAL) {
1438 			/* Warn user and fix it */
1439 			pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1440 				__func__, policy->cpu, policy->cur);
1441 			ret = __cpufreq_driver_target(policy, policy->cur - 1,
1442 				CPUFREQ_RELATION_L);
1443 
1444 			/*
1445 			 * Reaching here after boot in a few seconds may not
1446 			 * mean that system will remain stable at "unknown"
1447 			 * frequency for longer duration. Hence, a BUG_ON().
1448 			 */
1449 			BUG_ON(ret);
1450 			pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1451 				__func__, policy->cpu, policy->cur);
1452 		}
1453 	}
1454 
1455 	if (new_policy) {
1456 		ret = cpufreq_add_dev_interface(policy);
1457 		if (ret)
1458 			goto out_destroy_policy;
1459 
1460 		cpufreq_stats_create_table(policy);
1461 
1462 		write_lock_irqsave(&cpufreq_driver_lock, flags);
1463 		list_add(&policy->policy_list, &cpufreq_policy_list);
1464 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1465 	}
1466 
1467 	ret = cpufreq_init_policy(policy);
1468 	if (ret) {
1469 		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1470 		       __func__, cpu, ret);
1471 		goto out_destroy_policy;
1472 	}
1473 
1474 	up_write(&policy->rwsem);
1475 
1476 	kobject_uevent(&policy->kobj, KOBJ_ADD);
1477 
1478 	/* Callback for handling stuff after policy is ready */
1479 	if (cpufreq_driver->ready)
1480 		cpufreq_driver->ready(policy);
1481 
1482 	if (cpufreq_thermal_control_enabled(cpufreq_driver))
1483 		policy->cdev = of_cpufreq_cooling_register(policy);
1484 
1485 	pr_debug("initialization complete\n");
1486 
1487 	return 0;
1488 
1489 out_destroy_policy:
1490 	for_each_cpu(j, policy->real_cpus)
1491 		remove_cpu_dev_symlink(policy, get_cpu_device(j));
1492 
1493 	up_write(&policy->rwsem);
1494 
1495 out_exit_policy:
1496 	if (cpufreq_driver->exit)
1497 		cpufreq_driver->exit(policy);
1498 
1499 out_free_policy:
1500 	cpufreq_policy_free(policy);
1501 	return ret;
1502 }
1503 
1504 /**
1505  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1506  * @dev: CPU device.
1507  * @sif: Subsystem interface structure pointer (not used)
1508  */
1509 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1510 {
1511 	struct cpufreq_policy *policy;
1512 	unsigned cpu = dev->id;
1513 	int ret;
1514 
1515 	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1516 
1517 	if (cpu_online(cpu)) {
1518 		ret = cpufreq_online(cpu);
1519 		if (ret)
1520 			return ret;
1521 	}
1522 
1523 	/* Create sysfs link on CPU registration */
1524 	policy = per_cpu(cpufreq_cpu_data, cpu);
1525 	if (policy)
1526 		add_cpu_dev_symlink(policy, cpu);
1527 
1528 	return 0;
1529 }
1530 
1531 static int cpufreq_offline(unsigned int cpu)
1532 {
1533 	struct cpufreq_policy *policy;
1534 	int ret;
1535 
1536 	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1537 
1538 	policy = cpufreq_cpu_get_raw(cpu);
1539 	if (!policy) {
1540 		pr_debug("%s: No cpu_data found\n", __func__);
1541 		return 0;
1542 	}
1543 
1544 	down_write(&policy->rwsem);
1545 	if (has_target())
1546 		cpufreq_stop_governor(policy);
1547 
1548 	cpumask_clear_cpu(cpu, policy->cpus);
1549 
1550 	if (policy_is_inactive(policy)) {
1551 		if (has_target())
1552 			strncpy(policy->last_governor, policy->governor->name,
1553 				CPUFREQ_NAME_LEN);
1554 		else
1555 			policy->last_policy = policy->policy;
1556 	} else if (cpu == policy->cpu) {
1557 		/* Nominate new CPU */
1558 		policy->cpu = cpumask_any(policy->cpus);
1559 	}
1560 
1561 	/* Start governor again for active policy */
1562 	if (!policy_is_inactive(policy)) {
1563 		if (has_target()) {
1564 			ret = cpufreq_start_governor(policy);
1565 			if (ret)
1566 				pr_err("%s: Failed to start governor\n", __func__);
1567 		}
1568 
1569 		goto unlock;
1570 	}
1571 
1572 	if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1573 		cpufreq_cooling_unregister(policy->cdev);
1574 		policy->cdev = NULL;
1575 	}
1576 
1577 	if (cpufreq_driver->stop_cpu)
1578 		cpufreq_driver->stop_cpu(policy);
1579 
1580 	if (has_target())
1581 		cpufreq_exit_governor(policy);
1582 
1583 	/*
1584 	 * Perform the ->offline() during light-weight tear-down, as
1585 	 * that allows fast recovery when the CPU comes back.
