xref: /linux/drivers/cpufreq/cpufreq.c (revision 0eb626590dcf1280c6d01a784e9d53a3de6d5e8e)
1 /*
2  *  linux/drivers/cpufreq/cpufreq.c
3  *
4  *  Copyright (C) 2001 Russell King
5  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
7  *
8  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
9  *	Added handling for CPU hotplug
10  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
11  *	Fix handling for CPU hotplug -- affected CPUs
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License version 2 as
15  * published by the Free Software Foundation.
16  */
17 
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/init.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/module.h>
27 #include <linux/mutex.h>
28 #include <linux/slab.h>
29 #include <linux/suspend.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/tick.h>
32 #include <trace/events/power.h>
33 
34 static LIST_HEAD(cpufreq_policy_list);
35 
36 static inline bool policy_is_inactive(struct cpufreq_policy *policy)
37 {
38 	return cpumask_empty(policy->cpus);
39 }
40 
41 /* Macros to iterate over CPU policies */
42 #define for_each_suitable_policy(__policy, __active)			 \
43 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
44 		if ((__active) == !policy_is_inactive(__policy))
45 
46 #define for_each_active_policy(__policy)		\
47 	for_each_suitable_policy(__policy, true)
48 #define for_each_inactive_policy(__policy)		\
49 	for_each_suitable_policy(__policy, false)
50 
51 #define for_each_policy(__policy)			\
52 	list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
53 
54 /* Iterate over governors */
55 static LIST_HEAD(cpufreq_governor_list);
56 #define for_each_governor(__governor)				\
57 	list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
58 
59 /**
60  * The "cpufreq driver" - the arch- or hardware-dependent low
61  * level driver of CPUFreq support, and its spinlock. This lock
62  * also protects the cpufreq_cpu_data array.
63  */
64 static struct cpufreq_driver *cpufreq_driver;
65 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
66 static DEFINE_RWLOCK(cpufreq_driver_lock);
67 
68 /* Flag to suspend/resume CPUFreq governors */
69 static bool cpufreq_suspended;
70 
71 static inline bool has_target(void)
72 {
73 	return cpufreq_driver->target_index || cpufreq_driver->target;
74 }
75 
76 /* internal prototypes */
77 static int cpufreq_governor(struct cpufreq_policy *policy, unsigned int event);
78 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
79 static int cpufreq_start_governor(struct cpufreq_policy *policy);
80 
81 /**
82  * Two notifier lists: the "policy" list is involved in the
83  * validation process for a new CPU frequency policy; the
84  * "transition" list for kernel code that needs to handle
85  * changes to devices when the CPU clock speed changes.
86  * The mutex locks both lists.
87  */
88 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
89 static struct srcu_notifier_head cpufreq_transition_notifier_list;
90 
91 static bool init_cpufreq_transition_notifier_list_called;
92 static int __init init_cpufreq_transition_notifier_list(void)
93 {
94 	srcu_init_notifier_head(&cpufreq_transition_notifier_list);
95 	init_cpufreq_transition_notifier_list_called = true;
96 	return 0;
97 }
98 pure_initcall(init_cpufreq_transition_notifier_list);
99 
100 static int off __read_mostly;
101 static int cpufreq_disabled(void)
102 {
103 	return off;
104 }
105 void disable_cpufreq(void)
106 {
107 	off = 1;
108 }
109 static DEFINE_MUTEX(cpufreq_governor_mutex);
110 
111 bool have_governor_per_policy(void)
112 {
113 	return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
114 }
115 EXPORT_SYMBOL_GPL(have_governor_per_policy);
116 
117 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
118 {
119 	if (have_governor_per_policy())
120 		return &policy->kobj;
121 	else
122 		return cpufreq_global_kobject;
123 }
124 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
125 
126 struct cpufreq_frequency_table *cpufreq_frequency_get_table(unsigned int cpu)
127 {
128 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
129 
130 	return policy && !policy_is_inactive(policy) ?
131 		policy->freq_table : NULL;
132 }
133 EXPORT_SYMBOL_GPL(cpufreq_frequency_get_table);
134 
135 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
136 {
137 	u64 idle_time;
138 	u64 cur_wall_time;
139 	u64 busy_time;
140 
141 	cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
142 
143 	busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
144 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
145 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
146 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
147 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
148 	busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
149 
150 	idle_time = cur_wall_time - busy_time;
151 	if (wall)
152 		*wall = cputime_to_usecs(cur_wall_time);
153 
154 	return cputime_to_usecs(idle_time);
155 }
156 
157 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
158 {
159 	u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
160 
161 	if (idle_time == -1ULL)
162 		return get_cpu_idle_time_jiffy(cpu, wall);
163 	else if (!io_busy)
164 		idle_time += get_cpu_iowait_time_us(cpu, wall);
165 
166 	return idle_time;
167 }
168 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
169 
170 /*
171  * This is a generic cpufreq init() routine which can be used by cpufreq
172  * drivers of SMP systems. It will do following:
173  * - validate & show freq table passed
174  * - set policies transition latency
175  * - policy->cpus with all possible CPUs
176  */
177 int cpufreq_generic_init(struct cpufreq_policy *policy,
178 		struct cpufreq_frequency_table *table,
179 		unsigned int transition_latency)
180 {
181 	int ret;
182 
183 	ret = cpufreq_table_validate_and_show(policy, table);
184 	if (ret) {
185 		pr_err("%s: invalid frequency table: %d\n", __func__, ret);
186 		return ret;
187 	}
188 
189 	policy->cpuinfo.transition_latency = transition_latency;
190 
191 	/*
192 	 * The driver only supports the SMP configuration where all processors
193 	 * share the clock and voltage and clock.
194 	 */
195 	cpumask_setall(policy->cpus);
196 
197 	return 0;
198 }
199 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
200 
201 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
202 {
203 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
204 
205 	return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
206 }
207 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
208 
209 unsigned int cpufreq_generic_get(unsigned int cpu)
210 {
211 	struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
212 
213 	if (!policy || IS_ERR(policy->clk)) {
214 		pr_err("%s: No %s associated to cpu: %d\n",
215 		       __func__, policy ? "clk" : "policy", cpu);
216 		return 0;
217 	}
218 
219 	return clk_get_rate(policy->clk) / 1000;
220 }
221 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
222 
223 /**
224  * cpufreq_cpu_get: returns policy for a cpu and marks it busy.
225  *
226  * @cpu: cpu to find policy for.
227  *
228  * This returns policy for 'cpu', returns NULL if it doesn't exist.
229  * It also increments the kobject reference count to mark it busy and so would
230  * require a corresponding call to cpufreq_cpu_put() to decrement it back.
231  * If corresponding call cpufreq_cpu_put() isn't made, the policy wouldn't be
232  * freed as that depends on the kobj count.
233  *
234  * Return: A valid policy on success, otherwise NULL on failure.
235  */
236 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
237 {
238 	struct cpufreq_policy *policy = NULL;
239 	unsigned long flags;
240 
241 	if (WARN_ON(cpu >= nr_cpu_ids))
242 		return NULL;
243 
244 	/* get the cpufreq driver */
245 	read_lock_irqsave(&cpufreq_driver_lock, flags);
246 
247 	if (cpufreq_driver) {
248 		/* get the CPU */
249 		policy = cpufreq_cpu_get_raw(cpu);
250 		if (policy)
251 			kobject_get(&policy->kobj);
252 	}
253 
254 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
255 
256 	return policy;
257 }
258 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
259 
260 /**
261  * cpufreq_cpu_put: Decrements the usage count of a policy
262  *
263  * @policy: policy earlier returned by cpufreq_cpu_get().
264  *
265  * This decrements the kobject reference count incremented earlier by calling
266  * cpufreq_cpu_get().
267  */
268 void cpufreq_cpu_put(struct cpufreq_policy *policy)
269 {
270 	kobject_put(&policy->kobj);
271 }
272 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
273 
274 /*********************************************************************
275  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
276  *********************************************************************/
277 
278 /**
279  * adjust_jiffies - adjust the system "loops_per_jiffy"
280  *
281  * This function alters the system "loops_per_jiffy" for the clock
282  * speed change. Note that loops_per_jiffy cannot be updated on SMP
283  * systems as each CPU might be scaled differently. So, use the arch
284  * per-CPU loops_per_jiffy value wherever possible.
285  */
286 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
287 {
288 #ifndef CONFIG_SMP
289 	static unsigned long l_p_j_ref;
290 	static unsigned int l_p_j_ref_freq;
291 
292 	if (ci->flags & CPUFREQ_CONST_LOOPS)
293 		return;
294 
295 	if (!l_p_j_ref_freq) {
296 		l_p_j_ref = loops_per_jiffy;
297 		l_p_j_ref_freq = ci->old;
298 		pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
299 			 l_p_j_ref, l_p_j_ref_freq);
300 	}
301 	if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
302 		loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
303 								ci->new);
304 		pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
305 			 loops_per_jiffy, ci->new);
306 	}
307 #endif
308 }
309 
310 static void __cpufreq_notify_transition(struct cpufreq_policy *policy,
311 		struct cpufreq_freqs *freqs, unsigned int state)
312 {
313 	BUG_ON(irqs_disabled());
314 
315 	if (cpufreq_disabled())
316 		return;
317 
318 	freqs->flags = cpufreq_driver->flags;
319 	pr_debug("notification %u of frequency transition to %u kHz\n",
320 		 state, freqs->new);
321 
322 	switch (state) {
323 
324 	case CPUFREQ_PRECHANGE:
325 		/* detect if the driver reported a value as "old frequency"
326 		 * which is not equal to what the cpufreq core thinks is
327 		 * "old frequency".
