1 /* 2 * linux/drivers/cpufreq/cpufreq.c 3 * 4 * Copyright (C) 2001 Russell King 5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 6 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org> 7 * 8 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 9 * Added handling for CPU hotplug 10 * Feb 2006 - Jacob Shin <jacob.shin@amd.com> 11 * Fix handling for CPU hotplug -- affected CPUs 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License version 2 as 15 * published by the Free Software Foundation. 16 */ 17 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <asm/cputime.h> 21 #include <linux/kernel.h> 22 #include <linux/kernel_stat.h> 23 #include <linux/module.h> 24 #include <linux/init.h> 25 #include <linux/notifier.h> 26 #include <linux/cpufreq.h> 27 #include <linux/delay.h> 28 #include <linux/interrupt.h> 29 #include <linux/spinlock.h> 30 #include <linux/tick.h> 31 #include <linux/device.h> 32 #include <linux/slab.h> 33 #include <linux/cpu.h> 34 #include <linux/completion.h> 35 #include <linux/mutex.h> 36 #include <linux/syscore_ops.h> 37 38 #include <trace/events/power.h> 39 40 /** 41 * The "cpufreq driver" - the arch- or hardware-dependent low 42 * level driver of CPUFreq support, and its spinlock. This lock 43 * also protects the cpufreq_cpu_data array. 44 */ 45 static struct cpufreq_driver *cpufreq_driver; 46 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data); 47 static DEFINE_RWLOCK(cpufreq_driver_lock); 48 static DEFINE_MUTEX(cpufreq_governor_lock); 49 50 #ifdef CONFIG_HOTPLUG_CPU 51 /* This one keeps track of the previously set governor of a removed CPU */ 52 static DEFINE_PER_CPU(char[CPUFREQ_NAME_LEN], cpufreq_cpu_governor); 53 #endif 54 55 /* 56 * cpu_policy_rwsem is a per CPU reader-writer semaphore designed to cure 57 * all cpufreq/hotplug/workqueue/etc related lock issues. 58 * 59 * The rules for this semaphore: 60 * - Any routine that wants to read from the policy structure will 61 * do a down_read on this semaphore. 62 * - Any routine that will write to the policy structure and/or may take away 63 * the policy altogether (eg. CPU hotplug), will hold this lock in write 64 * mode before doing so. 65 * 66 * Additional rules: 67 * - Governor routines that can be called in cpufreq hotplug path should not 68 * take this sem as top level hotplug notifier handler takes this. 69 * - Lock should not be held across 70 * __cpufreq_governor(data, CPUFREQ_GOV_STOP); 71 */ 72 static DEFINE_PER_CPU(int, cpufreq_policy_cpu); 73 static DEFINE_PER_CPU(struct rw_semaphore, cpu_policy_rwsem); 74 75 #define lock_policy_rwsem(mode, cpu) \ 76 static int lock_policy_rwsem_##mode(int cpu) \ 77 { \ 78 int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu); \ 79 BUG_ON(policy_cpu == -1); \ 80 down_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu)); \ 81 \ 82 return 0; \ 83 } 84 85 lock_policy_rwsem(read, cpu); 86 lock_policy_rwsem(write, cpu); 87 88 #define unlock_policy_rwsem(mode, cpu) \ 89 static void unlock_policy_rwsem_##mode(int cpu) \ 90 { \ 91 int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu); \ 92 BUG_ON(policy_cpu == -1); \ 93 up_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu)); \ 94 } 95 96 unlock_policy_rwsem(read, cpu); 97 unlock_policy_rwsem(write, cpu); 98 99 /* internal prototypes */ 100 static int __cpufreq_governor(struct cpufreq_policy *policy, 101 unsigned int event); 102 static unsigned int __cpufreq_get(unsigned int cpu); 103 static void handle_update(struct work_struct *work); 104 105 /** 106 * Two notifier lists: the "policy" list is involved in the 107 * validation process for a new CPU frequency policy; the 108 * "transition" list for kernel code that needs to handle 109 * changes to devices when the CPU clock speed changes. 110 * The mutex locks both lists. 111 */ 112 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list); 113 static struct srcu_notifier_head cpufreq_transition_notifier_list; 114 115 static bool init_cpufreq_transition_notifier_list_called; 116 static int __init init_cpufreq_transition_notifier_list(void) 117 { 118 srcu_init_notifier_head(&cpufreq_transition_notifier_list); 119 init_cpufreq_transition_notifier_list_called = true; 120 return 0; 121 } 122 pure_initcall(init_cpufreq_transition_notifier_list); 123 124 static int off __read_mostly; 125 static int cpufreq_disabled(void) 126 { 127 return off; 128 } 129 void disable_cpufreq(void) 130 { 131 off = 1; 132 } 133 static LIST_HEAD(cpufreq_governor_list); 134 static DEFINE_MUTEX(cpufreq_governor_mutex); 135 136 bool have_governor_per_policy(void) 137 { 138 return cpufreq_driver->have_governor_per_policy; 139 } 140 EXPORT_SYMBOL_GPL(have_governor_per_policy); 141 142 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy) 143 { 144 if (have_governor_per_policy()) 145 return &policy->kobj; 146 else 147 return cpufreq_global_kobject; 148 } 149 EXPORT_SYMBOL_GPL(get_governor_parent_kobj); 150 151 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) 152 { 153 u64 idle_time; 154 u64 cur_wall_time; 155 u64 busy_time; 156 157 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64()); 158 159 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER]; 160 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM]; 161 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ]; 162 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ]; 163 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL]; 164 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE]; 165 166 idle_time = cur_wall_time - busy_time; 167 if (wall) 168 *wall = cputime_to_usecs(cur_wall_time); 169 170 return cputime_to_usecs(idle_time); 171 } 172 173 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy) 174 { 175 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL); 176 177 if (idle_time == -1ULL) 178 return get_cpu_idle_time_jiffy(cpu, wall); 179 else if (!io_busy) 180 idle_time += get_cpu_iowait_time_us(cpu, wall); 181 182 return idle_time; 183 } 184 EXPORT_SYMBOL_GPL(get_cpu_idle_time); 185 186 static struct cpufreq_policy *__cpufreq_cpu_get(unsigned int cpu, bool sysfs) 187 { 188 struct cpufreq_policy *data; 189 unsigned long flags; 190 191 if (cpu >= nr_cpu_ids) 192 goto err_out; 193 194 /* get the cpufreq driver */ 195 read_lock_irqsave(&cpufreq_driver_lock, flags); 196 197 if (!cpufreq_driver) 198 goto err_out_unlock; 199 200 if (!try_module_get(cpufreq_driver->owner)) 201 goto err_out_unlock; 202 203 /* get the CPU */ 204 data = per_cpu(cpufreq_cpu_data, cpu); 205 206 if (!data) 207 goto err_out_put_module; 208 209 if (!sysfs && !kobject_get(&data->kobj)) 210 goto err_out_put_module; 211 212 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 213 return data; 214 215 err_out_put_module: 216 module_put(cpufreq_driver->owner); 217 err_out_unlock: 218 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 219 err_out: 220 return NULL; 221 } 222 223 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) 224 { 225 if (cpufreq_disabled()) 226 return NULL; 227 228 return __cpufreq_cpu_get(cpu, false); 229 } 230 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 231 232 static struct cpufreq_policy *cpufreq_cpu_get_sysfs(unsigned int cpu) 233 { 234 return __cpufreq_cpu_get(cpu, true); 235 } 236 237 static void __cpufreq_cpu_put(struct cpufreq_policy *data, bool sysfs) 238 { 239 if (!sysfs) 240 kobject_put(&data->kobj); 241 module_put(cpufreq_driver->owner); 242 } 243 244 void cpufreq_cpu_put(struct cpufreq_policy *data) 245 { 246 if (cpufreq_disabled()) 247 return; 248 249 __cpufreq_cpu_put(data, false); 250 } 251 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 252 253 static void cpufreq_cpu_put_sysfs(struct cpufreq_policy *data) 254 { 255 __cpufreq_cpu_put(data, true); 256 } 257 258 /********************************************************************* 259 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 260 *********************************************************************/ 261 262 /** 263 * adjust_jiffies - adjust the system "loops_per_jiffy" 264 * 265 * This function alters the system "loops_per_jiffy" for the clock 266 * speed change. Note that loops_per_jiffy cannot be updated on SMP 267 * systems as each CPU might be scaled differently. So, use the arch 268 * per-CPU loops_per_jiffy value wherever possible. 