1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/cpufreq/cpufreq.c 4 * 5 * Copyright (C) 2001 Russell King 6 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 7 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org> 8 * 9 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 10 * Added handling for CPU hotplug 11 * Feb 2006 - Jacob Shin <jacob.shin@amd.com> 12 * Fix handling for CPU hotplug -- affected CPUs 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/cpu.h> 18 #include <linux/cpufreq.h> 19 #include <linux/cpu_cooling.h> 20 #include <linux/delay.h> 21 #include <linux/device.h> 22 #include <linux/init.h> 23 #include <linux/kernel_stat.h> 24 #include <linux/module.h> 25 #include <linux/mutex.h> 26 #include <linux/pm_qos.h> 27 #include <linux/slab.h> 28 #include <linux/suspend.h> 29 #include <linux/syscore_ops.h> 30 #include <linux/tick.h> 31 #include <linux/units.h> 32 #include <trace/events/power.h> 33 34 static LIST_HEAD(cpufreq_policy_list); 35 36 /* Macros to iterate over CPU policies */ 37 #define for_each_suitable_policy(__policy, __active) \ 38 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \ 39 if ((__active) == !policy_is_inactive(__policy)) 40 41 #define for_each_active_policy(__policy) \ 42 for_each_suitable_policy(__policy, true) 43 #define for_each_inactive_policy(__policy) \ 44 for_each_suitable_policy(__policy, false) 45 46 /* Iterate over governors */ 47 static LIST_HEAD(cpufreq_governor_list); 48 #define for_each_governor(__governor) \ 49 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list) 50 51 static char default_governor[CPUFREQ_NAME_LEN]; 52 53 /* 54 * The "cpufreq driver" - the arch- or hardware-dependent low 55 * level driver of CPUFreq support, and its spinlock. This lock 56 * also protects the cpufreq_cpu_data array. 57 */ 58 static struct cpufreq_driver *cpufreq_driver; 59 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data); 60 static DEFINE_RWLOCK(cpufreq_driver_lock); 61 62 static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance); 63 bool cpufreq_supports_freq_invariance(void) 64 { 65 return static_branch_likely(&cpufreq_freq_invariance); 66 } 67 68 /* Flag to suspend/resume CPUFreq governors */ 69 static bool cpufreq_suspended; 70 71 static inline bool has_target(void) 72 { 73 return cpufreq_driver->target_index || cpufreq_driver->target; 74 } 75 76 bool has_target_index(void) 77 { 78 return !!cpufreq_driver->target_index; 79 } 80 81 /* internal prototypes */ 82 static unsigned int __cpufreq_get(struct cpufreq_policy *policy); 83 static int cpufreq_init_governor(struct cpufreq_policy *policy); 84 static void cpufreq_exit_governor(struct cpufreq_policy *policy); 85 static void cpufreq_governor_limits(struct cpufreq_policy *policy); 86 static int cpufreq_set_policy(struct cpufreq_policy *policy, 87 struct cpufreq_governor *new_gov, 88 unsigned int new_pol); 89 90 /* 91 * Two notifier lists: the "policy" list is involved in the 92 * validation process for a new CPU frequency policy; the 93 * "transition" list for kernel code that needs to handle 94 * changes to devices when the CPU clock speed changes. 95 * The mutex locks both lists. 96 */ 97 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list); 98 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list); 99 100 static int off __read_mostly; 101 static int cpufreq_disabled(void) 102 { 103 return off; 104 } 105 void disable_cpufreq(void) 106 { 107 off = 1; 108 } 109 static DEFINE_MUTEX(cpufreq_governor_mutex); 110 111 bool have_governor_per_policy(void) 112 { 113 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY); 114 } 115 EXPORT_SYMBOL_GPL(have_governor_per_policy); 116 117 static struct kobject *cpufreq_global_kobject; 118 119 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy) 120 { 121 if (have_governor_per_policy()) 122 return &policy->kobj; 123 else 124 return cpufreq_global_kobject; 125 } 126 EXPORT_SYMBOL_GPL(get_governor_parent_kobj); 127 128 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) 129 { 130 struct kernel_cpustat kcpustat; 131 u64 cur_wall_time; 132 u64 idle_time; 133 u64 busy_time; 134 135 cur_wall_time = jiffies64_to_nsecs(get_jiffies_64()); 136 137 kcpustat_cpu_fetch(&kcpustat, cpu); 138 139 busy_time = kcpustat.cpustat[CPUTIME_USER]; 140 busy_time += kcpustat.cpustat[CPUTIME_SYSTEM]; 141 busy_time += kcpustat.cpustat[CPUTIME_IRQ]; 142 busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ]; 143 busy_time += kcpustat.cpustat[CPUTIME_STEAL]; 144 busy_time += kcpustat.cpustat[CPUTIME_NICE]; 145 146 idle_time = cur_wall_time - busy_time; 147 if (wall) 148 *wall = div_u64(cur_wall_time, NSEC_PER_USEC); 149 150 return div_u64(idle_time, NSEC_PER_USEC); 151 } 152 153 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy) 154 { 155 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL); 156 157 if (idle_time == -1ULL) 158 return get_cpu_idle_time_jiffy(cpu, wall); 159 else if (!io_busy) 160 idle_time += get_cpu_iowait_time_us(cpu, wall); 161 162 return idle_time; 163 } 164 EXPORT_SYMBOL_GPL(get_cpu_idle_time); 165 166 /* 167 * This is a generic cpufreq init() routine which can be used by cpufreq 168 * drivers of SMP systems. It will do following: 169 * - validate & show freq table passed 170 * - set policies transition latency 171 * - policy->cpus with all possible CPUs 172 */ 173 void cpufreq_generic_init(struct cpufreq_policy *policy, 174 struct cpufreq_frequency_table *table, 175 unsigned int transition_latency) 176 { 177 policy->freq_table = table; 178 policy->cpuinfo.transition_latency = transition_latency; 179 180 /* 181 * The driver only supports the SMP configuration where all processors 182 * share the clock and voltage and clock. 183 */ 184 cpumask_setall(policy->cpus); 185 } 186 EXPORT_SYMBOL_GPL(cpufreq_generic_init); 187 188 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu) 189 { 190 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 191 192 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL; 193 } 194 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw); 195 196 unsigned int cpufreq_generic_get(unsigned int cpu) 197 { 198 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu); 199 200 if (!policy || IS_ERR(policy->clk)) { 201 pr_err("%s: No %s associated to cpu: %d\n", 202 __func__, policy ? "clk" : "policy", cpu); 203 return 0; 204 } 205 206 return clk_get_rate(policy->clk) / 1000; 207 } 208 EXPORT_SYMBOL_GPL(cpufreq_generic_get); 209 210 /** 211 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy. 212 * @cpu: CPU to find the policy for. 213 * 214 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment 215 * the kobject reference counter of that policy. Return a valid policy on 216 * success or NULL on failure. 217 * 218 * The policy returned by this function has to be released with the help of 219 * cpufreq_cpu_put() to balance its kobject reference counter properly. 220 */ 221 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) 222 { 223 struct cpufreq_policy *policy = NULL; 224 unsigned long flags; 225 226 if (WARN_ON(cpu >= nr_cpu_ids)) 227 return NULL; 228 229 /* get the cpufreq driver */ 230 read_lock_irqsave(&cpufreq_driver_lock, flags); 231 232 if (cpufreq_driver) { 233 /* get the CPU */ 234 policy = cpufreq_cpu_get_raw(cpu); 235 if (policy) 236 kobject_get(&policy->kobj); 237 } 238 239 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 240 241 return policy; 242 } 243 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 244 245 /** 246 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy. 247 * @policy: cpufreq policy returned by cpufreq_cpu_get(). 248 */ 249 void cpufreq_cpu_put(struct cpufreq_policy *policy) 250 { 251 kobject_put(&policy->kobj); 252 } 253 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 254 255 /** 256 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter. 257 * @policy: cpufreq policy returned by cpufreq_cpu_acquire(). 258 */ 259 void cpufreq_cpu_release(struct cpufreq_policy *policy) 260 { 261 if (WARN_ON(!policy)) 262 return; 263 264 lockdep_assert_held(&policy->rwsem); 265 266 up_write(&policy->rwsem); 267 268 cpufreq_cpu_put(policy); 269 } 270 271 /** 272 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it. 273 * @cpu: CPU to find the policy for. 274 * 275 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and 276 * if the policy returned by it is not NULL, acquire its rwsem for writing. 277 * Return the policy if it is active or release it and return NULL otherwise. 278 * 279 * The policy returned by this function has to be released with the help of 280 * cpufreq_cpu_release() in order to release its rwsem and balance its usage 281 * counter properly. 282 */ 283 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu) 284 { 285 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 286 287 if (!policy) 288 return NULL; 289 290 down_write(&policy->rwsem); 291 292 if (policy_is_inactive(policy)) { 293 cpufreq_cpu_release(policy); 294 return NULL; 295 } 296 297 return policy; 298 } 299 300 /********************************************************************* 301 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 302 *********************************************************************/ 303 304 /** 305 * adjust_jiffies - Adjust the system "loops_per_jiffy". 306 * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE. 307 * @ci: Frequency change information. 308 * 309 * This function alters the system "loops_per_jiffy" for the clock 310 * speed change. Note that loops_per_jiffy cannot be updated on SMP 311 * systems as each CPU might be scaled differently. So, use the arch 312 * per-CPU loops_per_jiffy value wherever possible. 313 */ 314 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 315 { 316 #ifndef CONFIG_SMP 317 static unsigned long l_p_j_ref; 318 static unsigned int l_p_j_ref_freq; 319 320 if (ci->flags & CPUFREQ_CONST_LOOPS) 321 return; 322 323 if (!l_p_j_ref_freq) { 324 l_p_j_ref = loops_per_jiffy; 325 l_p_j_ref_freq = ci->old; 326 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n", 327 l_p_j_ref, l_p_j_ref_freq); 328 } 329 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) { 330 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, 331 ci->new); 332 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n", 333 loops_per_jiffy, ci->new); 334 } 335 #endif 336 } 337 338 /** 339 * cpufreq_notify_transition - Notify frequency transition and adjust jiffies. 340 * @policy: cpufreq policy to enable fast frequency switching for. 341 * @freqs: contain details of the frequency update. 342 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE. 343 * 344 * This function calls the transition notifiers and adjust_jiffies(). 345 * 346 * It is called twice on all CPU frequency changes that have external effects. 