1586 	 */
1587 	if (cpufreq_driver->offline) {
1588 		cpufreq_driver->offline(policy);
1589 	} else if (cpufreq_driver->exit) {
1590 		cpufreq_driver->exit(policy);
1591 		policy->freq_table = NULL;
1592 	}
1593 
1594 unlock:
1595 	up_write(&policy->rwsem);
1596 	return 0;
1597 }
1598 
1599 /**
1600  * cpufreq_remove_dev - remove a CPU device
1601  *
1602  * Removes the cpufreq interface for a CPU device.
1603  */
1604 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1605 {
1606 	unsigned int cpu = dev->id;
1607 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1608 
1609 	if (!policy)
1610 		return;
1611 
1612 	if (cpu_online(cpu))
1613 		cpufreq_offline(cpu);
1614 
1615 	cpumask_clear_cpu(cpu, policy->real_cpus);
1616 	remove_cpu_dev_symlink(policy, dev);
1617 
1618 	if (cpumask_empty(policy->real_cpus)) {
1619 		/* We did light-weight exit earlier, do full tear down now */
1620 		if (cpufreq_driver->offline)
1621 			cpufreq_driver->exit(policy);
1622 
1623 		cpufreq_policy_free(policy);
1624 	}
1625 }
1626 
1627 /**
1628  *	cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1629  *	in deep trouble.
1630  *	@policy: policy managing CPUs
1631  *	@new_freq: CPU frequency the CPU actually runs at
1632  *
1633  *	We adjust to current frequency first, and need to clean up later.
1634  *	So either call to cpufreq_update_policy() or schedule handle_update()).
1635  */
1636 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1637 				unsigned int new_freq)
1638 {
1639 	struct cpufreq_freqs freqs;
1640 
1641 	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1642 		 policy->cur, new_freq);
1643 
1644 	freqs.old = policy->cur;
1645 	freqs.new = new_freq;
1646 
1647 	cpufreq_freq_transition_begin(policy, &freqs);
1648 	cpufreq_freq_transition_end(policy, &freqs, 0);
1649 }
1650 
1651 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1652 {
1653 	unsigned int new_freq;
1654 
1655 	new_freq = cpufreq_driver->get(policy->cpu);
1656 	if (!new_freq)
1657 		return 0;
1658 
1659 	/*
1660 	 * If fast frequency switching is used with the given policy, the check
1661 	 * against policy->cur is pointless, so skip it in that case.
1662 	 */
1663 	if (policy->fast_switch_enabled || !has_target())
1664 		return new_freq;
1665 
1666 	if (policy->cur != new_freq) {
1667 		cpufreq_out_of_sync(policy, new_freq);
1668 		if (update)
1669 			schedule_work(&policy->update);
1670 	}
1671 
1672 	return new_freq;
1673 }
1674 
1675 /**
1676  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1677  * @cpu: CPU number
1678  *
1679  * This is the last known freq, without actually getting it from the driver.
1680  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1681  */
1682 unsigned int cpufreq_quick_get(unsigned int cpu)
1683 {
1684 	struct cpufreq_policy *policy;
1685 	unsigned int ret_freq = 0;
1686 	unsigned long flags;
1687 
1688 	read_lock_irqsave(&cpufreq_driver_lock, flags);
1689 
1690 	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1691 		ret_freq = cpufreq_driver->get(cpu);
1692 		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1693 		return ret_freq;
1694 	}
1695 
1696 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1697 
1698 	policy = cpufreq_cpu_get(cpu);
1699 	if (policy) {
1700 		ret_freq = policy->cur;
1701 		cpufreq_cpu_put(policy);
1702 	}
1703 
1704 	return ret_freq;
1705 }
1706 EXPORT_SYMBOL(cpufreq_quick_get);
1707 
1708 /**
1709  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1710  * @cpu: CPU number
1711  *
1712  * Just return the max possible frequency for a given CPU.
1713  */
1714 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1715 {
1716 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1717 	unsigned int ret_freq = 0;
1718 
1719 	if (policy) {
1720 		ret_freq = policy->max;
1721 		cpufreq_cpu_put(policy);
1722 	}
1723 
1724 	return ret_freq;
1725 }
1726 EXPORT_SYMBOL(cpufreq_quick_get_max);
1727 
1728 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1729 {
1730 	if (unlikely(policy_is_inactive(policy)))
1731 		return 0;
1732 
1733 	return cpufreq_verify_current_freq(policy, true);
1734 }
1735 
1736 /**
1737  * cpufreq_get - get the current CPU frequency (in kHz)
1738  * @cpu: CPU number
1739  *
1740  * Get the CPU current (static) CPU frequency
1741  */
1742 unsigned int cpufreq_get(unsigned int cpu)
1743 {
1744 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1745 	unsigned int ret_freq = 0;
1746 
1747 	if (policy) {
1748 		down_read(&policy->rwsem);
1749 		if (cpufreq_driver->get)
1750 			ret_freq = __cpufreq_get(policy);
1751 		up_read(&policy->rwsem);
1752 
1753 		cpufreq_cpu_put(policy);
1754 	}
1755 
1756 	return ret_freq;
1757 }
1758 EXPORT_SYMBOL(cpufreq_get);
1759 
1760 static struct subsys_interface cpufreq_interface = {
1761 	.name		= "cpufreq",
1762 	.subsys		= &cpu_subsys,
1763 	.add_dev	= cpufreq_add_dev,
1764 	.remove_dev	= cpufreq_remove_dev,
1765 };
1766 
1767 /*
1768  * In case platform wants some specific frequency to be configured
1769  * during suspend..