269 */ 270 #ifndef CONFIG_SMP 271 static unsigned long l_p_j_ref; 272 static unsigned int l_p_j_ref_freq; 273 274 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 275 { 276 if (ci->flags & CPUFREQ_CONST_LOOPS) 277 return; 278 279 if (!l_p_j_ref_freq) { 280 l_p_j_ref = loops_per_jiffy; 281 l_p_j_ref_freq = ci->old; 282 pr_debug("saving %lu as reference value for loops_per_jiffy; " 283 "freq is %u kHz\n", l_p_j_ref, l_p_j_ref_freq); 284 } 285 if ((val == CPUFREQ_POSTCHANGE && ci->old != ci->new) || 286 (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) { 287 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, 288 ci->new); 289 pr_debug("scaling loops_per_jiffy to %lu " 290 "for frequency %u kHz\n", loops_per_jiffy, ci->new); 291 } 292 } 293 #else 294 static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 295 { 296 return; 297 } 298 #endif 299 300 static void __cpufreq_notify_transition(struct cpufreq_policy *policy, 301 struct cpufreq_freqs *freqs, unsigned int state) 302 { 303 BUG_ON(irqs_disabled()); 304 305 if (cpufreq_disabled()) 306 return; 307 308 freqs->flags = cpufreq_driver->flags; 309 pr_debug("notification %u of frequency transition to %u kHz\n", 310 state, freqs->new); 311 312 switch (state) { 313 314 case CPUFREQ_PRECHANGE: 315 if (WARN(policy->transition_ongoing == 316 cpumask_weight(policy->cpus), 317 "In middle of another frequency transition\n")) 318 return; 319 320 policy->transition_ongoing++; 321 322 /* detect if the driver reported a value as "old frequency" 323 * which is not equal to what the cpufreq core thinks is 324 * "old frequency". 325 */ 326 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 327 if ((policy) && (policy->cpu == freqs->cpu) && 328 (policy->cur) && (policy->cur != freqs->old)) { 329 pr_debug("Warning: CPU frequency is" 330 " %u, cpufreq assumed %u kHz.\n", 331 freqs->old, policy->cur); 332 freqs->old = policy->cur; 333 } 334 } 335 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 336 CPUFREQ_PRECHANGE, freqs); 337 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 338 break; 339 340 case CPUFREQ_POSTCHANGE: 341 if (WARN(!policy->transition_ongoing, 342 "No frequency transition in progress\n")) 343 return; 344 345 policy->transition_ongoing--; 346 347 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 348 pr_debug("FREQ: %lu - CPU: %lu", (unsigned long)freqs->new, 349 (unsigned long)freqs->cpu); 350 trace_cpu_frequency(freqs->new, freqs->cpu); 351 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 352 CPUFREQ_POSTCHANGE, freqs); 353 if (likely(policy) && likely(policy->cpu == freqs->cpu)) 354 policy->cur = freqs->new; 355 break; 356 } 357 } 358 359 /** 360 * cpufreq_notify_transition - call notifier chain and adjust_jiffies 361 * on frequency transition. 362 * 363 * This function calls the transition notifiers and the "adjust_jiffies" 364 * function. It is called twice on all CPU frequency changes that have 365 * external effects. 366 */ 367 void cpufreq_notify_transition(struct cpufreq_policy *policy, 368 struct cpufreq_freqs *freqs, unsigned int state) 369 { 370 for_each_cpu(freqs->cpu, policy->cpus) 371 __cpufreq_notify_transition(policy, freqs, state); 372 } 373 EXPORT_SYMBOL_GPL(cpufreq_notify_transition); 374 375 376 /********************************************************************* 377 * SYSFS INTERFACE * 378 *********************************************************************/ 379 380 static struct cpufreq_governor *__find_governor(const char *str_governor) 381 { 382 struct cpufreq_governor *t; 383 384 list_for_each_entry(t, &cpufreq_governor_list, governor_list) 385 if (!strnicmp(str_governor, t->name, CPUFREQ_NAME_LEN)) 386 return t; 387 388 return NULL; 389 } 390 391 /** 392 * cpufreq_parse_governor - parse a governor string 393 */ 394 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy, 395 struct cpufreq_governor **governor) 396 { 397 int err = -EINVAL; 398 399 if (!cpufreq_driver) 400 goto out; 401 402 if (cpufreq_driver->setpolicy) { 403 if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) { 404 *policy = CPUFREQ_POLICY_PERFORMANCE; 405 err = 0; 406 } else if (!strnicmp(str_governor, "powersave", 407 CPUFREQ_NAME_LEN)) { 408 *policy = CPUFREQ_POLICY_POWERSAVE; 409 err = 0; 410 } 411 } else if (cpufreq_driver->target) { 412 struct cpufreq_governor *t; 413 414 mutex_lock(&cpufreq_governor_mutex); 415 416 t = __find_governor(str_governor); 417 418 if (t == NULL) { 419 int ret; 420 421 mutex_unlock(&cpufreq_governor_mutex); 422 ret = request_module("cpufreq_%s", str_governor); 423 mutex_lock(&cpufreq_governor_mutex); 424 425 if (ret == 0) 426 t = __find_governor(str_governor); 427 } 428 429 if (t != NULL) { 430 *governor = t; 431 err = 0; 432 } 433 434 mutex_unlock(&cpufreq_governor_mutex); 435 } 436 out: 437 return err; 438 } 439 440 /** 441 * cpufreq_per_cpu_attr_read() / show_##file_name() - 442 * print out cpufreq information 443 * 444 * Write out information from cpufreq_driver->policy[cpu]; object must be 445 * "unsigned int". 446 */ 447 448 #define show_one(file_name, object) \ 449 static ssize_t show_##file_name \ 450 (struct cpufreq_policy *policy, char *buf) \ 451 { \ 452 return sprintf(buf, "%u\n", policy->object); \ 453 } 454 455 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 456 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 457 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency); 458 show_one(scaling_min_freq, min); 459 show_one(scaling_max_freq, max); 460 show_one(scaling_cur_freq, cur); 461 462 static int __cpufreq_set_policy(struct cpufreq_policy *data, 463 struct cpufreq_policy *policy); 464 465 /** 466 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 467 */ 468 #define store_one(file_name, object) \ 469 static ssize_t store_##file_name \ 470 (struct cpufreq_policy *policy, const char *buf, size_t count) \ 471 { \ 472 unsigned int ret; \ 473 struct cpufreq_policy new_policy; \ 474 \ 475 ret = cpufreq_get_policy(&new_policy, policy->cpu); \ 476 if (ret) \ 477 return -EINVAL; \ 478 \ 479 ret = sscanf(buf, "%u", &new_policy.object); \ 480 if (ret != 1) \ 481 return -EINVAL; \ 482 \ 483 ret = __cpufreq_set_policy(policy, &new_policy); \ 484 policy->user_policy.object = policy->object; \ 485 \ 486 return ret ? ret : count; \ 487 } 488 489 store_one(scaling_min_freq, min); 490 store_one(scaling_max_freq, max); 491 492 /** 493 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 494 */ 495 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy, 496 char *buf) 497 { 498 unsigned int cur_freq = __cpufreq_get(policy->cpu); 499 if (!cur_freq) 500 return sprintf(buf, "<unknown>"); 501 return sprintf(buf, "%u\n", cur_freq); 502 } 503 504 /** 505 * show_scaling_governor - show the current policy for the specified CPU 506 */ 507 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf) 508 { 509 if (policy->policy == CPUFREQ_POLICY_POWERSAVE) 510 return sprintf(buf, "powersave\n"); 511 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 512 return sprintf(buf, "performance\n"); 513 else if (policy->governor) 514 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", 515 policy->governor->name); 516 return -EINVAL; 517 } 518 519 /** 520 * store_scaling_governor - store policy for the specified CPU 521 */ 522 static ssize_t store_scaling_governor(struct cpufreq_policy *policy, 523 const char *buf, size_t count) 524 { 525 unsigned int ret; 526 char str_governor[16]; 527 struct cpufreq_policy new_policy; 528 529 ret = cpufreq_get_policy(&new_policy, policy->cpu); 530 if (ret) 531 return ret; 532 533 ret = sscanf(buf, "%15s", str_governor); 534 if (ret != 1) 535 return -EINVAL; 536 537 if (cpufreq_parse_governor(str_governor, &new_policy.policy, 538 &new_policy.governor)) 539 return -EINVAL; 540 541 /* 542 * Do not use cpufreq_set_policy here or the user_policy.max 543 * will be wrongly overridden 544 */ 545 ret = __cpufreq_set_policy(policy, &new_policy); 546 547 policy->user_policy.policy = policy->policy; 548 policy->user_policy.governor = policy->governor; 549 550 if (ret) 551 return ret; 552 else 553 return count; 554 } 555 556 /** 557 * show_scaling_driver - show the cpufreq driver currently loaded 558 */ 559 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf) 560 { 561 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name); 562 } 563 564 /** 565 * show_scaling_available_governors - show the available CPUfreq governors 566 */ 567 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy, 568 char *buf) 569 { 570 ssize_t i = 0; 571 struct cpufreq_governor *t; 572 573 if (!cpufreq_driver->target) { 574 i += sprintf(buf, "performance powersave"); 575 goto out; 576 } 577 578 list_for_each_entry(t, &cpufreq_governor_list, governor_list) { 579 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) 580 - (CPUFREQ_NAME_LEN + 2))) 581 goto out; 582 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name); 583 } 584 out: 585 i += sprintf(&buf[i], "\n"); 586 return i; 587 } 588 589 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf) 590 { 591 ssize_t i = 0; 592 unsigned int cpu; 593 594 for_each_cpu(cpu, mask) { 595 if (i) 596 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " "); 597 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu); 598 if (i >= (PAGE_SIZE - 5)) 599 break; 600 } 601 i += sprintf(&buf[i], "\n"); 602 return i; 603 } 604 EXPORT_SYMBOL_GPL(cpufreq_show_cpus); 605 606 /** 607 * show_related_cpus - show the CPUs affected by each transition even if 608 * hw coordination is in use 609 */ 610 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf) 611 { 612 return cpufreq_show_cpus(policy->related_cpus, buf); 613 } 614 615 /** 616 * show_affected_cpus - show the CPUs affected by each transition 617 */ 618 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf) 619 { 620 return cpufreq_show_cpus(policy->cpus, buf); 621 } 622 623 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy, 624 const char *buf, size_t count) 625 { 626 unsigned int freq = 0; 627 unsigned int ret; 628 629 if (!policy->governor || !policy->governor->store_setspeed) 630 return -EINVAL; 631 632 ret = sscanf(buf, "%u", &freq); 633 if (ret != 1) 634 return -EINVAL; 635 636 policy->governor->store_setspeed(policy, freq); 637 638 return count; 639 } 640 641 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf) 642 { 643 if (!policy->governor || !policy->governor->show_setspeed) 644 return sprintf(buf, "<unsupported>\n"); 645 646 return policy->governor->show_setspeed(policy, buf); 647 } 648 649 /** 650 * show_bios_limit - show the current cpufreq HW/BIOS limitation 651 */ 652 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf) 653 { 654 unsigned int limit; 655 int ret; 656 if (cpufreq_driver->bios_limit) { 657 ret = cpufreq_driver->bios_limit(policy->cpu, &limit); 658 if (!ret) 659 return sprintf(buf, "%u\n", limit); 660 } 661 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq); 662 } 663 664 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400); 665 cpufreq_freq_attr_ro(cpuinfo_min_freq); 666 cpufreq_freq_attr_ro(cpuinfo_max_freq); 667 cpufreq_freq_attr_ro(cpuinfo_transition_latency); 668 cpufreq_freq_attr_ro(scaling_available_governors); 669 cpufreq_freq_attr_ro(scaling_driver); 670 cpufreq_freq_attr_ro(scaling_cur_freq); 671 cpufreq_freq_attr_ro(bios_limit); 672 cpufreq_freq_attr_ro(related_cpus); 673 cpufreq_freq_attr_ro(affected_cpus); 674 cpufreq_freq_attr_rw(scaling_min_freq); 675 cpufreq_freq_attr_rw(scaling_max_freq); 676 cpufreq_freq_attr_rw(scaling_governor); 677 cpufreq_freq_attr_rw(scaling_setspeed); 678 679 static struct attribute *default_attrs[] = { 680 &cpuinfo_min_freq.attr, 681 &cpuinfo_max_freq.attr, 682 &cpuinfo_transition_latency.attr, 683 &scaling_min_freq.attr, 684 &scaling_max_freq.attr, 685 &affected_cpus.attr, 686 &related_cpus.attr, 687 &scaling_governor.attr, 688 &scaling_driver.attr, 689 &scaling_available_governors.attr, 690 &scaling_setspeed.attr, 691 NULL 692 }; 693 694 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj) 695 #define to_attr(a) container_of(a, struct freq_attr, attr) 696 697 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) 698 { 699 struct cpufreq_policy *policy = to_policy(kobj); 700 struct freq_attr *fattr = to_attr(attr); 701 ssize_t ret = -EINVAL; 702 policy = cpufreq_cpu_get_sysfs(policy->cpu); 703 if (!policy) 704 goto no_policy; 705 706 if (lock_policy_rwsem_read(policy->cpu) < 0) 707 goto fail; 708 709 if (fattr->show) 710 ret = fattr->show(policy, buf); 711 else 712 ret = -EIO; 713 714 unlock_policy_rwsem_read(policy->cpu); 715 fail: 716 cpufreq_cpu_put_sysfs(policy); 717 no_policy: 718 return ret; 719 } 720 721 static ssize_t store(struct kobject *kobj, struct attribute *attr, 722 const char *buf, size_t count) 723 { 724 struct cpufreq_policy *policy = to_policy(kobj); 725 struct freq_attr *fattr = to_attr(attr); 726 ssize_t ret = -EINVAL; 727 policy = cpufreq_cpu_get_sysfs(policy->cpu); 728 if (!policy) 729 goto no_policy; 730 731 if (lock_policy_rwsem_write(policy->cpu) < 0) 732 goto fail; 733 734 if (fattr->store) 735 ret = fattr->store(policy, buf, count); 736 else 737 ret = -EIO; 738 739 unlock_policy_rwsem_write(policy->cpu); 740 fail: 741 cpufreq_cpu_put_sysfs(policy); 742 no_policy: 743 return ret; 744 } 745 746 static void cpufreq_sysfs_release(struct kobject *kobj) 747 { 748 struct cpufreq_policy *policy = to_policy(kobj); 749 pr_debug("last reference is dropped\n"); 750 complete(&policy->kobj_unregister); 751 } 752 753 static const struct sysfs_ops sysfs_ops = { 754 .show = show, 755 .store = store, 756 }; 757 758 static struct kobj_type ktype_cpufreq = { 759 .sysfs_ops = &sysfs_ops, 760 .default_attrs = default_attrs, 761 .release = cpufreq_sysfs_release, 762 }; 763 764 struct kobject *cpufreq_global_kobject; 765 EXPORT_SYMBOL(cpufreq_global_kobject); 766 767 static int cpufreq_global_kobject_usage; 768 769 int cpufreq_get_global_kobject(void) 770 { 771 if (!cpufreq_global_kobject_usage++) 772 return kobject_add(cpufreq_global_kobject, 773 &cpu_subsys.dev_root->kobj, "%s", "cpufreq"); 774 775 return 0; 776 } 777 EXPORT_SYMBOL(cpufreq_get_global_kobject); 778 779 void cpufreq_put_global_kobject(void) 780 { 781 if (!