328 		 */
329 		if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
330 			if ((policy) && (policy->cpu == freqs->cpu) &&
331 			    (policy->cur) && (policy->cur != freqs->old)) {
332 				pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
333 					 freqs->old, policy->cur);
334 				freqs->old = policy->cur;
335 			}
336 		}
337 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
338 				CPUFREQ_PRECHANGE, freqs);
339 		adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
340 		break;
341 
342 	case CPUFREQ_POSTCHANGE:
343 		adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
344 		pr_debug("FREQ: %lu - CPU: %lu\n",
345 			 (unsigned long)freqs->new, (unsigned long)freqs->cpu);
346 		trace_cpu_frequency(freqs->new, freqs->cpu);
347 		srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
348 				CPUFREQ_POSTCHANGE, freqs);
349 		if (likely(policy) && likely(policy->cpu == freqs->cpu))
350 			policy->cur = freqs->new;
351 		break;
352 	}
353 }
354 
355 /**
356  * cpufreq_notify_transition - call notifier chain and adjust_jiffies
357  * on frequency transition.
358  *
359  * This function calls the transition notifiers and the "adjust_jiffies"
360  * function. It is called twice on all CPU frequency changes that have
361  * external effects.
362  */
363 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
364 		struct cpufreq_freqs *freqs, unsigned int state)
365 {
366 	for_each_cpu(freqs->cpu, policy->cpus)
367 		__cpufreq_notify_transition(policy, freqs, state);
368 }
369 
370 /* Do post notifications when there are chances that transition has failed */
371 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
372 		struct cpufreq_freqs *freqs, int transition_failed)
373 {
374 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
375 	if (!transition_failed)
376 		return;
377 
378 	swap(freqs->old, freqs->new);
379 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
380 	cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
381 }
382 
383 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
384 		struct cpufreq_freqs *freqs)
385 {
386 
387 	/*
388 	 * Catch double invocations of _begin() which lead to self-deadlock.
389 	 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
390 	 * doesn't invoke _begin() on their behalf, and hence the chances of
391 	 * double invocations are very low. Moreover, there are scenarios
392 	 * where these checks can emit false-positive warnings in these
393 	 * drivers; so we avoid that by skipping them altogether.
394 	 */
395 	WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
396 				&& current == policy->transition_task);
397 
398 wait:
399 	wait_event(policy->transition_wait, !policy->transition_ongoing);
400 
401 	spin_lock(&policy->transition_lock);
402 
403 	if (unlikely(policy->transition_ongoing)) {
404 		spin_unlock(&policy->transition_lock);
405 		goto wait;
406 	}
407 
408 	policy->transition_ongoing = true;
409 	policy->transition_task = current;
410 
411 	spin_unlock(&policy->transition_lock);
412 
413 	cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
414 }
415 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
416 
417 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
418 		struct cpufreq_freqs *freqs, int transition_failed)
419 {
420 	if (unlikely(WARN_ON(!policy->transition_ongoing)))
421 		return;
422 
423 	cpufreq_notify_post_transition(policy, freqs, transition_failed);
424 
425 	policy->transition_ongoing = false;
426 	policy->transition_task = NULL;
427 
428 	wake_up(&policy->transition_wait);
429 }
430 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
431 
432 
433 /*********************************************************************
434  *                          SYSFS INTERFACE                          *
435  *********************************************************************/
436 static ssize_t show_boost(struct kobject *kobj,
437 				 struct attribute *attr, char *buf)
438 {
439 	return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
440 }
441 
442 static ssize_t store_boost(struct kobject *kobj, struct attribute *attr,
443 				  const char *buf, size_t count)
444 {
445 	int ret, enable;
446 
447 	ret = sscanf(buf, "%d", &enable);
448 	if (ret != 1 || enable < 0 || enable > 1)
449 		return -EINVAL;
450 
451 	if (cpufreq_boost_trigger_state(enable)) {
452 		pr_err("%s: Cannot %s BOOST!\n",
453 		       __func__, enable ? "enable" : "disable");
454 		return -EINVAL;
455 	}
456 
457 	pr_debug("%s: cpufreq BOOST %s\n",
458 		 __func__, enable ? "enabled" : "disabled");
459 
460 	return count;
461 }
462 define_one_global_rw(boost);
463 
464 static struct cpufreq_governor *find_governor(const char *str_governor)
465 {
466 	struct cpufreq_governor *t;
467 
468 	for_each_governor(t)
469 		if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
470 			return t;
471 
472 	return NULL;
473 }
474 
475 /**
476  * cpufreq_parse_governor - parse a governor string
477  */
478 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
479 				struct cpufreq_governor **governor)
480 {
481 	int err = -EINVAL;
482 
483 	if (cpufreq_driver->setpolicy) {
484 		if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
485 			*policy = CPUFREQ_POLICY_PERFORMANCE;
486 			err = 0;
487 		} else if (!strncasecmp(str_governor, "powersave",
488 						CPUFREQ_NAME_LEN)) {
489 			*policy = CPUFREQ_POLICY_POWERSAVE;
490 			err = 0;
491 		}
492 	} else {
493 		struct cpufreq_governor *t;
494 
495 		mutex_lock(&cpufreq_governor_mutex);
496 
497 		t = find_governor(str_governor);
498 
499 		if (t == NULL) {
500 			int ret;
501 
502 			mutex_unlock(&cpufreq_governor_mutex);
503 			ret = request_module("cpufreq_%s", str_governor);
504 			mutex_lock(&cpufreq_governor_mutex);
505 
506 			if (ret == 0)
507 				t = find_governor(str_governor);
508 		}
509 
510 		if (t != NULL) {
511 			*governor = t;
512 			err = 0;
513 		}
514 
515 		mutex_unlock(&cpufreq_governor_mutex);
516 	}
517 	return err;
518 }
519 
520 /**
521  * cpufreq_per_cpu_attr_read() / show_##file_name() -
522  * print out cpufreq information
523  *
524  * Write out information from cpufreq_driver->policy[cpu]; object must be
525  * "unsigned int".
526  */
527 
528 #define show_one(file_name, object)			\
529 static ssize_t show_##file_name				\
530 (struct cpufreq_policy *policy, char *buf)		\
531 {							\
532 	return sprintf(buf, "%u\n", policy->object);	\
533 }
534 
535 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
536 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
537 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
538 show_one(scaling_min_freq, min);
539 show_one(scaling_max_freq, max);
540 
541 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
542 {
543 	ssize_t ret;
544 
545 	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get)
546 		ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
547 	else
548 		ret = sprintf(buf, "%u\n", policy->cur);
549 	return ret;
550 }
551 
552 static int cpufreq_set_policy(struct cpufreq_policy *policy,
553 				struct cpufreq_policy *new_policy);
554 
555 /**
556  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
557  */
558 #define store_one(file_name, object)			\
559 static ssize_t store_##file_name					\
560 (struct cpufreq_policy *policy, const char *buf, size_t count)		\
561 {									\
562 	int ret, temp;							\
563 	struct cpufreq_policy new_policy;				\
564 									\
565 	memcpy(&new_policy, policy, sizeof(*policy));			\
566 									\
567 	ret = sscanf(buf, "%u", &new_policy.object);			\
568 	if (ret != 1)							\
569 		return -EINVAL;						\
570 									\
571 	temp = new_policy.object;					\
572 	ret = cpufreq_set_policy(policy, &new_policy);		\
573 	if (!ret)							\
574 		policy->user_policy.object = temp;			\
575 									\
576 	return ret ? ret : count;					\
577 }
578 
579 store_one(scaling_min_freq, min);
580 store_one(scaling_max_freq, max);
581 
582 /**
583  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
584  */
585 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
586 					char *buf)
587 {
588 	unsigned int cur_freq = __cpufreq_get(policy);
589 	if (!cur_freq)
590 		return sprintf(buf, "<unknown>");
591 	return sprintf(buf, "%u\n", cur_freq);
592 }
593 
594 /**
595  * show_scaling_governor - show the current policy for the specified CPU
596  */
597 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
598 {
599 	if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
600 		return sprintf(buf, "powersave\n");
601 	else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
602 		return sprintf(buf, "performance\n");
603 	else if (policy->governor)
604 		return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
605 				policy->governor->name);
606 	return -EINVAL;
607 }
608 
609 /**
610  * store_scaling_governor - store policy for the specified CPU
611  */
612 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
613 					const char *buf, size_t count)
614 {
615 	int ret;
616 	char	str_governor[16];
617 	struct cpufreq_policy new_policy;
618 
619 	memcpy(&new_policy, policy, sizeof(*policy));
620 
621 	ret = sscanf(buf, "%15s", str_governor);
622 	if (ret != 1)
623 		return -EINVAL;
624 
625 	if (cpufreq_parse_governor(str_governor, &new_policy.policy,
626 						&new_policy.governor))
627 		return -EINVAL;
628 
629 	ret = cpufreq_set_policy(policy, &new_policy);
630 	return ret ? ret : count;
631 }
632 
633 /**
634  * show_scaling_driver - show the cpufreq driver currently loaded
635  */
636 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
637 {
638 	return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
639 }
640 
641 /**
642  * show_scaling_available_governors - show the available CPUfreq governors
643  */
644 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
645 						char *buf)
646 {
647 	ssize_t i = 0;
648 	struct cpufreq_governor *t;
649 
650 	if (!has_target()) {
651 		i += sprintf(buf, "performance powersave");
652 		goto out;
653 	}
654 
655 	for_each_governor(t) {
656 		if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
657 		    - (CPUFREQ_NAME_LEN + 2)))
658 			goto out;
659 		i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
660 	}
661 out:
662 	i += sprintf(&buf[i], "\n");
663 	return i;
664 }
665 
666 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
667 {
668 	ssize_t i = 0;
669 	unsigned int cpu;
670 
671 	for_each_cpu(cpu, mask) {
672 		if (i)
673 			i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
674 		i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