1770  */
1771 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1772 {
1773 	int ret;
1774 
1775 	if (!policy->suspend_freq) {
1776 		pr_debug("%s: suspend_freq not defined\n", __func__);
1777 		return 0;
1778 	}
1779 
1780 	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1781 			policy->suspend_freq);
1782 
1783 	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1784 			CPUFREQ_RELATION_H);
1785 	if (ret)
1786 		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1787 				__func__, policy->suspend_freq, ret);
1788 
1789 	return ret;
1790 }
1791 EXPORT_SYMBOL(cpufreq_generic_suspend);
1792 
1793 /**
1794  * cpufreq_suspend() - Suspend CPUFreq governors
1795  *
1796  * Called during system wide Suspend/Hibernate cycles for suspending governors
1797  * as some platforms can't change frequency after this point in suspend cycle.
1798  * Because some of the devices (like: i2c, regulators, etc) they use for
1799  * changing frequency are suspended quickly after this point.
1800  */
1801 void cpufreq_suspend(void)
1802 {
1803 	struct cpufreq_policy *policy;
1804 
1805 	if (!cpufreq_driver)
1806 		return;
1807 
1808 	if (!has_target() && !cpufreq_driver->suspend)
1809 		goto suspend;
1810 
1811 	pr_debug("%s: Suspending Governors\n", __func__);
1812 
1813 	for_each_active_policy(policy) {
1814 		if (has_target()) {
1815 			down_write(&policy->rwsem);
1816 			cpufreq_stop_governor(policy);
1817 			up_write(&policy->rwsem);
1818 		}
1819 
1820 		if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1821 			pr_err("%s: Failed to suspend driver: %s\n", __func__,
1822 				cpufreq_driver->name);
1823 	}
1824 
1825 suspend:
1826 	cpufreq_suspended = true;
1827 }
1828 
1829 /**
1830  * cpufreq_resume() - Resume CPUFreq governors
1831  *
1832  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1833  * are suspended with cpufreq_suspend().
1834  */
1835 void cpufreq_resume(void)
1836 {
1837 	struct cpufreq_policy *policy;
1838 	int ret;
1839 
1840 	if (!cpufreq_driver)
1841 		return;
1842 
1843 	if (unlikely(!cpufreq_suspended))
1844 		return;
1845 
1846 	cpufreq_suspended = false;
1847 
1848 	if (!has_target() && !cpufreq_driver->resume)
1849 		return;
1850 
1851 	pr_debug("%s: Resuming Governors\n", __func__);
1852 
1853 	for_each_active_policy(policy) {
1854 		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1855 			pr_err("%s: Failed to resume driver: %p\n", __func__,
1856 				policy);
1857 		} else if (has_target()) {
1858 			down_write(&policy->rwsem);
1859 			ret = cpufreq_start_governor(policy);
1860 			up_write(&policy->rwsem);
1861 
1862 			if (ret)
1863 				pr_err("%s: Failed to start governor for policy: %p\n",
1864 				       __func__, policy);
1865 		}
1866 	}
1867 }
1868 
1869 /**
1870  *	cpufreq_get_current_driver - return current driver's name
1871  *
1872  *	Return the name string of the currently loaded cpufreq driver
1873  *	or NULL, if none.
1874  */
1875 const char *cpufreq_get_current_driver(void)
1876 {
1877 	if (cpufreq_driver)
1878 		return cpufreq_driver->name;
1879 
1880 	return NULL;
1881 }
1882 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1883 
1884 /**
1885  *	cpufreq_get_driver_data - return current driver data
1886  *
1887  *	Return the private data of the currently loaded cpufreq
1888  *	driver, or NULL if no cpufreq driver is loaded.
1889  */
1890 void *cpufreq_get_driver_data(void)
1891 {
1892 	if (cpufreq_driver)
1893 		return cpufreq_driver->driver_data;
1894 
1895 	return NULL;
1896 }
1897 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1898 
1899 /*********************************************************************
1900  *                     NOTIFIER LISTS INTERFACE                      *
1901  *********************************************************************/
1902 
1903 /**
1904  *	cpufreq_register_notifier - register a driver with cpufreq
1905  *	@nb: notifier function to register
1906  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1907  *
1908  *	Add a driver to one of two lists: either a list of drivers that
1909  *      are notified about clock rate changes (once before and once after
1910  *      the transition), or a list of drivers that are notified about
1911  *      changes in cpufreq policy.
1912  *
1913  *	This function may sleep, and has the same return conditions as
1914  *	blocking_notifier_chain_register.