--cpufreq_global_kobject_usage) 782 kobject_del(cpufreq_global_kobject); 783 } 784 EXPORT_SYMBOL(cpufreq_put_global_kobject); 785 786 int cpufreq_sysfs_create_file(const struct attribute *attr) 787 { 788 int ret = cpufreq_get_global_kobject(); 789 790 if (!ret) { 791 ret = sysfs_create_file(cpufreq_global_kobject, attr); 792 if (ret) 793 cpufreq_put_global_kobject(); 794 } 795 796 return ret; 797 } 798 EXPORT_SYMBOL(cpufreq_sysfs_create_file); 799 800 void cpufreq_sysfs_remove_file(const struct attribute *attr) 801 { 802 sysfs_remove_file(cpufreq_global_kobject, attr); 803 cpufreq_put_global_kobject(); 804 } 805 EXPORT_SYMBOL(cpufreq_sysfs_remove_file); 806 807 /* symlink affected CPUs */ 808 static int cpufreq_add_dev_symlink(unsigned int cpu, 809 struct cpufreq_policy *policy) 810 { 811 unsigned int j; 812 int ret = 0; 813 814 for_each_cpu(j, policy->cpus) { 815 struct cpufreq_policy *managed_policy; 816 struct device *cpu_dev; 817 818 if (j == cpu) 819 continue; 820 821 pr_debug("CPU %u already managed, adding link\n", j); 822 managed_policy = cpufreq_cpu_get(cpu); 823 cpu_dev = get_cpu_device(j); 824 ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj, 825 "cpufreq"); 826 if (ret) { 827 cpufreq_cpu_put(managed_policy); 828 return ret; 829 } 830 } 831 return ret; 832 } 833 834 static int cpufreq_add_dev_interface(unsigned int cpu, 835 struct cpufreq_policy *policy, 836 struct device *dev) 837 { 838 struct cpufreq_policy new_policy; 839 struct freq_attr **drv_attr; 840 unsigned long flags; 841 int ret = 0; 842 unsigned int j; 843 844 /* prepare interface data */ 845 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, 846 &dev->kobj, "cpufreq"); 847 if (ret) 848 return ret; 849 850 /* set up files for this cpu device */ 851 drv_attr = cpufreq_driver->attr; 852 while ((drv_attr) && (*drv_attr)) { 853 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 854 if (ret) 855 goto err_out_kobj_put; 856 drv_attr++; 857 } 858 if (cpufreq_driver->get) { 859 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 860 if (ret) 861 goto err_out_kobj_put; 862 } 863 if (cpufreq_driver->target) { 864 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 865 if (ret) 866 goto err_out_kobj_put; 867 } 868 if (cpufreq_driver->bios_limit) { 869 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr); 870 if (ret) 871 goto err_out_kobj_put; 872 } 873 874 write_lock_irqsave(&cpufreq_driver_lock, flags); 875 for_each_cpu(j, policy->cpus) { 876 per_cpu(cpufreq_cpu_data, j) = policy; 877 per_cpu(cpufreq_policy_cpu, j) = policy->cpu; 878 } 879 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 880 881 ret = cpufreq_add_dev_symlink(cpu, policy); 882 if (ret) 883 goto err_out_kobj_put; 884 885 memcpy(&new_policy, policy, sizeof(struct cpufreq_policy)); 886 /* assure that the starting sequence is run in __cpufreq_set_policy */ 887 policy->governor = NULL; 888 889 /* set default policy */ 890 ret = __cpufreq_set_policy(policy, &new_policy); 891 policy->user_policy.policy = policy->policy; 892 policy->user_policy.governor = policy->governor; 893 894 if (ret) { 895 pr_debug("setting policy failed\n"); 896 if (cpufreq_driver->exit) 897 cpufreq_driver->exit(policy); 898 } 899 return ret; 900 901 err_out_kobj_put: 902 kobject_put(&policy->kobj); 903 wait_for_completion(&policy->kobj_unregister); 904 return ret; 905 } 906 907 #ifdef CONFIG_HOTPLUG_CPU 908 static int cpufreq_add_policy_cpu(unsigned int cpu, unsigned int sibling, 909 struct device *dev) 910 { 911 struct cpufreq_policy *policy; 912 int ret = 0, has_target = !!cpufreq_driver->target; 913 unsigned long flags; 914 915 policy = cpufreq_cpu_get(sibling); 916 WARN_ON(!policy); 917 918 if (has_target) 919 __cpufreq_governor(policy, CPUFREQ_GOV_STOP); 920 921 lock_policy_rwsem_write(sibling); 922 923 write_lock_irqsave(&cpufreq_driver_lock, flags); 924 925 cpumask_set_cpu(cpu, policy->cpus); 926 per_cpu(cpufreq_policy_cpu, cpu) = policy->cpu; 927 per_cpu(cpufreq_cpu_data, cpu) = policy; 928 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 929 930 unlock_policy_rwsem_write(sibling); 931 932 if (has_target) { 933 __cpufreq_governor(policy, CPUFREQ_GOV_START); 934 __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); 935 } 936 937 ret = sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"); 938 if (ret) { 939 cpufreq_cpu_put(policy); 940 return ret; 941 } 942 943 return 0; 944 } 945 #endif 946 947 /** 948 * cpufreq_add_dev - add a CPU device 949 * 950 * Adds the cpufreq interface for a CPU device. 951 * 952 * The Oracle says: try running cpufreq registration/unregistration concurrently 953 * with with cpu hotplugging and all hell will break loose. Tried to clean this 954 * mess up, but more thorough testing is needed. - Mathieu 955 */ 956 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 957 { 958 unsigned int j, cpu = dev->id; 959 int ret = -ENOMEM; 960 struct cpufreq_policy *policy; 961 unsigned long flags; 962 #ifdef CONFIG_HOTPLUG_CPU 963 struct cpufreq_governor *gov; 964 int sibling; 965 #endif 966 967 if (cpu_is_offline(cpu)) 968 return 0; 969 970 pr_debug("adding CPU %u\n", cpu); 971 972 #ifdef CONFIG_SMP 973 /* check whether a different CPU already registered this 974 * CPU because it is in the same boat. */ 975 policy = cpufreq_cpu_get(cpu); 976 if (unlikely(policy)) { 977 cpufreq_cpu_put(policy); 978 return 0; 979 } 980 981 #ifdef CONFIG_HOTPLUG_CPU 982 /* Check if this cpu was hot-unplugged earlier and has siblings */ 983 read_lock_irqsave(&cpufreq_driver_lock, flags); 984 for_each_online_cpu(sibling) { 985 struct cpufreq_policy *cp = per_cpu(cpufreq_cpu_data, sibling); 986 if (cp && cpumask_test_cpu(cpu, cp->related_cpus)) { 987 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 988 return cpufreq_add_policy_cpu(cpu, sibling, dev); 989 } 990 } 991 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 992 #endif 993 #endif 994 995 if (!try_module_get(cpufreq_driver->owner)) { 996 ret = -EINVAL; 997 goto module_out; 998 } 999 1000 policy = kzalloc(sizeof(struct cpufreq_policy), GFP_KERNEL); 1001 if (!policy) 1002 goto nomem_out; 1003 1004 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) 1005 goto err_free_policy; 1006 1007 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) 1008 goto err_free_cpumask; 1009 1010 policy->cpu = cpu; 1011 policy->governor = CPUFREQ_DEFAULT_GOVERNOR; 1012 cpumask_copy(policy->cpus, cpumask_of(cpu)); 1013 1014 /* Initially set CPU itself as the policy_cpu */ 1015 per_cpu(cpufreq_policy_cpu, cpu) = cpu; 1016 1017 init_completion(&policy->kobj_unregister); 1018 INIT_WORK(&policy->update, handle_update); 1019 1020 /* call driver. From then on the cpufreq must be able 1021 * to accept all calls to ->verify and ->setpolicy for this CPU 1022 */ 1023 ret = cpufreq_driver->init(policy); 1024 if (ret) { 1025 pr_debug("initialization failed\n"); 1026 goto err_set_policy_cpu; 1027 } 1028 1029 /* related cpus should atleast have policy->cpus */ 1030 cpumask_or(policy->related_cpus, policy->related_cpus, policy->cpus); 1031 1032 /* 1033 * affected cpus must always be the one, which are online. We aren't 1034 * managing offline cpus here. 1035 */ 1036 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask); 1037 1038 policy->user_policy.min = policy->min; 1039 policy->user_policy.max = policy->max; 1040 1041 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1042 CPUFREQ_START, policy); 1043 1044 #ifdef CONFIG_HOTPLUG_CPU 1045 