1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/cpufreq/cpufreq.c 4 * 5 * Copyright (C) 2001 Russell King 6 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 7 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org> 8 * 9 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 10 * Added handling for CPU hotplug 11 * Feb 2006 - Jacob Shin <jacob.shin@amd.com> 12 * Fix handling for CPU hotplug -- affected CPUs 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/cpu.h> 18 #include <linux/cpufreq.h> 19 #include <linux/cpu_cooling.h> 20 #include <linux/delay.h> 21 #include <linux/device.h> 22 #include <linux/init.h> 23 #include <linux/kernel_stat.h> 24 #include <linux/module.h> 25 #include <linux/mutex.h> 26 #include <linux/pm_qos.h> 27 #include <linux/slab.h> 28 #include <linux/suspend.h> 29 #include <linux/syscore_ops.h> 30 #include <linux/tick.h> 31 #include <linux/units.h> 32 #include <trace/events/power.h> 33 34 static LIST_HEAD(cpufreq_policy_list); 35 36 /* Macros to iterate over CPU policies */ 37 #define for_each_suitable_policy(__policy, __active) \ 38 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \ 39 if ((__active) == !policy_is_inactive(__policy)) 40 41 #define for_each_active_policy(__policy) \ 42 for_each_suitable_policy(__policy, true) 43 #define for_each_inactive_policy(__policy) \ 44 for_each_suitable_policy(__policy, false) 45 46 /* Iterate over governors */ 47 static LIST_HEAD(cpufreq_governor_list); 48 #define for_each_governor(__governor) \ 49 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list) 50 51 static char default_governor[CPUFREQ_NAME_LEN]; 52 53 /* 54 * The "cpufreq driver" - the arch- or hardware-dependent low 55 * level driver of CPUFreq support, and its spinlock. This lock 56 * also protects the cpufreq_cpu_data array. 57 */ 58 static struct cpufreq_driver *cpufreq_driver; 59 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data); 60 static DEFINE_RWLOCK(cpufreq_driver_lock); 61 62 static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance); 63 bool cpufreq_supports_freq_invariance(void) 64 { 65 return static_branch_likely(&cpufreq_freq_invariance); 66 } 67 68 /* Flag to suspend/resume CPUFreq governors */ 69 static bool cpufreq_suspended; 70 71 static inline bool has_target(void) 72 { 73 return cpufreq_driver->target_index || cpufreq_driver->target; 74 } 75 76 /* internal prototypes */ 77 static unsigned int __cpufreq_get(struct cpufreq_policy *policy); 78 static int cpufreq_init_governor(struct cpufreq_policy *policy); 79 static void cpufreq_exit_governor(struct cpufreq_policy *policy); 80 static void cpufreq_governor_limits(struct cpufreq_policy *policy); 81 static int cpufreq_set_policy(struct cpufreq_policy *policy, 82 struct cpufreq_governor *new_gov, 83 unsigned int new_pol); 84 85 /* 86 * Two notifier lists: the "policy" list is involved in the 87 * validation process for a new CPU frequency policy; the 88 * "transition" list for kernel code that needs to handle 89 * changes to devices when the CPU clock speed changes. 90 * The mutex locks both lists. 91 */ 92 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list); 93 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list); 94 95 static int off __read_mostly; 96 static int cpufreq_disabled(void) 97 { 98 return off; 99 } 100 void disable_cpufreq(void) 101 { 102 off = 1; 103 } 104 static DEFINE_MUTEX(cpufreq_governor_mutex); 105 106 bool have_governor_per_policy(void) 107 { 108 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY); 109 } 110 EXPORT_SYMBOL_GPL(have_governor_per_policy); 111 112 static struct kobject *cpufreq_global_kobject; 113 114 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy) 115 { 116 if (have_governor_per_policy()) 117 return &policy->kobj; 118 else 119 return cpufreq_global_kobject; 120 } 121 EXPORT_SYMBOL_GPL(get_governor_parent_kobj); 122 123 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) 124 { 125 struct kernel_cpustat kcpustat; 126 u64 cur_wall_time; 127 u64 idle_time; 128 u64 busy_time; 129 130 cur_wall_time = jiffies64_to_nsecs(get_jiffies_64()); 131 132 kcpustat_cpu_fetch(&kcpustat, cpu); 133 134 busy_time = kcpustat.cpustat[CPUTIME_USER]; 135 busy_time += kcpustat.cpustat[CPUTIME_SYSTEM]; 136 busy_time += kcpustat.cpustat[CPUTIME_IRQ]; 137 busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ]; 