347 */ 348 static void cpufreq_notify_transition(struct cpufreq_policy *policy, 349 struct cpufreq_freqs *freqs, 350 unsigned int state) 351 { 352 int cpu; 353 354 BUG_ON(irqs_disabled()); 355 356 if (cpufreq_disabled()) 357 return; 358 359 freqs->policy = policy; 360 freqs->flags = cpufreq_driver->flags; 361 pr_debug("notification %u of frequency transition to %u kHz\n", 362 state, freqs->new); 363 364 switch (state) { 365 case CPUFREQ_PRECHANGE: 366 /* 367 * Detect if the driver reported a value as "old frequency" 368 * which is not equal to what the cpufreq core thinks is 369 * "old frequency". 370 */ 371 if (policy->cur && policy->cur != freqs->old) { 372 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n", 373 freqs->old, policy->cur); 374 freqs->old = policy->cur; 375 } 376 377 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 378 CPUFREQ_PRECHANGE, freqs); 379 380 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 381 break; 382 383 case CPUFREQ_POSTCHANGE: 384 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 385 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new, 386 cpumask_pr_args(policy->cpus)); 387 388 for_each_cpu(cpu, policy->cpus) 389 trace_cpu_frequency(freqs->new, cpu); 390 391 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 392 CPUFREQ_POSTCHANGE, freqs); 393 394 cpufreq_stats_record_transition(policy, freqs->new); 395 policy->cur = freqs->new; 396 } 397 } 398 399 /* Do post notifications when there are chances that transition has failed */ 400 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy, 401 struct cpufreq_freqs *freqs, int transition_failed) 402 { 403 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 404 if (!transition_failed) 405 return; 406 407 swap(freqs->old, freqs->new); 408 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 409 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 410 } 411 412 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy, 413 struct cpufreq_freqs *freqs) 414 { 415 416 /* 417 * Catch double invocations of _begin() which lead to self-deadlock. 418 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core 419 * doesn't invoke _begin() on their behalf, and hence the chances of 420 * double invocations are very low. Moreover, there are scenarios 421 * where these checks can emit false-positive warnings in these 422 * drivers; so we avoid that by skipping them altogether. 423 */ 424 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION) 425 && current == policy->transition_task); 426 427 wait: 428 wait_event(policy->transition_wait, !policy->transition_ongoing); 429 430 spin_lock(&policy->transition_lock); 431 432 if (unlikely(policy->transition_ongoing)) { 433 spin_unlock(&policy->transition_lock); 434 goto wait; 435 } 436 437 policy->transition_ongoing = true; 438 policy->transition_task = current; 439 440 spin_unlock(&policy->transition_lock); 441 442 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 443 } 444 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin); 445 446 void cpufreq_freq_transition_end(struct cpufreq_policy *policy, 447 struct cpufreq_freqs *freqs, int transition_failed) 448 { 449 if (WARN_ON(!policy->transition_ongoing)) 450 return; 451 452 cpufreq_notify_post_transition(policy, freqs, transition_failed); 453 454 arch_set_freq_scale(policy->related_cpus, 455 policy->cur, 456 policy->cpuinfo.max_freq); 457 458 policy->transition_ongoing = false; 459 policy->transition_task = NULL; 460 461 wake_up(&policy->transition_wait); 462 } 463 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end); 464 465 /* 466 * Fast frequency switching status count. Positive means "enabled", negative 467 * means "disabled" and 0 means "not decided yet". 468 */ 469 static int cpufreq_fast_switch_count; 470 static DEFINE_MUTEX(cpufreq_fast_switch_lock); 471 472 static void cpufreq_list_transition_notifiers(void) 473 { 474 struct notifier_block *nb; 475 476 pr_info("Registered transition notifiers:\n"); 477 478 mutex_lock(&cpufreq_transition_notifier_list.mutex); 479 480 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next) 481 pr_info("%pS\n", nb->notifier_call); 482 483 mutex_unlock(&cpufreq_transition_notifier_list.mutex); 484 } 485 486 /** 487 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy. 488 * @policy: cpufreq policy to enable fast frequency switching for. 489 * 490 * Try to enable fast frequency switching for @policy. 491 * 492 * The attempt will fail if there is at least one transition notifier registered 493 * at this point, as fast frequency switching is quite fundamentally at odds 494 * with transition notifiers. Thus if successful, it will make registration of 495 * transition notifiers fail going forward. 496 */ 497 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy) 498 { 499 lockdep_assert_held(&policy->rwsem); 500 501 if (!policy->fast_switch_possible) 502 return; 503 504 mutex_lock(&cpufreq_fast_switch_lock); 505 if (cpufreq_fast_switch_count >= 0) { 506 cpufreq_fast_switch_count++; 507 policy->fast_switch_enabled = true; 508 } else { 509 pr_warn("CPU%u: Fast frequency switching not enabled\n", 510 policy->cpu); 511 cpufreq_list_transition_notifiers(); 512 } 513 mutex_unlock(&cpufreq_fast_switch_lock); 514 } 515 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch); 516 517 /** 518 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy. 519 * @policy: cpufreq policy to disable fast frequency switching for. 520 */ 521 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy) 522 { 523 mutex_lock(&cpufreq_fast_switch_lock); 524 if (policy->fast_switch_enabled) { 525 policy->fast_switch_enabled = false; 526 if (!WARN_ON(cpufreq_fast_switch_count <= 0)) 527 cpufreq_fast_switch_count--; 528 } 529 mutex_unlock(&cpufreq_fast_switch_lock); 530 } 531 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch); 532 533 static unsigned int __resolve_freq(struct cpufreq_policy *policy, 534 unsigned int target_freq, unsigned int relation) 535 { 536 unsigned int idx; 537 538 target_freq = clamp_val(target_freq, policy->min, policy->max); 539 540 if (!policy->freq_table) 541 return target_freq; 542 543 idx = cpufreq_frequency_table_target(policy, target_freq, relation); 544 policy->cached_resolved_idx = idx; 545 policy->cached_target_freq = target_freq; 546 return policy->freq_table[idx].frequency; 547 } 548 549 /** 550 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported 551 * one. 552 * @policy: associated policy to interrogate 553 * @target_freq: target frequency to resolve. 554 * 555 * The target to driver frequency mapping is cached in the policy. 556 * 557 * Return: Lowest driver-supported frequency greater than or equal to the 558 * given target_freq, subject to policy (min/max) and driver limitations. 559 */ 560 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy, 561 unsigned int target_freq) 562 { 563 return __resolve_freq(policy, target_freq, CPUFREQ_RELATION_LE); 564 } 565 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq); 566 567 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy) 568 { 569 unsigned int latency; 570 571 if (policy->transition_delay_us) 572 return policy->transition_delay_us; 573 574 latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC; 575 if (latency) { 576 /* 577 * For platforms that can change the frequency very fast (< 10 578 * us), the above formula gives a decent transition delay. But 579 * for platforms where transition_latency is in milliseconds, it 580 * ends up giving unrealistic values. 581 * 582 * Cap the default transition delay to 10 ms, which seems to be 583 * a reasonable amount of time after which we should reevaluate 584 * the frequency. 585 */ 586 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000); 587 } 588 589 return LATENCY_MULTIPLIER; 590 } 591 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us); 592 593 /********************************************************************* 594 * SYSFS INTERFACE * 595 *********************************************************************/ 596 static ssize_t show_boost(struct kobject *kobj, 597 struct kobj_attribute *attr, char *buf) 598 { 599 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled); 600 } 601 602 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr, 603 const char *buf, size_t count) 604 { 605 int ret, enable; 606 607 ret = sscanf(buf, "%d", &enable); 608 if (ret != 1 || enable < 0 || enable > 1) 609 return -EINVAL; 610 611 if (cpufreq_boost_trigger_state(enable)) { 612 pr_err("%s: Cannot %s BOOST!\n", 613 __func__, enable ? "enable" : "disable"); 614 return -EINVAL; 615 } 616 617 pr_debug("%s: cpufreq BOOST %s\n", 618 __func__, enable ? "enabled" : "disabled"); 619 620 return count; 621 } 622 define_one_global_rw(boost); 623 624 static struct cpufreq_governor *find_governor(const char *str_governor) 625 { 626 struct cpufreq_governor *t; 627 628 for_each_governor(t) 629 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN)) 630 return t; 631 632 return NULL; 633 } 634 635 static struct cpufreq_governor *get_governor(const char *str_governor) 636 { 637 struct cpufreq_governor *t; 638 639 mutex_lock(&cpufreq_governor_mutex); 640 t = find_governor(str_governor); 641 if (!t) 642 goto unlock; 643 644 if (!try_module_get(t->owner)) 645 t = NULL; 646 647 unlock: 648 mutex_unlock(&cpufreq_governor_mutex); 649 650 return t; 651 } 652 653 static unsigned int cpufreq_parse_policy(char *str_governor) 654 { 655 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) 656 return CPUFREQ_POLICY_PERFORMANCE; 657 658 if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) 659 return CPUFREQ_POLICY_POWERSAVE; 660 661 return CPUFREQ_POLICY_UNKNOWN; 662 } 663 664 /** 665 * cpufreq_parse_governor - parse a governor string only for has_target() 666 * @str_governor: Governor name. 667 */ 668 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor) 669 { 670 struct cpufreq_governor *t; 671 672 t = get_governor(str_governor); 673 if (t) 674 return t; 675 676 if (request_module("cpufreq_%s", str_governor)) 677 return NULL; 678 679 return get_governor(str_governor); 680 } 681 682 /* 683 * cpufreq_per_cpu_attr_read() / show_##file_name() - 684 * print out cpufreq information 685 * 686 * Write out information from cpufreq_driver->policy[cpu]; object must be 687 * "unsigned int". 