gov = __find_governor(per_cpu(cpufreq_cpu_governor, cpu)); 1046 if (gov) { 1047 policy->governor = gov; 1048 pr_debug("Restoring governor %s for cpu %d\n", 1049 policy->governor->name, cpu); 1050 } 1051 #endif 1052 1053 ret = cpufreq_add_dev_interface(cpu, policy, dev); 1054 if (ret) 1055 goto err_out_unregister; 1056 1057 kobject_uevent(&policy->kobj, KOBJ_ADD); 1058 module_put(cpufreq_driver->owner); 1059 pr_debug("initialization complete\n"); 1060 1061 return 0; 1062 1063 err_out_unregister: 1064 write_lock_irqsave(&cpufreq_driver_lock, flags); 1065 for_each_cpu(j, policy->cpus) 1066 per_cpu(cpufreq_cpu_data, j) = NULL; 1067 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1068 1069 kobject_put(&policy->kobj); 1070 wait_for_completion(&policy->kobj_unregister); 1071 1072 err_set_policy_cpu: 1073 per_cpu(cpufreq_policy_cpu, cpu) = -1; 1074 free_cpumask_var(policy->related_cpus); 1075 err_free_cpumask: 1076 free_cpumask_var(policy->cpus); 1077 err_free_policy: 1078 kfree(policy); 1079 nomem_out: 1080 module_put(cpufreq_driver->owner); 1081 module_out: 1082 return ret; 1083 } 1084 1085 static void update_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu) 1086 { 1087 int j; 1088 1089 policy->last_cpu = policy->cpu; 1090 policy->cpu = cpu; 1091 1092 for_each_cpu(j, policy->cpus) 1093 per_cpu(cpufreq_policy_cpu, j) = cpu; 1094 1095 #ifdef CONFIG_CPU_FREQ_TABLE 1096 cpufreq_frequency_table_update_policy_cpu(policy); 1097 #endif 1098 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1099 CPUFREQ_UPDATE_POLICY_CPU, policy); 1100 } 1101 1102 /** 1103 * __cpufreq_remove_dev - remove a CPU device 1104 * 1105 * Removes the cpufreq interface for a CPU device. 1106 * Caller should already have policy_rwsem in write mode for this CPU. 1107 * This routine frees the rwsem before returning. 1108 */ 1109 static int __cpufreq_remove_dev(struct device *dev, 1110 struct subsys_interface *sif) 1111 { 1112 unsigned int cpu = dev->id, ret, cpus; 1113 unsigned long flags; 1114 struct cpufreq_policy *data; 1115 struct kobject *kobj; 1116 struct completion *cmp; 1117 struct device *cpu_dev; 1118 1119 pr_debug("%s: unregistering CPU %u\n", __func__, cpu); 1120 1121 write_lock_irqsave(&cpufreq_driver_lock, flags); 1122 1123 data = per_cpu(cpufreq_cpu_data, cpu); 1124 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1125 1126 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1127 1128 if (!data) { 1129 pr_debug("%s: No cpu_data found\n", __func__); 1130 return -EINVAL; 1131 } 1132 1133 if (cpufreq_driver->target) 1134 __cpufreq_governor(data, CPUFREQ_GOV_STOP); 1135 1136 #ifdef CONFIG_HOTPLUG_CPU 1137 if (!cpufreq_driver->setpolicy) 1138 strncpy(per_cpu(cpufreq_cpu_governor, cpu), 1139 data->governor->name, CPUFREQ_NAME_LEN); 1140 #endif 1141 1142 WARN_ON(lock_policy_rwsem_write(cpu)); 1143 cpus = cpumask_weight(data->cpus); 1144 1145 if (cpus > 1) 1146 cpumask_clear_cpu(cpu, data->cpus); 1147 unlock_policy_rwsem_write(cpu); 1148 1149 if (cpu != data->cpu) { 1150 sysfs_remove_link(&dev->kobj, "cpufreq"); 1151 } else if (cpus > 1) { 1152 /* first sibling now owns the new sysfs dir */ 1153 cpu_dev = get_cpu_device(cpumask_first(data->cpus)); 1154 sysfs_remove_link(&cpu_dev->kobj, "cpufreq"); 1155 ret = kobject_move(&data->kobj, &cpu_dev->kobj); 1156 if (ret) { 1157 pr_err("%s: Failed to move kobj: %d", __func__, ret); 1158 1159 WARN_ON(lock_policy_rwsem_write(cpu)); 1160 cpumask_set_cpu(cpu, data->cpus); 1161 1162 write_lock_irqsave(&cpufreq_driver_lock, flags); 1163 per_cpu(cpufreq_cpu_data, cpu) = data; 1164 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1165 1166 unlock_policy_rwsem_write(cpu); 1167 1168 ret = sysfs_create_link(&cpu_dev->kobj, &data->kobj, 1169 "cpufreq"); 1170 return -EINVAL; 1171 } 1172 1173 WARN_ON(lock_policy_rwsem_write(cpu)); 1174 update_policy_cpu(data, cpu_dev->id); 1175 unlock_policy_rwsem_write(cpu); 1176 pr_debug("%s: policy Kobject moved to cpu: %d from: %d\n", 1177 __func__, cpu_dev->id, cpu); 1178 } 1179 1180 if ((cpus == 1) && (cpufreq_driver->target)) 1181 __cpufreq_governor(data, CPUFREQ_GOV_POLICY_EXIT); 1182 1183 pr_debug("%s: removing link, cpu: %d\n", __func__, cpu); 1184 cpufreq_cpu_put(data); 1185 1186 /* If cpu is last user of policy, free policy */ 1187 if (cpus == 1) { 1188 lock_policy_rwsem_read(cpu); 1189 kobj = &data->kobj; 1190 cmp = &data->kobj_unregister; 1191 unlock_policy_rwsem_read(cpu); 1192 kobject_put(kobj); 1193 1194 /* we need to make sure that the underlying kobj is actually 1195 * not referenced anymore by anybody before we proceed with 1196 * unloading. 1197 */ 1198 pr_debug("waiting for dropping of refcount\n"); 1199 wait_for_completion(cmp); 1200 pr_debug("wait complete\n"); 1201 1202 if (cpufreq_driver->exit) 1203 cpufreq_driver->exit(data); 1204 1205 free_cpumask_var(data->related_cpus); 1206 free_cpumask_var(data->cpus); 1207 kfree(data); 1208 } else if (cpufreq_driver->target) { 1209 __cpufreq_governor(data, CPUFREQ_GOV_START); 1210 __cpufreq_governor(data, CPUFREQ_GOV_LIMITS); 1211 } 1212 1213 per_cpu(cpufreq_policy_cpu, cpu) = -1; 1214 return 0; 1215 } 1216 1217 static int cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif) 1218 { 1219 unsigned int cpu = dev->id; 1220 int retval; 1221 1222 if (cpu_is_offline(cpu)) 1223 return 0; 1224 1225 retval = __cpufreq_remove_dev(dev, sif); 1226 return retval; 1227 } 1228 1229 static void handle_update(struct work_struct *work) 1230 { 1231 struct cpufreq_policy *policy = 1232 container_of(work, struct cpufreq_policy, update); 1233 unsigned int cpu = policy->cpu; 1234 pr_debug("handle_update for cpu %u called\n", cpu); 1235 cpufreq_update_policy(cpu); 1236 } 1237 1238 /** 1239 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're 1240 * in deep trouble. 1241 * @cpu: cpu number 1242 * @old_freq: CPU frequency the kernel thinks the CPU runs at 1243 * @new_freq: CPU frequency the CPU actually runs at 1244 * 1245 * We adjust to current frequency first, and need to clean up later. 1246 * So either call to cpufreq_update_policy() or schedule handle_update()). 1247 */ 1248 static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq, 1249 unsigned int new_freq) 1250 { 1251 struct cpufreq_policy *policy; 1252 struct cpufreq_freqs freqs; 1253 unsigned long flags; 1254 1255 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing " 1256 "core thinks of %u, is %u kHz.\n", old_freq, new_freq); 1257 1258 freqs.old = old_freq; 1259 freqs.new = new_freq; 1260 1261 read_lock_irqsave(&cpufreq_driver_lock, flags); 1262 policy = per_cpu(cpufreq_cpu_data, cpu); 1263 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1264 1265 cpufreq_notify_transition(policy, &freqs, CPUFREQ_PRECHANGE); 1266 cpufreq_notify_transition(policy, &freqs, CPUFREQ_POSTCHANGE); 1267 } 1268 1269 /** 1270 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur 1271 * @cpu: CPU number 1272 * 1273 * This is the last known freq, without actually getting it from the driver. 1274 * Return value will be same as what is shown in scaling_cur_freq in sysfs. 