138 busy_time += kcpustat.cpustat[CPUTIME_STEAL]; 139 busy_time += kcpustat.cpustat[CPUTIME_NICE]; 140 141 idle_time = cur_wall_time - busy_time; 142 if (wall) 143 *wall = div_u64(cur_wall_time, NSEC_PER_USEC); 144 145 return div_u64(idle_time, NSEC_PER_USEC); 146 } 147 148 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy) 149 { 150 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL); 151 152 if (idle_time == -1ULL) 153 return get_cpu_idle_time_jiffy(cpu, wall); 154 else if (!io_busy) 155 idle_time += get_cpu_iowait_time_us(cpu, wall); 156 157 return idle_time; 158 } 159 EXPORT_SYMBOL_GPL(get_cpu_idle_time); 160 161 /* 162 * This is a generic cpufreq init() routine which can be used by cpufreq 163 * drivers of SMP systems. It will do following: 164 * - validate & show freq table passed 165 * - set policies transition latency 166 * - policy->cpus with all possible CPUs 167 */ 168 void cpufreq_generic_init(struct cpufreq_policy *policy, 169 struct cpufreq_frequency_table *table, 170 unsigned int transition_latency) 171 { 172 policy->freq_table = table; 173 policy->cpuinfo.transition_latency = transition_latency; 174 175 /* 176 * The driver only supports the SMP configuration where all processors 177 * share the clock and voltage and clock. 178 */ 179 cpumask_setall(policy->cpus); 180 } 181 EXPORT_SYMBOL_GPL(cpufreq_generic_init); 182 183 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu) 184 { 185 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 186 187 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL; 188 } 189 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw); 190 191 unsigned int cpufreq_generic_get(unsigned int cpu) 192 { 193 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu); 194 195 if (!policy || IS_ERR(policy->clk)) { 196 pr_err("%s: No %s associated to cpu: %d\n", 197 __func__, policy ? "clk" : "policy", cpu); 198 return 0; 199 } 200 201 return clk_get_rate(policy->clk) / 1000; 202 } 203 EXPORT_SYMBOL_GPL(cpufreq_generic_get); 204 205 /** 206 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy. 207 * @cpu: CPU to find the policy for. 208 * 209 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment 210 * the kobject reference counter of that policy. Return a valid policy on 211 * success or NULL on failure. 212 * 213 * The policy returned by this function has to be released with the help of 214 * cpufreq_cpu_put() to balance its kobject reference counter properly. 215 */ 216 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) 217 { 218 struct cpufreq_policy *policy = NULL; 219 unsigned long flags; 220 221 if (WARN_ON(cpu >= nr_cpu_ids)) 222 return NULL; 223 224 /* get the cpufreq driver */ 225 read_lock_irqsave(&cpufreq_driver_lock, flags); 226 227 if (cpufreq_driver) { 228 /* get the CPU */ 229 policy = cpufreq_cpu_get_raw(cpu); 230 if (policy) 231 kobject_get(&policy->kobj); 232 } 233 234 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 235 236 return policy; 237 } 238 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 239 240 /** 241 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy. 242 * @policy: cpufreq policy returned by cpufreq_cpu_get(). 243 */ 244 void cpufreq_cpu_put(struct cpufreq_policy *policy) 245 { 246 kobject_put(&policy->kobj); 247 } 248 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 249 250 /** 251 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter. 252 * @policy: cpufreq policy returned by cpufreq_cpu_acquire(). 253 */ 254 void cpufreq_cpu_release(struct cpufreq_policy *policy) 255 { 256 if (WARN_ON(!policy)) 257 return; 258 259 lockdep_assert_held(&policy->rwsem); 260 261 up_write(&policy->rwsem); 262 263 cpufreq_cpu_put(policy); 264 } 265 266 /** 267 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it. 268 * @cpu: CPU to find the policy for. 269 * 270 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and 271 * if the policy returned by it is not NULL, acquire its rwsem for writing. 272 * Return the policy if it is active or release it and return NULL otherwise. 273 * 274 * The policy returned by this function has to be released with the help of 275 * cpufreq_cpu_release() in order to release its rwsem and balance its usage 276 * counter properly. 