675 		if (i >= (PAGE_SIZE - 5))
676 			break;
677 	}
678 	i += sprintf(&buf[i], "\n");
679 	return i;
680 }
681 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
682 
683 /**
684  * show_related_cpus - show the CPUs affected by each transition even if
685  * hw coordination is in use
686  */
687 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
688 {
689 	return cpufreq_show_cpus(policy->related_cpus, buf);
690 }
691 
692 /**
693  * show_affected_cpus - show the CPUs affected by each transition
694  */
695 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
696 {
697 	return cpufreq_show_cpus(policy->cpus, buf);
698 }
699 
700 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
701 					const char *buf, size_t count)
702 {
703 	unsigned int freq = 0;
704 	unsigned int ret;
705 
706 	if (!policy->governor || !policy->governor->store_setspeed)
707 		return -EINVAL;
708 
709 	ret = sscanf(buf, "%u", &freq);
710 	if (ret != 1)
711 		return -EINVAL;
712 
713 	policy->governor->store_setspeed(policy, freq);
714 
715 	return count;
716 }
717 
718 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
719 {
720 	if (!policy->governor || !policy->governor->show_setspeed)
721 		return sprintf(buf, "<unsupported>\n");
722 
723 	return policy->governor->show_setspeed(policy, buf);
724 }
725 
726 /**
727  * show_bios_limit - show the current cpufreq HW/BIOS limitation
728  */
729 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
730 {
731 	unsigned int limit;
732 	int ret;
733 	if (cpufreq_driver->bios_limit) {
734 		ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
735 		if (!ret)
736 			return sprintf(buf, "%u\n", limit);
737 	}
738 	return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
739 }
740 
741 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
742 cpufreq_freq_attr_ro(cpuinfo_min_freq);
743 cpufreq_freq_attr_ro(cpuinfo_max_freq);
744 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
745 cpufreq_freq_attr_ro(scaling_available_governors);
746 cpufreq_freq_attr_ro(scaling_driver);
747 cpufreq_freq_attr_ro(scaling_cur_freq);
748 cpufreq_freq_attr_ro(bios_limit);
749 cpufreq_freq_attr_ro(related_cpus);
750 cpufreq_freq_attr_ro(affected_cpus);
751 cpufreq_freq_attr_rw(scaling_min_freq);
752 cpufreq_freq_attr_rw(scaling_max_freq);
753 cpufreq_freq_attr_rw(scaling_governor);
754 cpufreq_freq_attr_rw(scaling_setspeed);
755 
756 static struct attribute *default_attrs[] = {
757 	&cpuinfo_min_freq.attr,
758 	&cpuinfo_max_freq.attr,
759 	&cpuinfo_transition_latency.attr,
760 	&scaling_min_freq.attr,
761 	&scaling_max_freq.attr,
762 	&affected_cpus.attr,
763 	&related_cpus.attr,
764 	&scaling_governor.attr,
765 	&scaling_driver.attr,
766 	&scaling_available_governors.attr,
767 	&scaling_setspeed.attr,
768 	NULL
769 };
770 
771 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
772 #define to_attr(a) container_of(a, struct freq_attr, attr)
773 
774 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
775 {
776 	struct cpufreq_policy *policy = to_policy(kobj);
777 	struct freq_attr *fattr = to_attr(attr);
778 	ssize_t ret;
779 
780 	down_read(&policy->rwsem);
781 	ret = fattr->show(policy, buf);
782 	up_read(&policy->rwsem);
783 
784 	return ret;
785 }
786 
787 static ssize_t store(struct kobject *kobj, struct attribute *attr,
788 		     const char *buf, size_t count)
789 {
790 	struct cpufreq_policy *policy = to_policy(kobj);
791 	struct freq_attr *fattr = to_attr(attr);
792 	ssize_t ret = -EINVAL;
793 
794 	get_online_cpus();
795 
796 	if (cpu_online(policy->cpu)) {
797 		down_write(&policy->rwsem);
798 		ret = fattr->store(policy, buf, count);
799 		up_write(&policy->rwsem);
800 	}
801 
802 	put_online_cpus();
803 
804 	return ret;
805 }
806 
807 static void cpufreq_sysfs_release(struct kobject *kobj)
808 {
809 	struct cpufreq_policy *policy = to_policy(kobj);
810 	pr_debug("last reference is dropped\n");
811 	complete(&policy->kobj_unregister);
812 }
813 
814 static const struct sysfs_ops sysfs_ops = {
815 	.show	= show,
816 	.store	= store,
817 };
818 
819 static struct kobj_type ktype_cpufreq = {
820 	.sysfs_ops	= &sysfs_ops,
821 	.default_attrs	= default_attrs,
822 	.release	= cpufreq_sysfs_release,
823 };
824 
825 static int add_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu)
826 {
827 	struct device *cpu_dev;
828 
829 	pr_debug("%s: Adding symlink for CPU: %u\n", __func__, cpu);
830 
831 	if (!policy)
832 		return 0;
833 
834 	cpu_dev = get_cpu_device(cpu);
835 	if (WARN_ON(!cpu_dev))
836 		return 0;
837 
838 	return sysfs_create_link(&cpu_dev->kobj, &policy->kobj, "cpufreq");
839 }
840 
841 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu)
842 {
843 	struct device *cpu_dev;
844 
845 	pr_debug("%s: Removing symlink for CPU: %u\n", __func__, cpu);
846 
847 	cpu_dev = get_cpu_device(cpu);
848 	if (WARN_ON(!cpu_dev))
849 		return;
850 
851 	sysfs_remove_link(&cpu_dev->kobj, "cpufreq");
852 }
853 
854 /* Add/remove symlinks for all related CPUs */
855 static int cpufreq_add_dev_symlink(struct cpufreq_policy *policy)
856 {
857 	unsigned int j;
858 	int ret = 0;
859 
860 	/* Some related CPUs might not be present (physically hotplugged) */
861 	for_each_cpu(j, policy->real_cpus) {
862 		ret = add_cpu_dev_symlink(policy, j);
863 		if (ret)
864 			break;
865 	}
866 
867 	return ret;
868 }
869 
870 static void cpufreq_remove_dev_symlink(struct cpufreq_policy *policy)
871 {
872 	unsigned int j;
873 
874 	/* Some related CPUs might not be present (physically hotplugged) */
875 	for_each_cpu(j, policy->real_cpus)
876 		remove_cpu_dev_symlink(policy, j);
877 }
878 
879 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
880 {
881 	struct freq_attr **drv_attr;
882 	int ret = 0;
883 
884 	/* set up files for this cpu device */
885 	drv_attr = cpufreq_driver->attr;
886 	while (drv_attr && *drv_attr) {
887 		ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
888 		if (ret)
889 			return ret;
890 		drv_attr++;
891 	}
892 	if (cpufreq_driver->get) {
893 		ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
894 		if (ret)
895 			return ret;
896 	}
897 
898 	ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
899 	if (ret)
900 		return ret;
901 
902 	if (cpufreq_driver->bios_limit) {
903 		ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
904 		if (ret)
905 			return ret;
906 	}
907 
908 	return cpufreq_add_dev_symlink(policy);
909 }
910 
911 __weak struct cpufreq_governor *cpufreq_default_governor(void)
912 {
913 	return NULL;
914 }
915 
916 static int cpufreq_init_policy(struct cpufreq_policy *policy)
917 {
918 	struct cpufreq_governor *gov = NULL;
919 	struct cpufreq_policy new_policy;
920 
921 	memcpy(&new_policy, policy, sizeof(*policy));
922 
923 	/* Update governor of new_policy to the governor used before hotplug */
924 	gov = find_governor(policy->last_governor);
925 	if (gov) {
926 		pr_debug("Restoring governor %s for cpu %d\n",
927 				policy->governor->name, policy->cpu);
928 	} else {
929 		gov = cpufreq_default_governor();
930 		if (!gov)
931 			return -ENODATA;
932 	}
933 
934 	new_policy.governor = gov;
935 
936 	/* Use the default policy if there is no last_policy. */
937 	if (cpufreq_driver->setpolicy) {
938 		if (policy->last_policy)
939 			new_policy.policy = policy->last_policy;
940 		else
941 			cpufreq_parse_governor(gov->name, &new_policy.policy,
942 					       NULL);
943 	}
944 	/* set default policy */
945 	return cpufreq_set_policy(policy, &new_policy);
946 }
947 
948 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
949 {
950 	int ret = 0;
951 
952 	/* Has this CPU been taken care of already? */
953 	if (cpumask_test_cpu(cpu, policy->cpus))
954 		return 0;
955 
956 	down_write(&policy->rwsem);
957 	if (has_target()) {
958 		ret = cpufreq_governor(policy, CPUFREQ_GOV_STOP);
959 		if (ret) {
960 			pr_err("%s: Failed to stop governor\n", __func__);
961 			goto unlock;
962 		}
963 	}
964 
965 	cpumask_set_cpu(cpu, policy->cpus);
966 
967 	if (has_target()) {
968 		ret = cpufreq_start_governor(policy);
969 		if (ret)
970 			pr_err("%s: Failed to start governor\n", __func__);
971 	}
972 
973 unlock:
974 	up_write(&policy->rwsem);
975 	return ret;
976 }
977 
978 static void handle_update(struct work_struct *work)
979 {
980 	struct cpufreq_policy *policy =
981 		container_of(work, struct cpufreq_policy, update);
982 	unsigned int cpu = policy->cpu;
983 	pr_debug("handle_update for cpu %u called\n", cpu);
984 	cpufreq_update_policy(cpu);
985 }
986 
987 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
988 {
989 	struct device *dev = get_cpu_device(cpu);
990 	struct cpufreq_policy *policy;
991 	int ret;
992 
993 	if (WARN_ON(!dev))
994 		return NULL;
995 
996 	policy = kzalloc(sizeof(*policy), GFP_KERNEL);
997 	if (!policy)
998 		return NULL;
999 
1000 	if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1001 		goto err_free_policy;
1002 
1003 	if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1004 		goto err_free_cpumask;
1005 
1006 	if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1007 		goto err_free_rcpumask;
1008 
1009 	ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1010 				   cpufreq_global_kobject, "policy%u", cpu);
1011 	if (ret) {
1012 		pr_err("%s: failed to init policy->kobj: %d\n", __func__, ret);
1013 		goto err_free_real_cpus;
1014 	}
1015 
1016 	INIT_LIST_HEAD(&policy->policy_list);
1017 	init_rwsem(&policy->rwsem);
1018 	spin_lock_init(&policy->transition_lock);
1019 	init_waitqueue_head(&policy->transition_wait);
1020 	init_completion(&policy->kobj_unregister);
1021 	INIT_WORK(&policy->update, handle_update);
1022 
1023 	policy->cpu = cpu;
1024 	return policy;
1025 
1026 err_free_real_cpus:
1027 	free_cpumask_var(policy->real_cpus);
1028 err_free_rcpumask:
1029 	free_cpumask_var(policy->related_cpus);
1030 err_free_cpumask:
1031 	free_cpumask_var(policy->cpus);
1032 err_free_policy:
1033 	kfree(policy);
1034 
1035 	return NULL;
1036 }
1037 
1038 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy, bool notify)
1039 {
1040 	struct kobject *kobj;
1041 	struct completion *cmp;
1042 
1043 	if (notify)
1044 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1045 					     CPUFREQ_REMOVE_POLICY, policy);
1046 
1047 	down_write(&policy->rwsem);
1048 	cpufreq_remove_dev_symlink(policy);
1049 	kobj = &policy->kobj;
1050 	cmp = &policy->kobj_unregister;
1051 	up_write(&policy->rwsem);
1052 	kobject_put(kobj);
1053 
1054 	/*
1055 	 * We need to make sure that the underlying kobj is
1056 	 * actually not referenced anymore by anybody before we
1057 	 * proceed with unloading.