1275 */ 1276 unsigned int cpufreq_quick_get(unsigned int cpu) 1277 { 1278 struct cpufreq_policy *policy; 1279 unsigned int ret_freq = 0; 1280 1281 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) 1282 return cpufreq_driver->get(cpu); 1283 1284 policy = cpufreq_cpu_get(cpu); 1285 if (policy) { 1286 ret_freq = policy->cur; 1287 cpufreq_cpu_put(policy); 1288 } 1289 1290 return ret_freq; 1291 } 1292 EXPORT_SYMBOL(cpufreq_quick_get); 1293 1294 /** 1295 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU 1296 * @cpu: CPU number 1297 * 1298 * Just return the max possible frequency for a given CPU. 1299 */ 1300 unsigned int cpufreq_quick_get_max(unsigned int cpu) 1301 { 1302 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1303 unsigned int ret_freq = 0; 1304 1305 if (policy) { 1306 ret_freq = policy->max; 1307 cpufreq_cpu_put(policy); 1308 } 1309 1310 return ret_freq; 1311 } 1312 EXPORT_SYMBOL(cpufreq_quick_get_max); 1313 1314 static unsigned int __cpufreq_get(unsigned int cpu) 1315 { 1316 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1317 unsigned int ret_freq = 0; 1318 1319 if (!cpufreq_driver->get) 1320 return ret_freq; 1321 1322 ret_freq = cpufreq_driver->get(cpu); 1323 1324 if (ret_freq && policy->cur && 1325 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 1326 /* verify no discrepancy between actual and 1327 saved value exists */ 1328 if (unlikely(ret_freq != policy->cur)) { 1329 cpufreq_out_of_sync(cpu, policy->cur, ret_freq); 1330 schedule_work(&policy->update); 1331 } 1332 } 1333 1334 return ret_freq; 1335 } 1336 1337 /** 1338 * cpufreq_get - get the current CPU frequency (in kHz) 1339 * @cpu: CPU number 1340 * 1341 * Get the CPU current (static) CPU frequency 1342 */ 1343 unsigned int cpufreq_get(unsigned int cpu) 1344 { 1345 unsigned int ret_freq = 0; 1346 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1347 1348 if (!policy) 1349 goto out; 1350 1351 if (unlikely(lock_policy_rwsem_read(cpu))) 1352 goto out_policy; 1353 1354 ret_freq = __cpufreq_get(cpu); 1355 1356 unlock_policy_rwsem_read(cpu); 1357 1358 out_policy: 1359 cpufreq_cpu_put(policy); 1360 out: 1361 return ret_freq; 1362 } 1363 EXPORT_SYMBOL(cpufreq_get); 1364 1365 static struct subsys_interface cpufreq_interface = { 1366 .name = "cpufreq", 1367 .subsys = &cpu_subsys, 1368 .add_dev = cpufreq_add_dev, 1369 .remove_dev = cpufreq_remove_dev, 1370 }; 1371 1372 /** 1373 * cpufreq_bp_suspend - Prepare the boot CPU for system suspend. 1374 * 1375 * This function is only executed for the boot processor. The other CPUs 1376 * have been put offline by means of CPU hotplug. 1377 */ 1378 static int cpufreq_bp_suspend(void) 1379 { 1380 int ret = 0; 1381 1382 int cpu = smp_processor_id(); 1383 struct cpufreq_policy *cpu_policy; 1384 1385 pr_debug("suspending cpu %u\n", cpu); 1386 1387 /* If there's no policy for the boot CPU, we have nothing to do. */ 1388 cpu_policy = cpufreq_cpu_get(cpu); 1389 if (!cpu_policy) 1390 return 0; 1391 1392 if (cpufreq_driver->suspend) { 1393 ret = cpufreq_driver->suspend(cpu_policy); 1394 if (ret) 1395 printk(KERN_ERR "cpufreq: suspend failed in ->suspend " 1396 "step on CPU %u\n", cpu_policy->cpu); 1397 } 1398 1399 cpufreq_cpu_put(cpu_policy); 1400 return ret; 1401 } 1402 1403 /** 1404 * cpufreq_bp_resume - Restore proper frequency handling of the boot CPU. 1405 * 1406 * 1.) resume CPUfreq hardware support (cpufreq_driver->resume()) 1407 * 2.) schedule call cpufreq_update_policy() ASAP as interrupts are 1408 * restored. It will verify that the current freq is in sync with 1409 * what we believe it to be. This is a bit later than when it 1410 * should be, but nonethteless it's better than calling 1411 * cpufreq_driver->get() here which might re-enable interrupts... 1412 * 1413 * This function is only executed for the boot CPU. The other CPUs have not 1414 * been turned on yet. 1415 */ 1416 static void cpufreq_bp_resume(void) 1417 { 1418 int ret = 0; 1419 1420 int cpu = smp_processor_id(); 1421 struct cpufreq_policy *cpu_policy; 1422 1423 pr_debug("resuming cpu %u\n", cpu); 1424 1425 /* If there's no policy for the boot CPU, we have nothing to do. */ 1426 cpu_policy = cpufreq_cpu_get(cpu); 1427 if (!cpu_policy) 1428 return; 1429 1430 if (cpufreq_driver->resume) { 1431 ret = cpufreq_driver->resume(cpu_policy); 1432 if (ret) { 1433 printk(KERN_ERR "cpufreq: resume failed in ->resume " 1434 "step on CPU %u\n", cpu_policy->cpu); 1435 goto fail; 1436 } 1437 } 1438 1439 schedule_work(&cpu_policy->update); 1440 1441 fail: 1442 cpufreq_cpu_put(cpu_policy); 1443 } 1444 1445 static struct syscore_ops cpufreq_syscore_ops = { 1446 .suspend = cpufreq_bp_suspend, 1447 .resume = cpufreq_bp_resume, 1448 }; 1449 1450 /** 1451 * cpufreq_get_current_driver - return current driver's name 1452 * 1453 * Return the name string of the currently loaded cpufreq driver 1454 * or NULL, if none. 1455 */ 1456 const char *cpufreq_get_current_driver(void) 1457 { 1458 if (cpufreq_driver) 1459 return cpufreq_driver->name; 1460 1461 return NULL; 1462 } 1463 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver); 1464 1465 /********************************************************************* 1466 * NOTIFIER LISTS INTERFACE * 1467 *********************************************************************/ 1468 1469 /** 1470 * cpufreq_register_notifier - register a driver with cpufreq 1471 * @nb: notifier function to register 1472 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1473 * 1474 * Add a driver to one of two lists: either a list of drivers that 1475 * are notified about clock rate changes (once before and once after 1476 * the transition), or a list of drivers that are notified about 1477 * changes in cpufreq policy. 1478 * 1479 * This function may sleep, and has the same return conditions as 1480 * blocking_notifier_chain_register. 1481 */ 1482 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 1483 { 1484 int ret; 1485 1486 if (cpufreq_disabled()) 1487 return -EINVAL; 1488 1489 WARN_ON(!init_cpufreq_transition_notifier_list_called); 1490 1491 switch (list) { 1492 case CPUFREQ_TRANSITION_NOTIFIER: 1493 ret = srcu_notifier_chain_register( 1494 &cpufreq_transition_notifier_list, nb); 1495 break; 1496 case CPUFREQ_POLICY_NOTIFIER: 1497 ret = blocking_notifier_chain_register( 1498 &cpufreq_policy_notifier_list, nb); 1499 break; 1500 default: 1501 ret = -EINVAL; 1502 } 1503 1504 return ret; 1505 } 1506 EXPORT_SYMBOL(cpufreq_register_notifier); 1507 1508 /** 1509 * cpufreq_unregister_notifier - unregister a driver with cpufreq 1510 * @nb: notifier block to be unregistered 1511 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1512 * 1513 * Remove a driver from the CPU frequency notifier list. 1514 * 1515 * This function may sleep, and has the same return conditions as 1516 * blocking_notifier_chain_unregister. 