277 */ 278 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu) 279 { 280 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 281 282 if (!policy) 283 return NULL; 284 285 down_write(&policy->rwsem); 286 287 if (policy_is_inactive(policy)) { 288 cpufreq_cpu_release(policy); 289 return NULL; 290 } 291 292 return policy; 293 } 294 295 /********************************************************************* 296 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 297 *********************************************************************/ 298 299 /** 300 * adjust_jiffies - Adjust the system "loops_per_jiffy". 301 * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE. 302 * @ci: Frequency change information. 303 * 304 * This function alters the system "loops_per_jiffy" for the clock 305 * speed change. Note that loops_per_jiffy cannot be updated on SMP 306 * systems as each CPU might be scaled differently. So, use the arch 307 * per-CPU loops_per_jiffy value wherever possible. 308 */ 309 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 310 { 311 #ifndef CONFIG_SMP 312 static unsigned long l_p_j_ref; 313 static unsigned int l_p_j_ref_freq; 314 315 if (ci->flags & CPUFREQ_CONST_LOOPS) 316 return; 317 318 if (!l_p_j_ref_freq) { 319 l_p_j_ref = loops_per_jiffy; 320 l_p_j_ref_freq = ci->old; 321 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n", 322 l_p_j_ref, l_p_j_ref_freq); 323 } 324 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) { 325 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, 326 ci->new); 327 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n", 328 loops_per_jiffy, ci->new); 329 } 330 #endif 331 } 332 333 /** 334 * cpufreq_notify_transition - Notify frequency transition and adjust jiffies. 335 * @policy: cpufreq policy to enable fast frequency switching for. 336 * @freqs: contain details of the frequency update. 337 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE. 338 * 339 * This function calls the transition notifiers and adjust_jiffies(). 340 * 341 * It is called twice on all CPU frequency changes that have external effects. 342 */ 343 static void cpufreq_notify_transition(struct cpufreq_policy *policy, 344 struct cpufreq_freqs *freqs, 345 unsigned int state) 346 { 347 int cpu; 348 349 BUG_ON(irqs_disabled()); 350 351 if (cpufreq_disabled()) 352 return; 353 354 freqs->policy = policy; 355 freqs->flags = cpufreq_driver->flags; 356 pr_debug("notification %u of frequency transition to %u kHz\n", 357 state, freqs->new); 358 359 switch (state) { 360 case CPUFREQ_PRECHANGE: 361 /* 362 * Detect if the driver reported a value as "old frequency" 363 * which is not equal to what the cpufreq core thinks is 364 * "old frequency". 365 */ 366 if (policy->cur && policy->cur != freqs->old) { 367 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n", 368 freqs->old, policy->cur); 369 freqs->old = policy->cur; 370 } 371 372 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 373 CPUFREQ_PRECHANGE, freqs); 374 375 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 376 break; 377 378 case CPUFREQ_POSTCHANGE: 379 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 380 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new, 381 cpumask_pr_args(policy->cpus)); 382 383 for_each_cpu(cpu, policy->cpus) 384 trace_cpu_frequency(freqs->new, cpu); 385 386 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 387 CPUFREQ_POSTCHANGE, freqs); 388 389 cpufreq_stats_record_transition(policy, freqs->new); 390 policy->cur = freqs->new; 391 } 392 } 393 394 /* Do post notifications when there are chances that transition has failed */ 395 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy, 396 struct cpufreq_freqs *freqs, int transition_failed) 397 { 398 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 399 if (!transition_failed) 400 return; 401 402 swap(freqs->old, freqs->new); 403 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 404 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 405 } 406 407 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy, 408 struct cpufreq_freqs *freqs) 409 { 410 411 /* 412 * Catch double invocations of _begin() which lead to self-deadlock. 413 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core 414 * doesn't invoke _begin() on their behalf, and hence the chances of 415 * double invocations are very low. Moreover, there are scenarios 416 * where these checks can emit false-positive warnings in these 417 * drivers; so we avoid that by skipping them altogether. 