688 */ 689 690 #define show_one(file_name, object) \ 691 static ssize_t show_##file_name \ 692 (struct cpufreq_policy *policy, char *buf) \ 693 { \ 694 return sprintf(buf, "%u\n", policy->object); \ 695 } 696 697 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 698 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 699 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency); 700 show_one(scaling_min_freq, min); 701 show_one(scaling_max_freq, max); 702 703 __weak unsigned int arch_freq_get_on_cpu(int cpu) 704 { 705 return 0; 706 } 707 708 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf) 709 { 710 ssize_t ret; 711 unsigned int freq; 712 713 freq = arch_freq_get_on_cpu(policy->cpu); 714 if (freq) 715 ret = sprintf(buf, "%u\n", freq); 716 else if (cpufreq_driver->setpolicy && cpufreq_driver->get) 717 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu)); 718 else 719 ret = sprintf(buf, "%u\n", policy->cur); 720 return ret; 721 } 722 723 /* 724 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 725 */ 726 #define store_one(file_name, object) \ 727 static ssize_t store_##file_name \ 728 (struct cpufreq_policy *policy, const char *buf, size_t count) \ 729 { \ 730 unsigned long val; \ 731 int ret; \ 732 \ 733 ret = kstrtoul(buf, 0, &val); \ 734 if (ret) \ 735 return ret; \ 736 \ 737 ret = freq_qos_update_request(policy->object##_freq_req, val);\ 738 return ret >= 0 ? count : ret; \ 739 } 740 741 store_one(scaling_min_freq, min); 742 store_one(scaling_max_freq, max); 743 744 /* 745 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 746 */ 747 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy, 748 char *buf) 749 { 750 unsigned int cur_freq = __cpufreq_get(policy); 751 752 if (cur_freq) 753 return sprintf(buf, "%u\n", cur_freq); 754 755 return sprintf(buf, "<unknown>\n"); 756 } 757 758 /* 759 * show_scaling_governor - show the current policy for the specified CPU 760 */ 761 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf) 762 { 763 if (policy->policy == CPUFREQ_POLICY_POWERSAVE) 764 return sprintf(buf, "powersave\n"); 765 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 766 return sprintf(buf, "performance\n"); 767 else if (policy->governor) 768 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", 769 policy->governor->name); 770 return -EINVAL; 771 } 772 773 /* 774 * store_scaling_governor - store policy for the specified CPU 775 */ 776 static ssize_t store_scaling_governor(struct cpufreq_policy *policy, 777 const char *buf, size_t count) 778 { 779 char str_governor[16]; 780 int ret; 781 782 ret = sscanf(buf, "%15s", str_governor); 783 if (ret != 1) 784 return -EINVAL; 785 786 if (cpufreq_driver->setpolicy) { 787 unsigned int new_pol; 788 789 new_pol = cpufreq_parse_policy(str_governor); 790 if (!new_pol) 791 return -EINVAL; 792 793 ret = cpufreq_set_policy(policy, NULL, new_pol); 794 } else { 795 struct cpufreq_governor *new_gov; 796 797 new_gov = cpufreq_parse_governor(str_governor); 798 if (!new_gov) 799 return -EINVAL; 800 801 ret = cpufreq_set_policy(policy, new_gov, 802 CPUFREQ_POLICY_UNKNOWN); 803 804 module_put(new_gov->owner); 805 } 806 807 return ret ? ret : count; 808 } 809 810 /* 811 * show_scaling_driver - show the cpufreq driver currently loaded 812 */ 813 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf) 814 { 815 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name); 816 } 817 818 /* 819 * show_scaling_available_governors - show the available CPUfreq governors 820 */ 821 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy, 822 char *buf) 823 { 824 ssize_t i = 0; 825 struct cpufreq_governor *t; 826 827 if (!has_target()) { 828 i += sprintf(buf, "performance powersave"); 829 goto out; 830 } 831 832 mutex_lock(&cpufreq_governor_mutex); 833 for_each_governor(t) { 834 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) 835 - (CPUFREQ_NAME_LEN + 2))) 836 break; 837 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name); 838 } 839 mutex_unlock(&cpufreq_governor_mutex); 840 out: 841 i += sprintf(&buf[i], "\n"); 842 return i; 843 } 844 845 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf) 846 { 847 ssize_t i = 0; 848 unsigned int cpu; 849 850 for_each_cpu(cpu, mask) { 851 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u ", cpu); 852 if (i >= (PAGE_SIZE - 5)) 853 break; 854 } 855 856 /* Remove the extra space at the end */ 857 i--; 858 859 i += sprintf(&buf[i], "\n"); 860 return i; 861 } 862 EXPORT_SYMBOL_GPL(cpufreq_show_cpus); 863 864 /* 865 * show_related_cpus - show the CPUs affected by each transition even if 866 * hw coordination is in use 867 */ 868 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf) 869 { 870 return cpufreq_show_cpus(policy->related_cpus, buf); 871 } 872 873 /* 874 * show_affected_cpus - show the CPUs affected by each transition 875 */ 876 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf) 877 { 878 return cpufreq_show_cpus(policy->cpus, buf); 879 } 880 881 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy, 882 const char *buf, size_t count) 883 { 884 unsigned int freq = 0; 885 unsigned int ret; 886 887 if (!policy->governor || !policy->governor->store_setspeed) 888 return -EINVAL; 889 890 ret = sscanf(buf, "%u", &freq); 891 if (ret != 1) 892 return -EINVAL; 893 894 policy->governor->store_setspeed(policy, freq); 895 896 return count; 897 } 898 899 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf) 900 { 901 if (!policy->governor || !policy->governor->show_setspeed) 902 return sprintf(buf, "<unsupported>\n"); 903 904 return policy->governor->show_setspeed(policy, buf); 905 } 906 907 /* 908 * show_bios_limit - show the current cpufreq HW/BIOS limitation 909 */ 910 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf) 911 { 912 unsigned int limit; 913 int ret; 914 ret = cpufreq_driver->bios_limit(policy->cpu, &limit); 915 if (!ret) 916 return sprintf(buf, "%u\n", limit); 917 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq); 918 } 919 920 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400); 921 cpufreq_freq_attr_ro(cpuinfo_min_freq); 922 cpufreq_freq_attr_ro(cpuinfo_max_freq); 923 cpufreq_freq_attr_ro(cpuinfo_transition_latency); 924 cpufreq_freq_attr_ro(scaling_available_governors); 925 cpufreq_freq_attr_ro(scaling_driver); 926 cpufreq_freq_attr_ro(scaling_cur_freq); 927 cpufreq_freq_attr_ro(bios_limit); 928 cpufreq_freq_attr_ro(related_cpus); 929 cpufreq_freq_attr_ro(affected_cpus); 930 cpufreq_freq_attr_rw(scaling_min_freq); 931 cpufreq_freq_attr_rw(scaling_max_freq); 932 cpufreq_freq_attr_rw(scaling_governor); 933 cpufreq_freq_attr_rw(scaling_setspeed); 934 935 static struct attribute *cpufreq_attrs[] = { 936 &cpuinfo_min_freq.attr, 937 &cpuinfo_max_freq.attr, 938 &cpuinfo_transition_latency.attr, 939 &scaling_min_freq.attr, 940 &scaling_max_freq.attr, 941 &affected_cpus.attr, 942 &related_cpus.attr, 943 &scaling_governor.attr, 944 &scaling_driver.attr, 945 &scaling_available_governors.attr, 946 &scaling_setspeed.attr, 947 NULL 948 }; 949 ATTRIBUTE_GROUPS(cpufreq); 950 951 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj) 952 #define to_attr(a) container_of(a, struct freq_attr, attr) 953 954 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) 955 { 956 struct cpufreq_policy *policy = to_policy(kobj); 957 struct freq_attr *fattr = to_attr(attr); 958 ssize_t ret = -EBUSY; 959 960 if (!fattr->show) 961 return -EIO; 962 963 down_read(&policy->rwsem); 964 if (likely(!policy_is_inactive(policy))) 965 ret = fattr->show(policy, buf); 966 up_read(&policy->rwsem); 967 968 return ret; 969 } 970 971 static ssize_t store(struct kobject *kobj, struct attribute *attr, 972 const char *buf, size_t count) 973 { 974 struct cpufreq_policy *policy = to_policy(kobj); 975 struct freq_attr *fattr = to_attr(attr); 976 ssize_t ret = -EBUSY; 977 978 if (!fattr->store) 979 return -EIO; 980 981 down_write(&policy->rwsem); 982 if (likely(!policy_is_inactive(policy))) 983 ret = fattr->store(policy, buf, count); 984 up_write(&policy->rwsem); 985 986 return ret; 987 } 988 989 static void cpufreq_sysfs_release(struct kobject *kobj) 990 { 991 struct cpufreq_policy *policy = to_policy(kobj); 992 pr_debug("last reference is dropped\n"); 993 complete(&policy->kobj_unregister); 994 } 995 996 static const struct sysfs_ops sysfs_ops = { 997 .show = show, 998 .store = store, 999 }; 1000 1001 static const struct kobj_type ktype_cpufreq = { 1002 .sysfs_ops = &sysfs_ops, 1003 .default_groups = cpufreq_groups, 1004 .release = cpufreq_sysfs_release, 1005 }; 1006 1007 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu, 1008 struct device *dev) 1009 { 1010 if (unlikely(!dev)) 1011 return; 1012 1013 if (cpumask_test_and_set_cpu(cpu, policy->real_cpus)) 1014 return; 1015 1016 dev_dbg(dev, "%s: Adding symlink\n", __func__); 1017 if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq")) 1018 dev_err(dev, "cpufreq symlink creation failed\n"); 1019 } 1020 1021 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu, 1022 struct device *dev) 1023 { 1024 dev_dbg(dev, "%s: Removing symlink\n", __func__); 1025 sysfs_remove_link(&dev->kobj, "cpufreq"); 1026 cpumask_clear_cpu(cpu, policy->real_cpus); 1027 } 1028 1029 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy) 1030 { 1031 struct freq_attr **drv_attr; 1032 int ret = 0; 1033 1034 /* set up files for this cpu device */ 1035 drv_attr = cpufreq_driver->attr; 1036 while (drv_attr && *drv_attr) { 1037 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 1038 if (ret) 1039 return ret; 1040 drv_attr++; 1041 } 1042 if (cpufreq_driver->get) { 1043 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 1044 if (ret) 1045 return ret; 1046 } 1047 1048 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 1049 if (ret) 1050 return ret; 1051 1052 if (cpufreq_driver->bios_limit) { 1053 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr); 1054 if (ret) 1055 return ret; 1056 } 1057 1058 return 0; 1059 } 1060 1061 static int cpufreq_init_policy(struct cpufreq_policy *policy) 1062 { 1063 struct cpufreq_governor *gov = NULL; 1064 unsigned int pol = CPUFREQ_POLICY_UNKNOWN; 1065 int ret; 1066 1067 if (has_target()) { 1068 /* Update policy governor to the one used before hotplug. */ 1069 gov = get_governor(policy->last_governor); 1070 if (gov) { 1071 pr_debug("Restoring governor %s for cpu %d\n", 1072 gov->name, policy->cpu); 1073 } else { 1074 gov = get_governor(default_governor); 1075 } 1076 1077 if (!gov) { 1078 gov = cpufreq_default_governor(); 1079 __module_get(gov->owner); 1080 } 1081 1082 } else { 1083 1084 /* Use the default policy if there is no last_policy. */ 1085 if (policy->last_policy) { 1086 pol = policy->last_policy; 1087 } else { 1088 pol = cpufreq_parse_policy(default_governor); 1089 /* 1090 * In case the default governor is neither "performance" 1091 * nor "powersave", fall back to the initial policy 1092 * value set by the driver. 