1915  */
1916 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1917 {
1918 	int ret;
1919 
1920 	if (cpufreq_disabled())
1921 		return -EINVAL;
1922 
1923 	switch (list) {
1924 	case CPUFREQ_TRANSITION_NOTIFIER:
1925 		mutex_lock(&cpufreq_fast_switch_lock);
1926 
1927 		if (cpufreq_fast_switch_count > 0) {
1928 			mutex_unlock(&cpufreq_fast_switch_lock);
1929 			return -EBUSY;
1930 		}
1931 		ret = srcu_notifier_chain_register(
1932 				&cpufreq_transition_notifier_list, nb);
1933 		if (!ret)
1934 			cpufreq_fast_switch_count--;
1935 
1936 		mutex_unlock(&cpufreq_fast_switch_lock);
1937 		break;
1938 	case CPUFREQ_POLICY_NOTIFIER:
1939 		ret = blocking_notifier_chain_register(
1940 				&cpufreq_policy_notifier_list, nb);
1941 		break;
1942 	default:
1943 		ret = -EINVAL;
1944 	}
1945 
1946 	return ret;
1947 }
1948 EXPORT_SYMBOL(cpufreq_register_notifier);
1949 
1950 /**
1951  *	cpufreq_unregister_notifier - unregister a driver with cpufreq
1952  *	@nb: notifier block to be unregistered
1953  *	@list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1954  *
1955  *	Remove a driver from the CPU frequency notifier list.
1956  *
1957  *	This function may sleep, and has the same return conditions as
1958  *	blocking_notifier_chain_unregister.
1959  */
1960 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1961 {
1962 	int ret;
1963 
1964 	if (cpufreq_disabled())
1965 		return -EINVAL;
1966 
1967 	switch (list) {
1968 	case CPUFREQ_TRANSITION_NOTIFIER:
1969 		mutex_lock(&cpufreq_fast_switch_lock);
1970 
1971 		ret = srcu_notifier_chain_unregister(
1972 				&cpufreq_transition_notifier_list, nb);
1973 		if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
1974 			cpufreq_fast_switch_count++;
1975 
1976 		mutex_unlock(&cpufreq_fast_switch_lock);
1977 		break;
1978 	case CPUFREQ_POLICY_NOTIFIER:
1979 		ret = blocking_notifier_chain_unregister(
1980 				&cpufreq_policy_notifier_list, nb);
1981 		break;
1982 	default:
1983 		ret = -EINVAL;
1984 	}
1985 
1986 	return ret;
1987 }
1988 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1989 
1990 
1991 /*********************************************************************
1992  *                              GOVERNORS                            *
1993  *********************************************************************/
1994 
1995 /**
1996  * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
1997  * @policy: cpufreq policy to switch the frequency for.
1998  * @target_freq: New frequency to set (may be approximate).
1999  *
2000  * Carry out a fast frequency switch without sleeping.
2001  *
2002  * The driver's ->fast_switch() callback invoked by this function must be
2003  * suitable for being called from within RCU-sched read-side critical sections
2004  * and it is expected to select the minimum available frequency greater than or
2005  * equal to @target_freq (CPUFREQ_RELATION_L).
2006  *
2007  * This function must not be called if policy->fast_switch_enabled is unset.
2008  *
2009  * Governors calling this function must guarantee that it will never be invoked
2010  * twice in parallel for the same policy and that it will never be called in
2011  * parallel with either ->target() or ->target_index() for the same policy.
2012  *
2013  * Returns the actual frequency set for the CPU.
2014  *
2015  * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2016  * error condition, the hardware configuration must be preserved.
2017  */
2018 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2019 					unsigned int target_freq)
2020 {
2021 	target_freq = clamp_val(target_freq, policy->min, policy->max);
2022 
2023 	return cpufreq_driver->fast_switch(policy, target_freq);
2024 }
2025 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2026 
2027 /* Must set freqs->new to intermediate frequency */
2028 static int __target_intermediate(struct cpufreq_policy *policy,
2029 				 struct cpufreq_freqs *freqs, int index)
2030 {
2031 	int ret;
2032 
2033 	freqs->new = cpufreq_driver->get_intermediate(policy, index);
2034 
2035 	/* We don't need to switch to intermediate freq */
2036 	if (!freqs->new)
2037 		return 0;
2038 
2039 	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2040 		 __func__, policy->cpu, freqs->old, freqs->new);
2041 
2042 	cpufreq_freq_transition_begin(policy, freqs);
2043 	ret = cpufreq_driver->target_intermediate(policy, index);
2044 	cpufreq_freq_transition_end(policy, freqs, ret);
2045 
2046 	if (ret)
2047 		pr_err("%s: Failed to change to intermediate frequency: %d\n",
2048 		       __func__, ret);
2049 
2050 	return ret;
2051 }
2052 
2053 static int __target_index(struct cpufreq_policy *policy, int index)
2054 {
2055 	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2056 	unsigned int intermediate_freq = 0;
2057 	unsigned int newfreq = policy->freq_table[index].frequency;
2058 	int retval = -EINVAL;
2059 	bool notify;
2060 
2061 	if (newfreq == policy->cur)
2062 		return 0;
2063 
2064 	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2065 	if (notify) {
2066 		/* Handle switching to intermediate frequency */
2067 		if (cpufreq_driver->get_intermediate) {
2068 			retval = __target_intermediate(policy, &freqs, index);
2069 			if (retval)
2070 				return retval;
2071 
2072 			intermediate_freq = freqs.new;
2073 			/* Set old freq to intermediate */
2074 			if (intermediate_freq)
2075 				freqs.old = freqs.new;
2076 		}
2077 
2078 		freqs.new = newfreq;
2079 		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2080 			 __func__, policy->cpu, freqs.old, freqs.new);
2081 
2082 		cpufreq_freq_transition_begin(policy, &freqs);
2083 	}
2084 
2085 	retval = cpufreq_driver->target_index(policy, index);
2086 	if (retval)
2087 		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2088 		       retval);
2089 
2090 	if (notify) {
2091 		cpufreq_freq_transition_end(policy, &freqs, retval);
2092 
2093 		/*
2094 		 * Failed after setting to intermediate freq? Driver should have
2095 		 * reverted back to initial frequency and so should we. Check
2096 		 * here for intermediate_freq instead of get_intermediate, in
2097 		 * case we haven't switched to intermediate freq at all.