1058 	 */
1059 	pr_debug("waiting for dropping of refcount\n");
1060 	wait_for_completion(cmp);
1061 	pr_debug("wait complete\n");
1062 }
1063 
1064 static void cpufreq_policy_free(struct cpufreq_policy *policy, bool notify)
1065 {
1066 	unsigned long flags;
1067 	int cpu;
1068 
1069 	/* Remove policy from list */
1070 	write_lock_irqsave(&cpufreq_driver_lock, flags);
1071 	list_del(&policy->policy_list);
1072 
1073 	for_each_cpu(cpu, policy->related_cpus)
1074 		per_cpu(cpufreq_cpu_data, cpu) = NULL;
1075 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1076 
1077 	cpufreq_policy_put_kobj(policy, notify);
1078 	free_cpumask_var(policy->real_cpus);
1079 	free_cpumask_var(policy->related_cpus);
1080 	free_cpumask_var(policy->cpus);
1081 	kfree(policy);
1082 }
1083 
1084 static int cpufreq_online(unsigned int cpu)
1085 {
1086 	struct cpufreq_policy *policy;
1087 	bool new_policy;
1088 	unsigned long flags;
1089 	unsigned int j;
1090 	int ret;
1091 
1092 	pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1093 
1094 	/* Check if this CPU already has a policy to manage it */
1095 	policy = per_cpu(cpufreq_cpu_data, cpu);
1096 	if (policy) {
1097 		WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1098 		if (!policy_is_inactive(policy))
1099 			return cpufreq_add_policy_cpu(policy, cpu);
1100 
1101 		/* This is the only online CPU for the policy.  Start over. */
1102 		new_policy = false;
1103 		down_write(&policy->rwsem);
1104 		policy->cpu = cpu;
1105 		policy->governor = NULL;
1106 		up_write(&policy->rwsem);
1107 	} else {
1108 		new_policy = true;
1109 		policy = cpufreq_policy_alloc(cpu);
1110 		if (!policy)
1111 			return -ENOMEM;
1112 	}
1113 
1114 	cpumask_copy(policy->cpus, cpumask_of(cpu));
1115 
1116 	/* call driver. From then on the cpufreq must be able
1117 	 * to accept all calls to ->verify and ->setpolicy for this CPU
1118 	 */
1119 	ret = cpufreq_driver->init(policy);
1120 	if (ret) {
1121 		pr_debug("initialization failed\n");
1122 		goto out_free_policy;
1123 	}
1124 
1125 	down_write(&policy->rwsem);
1126 
1127 	if (new_policy) {
1128 		/* related_cpus should at least include policy->cpus. */
1129 		cpumask_copy(policy->related_cpus, policy->cpus);
1130 		/* Remember CPUs present at the policy creation time. */
1131 		cpumask_and(policy->real_cpus, policy->cpus, cpu_present_mask);
1132 	}
1133 
1134 	/*
1135 	 * affected cpus must always be the one, which are online. We aren't
1136 	 * managing offline cpus here.
1137 	 */
1138 	cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1139 
1140 	if (new_policy) {
1141 		policy->user_policy.min = policy->min;
1142 		policy->user_policy.max = policy->max;
1143 
1144 		write_lock_irqsave(&cpufreq_driver_lock, flags);
1145 		for_each_cpu(j, policy->related_cpus)
1146 			per_cpu(cpufreq_cpu_data, j) = policy;
1147 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1148 	}
1149 
1150 	if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
1151 		policy->cur = cpufreq_driver->get(policy->cpu);
1152 		if (!policy->cur) {
1153 			pr_err("%s: ->get() failed\n", __func__);
1154 			goto out_exit_policy;
1155 		}
1156 	}
1157 
1158 	/*
1159 	 * Sometimes boot loaders set CPU frequency to a value outside of
1160 	 * frequency table present with cpufreq core. In such cases CPU might be
1161 	 * unstable if it has to run on that frequency for long duration of time
1162 	 * and so its better to set it to a frequency which is specified in
1163 	 * freq-table. This also makes cpufreq stats inconsistent as
1164 	 * cpufreq-stats would fail to register because current frequency of CPU
1165 	 * isn't found in freq-table.
1166 	 *
1167 	 * Because we don't want this change to effect boot process badly, we go
1168 	 * for the next freq which is >= policy->cur ('cur' must be set by now,
1169 	 * otherwise we will end up setting freq to lowest of the table as 'cur'
1170 	 * is initialized to zero).
1171 	 *
1172 	 * We are passing target-freq as "policy->cur - 1" otherwise
1173 	 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1174 	 * equal to target-freq.
1175 	 */
1176 	if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1177 	    && has_target()) {
1178 		/* Are we running at unknown frequency ? */
1179 		ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1180 		if (ret == -EINVAL) {
1181 			/* Warn user and fix it */
1182 			pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1183 				__func__, policy->cpu, policy->cur);
1184 			ret = __cpufreq_driver_target(policy, policy->cur - 1,
1185 				CPUFREQ_RELATION_L);
1186 
1187 			/*
1188 			 * Reaching here after boot in a few seconds may not
1189 			 * mean that system will remain stable at "unknown"
1190 			 * frequency for longer duration. Hence, a BUG_ON().
1191 			 */
1192 			BUG_ON(ret);
1193 			pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1194 				__func__, policy->cpu, policy->cur);
1195 		}
1196 	}
1197 
1198 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1199 				     CPUFREQ_START, policy);
1200 
1201 	if (new_policy) {
1202 		ret = cpufreq_add_dev_interface(policy);
1203 		if (ret)
1204 			goto out_exit_policy;
1205 		blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1206 				CPUFREQ_CREATE_POLICY, policy);
1207 
1208 		write_lock_irqsave(&cpufreq_driver_lock, flags);
1209 		list_add(&policy->policy_list, &cpufreq_policy_list);
1210 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1211 	}
1212 
1213 	ret = cpufreq_init_policy(policy);
1214 	if (ret) {
1215 		pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1216 		       __func__, cpu, ret);
1217 		/* cpufreq_policy_free() will notify based on this */
1218 		new_policy = false;
1219 		goto out_exit_policy;
1220 	}
1221 
1222 	up_write(&policy->rwsem);
1223 
1224 	kobject_uevent(&policy->kobj, KOBJ_ADD);
1225 
1226 	/* Callback for handling stuff after policy is ready */
1227 	if (cpufreq_driver->ready)
1228 		cpufreq_driver->ready(policy);
1229 
1230 	pr_debug("initialization complete\n");
1231 
1232 	return 0;
1233 
1234 out_exit_policy:
1235 	up_write(&policy->rwsem);
1236 
1237 	if (cpufreq_driver->exit)
1238 		cpufreq_driver->exit(policy);
1239 out_free_policy:
1240 	cpufreq_policy_free(policy, !new_policy);
1241 	return ret;
1242 }
1243 
1244 /**
1245  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1246  * @dev: CPU device.