1093 */ 1094 if (pol == CPUFREQ_POLICY_UNKNOWN) 1095 pol = policy->policy; 1096 } 1097 if (pol != CPUFREQ_POLICY_PERFORMANCE && 1098 pol != CPUFREQ_POLICY_POWERSAVE) 1099 return -ENODATA; 1100 } 1101 1102 ret = cpufreq_set_policy(policy, gov, pol); 1103 if (gov) 1104 module_put(gov->owner); 1105 1106 return ret; 1107 } 1108 1109 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu) 1110 { 1111 int ret = 0; 1112 1113 /* Has this CPU been taken care of already? */ 1114 if (cpumask_test_cpu(cpu, policy->cpus)) 1115 return 0; 1116 1117 down_write(&policy->rwsem); 1118 if (has_target()) 1119 cpufreq_stop_governor(policy); 1120 1121 cpumask_set_cpu(cpu, policy->cpus); 1122 1123 if (has_target()) { 1124 ret = cpufreq_start_governor(policy); 1125 if (ret) 1126 pr_err("%s: Failed to start governor\n", __func__); 1127 } 1128 up_write(&policy->rwsem); 1129 return ret; 1130 } 1131 1132 void refresh_frequency_limits(struct cpufreq_policy *policy) 1133 { 1134 if (!policy_is_inactive(policy)) { 1135 pr_debug("updating policy for CPU %u\n", policy->cpu); 1136 1137 cpufreq_set_policy(policy, policy->governor, policy->policy); 1138 } 1139 } 1140 EXPORT_SYMBOL(refresh_frequency_limits); 1141 1142 static void handle_update(struct work_struct *work) 1143 { 1144 struct cpufreq_policy *policy = 1145 container_of(work, struct cpufreq_policy, update); 1146 1147 pr_debug("handle_update for cpu %u called\n", policy->cpu); 1148 down_write(&policy->rwsem); 1149 refresh_frequency_limits(policy); 1150 up_write(&policy->rwsem); 1151 } 1152 1153 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq, 1154 void *data) 1155 { 1156 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min); 1157 1158 schedule_work(&policy->update); 1159 return 0; 1160 } 1161 1162 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq, 1163 void *data) 1164 { 1165 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max); 1166 1167 schedule_work(&policy->update); 1168 return 0; 1169 } 1170 1171 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy) 1172 { 1173 struct kobject *kobj; 1174 struct completion *cmp; 1175 1176 down_write(&policy->rwsem); 1177 cpufreq_stats_free_table(policy); 1178 kobj = &policy->kobj; 1179 cmp = &policy->kobj_unregister; 1180 up_write(&policy->rwsem); 1181 kobject_put(kobj); 1182 1183 /* 1184 * We need to make sure that the underlying kobj is 1185 * actually not referenced anymore by anybody before we 1186 * proceed with unloading. 1187 */ 1188 pr_debug("waiting for dropping of refcount\n"); 1189 wait_for_completion(cmp); 1190 pr_debug("wait complete\n"); 1191 } 1192 1193 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu) 1194 { 1195 struct cpufreq_policy *policy; 1196 struct device *dev = get_cpu_device(cpu); 1197 int ret; 1198 1199 if (!dev) 1200 return NULL; 1201 1202 policy = kzalloc(sizeof(*policy), GFP_KERNEL); 1203 if (!policy) 1204 return NULL; 1205 1206 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) 1207 goto err_free_policy; 1208 1209 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) 1210 goto err_free_cpumask; 1211 1212 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL)) 1213 goto err_free_rcpumask; 1214 1215 init_completion(&policy->kobj_unregister); 1216 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, 1217 cpufreq_global_kobject, "policy%u", cpu); 1218 if (ret) { 1219 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret); 1220 /* 1221 * The entire policy object will be freed below, but the extra 1222 * memory allocated for the kobject name needs to be freed by 1223 * releasing the kobject. 1224 */ 1225 kobject_put(&policy->kobj); 1226 goto err_free_real_cpus; 1227 } 1228 1229 freq_constraints_init(&policy->constraints); 1230 1231 policy->nb_min.notifier_call = cpufreq_notifier_min; 1232 policy->nb_max.notifier_call = cpufreq_notifier_max; 1233 1234 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN, 1235 &policy->nb_min); 1236 if (ret) { 1237 dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n", 1238 ret, cpumask_pr_args(policy->cpus)); 1239 goto err_kobj_remove; 1240 } 1241 1242 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX, 1243 &policy->nb_max); 1244 if (ret) { 1245 dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n", 1246 ret, cpumask_pr_args(policy->cpus)); 1247 goto err_min_qos_notifier; 1248 } 1249 1250 INIT_LIST_HEAD(&policy->policy_list); 1251 init_rwsem(&policy->rwsem); 1252 spin_lock_init(&policy->transition_lock); 1253 init_waitqueue_head(&policy->transition_wait); 1254 INIT_WORK(&policy->update, handle_update); 1255 1256 policy->cpu = cpu; 1257 return policy; 1258 1259 err_min_qos_notifier: 1260 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN, 1261 &policy->nb_min); 1262 err_kobj_remove: 1263 cpufreq_policy_put_kobj(policy); 1264 err_free_real_cpus: 1265 free_cpumask_var(policy->real_cpus); 1266 err_free_rcpumask: 1267 free_cpumask_var(policy->related_cpus); 1268 err_free_cpumask: 1269 free_cpumask_var(policy->cpus); 1270 err_free_policy: 1271 kfree(policy); 1272 1273 return NULL; 1274 } 1275 1276 static void cpufreq_policy_free(struct cpufreq_policy *policy) 1277 { 1278 unsigned long flags; 1279 int cpu; 1280 1281 /* 1282 * The callers must ensure the policy is inactive by now, to avoid any 1283 * races with show()/store() callbacks. 1284 */ 1285 if (unlikely(!policy_is_inactive(policy))) 1286 pr_warn("%s: Freeing active policy\n", __func__); 1287 1288 /* Remove policy from list */ 1289 write_lock_irqsave(&cpufreq_driver_lock, flags); 1290 list_del(&policy->policy_list); 1291 1292 for_each_cpu(cpu, policy->related_cpus) 1293 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1294 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1295 1296 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX, 1297 &policy->nb_max); 1298 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN, 1299 &policy->nb_min); 1300 1301 /* Cancel any pending policy->update work before freeing the policy. */ 1302 cancel_work_sync(&policy->update); 1303 1304 if (policy->max_freq_req) { 1305 /* 1306 * Remove max_freq_req after sending CPUFREQ_REMOVE_POLICY 1307 * notification, since CPUFREQ_CREATE_POLICY notification was 1308 * sent after adding max_freq_req earlier. 1309 */ 1310 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1311 CPUFREQ_REMOVE_POLICY, policy); 1312 freq_qos_remove_request(policy->max_freq_req); 1313 } 1314 1315 freq_qos_remove_request(policy->min_freq_req); 1316 kfree(policy->min_freq_req); 1317 1318 cpufreq_policy_put_kobj(policy); 1319 free_cpumask_var(policy->real_cpus); 1320 free_cpumask_var(policy->related_cpus); 1321 free_cpumask_var(policy->cpus); 1322 kfree(policy); 1323 } 1324 1325 static int cpufreq_online(unsigned int cpu) 1326 { 1327 struct cpufreq_policy *policy; 1328 bool new_policy; 1329 unsigned long flags; 1330 unsigned int j; 1331 int ret; 1332 1333 pr_debug("%s: bringing CPU%u online\n", __func__, cpu); 1334 1335 /* Check if this CPU already has a policy to manage it */ 1336 policy = per_cpu(cpufreq_cpu_data, cpu); 1337 if (policy) { 1338 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus)); 1339 if (!policy_is_inactive(policy)) 1340 return cpufreq_add_policy_cpu(policy, cpu); 1341 1342 /* This is the only online CPU for the policy. Start over. */ 1343 new_policy = false; 1344 down_write(&policy->rwsem); 1345 policy->cpu = cpu; 1346 policy->governor = NULL; 1347 } else { 1348 new_policy = true; 1349 policy = cpufreq_policy_alloc(cpu); 1350 if (!policy) 1351 return -ENOMEM; 1352 down_write(&policy->rwsem); 1353 } 1354 1355 if (!new_policy && cpufreq_driver->online) { 1356 /* Recover policy->cpus using related_cpus */ 1357 cpumask_copy(policy->cpus, policy->related_cpus); 1358 1359 ret = cpufreq_driver->online(policy); 1360 if (ret) { 1361 pr_debug("%s: %d: initialization failed\n", __func__, 1362 __LINE__); 1363 goto out_exit_policy; 1364 } 1365 } else { 1366 cpumask_copy(policy->cpus, cpumask_of(cpu)); 1367 1368 /* 1369 * Call driver. From then on the cpufreq must be able 1370 * to accept all calls to ->verify and ->setpolicy for this CPU. 1371 */ 1372 ret = cpufreq_driver->init(policy); 1373 if (ret) { 1374 pr_debug("%s: %d: initialization failed\n", __func__, 1375 __LINE__); 1376 goto out_free_policy; 1377 } 1378 1379 /* 1380 * The initialization has succeeded and the policy is online. 1381 * If there is a problem with its frequency table, take it 1382 * offline and drop it. 1383 */ 1384 ret = cpufreq_table_validate_and_sort(policy); 1385 if (ret) 1386 goto out_offline_policy; 1387 1388 /* related_cpus should at least include policy->cpus. */ 1389 cpumask_copy(policy->related_cpus, policy->cpus); 1390 } 1391 1392 /* 1393 * affected cpus must always be the one, which are online. We aren't 1394 * managing offline cpus here. 1395 */ 1396 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask); 1397 1398 if (new_policy) { 1399 for_each_cpu(j, policy->related_cpus) { 1400 per_cpu(cpufreq_cpu_data, j) = policy; 1401 add_cpu_dev_symlink(policy, j, get_cpu_device(j)); 1402 } 1403 1404 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req), 1405 GFP_KERNEL); 1406 if (!policy->min_freq_req) { 1407 ret = -ENOMEM; 1408 goto out_destroy_policy; 1409 } 1410 1411 ret = freq_qos_add_request(&policy->constraints, 1412 policy->min_freq_req, FREQ_QOS_MIN, 1413 FREQ_QOS_MIN_DEFAULT_VALUE); 1414 if (ret < 0) { 1415 /* 1416 * So we don't call freq_qos_remove_request() for an 1417 * uninitialized request. 1418 */ 1419 kfree(policy->min_freq_req); 1420 policy->min_freq_req = NULL; 1421 goto out_destroy_policy; 1422 } 1423 1424 /* 1425 * This must be initialized right here to avoid calling 1426 * freq_qos_remove_request() on uninitialized request in case 1427 * of errors. 1428 */ 1429 policy->max_freq_req = policy->min_freq_req + 1; 1430 1431 ret = freq_qos_add_request(&policy->constraints, 1432 policy->max_freq_req, FREQ_QOS_MAX, 1433 FREQ_QOS_MAX_DEFAULT_VALUE); 1434 if (ret < 0) { 1435 policy->max_freq_req = NULL; 1436 goto out_destroy_policy; 1437 } 1438 1439 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1440 CPUFREQ_CREATE_POLICY, policy); 1441 } 1442 1443 if (cpufreq_driver->get && has_target()) { 1444 policy->cur = cpufreq_driver->get(policy->cpu); 1445 if (!policy->cur) { 1446 ret = -EIO; 1447 pr_err("%s: ->get() failed\n", __func__); 1448 goto out_destroy_policy; 1449 } 1450 } 1451 1452 /* 1453 * Sometimes boot loaders set CPU frequency to a value outside of 1454 * frequency table present with cpufreq core. In such cases CPU might be 1455 * unstable if it has to run on that frequency for long duration of time 1456 * and so its better to set it to a frequency which is specified in 1457 * freq-table. This also makes cpufreq stats inconsistent as 1458 * cpufreq-stats would fail to register because current frequency of CPU 1459 * isn't found in freq-table. 1460 * 1461 * Because we don't want this change to effect boot process badly, we go 1462 * for the next freq which is >= policy->cur ('cur' must be set by now, 1463 * otherwise we will end up setting freq to lowest of the table as 'cur' 1464 * is initialized to zero). 