2098 		 */
2099 		if (unlikely(retval && intermediate_freq)) {
2100 			freqs.old = intermediate_freq;
2101 			freqs.new = policy->restore_freq;
2102 			cpufreq_freq_transition_begin(policy, &freqs);
2103 			cpufreq_freq_transition_end(policy, &freqs, 0);
2104 		}
2105 	}
2106 
2107 	return retval;
2108 }
2109 
2110 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2111 			    unsigned int target_freq,
2112 			    unsigned int relation)
2113 {
2114 	unsigned int old_target_freq = target_freq;
2115 	int index;
2116 
2117 	if (cpufreq_disabled())
2118 		return -ENODEV;
2119 
2120 	/* Make sure that target_freq is within supported range */
2121 	target_freq = clamp_val(target_freq, policy->min, policy->max);
2122 
2123 	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2124 		 policy->cpu, target_freq, relation, old_target_freq);
2125 
2126 	/*
2127 	 * This might look like a redundant call as we are checking it again
2128 	 * after finding index. But it is left intentionally for cases where
2129 	 * exactly same freq is called again and so we can save on few function
2130 	 * calls.
2131 	 */
2132 	if (target_freq == policy->cur)
2133 		return 0;
2134 
2135 	/* Save last value to restore later on errors */
2136 	policy->restore_freq = policy->cur;
2137 
2138 	if (cpufreq_driver->target)
2139 		return cpufreq_driver->target(policy, target_freq, relation);
2140 
2141 	if (!cpufreq_driver->target_index)
2142 		return -EINVAL;
2143 
2144 	index = cpufreq_frequency_table_target(policy, target_freq, relation);
2145 
2146 	return __target_index(policy, index);
2147 }
2148 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2149 
2150 int cpufreq_driver_target(struct cpufreq_policy *policy,
2151 			  unsigned int target_freq,
2152 			  unsigned int relation)
2153 {
2154 	int ret;
2155 
2156 	down_write(&policy->rwsem);
2157 
2158 	ret = __cpufreq_driver_target(policy, target_freq, relation);
2159 
2160 	up_write(&policy->rwsem);
2161 
2162 	return ret;
2163 }
2164 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2165 
2166 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2167 {
2168 	return NULL;
2169 }
2170 
2171 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2172 {
2173 	int ret;
2174 
2175 	/* Don't start any governor operations if we are entering suspend */
2176 	if (cpufreq_suspended)
2177 		return 0;
2178 	/*
2179 	 * Governor might not be initiated here if ACPI _PPC changed
2180 	 * notification happened, so check it.
2181 	 */
2182 	if (!policy->governor)
2183 		return -EINVAL;
2184 
2185 	/* Platform doesn't want dynamic frequency switching ? */
2186 	if (policy->governor->dynamic_switching &&
2187 	    cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2188 		struct cpufreq_governor *gov = cpufreq_fallback_governor();
2189 
2190 		if (gov) {
2191 			pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2192 				policy->governor->name, gov->name);
2193 			policy->governor = gov;
2194 		} else {
2195 			return -EINVAL;
2196 		}
2197 	}
2198 
2199 	if (!try_module_get(policy->governor->owner))
2200 		return -EINVAL;
2201 
2202 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2203 
2204 	if (policy->governor->init) {
2205 		ret = policy->governor->init(policy);
2206 		if (ret) {
2207 			module_put(policy->governor->owner);
2208 			return ret;
2209 		}
2210 	}
2211 
2212 	return 0;
2213 }
2214 
2215 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2216 {
2217 	if (cpufreq_suspended || !policy->governor)
2218 		return;
2219 
2220 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2221 
2222 	if (policy->governor->exit)
2223 		policy->governor->exit(policy);
2224 
2225 	module_put(policy->governor->owner);
2226 }
2227 
2228 static int cpufreq_start_governor(struct cpufreq_policy *policy)
2229 {
2230 	int ret;
2231 
2232 	if (cpufreq_suspended)
2233 		return 0;
2234 
2235 	if (!policy->governor)
2236 		return -EINVAL;
2237 
2238 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2239 
2240 	if (cpufreq_driver->get)
2241 		cpufreq_verify_current_freq(policy, false);
2242 
2243 	if (policy->governor->start) {
2244 		ret = policy->governor->start(policy);
2245 		if (ret)
2246 			return ret;
2247 	}
2248 
2249 	if (policy->governor->limits)
2250 		policy->governor->limits(policy);
2251 
2252 	return 0;
2253 }
2254 
2255 static void cpufreq_stop_governor(struct cpufreq_policy *policy)
2256 {