1247  * @sif: Subsystem interface structure pointer (not used)
1248  */
1249 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1250 {
1251 	unsigned cpu = dev->id;
1252 	int ret;
1253 
1254 	dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1255 
1256 	if (cpu_online(cpu)) {
1257 		ret = cpufreq_online(cpu);
1258 	} else {
1259 		/*
1260 		 * A hotplug notifier will follow and we will handle it as CPU
1261 		 * online then.  For now, just create the sysfs link, unless
1262 		 * there is no policy or the link is already present.
1263 		 */
1264 		struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1265 
1266 		ret = policy && !cpumask_test_and_set_cpu(cpu, policy->real_cpus)
1267 			? add_cpu_dev_symlink(policy, cpu) : 0;
1268 	}
1269 
1270 	return ret;
1271 }
1272 
1273 static void cpufreq_offline(unsigned int cpu)
1274 {
1275 	struct cpufreq_policy *policy;
1276 	int ret;
1277 
1278 	pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1279 
1280 	policy = cpufreq_cpu_get_raw(cpu);
1281 	if (!policy) {
1282 		pr_debug("%s: No cpu_data found\n", __func__);
1283 		return;
1284 	}
1285 
1286 	down_write(&policy->rwsem);
1287 	if (has_target()) {
1288 		ret = cpufreq_governor(policy, CPUFREQ_GOV_STOP);
1289 		if (ret)
1290 			pr_err("%s: Failed to stop governor\n", __func__);
1291 	}
1292 
1293 	cpumask_clear_cpu(cpu, policy->cpus);
1294 
1295 	if (policy_is_inactive(policy)) {
1296 		if (has_target())
1297 			strncpy(policy->last_governor, policy->governor->name,
1298 				CPUFREQ_NAME_LEN);
1299 		else
1300 			policy->last_policy = policy->policy;
1301 	} else if (cpu == policy->cpu) {
1302 		/* Nominate new CPU */
1303 		policy->cpu = cpumask_any(policy->cpus);
1304 	}
1305 
1306 	/* Start governor again for active policy */
1307 	if (!policy_is_inactive(policy)) {
1308 		if (has_target()) {
1309 			ret = cpufreq_start_governor(policy);
1310 			if (ret)
1311 				pr_err("%s: Failed to start governor\n", __func__);
1312 		}
1313 
1314 		goto unlock;
1315 	}
1316 
1317 	if (cpufreq_driver->stop_cpu)
1318 		cpufreq_driver->stop_cpu(policy);
1319 
1320 	/* If cpu is last user of policy, free policy */
1321 	if (has_target()) {
1322 		ret = cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
1323 		if (ret)
1324 			pr_err("%s: Failed to exit governor\n", __func__);
1325 	}
1326 
1327 	/*
1328 	 * Perform the ->exit() even during light-weight tear-down,
1329 	 * since this is a core component, and is essential for the
1330 	 * subsequent light-weight ->init() to succeed.
1331 	 */
1332 	if (cpufreq_driver->exit) {
1333 		cpufreq_driver->exit(policy);
1334 		policy->freq_table = NULL;
1335 	}
1336 
1337 unlock:
1338 	up_write(&policy->rwsem);
1339 }
1340 
1341 /**
1342  * cpufreq_remove_dev - remove a CPU device
1343  *
1344  * Removes the cpufreq interface for a CPU device.
1345  */
1346 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1347 {
1348 	unsigned int cpu = dev->id;
1349 	struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1350 
1351 	if (!policy)
1352 		return;
1353 
1354 	if (cpu_online(cpu))
1355 		cpufreq_offline(cpu);
1356 
1357 	cpumask_clear_cpu(cpu, policy->real_cpus);
1358 	remove_cpu_dev_symlink(policy, cpu);
1359 
1360 	if (cpumask_empty(policy->real_cpus))
1361 		cpufreq_policy_free(policy, true);
1362 }
1363 
1364 /**
1365  *	cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1366  *	in deep trouble.
1367  *	@policy: policy managing CPUs
1368  *	@new_freq: CPU frequency the CPU actually runs at
1369  *
1370  *	We adjust to current frequency first, and need to clean up later.
1371  *	So either call to cpufreq_update_policy() or schedule handle_update()).
1372  */
1373 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1374 				unsigned int new_freq)
1375 {
1376 	struct cpufreq_freqs freqs;
1377 
1378 	pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1379 		 policy->cur, new_freq);
1380 
1381 	freqs.old = policy->cur;
1382 	freqs.new = new_freq;
1383 
1384 	cpufreq_freq_transition_begin(policy, &freqs);
1385 	cpufreq_freq_transition_end(policy, &freqs, 0);
1386 }
1387 
1388 /**
1389  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1390  * @cpu: CPU number
1391  *
1392  * This is the last known freq, without actually getting it from the driver.
1393  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1394  */
1395 unsigned int cpufreq_quick_get(unsigned int cpu)
1396 {
1397 	struct cpufreq_policy *policy;
1398 	unsigned int ret_freq = 0;
1399 	unsigned long flags;
1400 
1401 	read_lock_irqsave(&cpufreq_driver_lock, flags);
1402 
1403 	if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1404 		ret_freq = cpufreq_driver->get(cpu);
1405 		read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1406 		return ret_freq;
1407 	}
1408 
1409 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1410 
1411 	policy = cpufreq_cpu_get(cpu);
1412 	if (policy) {
1413 		ret_freq = policy->cur;
1414 		cpufreq_cpu_put(policy);
1415 	}
1416 
1417 	return ret_freq;
1418 }
1419 EXPORT_SYMBOL(cpufreq_quick_get);
1420 
1421 /**
1422  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1423  * @cpu: CPU number
1424  *
1425  * Just return the max possible frequency for a given CPU.
1426  */
1427 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1428 {
1429 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1430 	unsigned int ret_freq = 0;
1431 
1432 	if (policy) {
1433 		ret_freq = policy->max;
1434 		cpufreq_cpu_put(policy);
1435 	}
1436 
1437 	return ret_freq;
1438 }
1439 EXPORT_SYMBOL(cpufreq_quick_get_max);
1440 
1441 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1442 {
1443 	unsigned int ret_freq = 0;
1444 
1445 	if (!cpufreq_driver->get)
1446 		return ret_freq;
1447 
1448 	ret_freq = cpufreq_driver->get(policy->cpu);
1449 
1450 	/* Updating inactive policies is invalid, so avoid doing that. */
1451 	if (unlikely(policy_is_inactive(policy)))
1452 		return ret_freq;
1453 
1454 	if (ret_freq && policy->cur &&
1455 		!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1456 		/* verify no discrepancy between actual and
1457 					saved value exists */
1458 		if (unlikely(ret_freq != policy->cur)) {
1459 			cpufreq_out_of_sync(policy, ret_freq);
1460 			schedule_work(&policy->update);
1461 		}
1462 	}
1463 
1464 	return ret_freq;
1465 }
1466 
1467 /**
1468  * cpufreq_get - get the current CPU frequency (in kHz)
1469  * @cpu: CPU number
1470  *
1471  * Get the CPU current (static) CPU frequency
1472  */
1473 unsigned int cpufreq_get(unsigned int cpu)
1474 {
1475 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1476 	unsigned int ret_freq = 0;
1477 
1478 	if (policy) {
1479 		down_read(&policy->rwsem);
1480 		ret_freq = __cpufreq_get(policy);
1481 		up_read(&policy->rwsem);
1482 
1483 		cpufreq_cpu_put(policy);
1484 	}
1485 
1486 	return ret_freq;
1487 }
1488 EXPORT_SYMBOL(cpufreq_get);
1489 
1490 static unsigned int cpufreq_update_current_freq(struct cpufreq_policy *policy)
1491 {
1492 	unsigned int new_freq;
1493 
1494 	if (cpufreq_suspended)
1495 		return 0;
1496 
1497 	new_freq = cpufreq_driver->get(policy->cpu);
1498 	if (!new_freq)
1499 		return 0;
1500 
1501 	if (!policy->cur) {
1502 		pr_debug("cpufreq: Driver did not initialize current freq\n");
1503 		policy->cur = new_freq;
1504 	} else if (policy->cur != new_freq && has_target()) {
1505 		cpufreq_out_of_sync(policy, new_freq);
1506 	}
1507 
1508 	return new_freq;
1509 }
1510 
1511 static struct subsys_interface cpufreq_interface = {
1512 	.name		= "cpufreq",
1513 	.subsys		= &cpu_subsys,
1514 	.add_dev	= cpufreq_add_dev,
1515 	.remove_dev	= cpufreq_remove_dev,
1516 };
1517 
1518 /*
1519  * In case platform wants some specific frequency to be configured
1520  * during suspend..
1521  */
1522 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1523 {
1524 	int ret;
1525 
1526 	if (!policy->suspend_freq) {
1527 		pr_debug("%s: suspend_freq not defined\n", __func__);
1528 		return 0;
1529 	}
1530 
1531 	pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1532 			policy->suspend_freq);
1533 
1534 	ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1535 			CPUFREQ_RELATION_H);
1536 	if (ret)
1537 		pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1538 				__func__, policy->suspend_freq, ret);
1539 
1540 	return ret;
1541 }
1542 EXPORT_SYMBOL(cpufreq_generic_suspend);
1543 
1544 /**
1545  * cpufreq_suspend() - Suspend CPUFreq governors
1546  *
1547  * Called during system wide Suspend/Hibernate cycles for suspending governors
1548  * as some platforms can't change frequency after this point in suspend cycle.
1549  * Because some of the devices (like: i2c, regulators, etc) they use for
1550  * changing frequency are suspended quickly after this point.