1465 * 1466 * We are passing target-freq as "policy->cur - 1" otherwise 1467 * __cpufreq_driver_target() would simply fail, as policy->cur will be 1468 * equal to target-freq. 1469 */ 1470 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK) 1471 && has_target()) { 1472 unsigned int old_freq = policy->cur; 1473 1474 /* Are we running at unknown frequency ? */ 1475 ret = cpufreq_frequency_table_get_index(policy, old_freq); 1476 if (ret == -EINVAL) { 1477 ret = __cpufreq_driver_target(policy, old_freq - 1, 1478 CPUFREQ_RELATION_L); 1479 1480 /* 1481 * Reaching here after boot in a few seconds may not 1482 * mean that system will remain stable at "unknown" 1483 * frequency for longer duration. Hence, a BUG_ON(). 1484 */ 1485 BUG_ON(ret); 1486 pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n", 1487 __func__, policy->cpu, old_freq, policy->cur); 1488 } 1489 } 1490 1491 if (new_policy) { 1492 ret = cpufreq_add_dev_interface(policy); 1493 if (ret) 1494 goto out_destroy_policy; 1495 1496 cpufreq_stats_create_table(policy); 1497 1498 write_lock_irqsave(&cpufreq_driver_lock, flags); 1499 list_add(&policy->policy_list, &cpufreq_policy_list); 1500 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1501 1502 /* 1503 * Register with the energy model before 1504 * sched_cpufreq_governor_change() is called, which will result 1505 * in rebuilding of the sched domains, which should only be done 1506 * once the energy model is properly initialized for the policy 1507 * first. 1508 * 1509 * Also, this should be called before the policy is registered 1510 * with cooling framework. 1511 */ 1512 if (cpufreq_driver->register_em) 1513 cpufreq_driver->register_em(policy); 1514 } 1515 1516 ret = cpufreq_init_policy(policy); 1517 if (ret) { 1518 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n", 1519 __func__, cpu, ret); 1520 goto out_destroy_policy; 1521 } 1522 1523 up_write(&policy->rwsem); 1524 1525 kobject_uevent(&policy->kobj, KOBJ_ADD); 1526 1527 /* Callback for handling stuff after policy is ready */ 1528 if (cpufreq_driver->ready) 1529 cpufreq_driver->ready(policy); 1530 1531 if (cpufreq_thermal_control_enabled(cpufreq_driver)) 1532 policy->cdev = of_cpufreq_cooling_register(policy); 1533 1534 pr_debug("initialization complete\n"); 1535 1536 return 0; 1537 1538 out_destroy_policy: 1539 for_each_cpu(j, policy->real_cpus) 1540 remove_cpu_dev_symlink(policy, j, get_cpu_device(j)); 1541 1542 out_offline_policy: 1543 if (cpufreq_driver->offline) 1544 cpufreq_driver->offline(policy); 1545 1546 out_exit_policy: 1547 if (cpufreq_driver->exit) 1548 cpufreq_driver->exit(policy); 1549 1550 out_free_policy: 1551 cpumask_clear(policy->cpus); 1552 up_write(&policy->rwsem); 1553 1554 cpufreq_policy_free(policy); 1555 return ret; 1556 } 1557 1558 /** 1559 * cpufreq_add_dev - the cpufreq interface for a CPU device. 1560 * @dev: CPU device. 1561 * @sif: Subsystem interface structure pointer (not used) 1562 */ 1563 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 1564 { 1565 struct cpufreq_policy *policy; 1566 unsigned cpu = dev->id; 1567 int ret; 1568 1569 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu); 1570 1571 if (cpu_online(cpu)) { 1572 ret = cpufreq_online(cpu); 1573 if (ret) 1574 return ret; 1575 } 1576 1577 /* Create sysfs link on CPU registration */ 1578 policy = per_cpu(cpufreq_cpu_data, cpu); 1579 if (policy) 1580 add_cpu_dev_symlink(policy, cpu, dev); 1581 1582 return 0; 1583 } 1584 1585 static void __cpufreq_offline(unsigned int cpu, struct cpufreq_policy *policy) 1586 { 1587 int ret; 1588 1589 if (has_target()) 1590 cpufreq_stop_governor(policy); 1591 1592 cpumask_clear_cpu(cpu, policy->cpus); 1593 1594 if (!policy_is_inactive(policy)) { 1595 /* Nominate a new CPU if necessary. */ 1596 if (cpu == policy->cpu) 1597 policy->cpu = cpumask_any(policy->cpus); 1598 1599 /* Start the governor again for the active policy. */ 1600 if (has_target()) { 1601 ret = cpufreq_start_governor(policy); 1602 if (ret) 1603 pr_err("%s: Failed to start governor\n", __func__); 1604 } 1605 1606 return; 1607 } 1608 1609 if (has_target()) 1610 strncpy(policy->last_governor, policy->governor->name, 1611 CPUFREQ_NAME_LEN); 1612 else 1613 policy->last_policy = policy->policy; 1614 1615 if (cpufreq_thermal_control_enabled(cpufreq_driver)) { 1616 cpufreq_cooling_unregister(policy->cdev); 1617 policy->cdev = NULL; 1618 } 1619 1620 if (has_target()) 1621 cpufreq_exit_governor(policy); 1622 1623 /* 1624 * Perform the ->offline() during light-weight tear-down, as 1625 * that allows fast recovery when the CPU comes back. 1626 */ 1627 if (cpufreq_driver->offline) { 1628 cpufreq_driver->offline(policy); 1629 } else if (cpufreq_driver->exit) { 1630 cpufreq_driver->exit(policy); 1631 policy->freq_table = NULL; 1632 } 1633 } 1634 1635 static int cpufreq_offline(unsigned int cpu) 1636 { 1637 struct cpufreq_policy *policy; 1638 1639 pr_debug("%s: unregistering CPU %u\n", __func__, cpu); 1640 1641 policy = cpufreq_cpu_get_raw(cpu); 1642 if (!policy) { 1643 pr_debug("%s: No cpu_data found\n", __func__); 1644 return 0; 1645 } 1646 1647 down_write(&policy->rwsem); 1648 1649 __cpufreq_offline(cpu, policy); 1650 1651 up_write(&policy->rwsem); 1652 return 0; 1653 } 1654 1655 /* 1656 * cpufreq_remove_dev - remove a CPU device 1657 * 1658 * Removes the cpufreq interface for a CPU device. 1659 */ 1660 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif) 1661 { 1662 unsigned int cpu = dev->id; 1663 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1664 1665 if (!policy) 1666 return; 1667 1668 down_write(&policy->rwsem); 1669 1670 if (cpu_online(cpu)) 1671 __cpufreq_offline(cpu, policy); 1672 1673 remove_cpu_dev_symlink(policy, cpu, dev); 1674 1675 if (!cpumask_empty(policy->real_cpus)) { 1676 up_write(&policy->rwsem); 1677 return; 1678 } 1679 1680 /* We did light-weight exit earlier, do full tear down now */ 1681 if (cpufreq_driver->offline) 1682 cpufreq_driver->exit(policy); 1683 1684 up_write(&policy->rwsem); 1685 1686 cpufreq_policy_free(policy); 1687 } 1688 1689 /** 1690 * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference. 1691 * @policy: Policy managing CPUs. 1692 * @new_freq: New CPU frequency. 1693 * 1694 * Adjust to the current frequency first and clean up later by either calling 1695 * cpufreq_update_policy(), or scheduling handle_update(). 1696 */ 1697 static void cpufreq_out_of_sync(struct cpufreq_policy *policy, 1698 unsigned int new_freq) 1699 { 1700 struct cpufreq_freqs freqs; 1701 1702 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n", 1703 policy->cur, new_freq); 1704 1705 freqs.old = policy->cur; 1706 freqs.new = new_freq; 1707 1708 cpufreq_freq_transition_begin(policy, &freqs); 1709 cpufreq_freq_transition_end(policy, &freqs, 0); 1710 } 1711 1712 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update) 1713 { 1714 unsigned int new_freq; 1715 1716 new_freq = cpufreq_driver->get(policy->cpu); 1717 if (!new_freq) 1718 return 0; 1719 1720 /* 1721 * If fast frequency switching is used with the given policy, the check 1722 * against policy->cur is pointless, so skip it in that case. 1723 */ 1724 if (policy->fast_switch_enabled || !has_target()) 1725 return new_freq; 1726 1727 if (policy->cur != new_freq) { 1728 /* 1729 * For some platforms, the frequency returned by hardware may be 1730 * slightly different from what is provided in the frequency 1731 * table, for example hardware may return 499 MHz instead of 500 1732 * MHz. In such cases it is better to avoid getting into 1733 * unnecessary frequency updates. 1734 */ 1735 if (abs(policy->cur - new_freq) < KHZ_PER_MHZ) 1736 return policy->cur; 1737 1738 cpufreq_out_of_sync(policy, new_freq); 1739 if (update) 1740 schedule_work(&policy->update); 1741 } 1742 1743 return new_freq; 1744 } 1745 1746 /** 1747 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur 1748 * @cpu: CPU number 1749 * 1750 * This is the last known freq, without actually getting it from the driver. 1751 * Return value will be same as what is shown in scaling_cur_freq in sysfs. 1752 */ 1753 unsigned int cpufreq_quick_get(unsigned int cpu) 1754 { 1755 struct cpufreq_policy *policy; 1756 unsigned int ret_freq = 0; 1757 unsigned long flags; 1758 1759 read_lock_irqsave(&cpufreq_driver_lock, flags); 1760 1761 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) { 1762 ret_freq = cpufreq_driver->get(cpu); 1763 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1764 return ret_freq; 1765 } 1766 1767 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1768 1769 policy = cpufreq_cpu_get(cpu); 1770 if (policy) { 1771 ret_freq = policy->cur; 1772 cpufreq_cpu_put(policy); 1773 } 1774 1775 return ret_freq; 1776 } 1777 EXPORT_SYMBOL(cpufreq_quick_get); 1778 1779 /** 1780 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU 1781 * @cpu: CPU number 1782 * 1783 * Just return the max possible frequency for a given CPU. 1784 */ 1785 unsigned int cpufreq_quick_get_max(unsigned int cpu) 1786 { 1787 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1788 unsigned int ret_freq = 0; 1789 1790 if (policy) { 1791 ret_freq = policy->max; 1792 cpufreq_cpu_put(policy); 1793 } 1794 1795 return ret_freq; 1796 } 1797 EXPORT_SYMBOL(cpufreq_quick_get_max); 1798 1799 /** 1800 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU 1801 * @cpu: CPU number 1802 * 1803 * The default return value is the max_freq field of cpuinfo. 1804 */ 1805 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu) 1806 { 1807 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1808 unsigned int ret_freq = 0; 1809 1810 if (policy) { 1811 ret_freq = policy->cpuinfo.max_freq; 1812 cpufreq_cpu_put(policy); 1813 } 1814 1815 return ret_freq; 1816 } 1817 EXPORT_SYMBOL(cpufreq_get_hw_max_freq); 1818 1819 static unsigned int __cpufreq_get(struct cpufreq_policy *policy) 1820 { 1821 if (unlikely(policy_is_inactive(policy))) 1822 return 0; 1823 1824 return cpufreq_verify_current_freq(policy, true); 1825 } 1826 1827 /** 1828 * cpufreq_get - get the current CPU frequency (in kHz) 1829 * @cpu: CPU number 1830 * 1831 * Get the CPU current (static) CPU frequency 1832 */ 1833 unsigned int cpufreq_get(unsigned int cpu) 1834 { 1835 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1836 unsigned int ret_freq = 0; 1837 1838 if (policy) { 1839 down_read(&policy->rwsem); 1840 if (cpufreq_driver->get) 1841 ret_freq = __cpufreq_get(policy); 1842 up_read(&policy->rwsem); 1843 1844 cpufreq_cpu_put(policy); 1845 } 1846 1847 return ret_freq; 1848 } 1849 EXPORT_SYMBOL(cpufreq_get); 1850 1851 static struct subsys_interface cpufreq_interface = { 1852 .name = "cpufreq", 1853 .subsys = &cpu_subsys, 1854 .add_dev = cpufreq_add_dev, 1855 .remove_dev = cpufreq_remove_dev, 1856 }; 1857 1858 /* 1859 * In case platform wants some specific frequency to be configured 1860 * during suspend.. 