2257 	if (cpufreq_suspended || !policy->governor)
2258 		return;
2259 
2260 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2261 
2262 	if (policy->governor->stop)
2263 		policy->governor->stop(policy);
2264 }
2265 
2266 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2267 {
2268 	if (cpufreq_suspended || !policy->governor)
2269 		return;
2270 
2271 	pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2272 
2273 	if (policy->governor->limits)
2274 		policy->governor->limits(policy);
2275 }
2276 
2277 int cpufreq_register_governor(struct cpufreq_governor *governor)
2278 {
2279 	int err;
2280 
2281 	if (!governor)
2282 		return -EINVAL;
2283 
2284 	if (cpufreq_disabled())
2285 		return -ENODEV;
2286 
2287 	mutex_lock(&cpufreq_governor_mutex);
2288 
2289 	err = -EBUSY;
2290 	if (!find_governor(governor->name)) {
2291 		err = 0;
2292 		list_add(&governor->governor_list, &cpufreq_governor_list);
2293 	}
2294 
2295 	mutex_unlock(&cpufreq_governor_mutex);
2296 	return err;
2297 }
2298 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2299 
2300 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2301 {
2302 	struct cpufreq_policy *policy;
2303 	unsigned long flags;
2304 
2305 	if (!governor)
2306 		return;
2307 
2308 	if (cpufreq_disabled())
2309 		return;
2310 
2311 	/* clear last_governor for all inactive policies */
2312 	read_lock_irqsave(&cpufreq_driver_lock, flags);
2313 	for_each_inactive_policy(policy) {
2314 		if (!strcmp(policy->last_governor, governor->name)) {
2315 			policy->governor = NULL;
2316 			strcpy(policy->last_governor, "\0");
2317 		}
2318 	}
2319 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2320 
2321 	mutex_lock(&cpufreq_governor_mutex);
2322 	list_del(&governor->governor_list);
2323 	mutex_unlock(&cpufreq_governor_mutex);
2324 }
2325 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2326 
2327 
2328 /*********************************************************************
2329  *                          POLICY INTERFACE                         *
2330  *********************************************************************/
2331 
2332 /**
2333  * cpufreq_get_policy - get the current cpufreq_policy
2334  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2335  *	is written
2336  *
2337  * Reads the current cpufreq policy.
2338  */
2339 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2340 {
2341 	struct cpufreq_policy *cpu_policy;
2342 	if (!policy)
2343 		return -EINVAL;
2344 
2345 	cpu_policy = cpufreq_cpu_get(cpu);
2346 	if (!cpu_policy)
2347 		return -EINVAL;
2348 
2349 	memcpy(policy, cpu_policy, sizeof(*policy));
2350 
2351 	cpufreq_cpu_put(cpu_policy);
2352 	return 0;
2353 }
2354 EXPORT_SYMBOL(cpufreq_get_policy);
2355 
2356 /**
2357  * cpufreq_set_policy - Modify cpufreq policy parameters.
2358  * @policy: Policy object to modify.
2359  * @new_gov: Policy governor pointer.
2360  * @new_pol: Policy value (for drivers with built-in governors).
2361  *
2362  * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2363  * limits to be set for the policy, update @policy with the verified limits
2364  * values and either invoke the driver's ->setpolicy() callback (if present) or
2365  * carry out a governor update for @policy.  That is, run the current governor's
2366  * ->limits() callback (if @new_gov points to the same object as the one in
2367  * @policy) or replace the governor for @policy with @new_gov.
2368  *
2369  * The cpuinfo part of @policy is not updated by this function.
2370  */
2371 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2372 			      struct cpufreq_governor *new_gov,
2373 			      unsigned int new_pol)
2374 {
2375 	struct cpufreq_policy_data new_data;
2376 	struct cpufreq_governor *old_gov;
2377 	int ret;
2378 
2379 	memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2380 	new_data.freq_table = policy->freq_table;
2381 	new_data.cpu = policy->cpu;
2382 	/*
2383 	 * PM QoS framework collects all the requests from users and provide us
2384 	 * the final aggregated value here.
2385 	 */
2386 	new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2387 	new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2388 
2389 	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2390 		 new_data.cpu, new_data.min, new_data.max);
2391 
2392 	/*
2393 	 * Verify that the CPU speed can be set within these limits and make sure
2394 	 * that min <= max.