1551  */
1552 void cpufreq_suspend(void)
1553 {
1554 	struct cpufreq_policy *policy;
1555 	int ret;
1556 
1557 	if (!cpufreq_driver)
1558 		return;
1559 
1560 	if (!has_target())
1561 		goto suspend;
1562 
1563 	pr_debug("%s: Suspending Governors\n", __func__);
1564 
1565 	for_each_active_policy(policy) {
1566 		down_write(&policy->rwsem);
1567 		ret = cpufreq_governor(policy, CPUFREQ_GOV_STOP);
1568 		up_write(&policy->rwsem);
1569 
1570 		if (ret)
1571 			pr_err("%s: Failed to stop governor for policy: %p\n",
1572 				__func__, policy);
1573 		else if (cpufreq_driver->suspend
1574 		    && cpufreq_driver->suspend(policy))
1575 			pr_err("%s: Failed to suspend driver: %p\n", __func__,
1576 				policy);
1577 	}
1578 
1579 suspend:
1580 	cpufreq_suspended = true;
1581 }
1582 
1583 /**
1584  * cpufreq_resume() - Resume CPUFreq governors
1585  *
1586  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1587  * are suspended with cpufreq_suspend().
1588  */
1589 void cpufreq_resume(void)
1590 {
1591 	struct cpufreq_policy *policy;
1592 	int ret;
1593 
1594 	if (!cpufreq_driver)
1595 		return;
1596 
1597 	cpufreq_suspended = false;
1598 
1599 	if (!has_target())
1600 		return;
1601 
1602 	pr_debug("%s: Resuming Governors\n", __func__);
1603 
1604 	for_each_active_policy(policy) {
1605 		if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1606 			pr_err("%s: Failed to resume driver: %p\n", __func__,
1607 				policy);
1608 		} else {
1609 			down_write(&policy->rwsem);
1610 			ret = cpufreq_start_governor(policy);
1611 			up_write(&policy->rwsem);
1612 
1613 			if (ret)
1614 				pr_err("%s: Failed to start governor for policy: %p\n",
1615 				       __func__, policy);
1616 		}
1617 	}
1618 }
1619 
1620 /**
1621  *	cpufreq_get_current_driver - return current driver's name
1622  *
1623  *	Return the name string of the currently loaded cpufreq driver
1624  *	or NULL, if none.
1625  */
1626 const char *cpufreq_get_current_driver(void)
1627 {
1628 	if (cpufreq_driver)
1629 		return cpufreq_driver->name;
1630 
1631 	return NULL;
1632 }
1633 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1634 
1635 /**
1636  *	cpufreq_get_driver_data - return current driver data
1637  *
1638  *	Return the private data of the currently loaded cpufreq
1639  *	driver, or NULL if no cpufreq driver is loaded.
1640  */
1641 void *cpufreq_get_driver_data(void)
1642 {
1643 	if (cpufreq_driver)
1644 		return cpufreq_driver->driver_data;
1645 
1646 	return NULL;
1647 }
1648 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1649 
1650 /*********************************************************************
1651  *                     NOTIFIER LISTS INTERFACE                      *
1652  *********************************************************************/
1653 
1654 /**
1655  *	cpufreq_register_notifier - register a driver with cpufreq
1656  *	@nb: notifier function to register
1657  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1658  *
1659  *	Add a driver to one of two lists: either a list of drivers that
1660  *      are notified about clock rate changes (once before and once after
1661  *      the transition), or a list of drivers that are notified about
1662  *      changes in cpufreq policy.
1663  *
1664  *	This function may sleep, and has the same return conditions as
1665  *	blocking_notifier_chain_register.
1666  */
1667 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1668 {
1669 	int ret;
1670 
1671 	if (cpufreq_disabled())
1672 		return -EINVAL;
1673 
1674 	WARN_ON(!init_cpufreq_transition_notifier_list_called);
1675 
1676 	switch (list) {
1677 	case CPUFREQ_TRANSITION_NOTIFIER:
1678 		ret = srcu_notifier_chain_register(
1679 				&cpufreq_transition_notifier_list, nb);
1680 		break;
1681 	case CPUFREQ_POLICY_NOTIFIER:
1682 		ret = blocking_notifier_chain_register(
1683 				&cpufreq_policy_notifier_list, nb);
1684 		break;
1685 	default:
1686 		ret = -EINVAL;
1687 	}
1688 
1689 	return ret;
1690 }
1691 EXPORT_SYMBOL(cpufreq_register_notifier);
1692 
1693 /**
1694  *	cpufreq_unregister_notifier - unregister a driver with cpufreq
1695  *	@nb: notifier block to be unregistered
1696  *	@list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1697  *
1698  *	Remove a driver from the CPU frequency notifier list.
1699  *
1700  *	This function may sleep, and has the same return conditions as
1701  *	blocking_notifier_chain_unregister.
1702  */
1703 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1704 {
1705 	int ret;
1706 
1707 	if (cpufreq_disabled())
1708 		return -EINVAL;
1709 
1710 	switch (list) {
1711 	case CPUFREQ_TRANSITION_NOTIFIER:
1712 		ret = srcu_notifier_chain_unregister(
1713 				&cpufreq_transition_notifier_list, nb);
1714 		break;
1715 	case CPUFREQ_POLICY_NOTIFIER:
1716 		ret = blocking_notifier_chain_unregister(
1717 				&cpufreq_policy_notifier_list, nb);
1718 		break;
1719 	default:
1720 		ret = -EINVAL;
1721 	}
1722 
1723 	return ret;
1724 }
1725 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1726 
1727 
1728 /*********************************************************************
1729  *                              GOVERNORS                            *
1730  *********************************************************************/
1731 
1732 /* Must set freqs->new to intermediate frequency */
1733 static int __target_intermediate(struct cpufreq_policy *policy,
1734 				 struct cpufreq_freqs *freqs, int index)
1735 {
1736 	int ret;
1737 
1738 	freqs->new = cpufreq_driver->get_intermediate(policy, index);
1739 
1740 	/* We don't need to switch to intermediate freq */
1741 	if (!freqs->new)
1742 		return 0;
1743 
1744 	pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
1745 		 __func__, policy->cpu, freqs->old, freqs->new);
1746 
1747 	cpufreq_freq_transition_begin(policy, freqs);
1748 	ret = cpufreq_driver->target_intermediate(policy, index);
1749 	cpufreq_freq_transition_end(policy, freqs, ret);
1750 
1751 	if (ret)
1752 		pr_err("%s: Failed to change to intermediate frequency: %d\n",
1753 		       __func__, ret);
1754 
1755 	return ret;
1756 }
1757 
1758 static int __target_index(struct cpufreq_policy *policy,
1759 			  struct cpufreq_frequency_table *freq_table, int index)
1760 {
1761 	struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
1762 	unsigned int intermediate_freq = 0;
1763 	int retval = -EINVAL;
1764 	bool notify;
1765 
1766 	notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
1767 	if (notify) {
1768 		/* Handle switching to intermediate frequency */
1769 		if (cpufreq_driver->get_intermediate) {
1770 			retval = __target_intermediate(policy, &freqs, index);
1771 			if (retval)
1772 				return retval;
1773 
1774 			intermediate_freq = freqs.new;
1775 			/* Set old freq to intermediate */
1776 			if (intermediate_freq)
1777 				freqs.old = freqs.new;
1778 		}
1779 
1780 		freqs.new = freq_table[index].frequency;
1781 		pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
1782 			 __func__, policy->cpu, freqs.old, freqs.new);
1783 
1784 		cpufreq_freq_transition_begin(policy, &freqs);
1785 	}
1786 
1787 	retval = cpufreq_driver->target_index(policy, index);
1788 	if (retval)
1789 		pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
1790 		       retval);
1791 
1792 	if (notify) {
1793 		cpufreq_freq_transition_end(policy, &freqs, retval);
1794 
1795 		/*
1796 		 * Failed after setting to intermediate freq? Driver should have
1797 		 * reverted back to initial frequency and so should we. Check
1798 		 * here for intermediate_freq instead of get_intermediate, in
1799 		 * case we haven't switched to intermediate freq at all.
1800 		 */
1801 		if (unlikely(retval && intermediate_freq)) {
1802 			freqs.old = intermediate_freq;
1803 			freqs.new = policy->restore_freq;
1804 			cpufreq_freq_transition_begin(policy, &freqs);
1805 			cpufreq_freq_transition_end(policy, &freqs, 0);
1806 		}
1807 	}
1808 
1809 	return retval;
1810 }
1811 
1812 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1813 			    unsigned int target_freq,
1814 			    unsigned int relation)
1815 {
1816 	unsigned int old_target_freq = target_freq;
1817 	struct cpufreq_frequency_table *freq_table;
1818 	int index, retval;
1819 
1820 	if (cpufreq_disabled())
1821 		return -ENODEV;
1822 
1823 	/* Make sure that target_freq is within supported range */
1824 	if (target_freq > policy->max)
1825 		target_freq = policy->max;
1826 	if (target_freq < policy->min)
1827 		target_freq = policy->min;
1828 
1829 	pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
1830 		 policy->cpu, target_freq, relation, old_target_freq);
1831 
1832 	/*
1833 	 * This might look like a redundant call as we are checking it again
1834 	 * after finding index. But it is left intentionally for cases where
1835 	 * exactly same freq is called again and so we can save on few function
1836 	 * calls.