1861 */ 1862 int cpufreq_generic_suspend(struct cpufreq_policy *policy) 1863 { 1864 int ret; 1865 1866 if (!policy->suspend_freq) { 1867 pr_debug("%s: suspend_freq not defined\n", __func__); 1868 return 0; 1869 } 1870 1871 pr_debug("%s: Setting suspend-freq: %u\n", __func__, 1872 policy->suspend_freq); 1873 1874 ret = __cpufreq_driver_target(policy, policy->suspend_freq, 1875 CPUFREQ_RELATION_H); 1876 if (ret) 1877 pr_err("%s: unable to set suspend-freq: %u. err: %d\n", 1878 __func__, policy->suspend_freq, ret); 1879 1880 return ret; 1881 } 1882 EXPORT_SYMBOL(cpufreq_generic_suspend); 1883 1884 /** 1885 * cpufreq_suspend() - Suspend CPUFreq governors. 1886 * 1887 * Called during system wide Suspend/Hibernate cycles for suspending governors 1888 * as some platforms can't change frequency after this point in suspend cycle. 1889 * Because some of the devices (like: i2c, regulators, etc) they use for 1890 * changing frequency are suspended quickly after this point. 1891 */ 1892 void cpufreq_suspend(void) 1893 { 1894 struct cpufreq_policy *policy; 1895 1896 if (!cpufreq_driver) 1897 return; 1898 1899 if (!has_target() && !cpufreq_driver->suspend) 1900 goto suspend; 1901 1902 pr_debug("%s: Suspending Governors\n", __func__); 1903 1904 for_each_active_policy(policy) { 1905 if (has_target()) { 1906 down_write(&policy->rwsem); 1907 cpufreq_stop_governor(policy); 1908 up_write(&policy->rwsem); 1909 } 1910 1911 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy)) 1912 pr_err("%s: Failed to suspend driver: %s\n", __func__, 1913 cpufreq_driver->name); 1914 } 1915 1916 suspend: 1917 cpufreq_suspended = true; 1918 } 1919 1920 /** 1921 * cpufreq_resume() - Resume CPUFreq governors. 1922 * 1923 * Called during system wide Suspend/Hibernate cycle for resuming governors that 1924 * are suspended with cpufreq_suspend(). 1925 */ 1926 void cpufreq_resume(void) 1927 { 1928 struct cpufreq_policy *policy; 1929 int ret; 1930 1931 if (!cpufreq_driver) 1932 return; 1933 1934 if (unlikely(!cpufreq_suspended)) 1935 return; 1936 1937 cpufreq_suspended = false; 1938 1939 if (!has_target() && !cpufreq_driver->resume) 1940 return; 1941 1942 pr_debug("%s: Resuming Governors\n", __func__); 1943 1944 for_each_active_policy(policy) { 1945 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) { 1946 pr_err("%s: Failed to resume driver: %p\n", __func__, 1947 policy); 1948 } else if (has_target()) { 1949 down_write(&policy->rwsem); 1950 ret = cpufreq_start_governor(policy); 1951 up_write(&policy->rwsem); 1952 1953 if (ret) 1954 pr_err("%s: Failed to start governor for policy: %p\n", 1955 __func__, policy); 1956 } 1957 } 1958 } 1959 1960 /** 1961 * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones. 1962 * @flags: Flags to test against the current cpufreq driver's flags. 1963 * 1964 * Assumes that the driver is there, so callers must ensure that this is the 1965 * case. 1966 */ 1967 bool cpufreq_driver_test_flags(u16 flags) 1968 { 1969 return !!(cpufreq_driver->flags & flags); 1970 } 1971 1972 /** 1973 * cpufreq_get_current_driver - Return the current driver's name. 1974 * 1975 * Return the name string of the currently registered cpufreq driver or NULL if 1976 * none. 1977 */ 1978 const char *cpufreq_get_current_driver(void) 1979 { 1980 if (cpufreq_driver) 1981 return cpufreq_driver->name; 1982 1983 return NULL; 1984 } 1985 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver); 1986 1987 /** 1988 * cpufreq_get_driver_data - Return current driver data. 1989 * 1990 * Return the private data of the currently registered cpufreq driver, or NULL 1991 * if no cpufreq driver has been registered. 1992 */ 1993 void *cpufreq_get_driver_data(void) 1994 { 1995 if (cpufreq_driver) 1996 return cpufreq_driver->driver_data; 1997 1998 return NULL; 1999 } 2000 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data); 2001 2002 /********************************************************************* 2003 * NOTIFIER LISTS INTERFACE * 2004 *********************************************************************/ 2005 2006 /** 2007 * cpufreq_register_notifier - Register a notifier with cpufreq. 2008 * @nb: notifier function to register. 2009 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER. 2010 * 2011 * Add a notifier to one of two lists: either a list of notifiers that run on 2012 * clock rate changes (once before and once after every transition), or a list 2013 * of notifiers that ron on cpufreq policy changes. 2014 * 2015 * This function may sleep and it has the same return values as 2016 * blocking_notifier_chain_register(). 2017 */ 2018 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 2019 { 2020 int ret; 2021 2022 if (cpufreq_disabled()) 2023 return -EINVAL; 2024 2025 switch (list) { 2026 case CPUFREQ_TRANSITION_NOTIFIER: 2027 mutex_lock(&cpufreq_fast_switch_lock); 2028 2029 if (cpufreq_fast_switch_count > 0) { 2030 mutex_unlock(&cpufreq_fast_switch_lock); 2031 return -EBUSY; 2032 } 2033 ret = srcu_notifier_chain_register( 2034 &cpufreq_transition_notifier_list, nb); 2035 if (!ret) 2036 cpufreq_fast_switch_count--; 2037 2038 mutex_unlock(&cpufreq_fast_switch_lock); 2039 break; 2040 case CPUFREQ_POLICY_NOTIFIER: 2041 ret = blocking_notifier_chain_register( 2042 &cpufreq_policy_notifier_list, nb); 2043 break; 2044 default: 2045 ret = -EINVAL; 2046 } 2047 2048 return ret; 2049 } 2050 EXPORT_SYMBOL(cpufreq_register_notifier); 2051 2052 /** 2053 * cpufreq_unregister_notifier - Unregister a notifier from cpufreq. 2054 * @nb: notifier block to be unregistered. 2055 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER. 2056 * 2057 * Remove a notifier from one of the cpufreq notifier lists. 2058 * 2059 * This function may sleep and it has the same return values as 2060 * blocking_notifier_chain_unregister(). 2061 */ 2062 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 2063 { 2064 int ret; 2065 2066 if (cpufreq_disabled()) 2067 return -EINVAL; 2068 2069 switch (list) { 2070 case CPUFREQ_TRANSITION_NOTIFIER: 2071 mutex_lock(&cpufreq_fast_switch_lock); 2072 2073 ret = srcu_notifier_chain_unregister( 2074 &cpufreq_transition_notifier_list, nb); 2075 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0)) 2076 cpufreq_fast_switch_count++; 2077 2078 mutex_unlock(&cpufreq_fast_switch_lock); 2079 break; 2080 case CPUFREQ_POLICY_NOTIFIER: 2081 ret = blocking_notifier_chain_unregister( 2082 &cpufreq_policy_notifier_list, nb); 2083 break; 2084 default: 2085 ret = -EINVAL; 2086 } 2087 2088 return ret; 2089 } 2090 EXPORT_SYMBOL(cpufreq_unregister_notifier); 2091 2092 2093 /********************************************************************* 2094 * GOVERNORS * 2095 *********************************************************************/ 2096 2097 /** 2098 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch. 2099 * @policy: cpufreq policy to switch the frequency for. 2100 * @target_freq: New frequency to set (may be approximate). 2101 * 2102 * Carry out a fast frequency switch without sleeping. 2103 * 2104 * The driver's ->fast_switch() callback invoked by this function must be 2105 * suitable for being called from within RCU-sched read-side critical sections 2106 * and it is expected to select the minimum available frequency greater than or 2107 * equal to @target_freq (CPUFREQ_RELATION_L). 2108 * 2109 * This function must not be called if policy->fast_switch_enabled is unset. 2110 * 2111 * Governors calling this function must guarantee that it will never be invoked 2112 * twice in parallel for the same policy and that it will never be called in 2113 * parallel with either ->target() or ->target_index() for the same policy. 2114 * 2115 * Returns the actual frequency set for the CPU. 2116 * 2117 * If 0 is returned by the driver's ->fast_switch() callback to indicate an 2118 * error condition, the hardware configuration must be preserved. 2119 */ 2120 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy, 2121 unsigned int target_freq) 2122 { 2123 unsigned int freq; 2124 int cpu; 2125 2126 target_freq = clamp_val(target_freq, policy->min, policy->max); 2127 freq = cpufreq_driver->fast_switch(policy, target_freq); 2128 2129 if (!freq) 2130 return 0; 2131 2132 policy->cur = freq; 2133 arch_set_freq_scale(policy->related_cpus, freq, 2134 policy->cpuinfo.max_freq); 2135 cpufreq_stats_record_transition(policy, freq); 2136 2137 if (trace_cpu_frequency_enabled()) { 2138 for_each_cpu(cpu, policy->cpus) 2139 trace_cpu_frequency(freq, cpu); 2140 } 2141 2142 return freq; 2143 } 2144 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch); 2145 2146 /** 2147 * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go. 2148 * @cpu: Target CPU. 2149 * @min_perf: Minimum (required) performance level (units of @capacity). 2150 * @target_perf: Target (desired) performance level (units of @capacity). 2151 * @capacity: Capacity of the target CPU. 2152 * 2153 * Carry out a fast performance level switch of @cpu without sleeping. 2154 * 2155 * The driver's ->adjust_perf() callback invoked by this function must be 2156 * suitable for being called from within RCU-sched read-side critical sections 2157 * and it is expected to select a suitable performance level equal to or above 2158 * @min_perf and preferably equal to or below @target_perf. 2159 * 2160 * This function must not be called if policy->fast_switch_enabled is unset. 2161 * 2162 * Governors calling this function must guarantee that it will never be invoked 2163 * twice in parallel for the same CPU and that it will never be called in 2164 * parallel with either ->target() or ->target_index() or ->fast_switch() for 2165 * the same CPU. 2166 */ 2167 void cpufreq_driver_adjust_perf(unsigned int cpu, 2168 unsigned long min_perf, 2169 unsigned long target_perf, 2170 unsigned long capacity) 2171 { 2172 cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity); 2173 } 2174 2175 /** 2176 * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback. 2177 * 2178 * Return 'true' if the ->adjust_perf callback is present for the 2179 * current driver or 'false' otherwise. 