2395 	 */
2396 	ret = cpufreq_driver->verify(&new_data);
2397 	if (ret)
2398 		return ret;
2399 
2400 	policy->min = new_data.min;
2401 	policy->max = new_data.max;
2402 	trace_cpu_frequency_limits(policy);
2403 
2404 	policy->cached_target_freq = UINT_MAX;
2405 
2406 	pr_debug("new min and max freqs are %u - %u kHz\n",
2407 		 policy->min, policy->max);
2408 
2409 	if (cpufreq_driver->setpolicy) {
2410 		policy->policy = new_pol;
2411 		pr_debug("setting range\n");
2412 		return cpufreq_driver->setpolicy(policy);
2413 	}
2414 
2415 	if (new_gov == policy->governor) {
2416 		pr_debug("governor limits update\n");
2417 		cpufreq_governor_limits(policy);
2418 		return 0;
2419 	}
2420 
2421 	pr_debug("governor switch\n");
2422 
2423 	/* save old, working values */
2424 	old_gov = policy->governor;
2425 	/* end old governor */
2426 	if (old_gov) {
2427 		cpufreq_stop_governor(policy);
2428 		cpufreq_exit_governor(policy);
2429 	}
2430 
2431 	/* start new governor */
2432 	policy->governor = new_gov;
2433 	ret = cpufreq_init_governor(policy);
2434 	if (!ret) {
2435 		ret = cpufreq_start_governor(policy);
2436 		if (!ret) {
2437 			pr_debug("governor change\n");
2438 			sched_cpufreq_governor_change(policy, old_gov);
2439 			return 0;
2440 		}
2441 		cpufreq_exit_governor(policy);
2442 	}
2443 
2444 	/* new governor failed, so re-start old one */
2445 	pr_debug("starting governor %s failed\n", policy->governor->name);
2446 	if (old_gov) {
2447 		policy->governor = old_gov;
2448 		if (cpufreq_init_governor(policy))
2449 			policy->governor = NULL;
2450 		else
2451 			cpufreq_start_governor(policy);
2452 	}
2453 
2454 	return ret;
2455 }
2456 
2457 /**
2458  * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2459  * @cpu: CPU to re-evaluate the policy for.
2460  *
2461  * Update the current frequency for the cpufreq policy of @cpu and use
2462  * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2463  * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2464  * for the policy in question, among other things.
2465  */
2466 void cpufreq_update_policy(unsigned int cpu)
2467 {
2468 	struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2469 
2470 	if (!policy)
2471 		return;
2472 
2473 	/*
2474 	 * BIOS might change freq behind our back
2475 	 * -> ask driver for current freq and notify governors about a change
2476 	 */
2477 	if (cpufreq_driver->get && has_target() &&
2478 	    (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2479 		goto unlock;
2480 
2481 	refresh_frequency_limits(policy);
2482 
2483 unlock:
2484 	cpufreq_cpu_release(policy);
2485 }
2486 EXPORT_SYMBOL(cpufreq_update_policy);
2487 
2488 /**
2489  * cpufreq_update_limits - Update policy limits for a given CPU.
2490  * @cpu: CPU to update the policy limits for.
2491  *
2492  * Invoke the driver's ->update_limits callback if present or call
2493  * cpufreq_update_policy() for @cpu.
2494  */
2495 void cpufreq_update_limits(unsigned int cpu)
2496 {
2497 	if (cpufreq_driver->update_limits)
2498 		cpufreq_driver->update_limits(cpu);
2499 	else
2500 		cpufreq_update_policy(cpu);
2501 }
2502 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2503 
2504 /*********************************************************************
2505  *               BOOST						     *
2506  *********************************************************************/
2507 static int cpufreq_boost_set_sw(int state)
2508 {
2509 	struct cpufreq_policy *policy;
2510 	int ret = -EINVAL;
2511 
2512 	for_each_active_policy(policy) {
2513 		if (!policy->freq_table)
2514 			continue;
2515 
2516 		ret = cpufreq_frequency_table_cpuinfo(policy,
2517 						      policy->freq_table);
2518 		if (ret) {
2519 			pr_err("%s: Policy frequency update failed\n",
2520 			       __func__);
2521 			break;
2522 		}
2523 
2524 		ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2525 		if (ret < 0)
2526 			break;
2527 	}
2528 
2529 	return ret;
2530 }
2531 
2532 int cpufreq_boost_trigger_state(int state)
2533 {
2534 	unsigned long flags;
2535 	int ret = 0;
2536 
2537 	if (cpufreq_driver->boost_enabled == state)
2538 		return 0;
2539 
2540 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2541 	cpufreq_driver->boost_enabled = state;
2542 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2543 
2544 	ret = cpufreq_driver->set_boost(state);
2545 	if (ret) {
2546 		write_lock_irqsave(&cpufreq_driver_lock, flags);
2547 		cpufreq_driver->boost_enabled = !state;
2548 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2549 
2550 		pr_err("%s: Cannot %s BOOST\n",
2551 		       __func__, state ? "enable" : "disable");
2552 	}
2553 
2554 	return ret;
2555 }
2556 
2557 static bool cpufreq_boost_supported(void)
2558 {
2559 	return cpufreq_driver->set_boost;
2560 }
2561 
2562 static int create_boost_sysfs_file(void)
2563 {
2564 	int ret;
2565 
2566 	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2567 	if (ret)
2568 		pr_err("%s: cannot register global BOOST sysfs file\n",
2569 		       __func__);
2570 
2571 	return ret;
2572 }
2573 
2574 static void remove_boost_sysfs_file(void)
2575 {
2576 	if (cpufreq_boost_supported())
2577 		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2578 }
2579 
2580 int cpufreq_enable_boost_support(void)
2581 {
2582 	if (!cpufreq_driver)
2583 		return -EINVAL;
2584 
2585 	if (cpufreq_boost_supported())
2586 		return 0;
2587 
2588 	cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2589 
2590 	/* This will get removed on driver unregister */
2591 	return create_boost_sysfs_file();
2592 }
2593 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2594 
2595 int cpufreq_boost_enabled(void)
2596 {
2597 	return cpufreq_driver->boost_enabled;
2598 }
2599 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2600 
2601 /*********************************************************************
2602  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2603  *********************************************************************/
2604 static enum cpuhp_state hp_online;
2605 
2606 static int cpuhp_cpufreq_online(unsigned int cpu)
2607 {
2608 	cpufreq_online(cpu);
2609 
2610 	return 0;
2611 }
2612 
2613 static int cpuhp_cpufreq_offline(unsigned int cpu)
2614 {
2615 	cpufreq_offline(cpu);
2616 
2617 	return 0;
2618 }
2619 
2620 /**
2621  * cpufreq_register_driver - register a CPU Frequency driver
2622  * @driver_data: A struct cpufreq_driver containing the values#
2623  * submitted by the CPU Frequency driver.