1837 	 */
1838 	if (target_freq == policy->cur)
1839 		return 0;
1840 
1841 	/* Save last value to restore later on errors */
1842 	policy->restore_freq = policy->cur;
1843 
1844 	if (cpufreq_driver->target)
1845 		return cpufreq_driver->target(policy, target_freq, relation);
1846 
1847 	if (!cpufreq_driver->target_index)
1848 		return -EINVAL;
1849 
1850 	freq_table = cpufreq_frequency_get_table(policy->cpu);
1851 	if (unlikely(!freq_table)) {
1852 		pr_err("%s: Unable to find freq_table\n", __func__);
1853 		return -EINVAL;
1854 	}
1855 
1856 	retval = cpufreq_frequency_table_target(policy, freq_table, target_freq,
1857 						relation, &index);
1858 	if (unlikely(retval)) {
1859 		pr_err("%s: Unable to find matching freq\n", __func__);
1860 		return retval;
1861 	}
1862 
1863 	if (freq_table[index].frequency == policy->cur)
1864 		return 0;
1865 
1866 	return __target_index(policy, freq_table, index);
1867 }
1868 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1869 
1870 int cpufreq_driver_target(struct cpufreq_policy *policy,
1871 			  unsigned int target_freq,
1872 			  unsigned int relation)
1873 {
1874 	int ret = -EINVAL;
1875 
1876 	down_write(&policy->rwsem);
1877 
1878 	ret = __cpufreq_driver_target(policy, target_freq, relation);
1879 
1880 	up_write(&policy->rwsem);
1881 
1882 	return ret;
1883 }
1884 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1885 
1886 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
1887 {
1888 	return NULL;
1889 }
1890 
1891 static int cpufreq_governor(struct cpufreq_policy *policy, unsigned int event)
1892 {
1893 	int ret;
1894 
1895 	/* Don't start any governor operations if we are entering suspend */
1896 	if (cpufreq_suspended)
1897 		return 0;
1898 	/*
1899 	 * Governor might not be initiated here if ACPI _PPC changed
1900 	 * notification happened, so check it.
1901 	 */
1902 	if (!policy->governor)
1903 		return -EINVAL;
1904 
1905 	if (policy->governor->max_transition_latency &&
1906 	    policy->cpuinfo.transition_latency >
1907 	    policy->governor->max_transition_latency) {
1908 		struct cpufreq_governor *gov = cpufreq_fallback_governor();
1909 
1910 		if (gov) {
1911 			pr_warn("%s governor failed, too long transition latency of HW, fallback to %s governor\n",
1912 				policy->governor->name, gov->name);
1913 			policy->governor = gov;
1914 		} else {
1915 			return -EINVAL;
1916 		}
1917 	}
1918 
1919 	if (event == CPUFREQ_GOV_POLICY_INIT)
1920 		if (!try_module_get(policy->governor->owner))
1921 			return -EINVAL;
1922 
1923 	pr_debug("%s: for CPU %u, event %u\n", __func__, policy->cpu, event);
1924 
1925 	ret = policy->governor->governor(policy, event);
1926 
1927 	if (!ret) {
1928 		if (event == CPUFREQ_GOV_POLICY_INIT)
1929 			policy->governor->initialized++;
1930 		else if (event == CPUFREQ_GOV_POLICY_EXIT)
1931 			policy->governor->initialized--;
1932 	}
1933 
1934 	if (((event == CPUFREQ_GOV_POLICY_INIT) && ret) ||
1935 			((event == CPUFREQ_GOV_POLICY_EXIT) && !ret))
1936 		module_put(policy->governor->owner);
1937 
1938 	return ret;
1939 }
1940 
1941 static int cpufreq_start_governor(struct cpufreq_policy *policy)
1942 {
1943 	int ret;
1944 
1945 	if (cpufreq_driver->get && !cpufreq_driver->setpolicy)
1946 		cpufreq_update_current_freq(policy);
1947 
1948 	ret = cpufreq_governor(policy, CPUFREQ_GOV_START);
1949 	return ret ? ret : cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
1950 }
1951 
1952 int cpufreq_register_governor(struct cpufreq_governor *governor)
1953 {
1954 	int err;
1955 
1956 	if (!governor)
1957 		return -EINVAL;
1958 
1959 	if (cpufreq_disabled())
1960 		return -ENODEV;
1961 
1962 	mutex_lock(&cpufreq_governor_mutex);
1963 
1964 	governor->initialized = 0;
1965 	err = -EBUSY;
1966 	if (!find_governor(governor->name)) {
1967 		err = 0;
1968 		list_add(&governor->governor_list, &cpufreq_governor_list);
1969 	}
1970 
1971 	mutex_unlock(&cpufreq_governor_mutex);
1972 	return err;
1973 }
1974 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
1975 
1976 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
1977 {
1978 	struct cpufreq_policy *policy;
1979 	unsigned long flags;
1980 
1981 	if (!governor)
1982 		return;
1983 
1984 	if (cpufreq_disabled())
1985 		return;
1986 
1987 	/* clear last_governor for all inactive policies */
1988 	read_lock_irqsave(&cpufreq_driver_lock, flags);
1989 	for_each_inactive_policy(policy) {
1990 		if (!strcmp(policy->last_governor, governor->name)) {
1991 			policy->governor = NULL;
1992 			strcpy(policy->last_governor, "\0");
1993 		}
1994 	}
1995 	read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1996 
1997 	mutex_lock(&cpufreq_governor_mutex);
1998 	list_del(&governor->governor_list);
1999 	mutex_unlock(&cpufreq_governor_mutex);
2000 	return;
2001 }
2002 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2003 
2004 
2005 /*********************************************************************
2006  *                          POLICY INTERFACE                         *
2007  *********************************************************************/
2008 
2009 /**
2010  * cpufreq_get_policy - get the current cpufreq_policy
2011  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2012  *	is written
2013  *
2014  * Reads the current cpufreq policy.
2015  */
2016 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2017 {
2018 	struct cpufreq_policy *cpu_policy;
2019 	if (!policy)
2020 		return -EINVAL;
2021 
2022 	cpu_policy = cpufreq_cpu_get(cpu);
2023 	if (!cpu_policy)
2024 		return -EINVAL;
2025 
2026 	memcpy(policy, cpu_policy, sizeof(*policy));
2027 
2028 	cpufreq_cpu_put(cpu_policy);
2029 	return 0;
2030 }
2031 EXPORT_SYMBOL(cpufreq_get_policy);
2032 
2033 /*
2034  * policy : current policy.
2035  * new_policy: policy to be set.
2036  */
2037 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2038 				struct cpufreq_policy *new_policy)
2039 {
2040 	struct cpufreq_governor *old_gov;
2041 	int ret;
2042 
2043 	pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2044 		 new_policy->cpu, new_policy->min, new_policy->max);
2045 
2046 	memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2047 
2048 	/*
2049 	* This check works well when we store new min/max freq attributes,
2050 	* because new_policy is a copy of policy with one field updated.
2051 	*/
2052 	if (new_policy->min > new_policy->max)
2053 		return -EINVAL;
2054 
2055 	/* verify the cpu speed can be set within this limit */
2056 	ret = cpufreq_driver->verify(new_policy);
2057 	if (ret)
2058 		return ret;
2059 
2060 	/* adjust if necessary - all reasons */
2061 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2062 			CPUFREQ_ADJUST, new_policy);
2063 
2064 	/*
2065 	 * verify the cpu speed can be set within this limit, which might be
2066 	 * different to the first one
2067 	 */
2068 	ret = cpufreq_driver->verify(new_policy);
2069 	if (ret)
2070 		return ret;
2071 
2072 	/* notification of the new policy */
2073 	blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2074 			CPUFREQ_NOTIFY, new_policy);
2075 
2076 	policy->min = new_policy->min;
2077 	policy->max = new_policy->max;
2078 
2079 	pr_debug("new min and max freqs are %u - %u kHz\n",
2080 		 policy->min, policy->max);
2081 
2082 	if (cpufreq_driver->setpolicy) {
2083 		policy->policy = new_policy->policy;
2084 		pr_debug("setting range\n");
2085 		return cpufreq_driver->setpolicy(new_policy);
2086 	}
2087 
2088 	if (new_policy->governor == policy->governor) {
2089 		pr_debug("cpufreq: governor limits update\n");
2090 		return cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
2091 	}
2092 
2093 	pr_debug("governor switch\n");
2094 
2095 	/* save old, working values */
2096 	old_gov = policy->governor;
2097 	/* end old governor */
2098 	if (old_gov) {
2099 		ret = cpufreq_governor(policy, CPUFREQ_GOV_STOP);
2100 		if (ret) {
2101 			/* This can happen due to race with other operations */
2102 			pr_debug("%s: Failed to Stop Governor: %s (%d)\n",
2103 				 __func__, old_gov->name, ret);
2104 			return ret;
2105 		}
2106 
2107 		ret = cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
2108 		if (ret) {
2109 			pr_err("%s: Failed to Exit Governor: %s (%d)\n",
2110 			       __func__, old_gov->name, ret);
2111 			return ret;
2112 		}
2113 	}
2114 
2115 	/* start new governor */
2116 	policy->governor = new_policy->governor;
2117 	ret = cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT);
2118 	if (!ret) {
2119 		ret = cpufreq_start_governor(policy);
2120 		if (!ret) {
2121 			pr_debug("cpufreq: governor change\n");
2122 			return 0;
2123 		}
2124 		cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
2125 	}
2126 
2127 	/* new governor failed, so re-start old one */
2128 	pr_debug("starting governor %s failed\n", policy->governor->name);
2129 	if (old_gov) {
2130 		policy->governor = old_gov;
2131 		if (cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT))
2132 			policy->governor = NULL;
2133 		else
2134 			cpufreq_start_governor(policy);
2135 	}
2136 
2137 	return ret;
2138 }
2139 
2140 /**
2141  *	cpufreq_update_policy - re-evaluate an existing cpufreq policy
2142  *	@cpu: CPU which shall be re-evaluated
2143  *
2144  *	Useful for policy notifiers which have different necessities
2145  *	at different times.