2180 */ 2181 bool cpufreq_driver_has_adjust_perf(void) 2182 { 2183 return !!cpufreq_driver->adjust_perf; 2184 } 2185 2186 /* Must set freqs->new to intermediate frequency */ 2187 static int __target_intermediate(struct cpufreq_policy *policy, 2188 struct cpufreq_freqs *freqs, int index) 2189 { 2190 int ret; 2191 2192 freqs->new = cpufreq_driver->get_intermediate(policy, index); 2193 2194 /* We don't need to switch to intermediate freq */ 2195 if (!freqs->new) 2196 return 0; 2197 2198 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n", 2199 __func__, policy->cpu, freqs->old, freqs->new); 2200 2201 cpufreq_freq_transition_begin(policy, freqs); 2202 ret = cpufreq_driver->target_intermediate(policy, index); 2203 cpufreq_freq_transition_end(policy, freqs, ret); 2204 2205 if (ret) 2206 pr_err("%s: Failed to change to intermediate frequency: %d\n", 2207 __func__, ret); 2208 2209 return ret; 2210 } 2211 2212 static int __target_index(struct cpufreq_policy *policy, int index) 2213 { 2214 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0}; 2215 unsigned int restore_freq, intermediate_freq = 0; 2216 unsigned int newfreq = policy->freq_table[index].frequency; 2217 int retval = -EINVAL; 2218 bool notify; 2219 2220 if (newfreq == policy->cur) 2221 return 0; 2222 2223 /* Save last value to restore later on errors */ 2224 restore_freq = policy->cur; 2225 2226 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION); 2227 if (notify) { 2228 /* Handle switching to intermediate frequency */ 2229 if (cpufreq_driver->get_intermediate) { 2230 retval = __target_intermediate(policy, &freqs, index); 2231 if (retval) 2232 return retval; 2233 2234 intermediate_freq = freqs.new; 2235 /* Set old freq to intermediate */ 2236 if (intermediate_freq) 2237 freqs.old = freqs.new; 2238 } 2239 2240 freqs.new = newfreq; 2241 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n", 2242 __func__, policy->cpu, freqs.old, freqs.new); 2243 2244 cpufreq_freq_transition_begin(policy, &freqs); 2245 } 2246 2247 retval = cpufreq_driver->target_index(policy, index); 2248 if (retval) 2249 pr_err("%s: Failed to change cpu frequency: %d\n", __func__, 2250 retval); 2251 2252 if (notify) { 2253 cpufreq_freq_transition_end(policy, &freqs, retval); 2254 2255 /* 2256 * Failed after setting to intermediate freq? Driver should have 2257 * reverted back to initial frequency and so should we. Check 2258 * here for intermediate_freq instead of get_intermediate, in 2259 * case we haven't switched to intermediate freq at all. 2260 */ 2261 if (unlikely(retval && intermediate_freq)) { 2262 freqs.old = intermediate_freq; 2263 freqs.new = restore_freq; 2264 cpufreq_freq_transition_begin(policy, &freqs); 2265 cpufreq_freq_transition_end(policy, &freqs, 0); 2266 } 2267 } 2268 2269 return retval; 2270 } 2271 2272 int __cpufreq_driver_target(struct cpufreq_policy *policy, 2273 unsigned int target_freq, 2274 unsigned int relation) 2275 { 2276 unsigned int old_target_freq = target_freq; 2277 2278 if (cpufreq_disabled()) 2279 return -ENODEV; 2280 2281 target_freq = __resolve_freq(policy, target_freq, relation); 2282 2283 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n", 2284 policy->cpu, target_freq, relation, old_target_freq); 2285 2286 /* 2287 * This might look like a redundant call as we are checking it again 2288 * after finding index. But it is left intentionally for cases where 2289 * exactly same freq is called again and so we can save on few function 2290 * calls. 2291 */ 2292 if (target_freq == policy->cur && 2293 !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS)) 2294 return 0; 2295 2296 if (cpufreq_driver->target) { 2297 /* 2298 * If the driver hasn't setup a single inefficient frequency, 2299 * it's unlikely it knows how to decode CPUFREQ_RELATION_E. 2300 */ 2301 if (!policy->efficiencies_available) 2302 relation &= ~CPUFREQ_RELATION_E; 2303 2304 return cpufreq_driver->target(policy, target_freq, relation); 2305 } 2306 2307 if (!cpufreq_driver->target_index) 2308 return -EINVAL; 2309 2310 return __target_index(policy, policy->cached_resolved_idx); 2311 } 2312 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 2313 2314 int cpufreq_driver_target(struct cpufreq_policy *policy, 2315 unsigned int target_freq, 2316 unsigned int relation) 2317 { 2318 int ret; 2319 2320 down_write(&policy->rwsem); 2321 2322 ret = __cpufreq_driver_target(policy, target_freq, relation); 2323 2324 up_write(&policy->rwsem); 2325 2326 return ret; 2327 } 2328 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 2329 2330 __weak struct cpufreq_governor *cpufreq_fallback_governor(void) 2331 { 2332 return NULL; 2333 } 2334 2335 static int cpufreq_init_governor(struct cpufreq_policy *policy) 2336 { 2337 int ret; 2338 2339 /* Don't start any governor operations if we are entering suspend */ 2340 if (cpufreq_suspended) 2341 return 0; 2342 /* 2343 * Governor might not be initiated here if ACPI _PPC changed 2344 * notification happened, so check it. 2345 */ 2346 if (!policy->governor) 2347 return -EINVAL; 2348 2349 /* Platform doesn't want dynamic frequency switching ? */ 2350 if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING && 2351 cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) { 2352 struct cpufreq_governor *gov = cpufreq_fallback_governor(); 2353 2354 if (gov) { 2355 pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n", 2356 policy->governor->name, gov->name); 2357 policy->governor = gov; 2358 } else { 2359 return -EINVAL; 2360 } 2361 } 2362 2363 if (!try_module_get(policy->governor->owner)) 2364 return -EINVAL; 2365 2366 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2367 2368 if (policy->governor->init) { 2369 ret = policy->governor->init(policy); 2370 if (ret) { 2371 module_put(policy->governor->owner); 2372 return ret; 2373 } 2374 } 2375 2376 policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET); 2377 2378 return 0; 2379 } 2380 2381 static void cpufreq_exit_governor(struct cpufreq_policy *policy) 2382 { 2383 if (cpufreq_suspended || !policy->governor) 2384 return; 2385 2386 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2387 2388 if (policy->governor->exit) 2389 policy->governor->exit(policy); 2390 2391 module_put(policy->governor->owner); 2392 } 2393 2394 int cpufreq_start_governor(struct cpufreq_policy *policy) 2395 { 2396 int ret; 2397 2398 if (cpufreq_suspended) 2399 return 0; 2400 2401 if (!policy->governor) 2402 return -EINVAL; 2403 2404 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2405 2406 if (cpufreq_driver->get) 2407 cpufreq_verify_current_freq(policy, false); 2408 2409 if (policy->governor->start) { 2410 ret = policy->governor->start(policy); 2411 if (ret) 2412 return ret; 2413 } 2414 2415 if (policy->governor->limits) 2416 policy->governor->limits(policy); 2417 2418 return 0; 2419 } 2420 2421 void cpufreq_stop_governor(struct cpufreq_policy *policy) 2422 { 2423 if (cpufreq_suspended || !policy->governor) 2424 return; 2425 2426 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2427 2428 if (policy->governor->stop) 2429 policy->governor->stop(policy); 2430 } 2431 2432 static void cpufreq_governor_limits(struct cpufreq_policy *policy) 2433 { 2434 if (cpufreq_suspended || !policy->governor) 2435 return; 2436 2437 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2438 2439 if (policy->governor->limits) 2440 policy->governor->limits(policy); 2441 } 2442 2443 int cpufreq_register_governor(struct cpufreq_governor *governor) 2444 { 2445 int err; 2446 2447 if (!governor) 2448 return -EINVAL; 2449 2450 if (cpufreq_disabled()) 2451 return -ENODEV; 2452 2453 mutex_lock(&cpufreq_governor_mutex); 2454 2455 err = -EBUSY; 2456 if (!find_governor(governor->name)) { 2457 err = 0; 2458 list_add(&governor->governor_list, &cpufreq_governor_list); 2459 } 2460 2461 mutex_unlock(&cpufreq_governor_mutex); 2462 return err; 2463 } 2464 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 2465 2466 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 2467 { 2468 struct cpufreq_policy *policy; 2469 unsigned long flags; 2470 2471 if (!governor) 2472 return; 2473 2474 if (cpufreq_disabled()) 2475 return; 2476 2477 /* clear last_governor for all inactive policies */ 2478 read_lock_irqsave(&cpufreq_driver_lock, flags); 2479 for_each_inactive_policy(policy) { 2480 if (!strcmp(policy->last_governor, governor->name)) { 2481 policy->governor = NULL; 2482 strcpy(policy->last_governor, "\0"); 2483 } 2484 } 2485 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 2486 2487 mutex_lock(&cpufreq_governor_mutex); 2488 list_del(&governor->governor_list); 2489 mutex_unlock(&cpufreq_governor_mutex); 2490 } 2491 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 2492 2493 2494 /********************************************************************* 2495 * POLICY INTERFACE * 2496 *********************************************************************/ 2497 2498 /** 2499 * cpufreq_get_policy - get the current cpufreq_policy 2500 * @policy: struct cpufreq_policy into which the current cpufreq_policy 2501 * is written 2502 * @cpu: CPU to find the policy for 2503 * 2504 * Reads the current cpufreq policy. 2505 */ 2506 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 2507 { 2508 struct cpufreq_policy *cpu_policy; 2509 if (!policy) 2510 return -EINVAL; 2511 2512 cpu_policy = cpufreq_cpu_get(cpu); 2513 if (!cpu_policy) 2514 return -EINVAL; 2515 2516 memcpy(policy, cpu_policy, sizeof(*policy)); 2517 2518 cpufreq_cpu_put(cpu_policy); 2519 return 0; 2520 } 2521 EXPORT_SYMBOL(cpufreq_get_policy); 2522 2523 /** 2524 * cpufreq_set_policy - Modify cpufreq policy parameters. 2525 * @policy: Policy object to modify. 2526 * @new_gov: Policy governor pointer. 2527 * @new_pol: Policy value (for drivers with built-in governors). 2528 * 2529 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency 2530 * limits to be set for the policy, update @policy with the verified limits 2531 * values and either invoke the driver's ->setpolicy() callback (if present) or 2532 * carry out a governor update for @policy. That is, run the current governor's 2533 * ->limits() callback (if @new_gov points to the same object as the one in 2534 * @policy) or replace the governor for @policy with @new_gov. 2535 * 2536 * The cpuinfo part of @policy is not updated by this function. 2537 */ 2538 static int cpufreq_set_policy(struct cpufreq_policy *policy, 2539 struct cpufreq_governor *new_gov, 2540 unsigned int new_pol) 2541 { 2542 struct cpufreq_policy_data new_data; 2543 struct cpufreq_governor *old_gov; 2544 int ret; 2545 2546 memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo)); 2547 new_data.freq_table = policy->freq_table; 2548 new_data.cpu = policy->cpu; 2549 /* 2550 * PM QoS framework collects all the requests from users and provide us 2551 * the final aggregated value here. 2552 */ 2553 new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN); 2554 new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX); 2555 2556 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", 2557 new_data.cpu, new_data.min, new_data.max); 2558 2559 /* 2560 * Verify that the CPU speed can be set within these limits and make sure 2561 * that min <= max. 2562 */ 2563 ret = cpufreq_driver->verify(&new_data); 2564 if (ret) 2565 return ret; 2566 2567 /* 2568 * Resolve policy min/max to available frequencies. It ensures 2569 * no frequency resolution will neither overshoot the requested maximum 2570 * nor undershoot the requested minimum. 