1517 */ 1518 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 1519 { 1520 int ret; 1521 1522 if (cpufreq_disabled()) 1523 return -EINVAL; 1524 1525 switch (list) { 1526 case CPUFREQ_TRANSITION_NOTIFIER: 1527 ret = srcu_notifier_chain_unregister( 1528 &cpufreq_transition_notifier_list, nb); 1529 break; 1530 case CPUFREQ_POLICY_NOTIFIER: 1531 ret = blocking_notifier_chain_unregister( 1532 &cpufreq_policy_notifier_list, nb); 1533 break; 1534 default: 1535 ret = -EINVAL; 1536 } 1537 1538 return ret; 1539 } 1540 EXPORT_SYMBOL(cpufreq_unregister_notifier); 1541 1542 1543 /********************************************************************* 1544 * GOVERNORS * 1545 *********************************************************************/ 1546 1547 int __cpufreq_driver_target(struct cpufreq_policy *policy, 1548 unsigned int target_freq, 1549 unsigned int relation) 1550 { 1551 int retval = -EINVAL; 1552 unsigned int old_target_freq = target_freq; 1553 1554 if (cpufreq_disabled()) 1555 return -ENODEV; 1556 if (policy->transition_ongoing) 1557 return -EBUSY; 1558 1559 /* Make sure that target_freq is within supported range */ 1560 if (target_freq > policy->max) 1561 target_freq = policy->max; 1562 if (target_freq < policy->min) 1563 target_freq = policy->min; 1564 1565 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n", 1566 policy->cpu, target_freq, relation, old_target_freq); 1567 1568 if (target_freq == policy->cur) 1569 return 0; 1570 1571 if (cpufreq_driver->target) 1572 retval = cpufreq_driver->target(policy, target_freq, relation); 1573 1574 return retval; 1575 } 1576 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 1577 1578 int cpufreq_driver_target(struct cpufreq_policy *policy, 1579 unsigned int target_freq, 1580 unsigned int relation) 1581 { 1582 int ret = -EINVAL; 1583 1584 if (unlikely(lock_policy_rwsem_write(policy->cpu))) 1585 goto fail; 1586 1587 ret = __cpufreq_driver_target(policy, target_freq, relation); 1588 1589 unlock_policy_rwsem_write(policy->cpu); 1590 1591 fail: 1592 return ret; 1593 } 1594 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 1595 1596 int __cpufreq_driver_getavg(struct cpufreq_policy *policy, unsigned int cpu) 1597 { 1598 if (cpufreq_disabled()) 1599 return 0; 1600 1601 if (!cpufreq_driver->getavg) 1602 return 0; 1603 1604 return cpufreq_driver->getavg(policy, cpu); 1605 } 1606 EXPORT_SYMBOL_GPL(__cpufreq_driver_getavg); 1607 1608 /* 1609 * when "event" is CPUFREQ_GOV_LIMITS 1610 */ 1611 1612 static int __cpufreq_governor(struct cpufreq_policy *policy, 1613 unsigned int event) 1614 { 1615 int ret; 1616 1617 /* Only must be defined when default governor is known to have latency 1618 restrictions, like e.g. conservative or ondemand. 1619 That this is the case is already ensured in Kconfig 1620 */ 1621 #ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE 1622 struct cpufreq_governor *gov = &cpufreq_gov_performance; 1623 #else 1624 struct cpufreq_governor *gov = NULL; 1625 #endif 1626 1627 if (policy->governor->max_transition_latency && 1628 policy->cpuinfo.transition_latency > 1629 policy->governor->max_transition_latency) { 1630 if (!gov) 1631 return -EINVAL; 1632 else { 1633 printk(KERN_WARNING "%s governor failed, too long" 1634 " transition latency of HW, fallback" 1635 " to %s governor\n", 1636 policy->governor->name, 1637 gov->name); 1638 policy->governor = gov; 1639 } 1640 } 1641 1642 if (!try_module_get(policy->governor->owner)) 1643 return -EINVAL; 1644 1645 pr_debug("__cpufreq_governor for CPU %u, event %u\n", 1646 policy->cpu, event); 1647 1648 mutex_lock(&cpufreq_governor_lock); 1649 if ((!policy->governor_enabled && (event == CPUFREQ_GOV_STOP)) || 1650 (policy->governor_enabled && (event == CPUFREQ_GOV_START))) { 1651 mutex_unlock(&cpufreq_governor_lock); 1652 return -EBUSY; 1653 } 1654 1655 if (event == CPUFREQ_GOV_STOP) 1656 policy->governor_enabled = false; 1657 else if (event == CPUFREQ_GOV_START) 1658 policy->governor_enabled = true; 1659 1660 mutex_unlock(&cpufreq_governor_lock); 1661 1662 ret = policy->governor->governor(policy, event); 1663 1664 if (!ret) { 1665 if (event == CPUFREQ_GOV_POLICY_INIT) 1666 policy->governor->initialized++; 1667 else if (event == CPUFREQ_GOV_POLICY_EXIT) 1668 policy->governor->initialized--; 1669 } else { 1670 /* Restore original values */ 1671 mutex_lock(&cpufreq_governor_lock); 1672 if (event == CPUFREQ_GOV_STOP) 1673 policy->governor_enabled = true; 1674 else if (event == CPUFREQ_GOV_START) 1675 policy->governor_enabled = false; 1676 mutex_unlock(&cpufreq_governor_lock); 1677 } 1678 1679 /* we keep one module reference alive for 1680 each CPU governed by this CPU */ 1681 if ((event != CPUFREQ_GOV_START) || ret) 1682 module_put(policy->governor->owner); 1683 if ((event == CPUFREQ_GOV_STOP) && !ret) 1684 module_put(policy->governor->owner); 1685 1686 return ret; 1687 } 1688 1689 int cpufreq_register_governor(struct cpufreq_governor *governor) 1690 { 1691 int err; 1692 1693 if (!governor) 1694 return -EINVAL; 1695 1696 if (cpufreq_disabled()) 1697 return -ENODEV; 1698 1699 mutex_lock(&cpufreq_governor_mutex); 1700 1701 governor->initialized = 0; 1702 err = -EBUSY; 1703 if (__find_governor(governor->name) == NULL) { 1704 err = 0; 1705 list_add(&governor->governor_list, &cpufreq_governor_list); 1706 } 1707 1708 mutex_unlock(&cpufreq_governor_mutex); 1709 return err; 1710 } 1711 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 1712 1713 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 1714 { 1715 #ifdef CONFIG_HOTPLUG_CPU 1716 int cpu; 1717 #endif 1718 1719 if (!governor) 1720 return; 1721 1722 if (cpufreq_disabled()) 1723 return; 1724 1725 #ifdef CONFIG_HOTPLUG_CPU 1726 for_each_present_cpu(cpu) { 1727 if (cpu_online(cpu)) 1728 continue; 1729 if (!strcmp(per_cpu(cpufreq_cpu_governor, cpu), governor->name)) 1730 strcpy(per_cpu(cpufreq_cpu_governor, cpu), "\0"); 1731 } 1732 #endif 1733 1734 mutex_lock(&cpufreq_governor_mutex); 1735 list_del(&governor->governor_list); 1736 mutex_unlock(&cpufreq_governor_mutex); 1737 return; 1738 } 1739 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 1740 1741 1742 /********************************************************************* 1743 * POLICY INTERFACE * 1744 *********************************************************************/ 1745 1746 /** 1747 * cpufreq_get_policy - get the current cpufreq_policy 1748 * @policy: struct cpufreq_policy into which the current cpufreq_policy 1749 * is written 1750 * 1751 * Reads the current cpufreq policy. 1752 */ 1753 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 1754 { 1755 struct cpufreq_policy *cpu_policy; 1756 if (!policy) 1757 return -EINVAL; 1758 1759 cpu_policy = cpufreq_cpu_get(cpu); 1760 if (!cpu_policy) 1761 return -EINVAL; 1762 1763 memcpy(policy, cpu_policy, sizeof(struct cpufreq_policy)); 1764 1765 cpufreq_cpu_put(cpu_policy); 1766 return 0; 1767 } 1768 EXPORT_SYMBOL(cpufreq_get_policy); 1769 1770 /* 1771 * data : current policy. 1772 * policy : policy to be set. 1773 */ 1774 static int __cpufreq_set_policy(struct cpufreq_policy *data, 1775 struct cpufreq_policy *policy) 1776 { 1777 int ret = 0, failed = 1; 1778 1779 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", policy->cpu, 1780 policy->min, policy->max); 1781 1782 memcpy(&policy->cpuinfo, &data->cpuinfo, 1783 sizeof(struct cpufreq_cpuinfo)); 1784 1785 if (policy->min > data->max || policy->max < data->min) { 1786 ret = -EINVAL; 1787 goto error_out; 1788 } 1789 1790 /* verify the cpu speed can be set within this limit */ 1791 ret = cpufreq_driver->verify(policy); 1792 if (ret) 1793 goto error_out; 1794 1795 /* adjust if necessary - all reasons */ 1796 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1797 CPUFREQ_ADJUST, policy); 1798 1799 /* adjust if necessary - hardware incompatibility*/ 1800 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1801 CPUFREQ_INCOMPATIBLE, policy); 1802 1803 /* 1804 * verify the cpu speed can be set within this limit, which might be 1805 * different to the first one 1806 */ 1807 ret = cpufreq_driver->verify(policy); 1808 if (ret) 1809 goto error_out; 1810 1811 /* notification of the new policy */ 1812 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1813 CPUFREQ_NOTIFY, policy); 1814 1815 data->min = policy->min; 1816 data->max = policy->max; 1817 1818 pr_debug("new min and max freqs are %u - %u kHz\n", 1819 data->min, data->max); 1820 1821 if (cpufreq_driver->setpolicy) { 1822 data->policy = policy->policy; 1823 pr_debug("setting range\n"); 1824 ret = cpufreq_driver->setpolicy(policy); 1825 } else { 1826 if (policy->governor != data->governor) { 1827 /* save old, working values */ 1828 struct cpufreq_governor *old_gov = data->governor; 1829 1830 pr_debug("governor switch\n"); 1831 1832 /* end old governor */ 1833 if (data->governor) { 1834 __cpufreq_governor(data, CPUFREQ_GOV_STOP); 1835 unlock_policy_rwsem_write(policy->cpu); 1836 __cpufreq_governor(data, 1837 CPUFREQ_GOV_POLICY_EXIT); 1838 lock_policy_rwsem_write(policy->cpu); 1839 } 1840 1841 /* start new governor */ 1842 data->governor = policy->governor; 1843 if (!