2146  */
2147 int cpufreq_update_policy(unsigned int cpu)
2148 {
2149 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
2150 	struct cpufreq_policy new_policy;
2151 	int ret;
2152 
2153 	if (!policy)
2154 		return -ENODEV;
2155 
2156 	down_write(&policy->rwsem);
2157 
2158 	pr_debug("updating policy for CPU %u\n", cpu);
2159 	memcpy(&new_policy, policy, sizeof(*policy));
2160 	new_policy.min = policy->user_policy.min;
2161 	new_policy.max = policy->user_policy.max;
2162 
2163 	/*
2164 	 * BIOS might change freq behind our back
2165 	 * -> ask driver for current freq and notify governors about a change
2166 	 */
2167 	if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
2168 		new_policy.cur = cpufreq_update_current_freq(policy);
2169 		if (WARN_ON(!new_policy.cur)) {
2170 			ret = -EIO;
2171 			goto unlock;
2172 		}
2173 	}
2174 
2175 	ret = cpufreq_set_policy(policy, &new_policy);
2176 
2177 unlock:
2178 	up_write(&policy->rwsem);
2179 
2180 	cpufreq_cpu_put(policy);
2181 	return ret;
2182 }
2183 EXPORT_SYMBOL(cpufreq_update_policy);
2184 
2185 static int cpufreq_cpu_callback(struct notifier_block *nfb,
2186 					unsigned long action, void *hcpu)
2187 {
2188 	unsigned int cpu = (unsigned long)hcpu;
2189 
2190 	switch (action & ~CPU_TASKS_FROZEN) {
2191 	case CPU_ONLINE:
2192 		cpufreq_online(cpu);
2193 		break;
2194 
2195 	case CPU_DOWN_PREPARE:
2196 		cpufreq_offline(cpu);
2197 		break;
2198 
2199 	case CPU_DOWN_FAILED:
2200 		cpufreq_online(cpu);
2201 		break;
2202 	}
2203 	return NOTIFY_OK;
2204 }
2205 
2206 static struct notifier_block __refdata cpufreq_cpu_notifier = {
2207 	.notifier_call = cpufreq_cpu_callback,
2208 };
2209 
2210 /*********************************************************************
2211  *               BOOST						     *
2212  *********************************************************************/
2213 static int cpufreq_boost_set_sw(int state)
2214 {
2215 	struct cpufreq_frequency_table *freq_table;
2216 	struct cpufreq_policy *policy;
2217 	int ret = -EINVAL;
2218 
2219 	for_each_active_policy(policy) {
2220 		freq_table = cpufreq_frequency_get_table(policy->cpu);
2221 		if (freq_table) {
2222 			ret = cpufreq_frequency_table_cpuinfo(policy,
2223 							freq_table);
2224 			if (ret) {
2225 				pr_err("%s: Policy frequency update failed\n",
2226 				       __func__);
2227 				break;
2228 			}
2229 
2230 			down_write(&policy->rwsem);
2231 			policy->user_policy.max = policy->max;
2232 			cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
2233 			up_write(&policy->rwsem);
2234 		}
2235 	}
2236 
2237 	return ret;
2238 }
2239 
2240 int cpufreq_boost_trigger_state(int state)
2241 {
2242 	unsigned long flags;
2243 	int ret = 0;
2244 
2245 	if (cpufreq_driver->boost_enabled == state)
2246 		return 0;
2247 
2248 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2249 	cpufreq_driver->boost_enabled = state;
2250 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2251 
2252 	ret = cpufreq_driver->set_boost(state);
2253 	if (ret) {
2254 		write_lock_irqsave(&cpufreq_driver_lock, flags);
2255 		cpufreq_driver->boost_enabled = !state;
2256 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2257 
2258 		pr_err("%s: Cannot %s BOOST\n",
2259 		       __func__, state ? "enable" : "disable");
2260 	}
2261 
2262 	return ret;
2263 }
2264 
2265 static bool cpufreq_boost_supported(void)
2266 {
2267 	return likely(cpufreq_driver) && cpufreq_driver->set_boost;
2268 }
2269 
2270 static int create_boost_sysfs_file(void)
2271 {
2272 	int ret;
2273 
2274 	ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2275 	if (ret)
2276 		pr_err("%s: cannot register global BOOST sysfs file\n",
2277 		       __func__);
2278 
2279 	return ret;
2280 }
2281 
2282 static void remove_boost_sysfs_file(void)
2283 {
2284 	if (cpufreq_boost_supported())
2285 		sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2286 }
2287 
2288 int cpufreq_enable_boost_support(void)
2289 {
2290 	if (!cpufreq_driver)
2291 		return -EINVAL;
2292 
2293 	if (cpufreq_boost_supported())
2294 		return 0;
2295 
2296 	cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2297 
2298 	/* This will get removed on driver unregister */
2299 	return create_boost_sysfs_file();
2300 }
2301 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2302 
2303 int cpufreq_boost_enabled(void)
2304 {
2305 	return cpufreq_driver->boost_enabled;
2306 }
2307 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2308 
2309 /*********************************************************************
2310  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2311  *********************************************************************/
2312 
2313 /**
2314  * cpufreq_register_driver - register a CPU Frequency driver
2315  * @driver_data: A struct cpufreq_driver containing the values#
2316  * submitted by the CPU Frequency driver.
2317  *
2318  * Registers a CPU Frequency driver to this core code. This code
2319  * returns zero on success, -EEXIST when another driver got here first
2320  * (and isn't unregistered in the meantime).
2321  *
2322  */
2323 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2324 {
2325 	unsigned long flags;
2326 	int ret;
2327 
2328 	if (cpufreq_disabled())
2329 		return -ENODEV;
2330 
2331 	if (!driver_data || !driver_data->verify || !driver_data->init ||
2332 	    !(driver_data->setpolicy || driver_data->target_index ||
2333 		    driver_data->target) ||
2334 	     (driver_data->setpolicy && (driver_data->target_index ||
2335 		    driver_data->target)) ||
2336 	     (!!driver_data->get_intermediate != !!driver_data->target_intermediate))
2337 		return -EINVAL;
2338 
2339 	pr_debug("trying to register driver %s\n", driver_data->name);
2340 
2341 	/* Protect against concurrent CPU online/offline. */
2342 	get_online_cpus();
2343 
2344 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2345 	if (cpufreq_driver) {
2346 		write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2347 		ret = -EEXIST;
2348 		goto out;
2349 	}
2350 	cpufreq_driver = driver_data;
2351 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2352 
2353 	if (driver_data->setpolicy)
2354 		driver_data->flags |= CPUFREQ_CONST_LOOPS;
2355 
2356 	if (cpufreq_boost_supported()) {
2357 		ret = create_boost_sysfs_file();
2358 		if (ret)
2359 			goto err_null_driver;
2360 	}
2361 
2362 	ret = subsys_interface_register(&cpufreq_interface);
2363 	if (ret)
2364 		goto err_boost_unreg;
2365 
2366 	if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2367 	    list_empty(&cpufreq_policy_list)) {
2368 		/* if all ->init() calls failed, unregister */
2369 		pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2370 			 driver_data->name);
2371 		goto err_if_unreg;
2372 	}
2373 
2374 	register_hotcpu_notifier(&cpufreq_cpu_notifier);
2375 	pr_debug("driver %s up and running\n", driver_data->name);
2376 
2377 out:
2378 	put_online_cpus();
2379 	return ret;
2380 
2381 err_if_unreg:
2382 	subsys_interface_unregister(&cpufreq_interface);
2383 err_boost_unreg:
2384 	remove_boost_sysfs_file();
2385 err_null_driver:
2386 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2387 	cpufreq_driver = NULL;
2388 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2389 	goto out;
2390 }
2391 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2392 
2393 /**
2394  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2395  *
2396  * Unregister the current CPUFreq driver. Only call this if you have
2397  * the right to do so, i.e. if you have succeeded in initialising before!
2398  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2399  * currently not initialised.
2400  */
2401 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2402 {
2403 	unsigned long flags;
2404 
2405 	if (!cpufreq_driver || (driver != cpufreq_driver))
2406 		return -EINVAL;
2407 
2408 	pr_debug("unregistering driver %s\n", driver->name);
2409 
2410 	/* Protect against concurrent cpu hotplug */
2411 	get_online_cpus();
2412 	subsys_interface_unregister(&cpufreq_interface);
2413 	remove_boost_sysfs_file();
2414 	unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
2415 
2416 	write_lock_irqsave(&cpufreq_driver_lock, flags);
2417 
2418 	cpufreq_driver = NULL;
2419 
2420 	write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2421 	put_online_cpus();
2422 
2423 	return 0;
2424 }
2425 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2426 
2427 /*
2428  * Stop cpufreq at shutdown to make sure it isn't holding any locks
2429  * or mutexes when secondary CPUs are halted.
2430  */
2431 static struct syscore_ops cpufreq_syscore_ops = {
2432 	.shutdown = cpufreq_suspend,
2433 };
2434 
2435 struct kobject *cpufreq_global_kobject;
2436 EXPORT_SYMBOL(cpufreq_global_kobject);
2437 
2438 static int __init cpufreq_core_init(void)
2439 {
2440 	if (cpufreq_disabled())
2441 		return -ENODEV;
2442 
2443 	cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2444 	BUG_ON(!cpufreq_global_kobject);
2445 
2446 	register_syscore_ops(&cpufreq_syscore_ops);
2447 
2448 	return 0;
2449 }
2450 core_initcall(cpufreq_core_init);
2451