2571 */ 2572 policy->min = new_data.min; 2573 policy->max = new_data.max; 2574 policy->min = __resolve_freq(policy, policy->min, CPUFREQ_RELATION_L); 2575 policy->max = __resolve_freq(policy, policy->max, CPUFREQ_RELATION_H); 2576 trace_cpu_frequency_limits(policy); 2577 2578 policy->cached_target_freq = UINT_MAX; 2579 2580 pr_debug("new min and max freqs are %u - %u kHz\n", 2581 policy->min, policy->max); 2582 2583 if (cpufreq_driver->setpolicy) { 2584 policy->policy = new_pol; 2585 pr_debug("setting range\n"); 2586 return cpufreq_driver->setpolicy(policy); 2587 } 2588 2589 if (new_gov == policy->governor) { 2590 pr_debug("governor limits update\n"); 2591 cpufreq_governor_limits(policy); 2592 return 0; 2593 } 2594 2595 pr_debug("governor switch\n"); 2596 2597 /* save old, working values */ 2598 old_gov = policy->governor; 2599 /* end old governor */ 2600 if (old_gov) { 2601 cpufreq_stop_governor(policy); 2602 cpufreq_exit_governor(policy); 2603 } 2604 2605 /* start new governor */ 2606 policy->governor = new_gov; 2607 ret = cpufreq_init_governor(policy); 2608 if (!ret) { 2609 ret = cpufreq_start_governor(policy); 2610 if (!ret) { 2611 pr_debug("governor change\n"); 2612 sched_cpufreq_governor_change(policy, old_gov); 2613 return 0; 2614 } 2615 cpufreq_exit_governor(policy); 2616 } 2617 2618 /* new governor failed, so re-start old one */ 2619 pr_debug("starting governor %s failed\n", policy->governor->name); 2620 if (old_gov) { 2621 policy->governor = old_gov; 2622 if (cpufreq_init_governor(policy)) 2623 policy->governor = NULL; 2624 else 2625 cpufreq_start_governor(policy); 2626 } 2627 2628 return ret; 2629 } 2630 2631 /** 2632 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy. 2633 * @cpu: CPU to re-evaluate the policy for. 2634 * 2635 * Update the current frequency for the cpufreq policy of @cpu and use 2636 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the 2637 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback 2638 * for the policy in question, among other things. 2639 */ 2640 void cpufreq_update_policy(unsigned int cpu) 2641 { 2642 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu); 2643 2644 if (!policy) 2645 return; 2646 2647 /* 2648 * BIOS might change freq behind our back 2649 * -> ask driver for current freq and notify governors about a change 2650 */ 2651 if (cpufreq_driver->get && has_target() && 2652 (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false)))) 2653 goto unlock; 2654 2655 refresh_frequency_limits(policy); 2656 2657 unlock: 2658 cpufreq_cpu_release(policy); 2659 } 2660 EXPORT_SYMBOL(cpufreq_update_policy); 2661 2662 /** 2663 * cpufreq_update_limits - Update policy limits for a given CPU. 2664 * @cpu: CPU to update the policy limits for. 2665 * 2666 * Invoke the driver's ->update_limits callback if present or call 2667 * cpufreq_update_policy() for @cpu. 2668 */ 2669 void cpufreq_update_limits(unsigned int cpu) 2670 { 2671 if (cpufreq_driver->update_limits) 2672 cpufreq_driver->update_limits(cpu); 2673 else 2674 cpufreq_update_policy(cpu); 2675 } 2676 EXPORT_SYMBOL_GPL(cpufreq_update_limits); 2677 2678 /********************************************************************* 2679 * BOOST * 2680 *********************************************************************/ 2681 static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state) 2682 { 2683 int ret; 2684 2685 if (!policy->freq_table) 2686 return -ENXIO; 2687 2688 ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table); 2689 if (ret) { 2690 pr_err("%s: Policy frequency update failed\n", __func__); 2691 return ret; 2692 } 2693 2694 ret = freq_qos_update_request(policy->max_freq_req, policy->max); 2695 if (ret < 0) 2696 return ret; 2697 2698 return 0; 2699 } 2700 2701 int cpufreq_boost_trigger_state(int state) 2702 { 2703 struct cpufreq_policy *policy; 2704 unsigned long flags; 2705 int ret = 0; 2706 2707 if (cpufreq_driver->boost_enabled == state) 2708 return 0; 2709 2710 write_lock_irqsave(&cpufreq_driver_lock, flags); 2711 cpufreq_driver->boost_enabled = state; 2712 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2713 2714 cpus_read_lock(); 2715 for_each_active_policy(policy) { 2716 ret = cpufreq_driver->set_boost(policy, state); 2717 if (ret) 2718 goto err_reset_state; 2719 } 2720 cpus_read_unlock(); 2721 2722 return 0; 2723 2724 err_reset_state: 2725 cpus_read_unlock(); 2726 2727 write_lock_irqsave(&cpufreq_driver_lock, flags); 2728 cpufreq_driver->boost_enabled = !state; 2729 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2730 2731 pr_err("%s: Cannot %s BOOST\n", 2732 __func__, state ? "enable" : "disable"); 2733 2734 return ret; 2735 } 2736 2737 static bool cpufreq_boost_supported(void) 2738 { 2739 return cpufreq_driver->set_boost; 2740 } 2741 2742 static int create_boost_sysfs_file(void) 2743 { 2744 int ret; 2745 2746 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr); 2747 if (ret) 2748 pr_err("%s: cannot register global BOOST sysfs file\n", 2749 __func__); 2750 2751 return ret; 2752 } 2753 2754 static void remove_boost_sysfs_file(void) 2755 { 2756 if (cpufreq_boost_supported()) 2757 sysfs_remove_file(cpufreq_global_kobject, &boost.attr); 2758 } 2759 2760 int cpufreq_enable_boost_support(void) 2761 { 2762 if (!cpufreq_driver) 2763 return -EINVAL; 2764 2765 if (cpufreq_boost_supported()) 2766 return 0; 2767 2768 cpufreq_driver->set_boost = cpufreq_boost_set_sw; 2769 2770 /* This will get removed on driver unregister */ 2771 return create_boost_sysfs_file(); 2772 } 2773 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support); 2774 2775 int cpufreq_boost_enabled(void) 2776 { 2777 return cpufreq_driver->boost_enabled; 2778 } 2779 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled); 2780 2781 /********************************************************************* 2782 * REGISTER / UNREGISTER CPUFREQ DRIVER * 2783 *********************************************************************/ 2784 static enum cpuhp_state hp_online; 2785 2786 static int cpuhp_cpufreq_online(unsigned int cpu) 2787 { 2788 cpufreq_online(cpu); 2789 2790 return 0; 2791 } 2792 2793 static int cpuhp_cpufreq_offline(unsigned int cpu) 2794 { 2795 cpufreq_offline(cpu); 2796 2797 return 0; 2798 } 2799 2800 /** 2801 * cpufreq_register_driver - register a CPU Frequency driver 2802 * @driver_data: A struct cpufreq_driver containing the values# 2803 * submitted by the CPU Frequency driver. 2804 * 2805 * Registers a CPU Frequency driver to this core code. This code 2806 * returns zero on success, -EEXIST when another driver got here first 2807 * (and isn't unregistered in the meantime). 2808 * 2809 */ 2810 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 2811 { 2812 unsigned long flags; 2813 int ret; 2814 2815 if (cpufreq_disabled()) 2816 return -ENODEV; 2817 2818 /* 2819 * The cpufreq core depends heavily on the availability of device 2820 * structure, make sure they are available before proceeding further. 2821 */ 2822 if (!get_cpu_device(0)) 2823 return -EPROBE_DEFER; 2824 2825 if (!driver_data || !driver_data->verify || !driver_data->init || 2826 !(driver_data->setpolicy || driver_data->target_index || 2827 driver_data->target) || 2828 (driver_data->setpolicy && (driver_data->target_index || 2829 driver_data->target)) || 2830 (!driver_data->get_intermediate != !driver_data->target_intermediate) || 2831 (!driver_data->online != !driver_data->offline)) 2832 return -EINVAL; 2833 2834 pr_debug("trying to register driver %s\n", driver_data->name); 2835 2836 /* Protect against concurrent CPU online/offline. */ 2837 cpus_read_lock(); 2838 2839 write_lock_irqsave(&cpufreq_driver_lock, flags); 2840 if (cpufreq_driver) { 2841 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2842 ret = -EEXIST; 2843 goto out; 2844 } 2845 cpufreq_driver = driver_data; 2846 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2847 2848 /* 2849 * Mark support for the scheduler's frequency invariance engine for 2850 * drivers that implement target(), target_index() or fast_switch(). 2851 */ 2852 if (!cpufreq_driver->setpolicy) { 2853 static_branch_enable_cpuslocked(&cpufreq_freq_invariance); 2854 pr_debug("supports frequency invariance"); 2855 } 2856 2857 if (driver_data->setpolicy) 2858 driver_data->flags |= CPUFREQ_CONST_LOOPS; 2859 2860 if (cpufreq_boost_supported()) { 2861 ret = create_boost_sysfs_file(); 2862 if (ret) 2863 goto err_null_driver; 2864 } 2865 2866 ret = subsys_interface_register(&cpufreq_interface); 2867 if (ret) 2868 goto err_boost_unreg; 2869 2870 if (unlikely(list_empty(&cpufreq_policy_list))) { 2871 /* if all ->init() calls failed, unregister */ 2872 ret = -ENODEV; 2873 pr_debug("%s: No CPU initialized for driver %s\n", __func__, 2874 driver_data->name); 2875 goto err_if_unreg; 2876 } 2877 2878 ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN, 2879 "cpufreq:online", 2880 cpuhp_cpufreq_online, 2881 cpuhp_cpufreq_offline); 2882 if (ret < 0) 2883 goto err_if_unreg; 2884 hp_online = ret; 2885 ret = 0; 2886 2887 pr_debug("driver %s up and running\n", driver_data->name); 2888 goto out; 2889 2890 err_if_unreg: 2891 subsys_interface_unregister(&cpufreq_interface); 2892 err_boost_unreg: 2893 remove_boost_sysfs_file(); 2894 err_null_driver: 2895 write_lock_irqsave(&cpufreq_driver_lock, flags); 2896 cpufreq_driver = NULL; 2897 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2898 out: 2899 cpus_read_unlock(); 2900 return ret; 2901 } 2902 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 2903 2904 /* 2905 * cpufreq_unregister_driver - unregister the current CPUFreq driver 2906 * 2907 * Unregister the current CPUFreq driver. Only call this if you have 2908 * the right to do so, i.e. if you have succeeded in initialising before! 2909 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 2910 * currently not initialised. 2911 */ 2912 void cpufreq_unregister_driver(struct cpufreq_driver *driver) 2913 { 2914 unsigned long flags; 2915 2916 if (WARN_ON(!cpufreq_driver || (driver != cpufreq_driver))) 2917 return; 2918 2919 pr_debug("unregistering driver %s\n", driver->name); 2920 2921 /* Protect against concurrent cpu hotplug */ 2922 cpus_read_lock(); 2923 subsys_interface_unregister(&cpufreq_interface); 2924 remove_boost_sysfs_file(); 2925 static_branch_disable_cpuslocked(&cpufreq_freq_invariance); 2926 cpuhp_remove_state_nocalls_cpuslocked(hp_online); 2927 2928 write_lock_irqsave(&cpufreq_driver_lock, flags); 2929 2930 cpufreq_driver = NULL; 2931 2932 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2933 cpus_read_unlock(); 2934 } 2935 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 2936 2937 static int __init cpufreq_core_init(void) 2938 { 2939 struct cpufreq_governor *gov = cpufreq_default_governor(); 2940 struct device *dev_root; 2941 2942 if (cpufreq_disabled()) 2943 return -ENODEV; 2944 2945 dev_root = bus_get_dev_root(&cpu_subsys); 2946 if (dev_root) { 2947 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &dev_root->kobj); 2948 put_device(dev_root); 2949 } 2950 BUG_ON(!cpufreq_global_kobject); 2951 2952 if (!strlen(default_governor)) 2953 strncpy(default_governor, gov->name, CPUFREQ_NAME_LEN); 2954 2955 return 0; 2956 } 2957 module_param(off, int, 0444); 2958 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444); 2959 core_initcall(cpufreq_core_init); 2960