418 */ 419 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION) 420 && current == policy->transition_task); 421 422 wait: 423 wait_event(policy->transition_wait, !policy->transition_ongoing); 424 425 spin_lock(&policy->transition_lock); 426 427 if (unlikely(policy->transition_ongoing)) { 428 spin_unlock(&policy->transition_lock); 429 goto wait; 430 } 431 432 policy->transition_ongoing = true; 433 policy->transition_task = current; 434 435 spin_unlock(&policy->transition_lock); 436 437 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 438 } 439 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin); 440 441 void cpufreq_freq_transition_end(struct cpufreq_policy *policy, 442 struct cpufreq_freqs *freqs, int transition_failed) 443 { 444 if (WARN_ON(!policy->transition_ongoing)) 445 return; 446 447 cpufreq_notify_post_transition(policy, freqs, transition_failed); 448 449 arch_set_freq_scale(policy->related_cpus, 450 policy->cur, 451 policy->cpuinfo.max_freq); 452 453 policy->transition_ongoing = false; 454 policy->transition_task = NULL; 455 456 wake_up(&policy->transition_wait); 457 } 458 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end); 459 460 /* 461 * Fast frequency switching status count. Positive means "enabled", negative 462 * means "disabled" and 0 means "not decided yet". 463 */ 464 static int cpufreq_fast_switch_count; 465 static DEFINE_MUTEX(cpufreq_fast_switch_lock); 466 467 static void cpufreq_list_transition_notifiers(void) 468 { 469 struct notifier_block *nb; 470 471 pr_info("Registered transition notifiers:\n"); 472 473 mutex_lock(&cpufreq_transition_notifier_list.mutex); 474 475 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next) 476 pr_info("%pS\n", nb->notifier_call); 477 478 mutex_unlock(&cpufreq_transition_notifier_list.mutex); 479 } 480 481 /** 482 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy. 483 * @policy: cpufreq policy to enable fast frequency switching for. 484 * 485 * Try to enable fast frequency switching for @policy. 486 * 487 * The attempt will fail if there is at least one transition notifier registered 488 * at this point, as fast frequency switching is quite fundamentally at odds 489 * with transition notifiers. Thus if successful, it will make registration of 490 * transition notifiers fail going forward. 491 */ 492 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy) 493 { 494 lockdep_assert_held(&policy->rwsem); 495 496 if (!policy->fast_switch_possible) 497 return; 498 499 mutex_lock(&cpufreq_fast_switch_lock); 500 if (cpufreq_fast_switch_count >= 0) { 501 cpufreq_fast_switch_count++; 502 policy->fast_switch_enabled = true; 503 } else { 504 pr_warn("CPU%u: Fast frequency switching not enabled\n", 505 policy->cpu); 506 cpufreq_list_transition_notifiers(); 507 } 508 mutex_unlock(&cpufreq_fast_switch_lock); 509 } 510 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch); 511 512 /** 513 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy. 514 * @policy: cpufreq policy to disable fast frequency switching for. 515 */ 516 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy) 517 { 518 mutex_lock(&cpufreq_fast_switch_lock); 519 if (policy->fast_switch_enabled) { 520 policy->fast_switch_enabled = false; 521 if (!WARN_ON(cpufreq_fast_switch_count <= 0)) 522 cpufreq_fast_switch_count--; 523 } 524 mutex_unlock(&cpufreq_fast_switch_lock); 525 } 526 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch); 527 528 static unsigned int __resolve_freq(struct cpufreq_policy *policy, 529 unsigned int target_freq, unsigned int relation) 530 { 531 unsigned int idx; 532 533 target_freq = clamp_val(target_freq, policy->min, policy->max); 534 535 if (!policy->freq_table) 536 return target_freq; 537 538 idx = cpufreq_frequency_table_target(policy, target_freq, relation); 539 policy->cached_resolved_idx = idx; 540 policy->cached_target_freq = target_freq; 541 return policy->freq_table[idx].frequency; 542 } 543 544 /** 545 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported 546 * one. 547 * @policy: associated policy to interrogate 548 * @target_freq: target frequency to resolve. 549 * 550 * The target to driver frequency mapping is cached in the policy. 