__cpufreq_governor(data, CPUFREQ_GOV_POLICY_INIT)) { 1844 if (!__cpufreq_governor(data, CPUFREQ_GOV_START)) { 1845 failed = 0; 1846 } else { 1847 unlock_policy_rwsem_write(policy->cpu); 1848 __cpufreq_governor(data, 1849 CPUFREQ_GOV_POLICY_EXIT); 1850 lock_policy_rwsem_write(policy->cpu); 1851 } 1852 } 1853 1854 if (failed) { 1855 /* new governor failed, so re-start old one */ 1856 pr_debug("starting governor %s failed\n", 1857 data->governor->name); 1858 if (old_gov) { 1859 data->governor = old_gov; 1860 __cpufreq_governor(data, 1861 CPUFREQ_GOV_POLICY_INIT); 1862 __cpufreq_governor(data, 1863 CPUFREQ_GOV_START); 1864 } 1865 ret = -EINVAL; 1866 goto error_out; 1867 } 1868 /* might be a policy change, too, so fall through */ 1869 } 1870 pr_debug("governor: change or update limits\n"); 1871 __cpufreq_governor(data, CPUFREQ_GOV_LIMITS); 1872 } 1873 1874 error_out: 1875 return ret; 1876 } 1877 1878 /** 1879 * cpufreq_update_policy - re-evaluate an existing cpufreq policy 1880 * @cpu: CPU which shall be re-evaluated 1881 * 1882 * Useful for policy notifiers which have different necessities 1883 * at different times. 1884 */ 1885 int cpufreq_update_policy(unsigned int cpu) 1886 { 1887 struct cpufreq_policy *data = cpufreq_cpu_get(cpu); 1888 struct cpufreq_policy policy; 1889 int ret; 1890 1891 if (!data) { 1892 ret = -ENODEV; 1893 goto no_policy; 1894 } 1895 1896 if (unlikely(lock_policy_rwsem_write(cpu))) { 1897 ret = -EINVAL; 1898 goto fail; 1899 } 1900 1901 pr_debug("updating policy for CPU %u\n", cpu); 1902 memcpy(&policy, data, sizeof(struct cpufreq_policy)); 1903 policy.min = data->user_policy.min; 1904 policy.max = data->user_policy.max; 1905 policy.policy = data->user_policy.policy; 1906 policy.governor = data->user_policy.governor; 1907 1908 /* 1909 * BIOS might change freq behind our back 1910 * -> ask driver for current freq and notify governors about a change 1911 */ 1912 if (cpufreq_driver->get) { 1913 policy.cur = cpufreq_driver->get(cpu); 1914 if (!data->cur) { 1915 pr_debug("Driver did not initialize current freq"); 1916 data->cur = policy.cur; 1917 } else { 1918 if (data->cur != policy.cur && cpufreq_driver->target) 1919 cpufreq_out_of_sync(cpu, data->cur, 1920 policy.cur); 1921 } 1922 } 1923 1924 ret = __cpufreq_set_policy(data, &policy); 1925 1926 unlock_policy_rwsem_write(cpu); 1927 1928 fail: 1929 cpufreq_cpu_put(data); 1930 no_policy: 1931 return ret; 1932 } 1933 EXPORT_SYMBOL(cpufreq_update_policy); 1934 1935 static int __cpuinit cpufreq_cpu_callback(struct notifier_block *nfb, 1936 unsigned long action, void *hcpu) 1937 { 1938 unsigned int cpu = (unsigned long)hcpu; 1939 struct device *dev; 1940 1941 dev = get_cpu_device(cpu); 1942 if (dev) { 1943 switch (action) { 1944 case CPU_ONLINE: 1945 cpufreq_add_dev(dev, NULL); 1946 break; 1947 case CPU_DOWN_PREPARE: 1948 case CPU_UP_CANCELED_FROZEN: 1949 __cpufreq_remove_dev(dev, NULL); 1950 break; 1951 case CPU_DOWN_FAILED: 1952 cpufreq_add_dev(dev, NULL); 1953 break; 1954 } 1955 } 1956 return NOTIFY_OK; 1957 } 1958 1959 static struct notifier_block __refdata cpufreq_cpu_notifier = { 1960 .notifier_call = cpufreq_cpu_callback, 1961 }; 1962 1963 /********************************************************************* 1964 * REGISTER / UNREGISTER CPUFREQ DRIVER * 1965 *********************************************************************/ 1966 1967 /** 1968 * cpufreq_register_driver - register a CPU Frequency driver 1969 * @driver_data: A struct cpufreq_driver containing the values# 1970 * submitted by the CPU Frequency driver. 1971 * 1972 * Registers a CPU Frequency driver to this core code. This code 1973 * returns zero on success, -EBUSY when another driver got here first 1974 * (and isn't unregistered in the meantime). 1975 * 1976 */ 1977 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 1978 { 1979 unsigned long flags; 1980 int ret; 1981 1982 if (cpufreq_disabled()) 1983 return -ENODEV; 1984 1985 if (!driver_data || !driver_data->verify || !driver_data->init || 1986 ((!driver_data->setpolicy) && (!driver_data->target))) 1987 return -EINVAL; 1988 1989 pr_debug("trying to register driver %s\n", driver_data->name); 1990 1991 if (driver_data->setpolicy) 1992 driver_data->flags |= CPUFREQ_CONST_LOOPS; 1993 1994 write_lock_irqsave(&cpufreq_driver_lock, flags); 1995 if (cpufreq_driver) { 1996 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1997 return -EBUSY; 1998 } 1999 cpufreq_driver = driver_data; 2000 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2001 2002 ret = subsys_interface_register(&cpufreq_interface); 2003 if (ret) 2004 goto err_null_driver; 2005 2006 if (!(cpufreq_driver->flags & CPUFREQ_STICKY)) { 2007 int i; 2008 ret = -ENODEV; 2009 2010 /* check for at least one working CPU */ 2011 for (i = 0; i < nr_cpu_ids; i++) 2012 if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) { 2013 ret = 0; 2014 break; 2015 } 2016 2017 /* if all ->init() calls failed, unregister */ 2018 if (ret) { 2019 pr_debug("no CPU initialized for driver %s\n", 2020 driver_data->name); 2021 goto err_if_unreg; 2022 } 2023 } 2024 2025 register_hotcpu_notifier(&cpufreq_cpu_notifier); 2026 pr_debug("driver %s up and running\n", driver_data->name); 2027 2028 return 0; 2029 err_if_unreg: 2030 subsys_interface_unregister(&cpufreq_interface); 2031 err_null_driver: 2032 write_lock_irqsave(&cpufreq_driver_lock, flags); 2033 cpufreq_driver = NULL; 2034 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2035 return ret; 2036 } 2037 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 2038 2039 /** 2040 * cpufreq_unregister_driver - unregister the current CPUFreq driver 2041 * 2042 * Unregister the current CPUFreq driver. Only call this if you have 2043 * the right to do so, i.e. if you have succeeded in initialising before! 2044 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 2045 * currently not initialised. 2046 */ 2047 int cpufreq_unregister_driver(struct cpufreq_driver *driver) 2048 { 2049 unsigned long flags; 2050 2051 if (!cpufreq_driver || (driver != cpufreq_driver)) 2052 return -EINVAL; 2053 2054 pr_debug("unregistering driver %s\n", driver->name); 2055 2056 subsys_interface_unregister(&cpufreq_interface); 2057 unregister_hotcpu_notifier(&cpufreq_cpu_notifier); 2058 2059 write_lock_irqsave(&cpufreq_driver_lock, flags); 2060 cpufreq_driver = NULL; 2061 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2062 2063 return 0; 2064 } 2065 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 2066 2067 static int __init cpufreq_core_init(void) 2068 { 2069 int cpu; 2070 2071 if (cpufreq_disabled()) 2072 return -ENODEV; 2073 2074 for_each_possible_cpu(cpu) { 2075 per_cpu(cpufreq_policy_cpu, cpu) = -1; 2076 init_rwsem(&per_cpu(cpu_policy_rwsem, cpu)); 2077 } 2078 2079 cpufreq_global_kobject = kobject_create(); 2080 BUG_ON(!cpufreq_global_kobject); 2081 register_syscore_ops(&cpufreq_syscore_ops); 2082 2083 return 0; 2084 } 2085 core_initcall(cpufreq_core_init); 2086