2624  *
2625  * Registers a CPU Frequency driver to this core code. This code
2626  * returns zero on success, -EEXIST when another driver got here first
2627  * (and isn't unregistered in the meantime).
2628  *
2629  */
2630 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2631 {
2632 	unsigned long flags;
2633 	int ret;
2634 
2635 	if (cpufreq_disabled())
2636 		return -ENODEV;
2637 
2638 	/*
2639 	 * The cpufreq core depends heavily on the availability of device
2640 	 * structure, make sure they are available before proceeding further.
2641 	 */
2642 	if (!get_cpu_device(0))
2643 		return -EPROBE_DEFER;
2644 
2645 	if (!driver_data || !driver_data->verify || !driver_data->init ||
2646 	    !(driver_data->setpolicy || driver_data->target_index ||
2647 		    driver_data->target) ||
2648 	     (driver_data->setpolicy && (driver_data->target_index ||
2649 		    driver_data->target)) ||
2650 	     (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2651 	     (!driver_data->online != !driver_data->offline))
2652 		return -EINVAL;
2653 
2654 	pr_debug("trying to register driver %s\n", driver_data->name);
2655 
2656 	/* Protect against concurrent CPU online/offline. */
2657 	cpus_read_lock();
2658 
2659 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2660 	if (cpufreq_driver) {
2661 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2662 		ret = -EEXIST;
2663 		goto out;
2664 	}
2665 	cpufreq_driver = driver_data;
2666 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2667 
2668 	if (driver_data->setpolicy)
2669 		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2670 
2671 	if (cpufreq_boost_supported()) {
2672 		ret = create_boost_sysfs_file();
2673 		if (ret)
2674 			goto err_null_driver;
2675 	}
2676 
2677 	ret = subsys_interface_register(&cpufreq_interface);
2678 	if (ret)
2679 		goto err_boost_unreg;
2680 
2681 	if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2682 	    list_empty(&cpufreq_policy_list)) {
2683 		/* if all ->init() calls failed, unregister */
2684 		ret = -ENODEV;
2685 		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2686 			 driver_data->name);
2687 		goto err_if_unreg;
2688 	}
2689 
2690 	ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2691 						   "cpufreq:online",
2692 						   cpuhp_cpufreq_online,
2693 						   cpuhp_cpufreq_offline);
2694 	if (ret < 0)
2695 		goto err_if_unreg;
2696 	hp_online = ret;
2697 	ret = 0;
2698 
2699 	pr_debug("driver %s up and running\n", driver_data->name);
2700 	goto out;
2701 
2702 err_if_unreg:
2703 	subsys_interface_unregister(&cpufreq_interface);
2704 err_boost_unreg:
2705 	remove_boost_sysfs_file();
2706 err_null_driver:
2707 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2708 	cpufreq_driver = NULL;
2709 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2710 out:
2711 	cpus_read_unlock();
2712 	return ret;
2713 }
2714 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2715 
2716 /**
2717  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2718  *
2719  * Unregister the current CPUFreq driver. Only call this if you have
2720  * the right to do so, i.e. if you have succeeded in initialising before!
2721  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2722  * currently not initialised.
2723  */
2724 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2725 {
2726 	unsigned long flags;
2727 
2728 	if (!cpufreq_driver || (driver != cpufreq_driver))
2729 		return -EINVAL;
2730 
2731 	pr_debug("unregistering driver %s\n", driver->name);
2732 
2733 	/* Protect against concurrent cpu hotplug */
2734 	cpus_read_lock();
2735 	subsys_interface_unregister(&cpufreq_interface);
2736 	remove_boost_sysfs_file();
2737 	cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2738 
2739 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2740 
2741 	cpufreq_driver = NULL;
2742 
2743 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2744 	cpus_read_unlock();
2745 
2746 	return 0;
2747 }
2748 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2749 
2750 static int __init cpufreq_core_init(void)
2751 {
2752 	if (cpufreq_disabled())
2753 		return -ENODEV;
2754 
2755 	cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2756 	BUG_ON(!cpufreq_global_kobject);
2757 
2758 	return 0;
2759 }
2760 module_param(off, int, 0444);
2761 core_initcall(cpufreq_core_init);
2762