551 * 552 * Return: Lowest driver-supported frequency greater than or equal to the 553 * given target_freq, subject to policy (min/max) and driver limitations. 554 */ 555 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy, 556 unsigned int target_freq) 557 { 558 return __resolve_freq(policy, target_freq, CPUFREQ_RELATION_LE); 559 } 560 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq); 561 562 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy) 563 { 564 unsigned int latency; 565 566 if (policy->transition_delay_us) 567 return policy->transition_delay_us; 568 569 latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC; 570 if (latency) { 571 /* 572 * For platforms that can change the frequency very fast (< 10 573 * us), the above formula gives a decent transition delay. But 574 * for platforms where transition_latency is in milliseconds, it 575 * ends up giving unrealistic values. 576 * 577 * Cap the default transition delay to 10 ms, which seems to be 578 * a reasonable amount of time after which we should reevaluate 579 * the frequency. 580 */ 581 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000); 582 } 583 584 return LATENCY_MULTIPLIER; 585 } 586 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us); 587 588 /********************************************************************* 589 * SYSFS INTERFACE * 590 *********************************************************************/ 591 static ssize_t show_boost(struct kobject *kobj, 592 struct kobj_attribute *attr, char *buf) 593 { 594 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled); 595 } 596 597 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr, 598 const char *buf, size_t count) 599 { 600 int ret, enable; 601 602 ret = sscanf(buf, "%d", &enable); 603 if (ret != 1 || enable < 0 || enable > 1) 604 return -EINVAL; 605 606 if (cpufreq_boost_trigger_state(enable)) { 607 pr_err("%s: Cannot %s BOOST!\n", 608 __func__, enable ? "enable" : "disable"); 609 return -EINVAL; 610 } 611 612 pr_debug("%s: cpufreq BOOST %s\n", 613 __func__, enable ? "enabled" : "disabled"); 614 615 return count; 616 } 617 define_one_global_rw(boost); 618 619 static struct cpufreq_governor *find_governor(const char *str_governor) 620 { 621 struct cpufreq_governor *t; 622 623 for_each_governor(t) 624 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN)) 625 return t; 626 627 return NULL; 628 } 629 630 static struct cpufreq_governor *get_governor(const char *str_governor) 631 { 632 struct cpufreq_governor *t; 633 634 mutex_lock(&cpufreq_governor_mutex); 635 t = find_governor(str_governor); 636 if (!t) 637 goto unlock; 638 639 if (!try_module_get(t->owner)) 640 t = NULL; 641 642 unlock: 643 mutex_unlock(&cpufreq_governor_mutex); 644 645 return t; 646 } 647 648 static unsigned int cpufreq_parse_policy(char *str_governor) 649 { 650 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) 651 return CPUFREQ_POLICY_PERFORMANCE; 652 653 if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) 654 return CPUFREQ_POLICY_POWERSAVE; 655 656 return CPUFREQ_POLICY_UNKNOWN; 657 } 658 659 /** 660 * cpufreq_parse_governor - parse a governor string only for has_target() 661 * @str_governor: Governor name. 662 */ 663 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor) 664 { 665 struct cpufreq_governor *t; 666 667 t = get_governor(str_governor); 668 if (t) 669 return t; 670 671 if (request_module("cpufreq_%s", str_governor)) 672 return NULL; 673 674 return get_governor(str_governor); 675 } 676 677 /* 678 * cpufreq_per_cpu_attr_read() / show_##file_name() - 679 * print out cpufreq information 680 * 681 * Write out information from cpufreq_driver->policy[cpu]; object must be 682 * "unsigned int". 683 */ 684 685 #define show_one(file_name, object) \ 686 static ssize_t show_##file_name \ 687 (struct cpufreq_policy *policy, char *buf) \ 688 { \ 689 return sprintf(buf, "%u\n", policy->object); \ 690 } 691 692 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 693 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 694 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency); 695 show_one(scaling_min_freq, min); 696 show_one(scaling_max_freq, max); 697 698 __weak unsigned int arch_freq_get_on_cpu(int cpu) 699 { 700 return 0; 701 } 702 703 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf) 704 { 705 ssize_t ret; 706 unsigned int freq; 707 708 freq = arch_freq_get_on_cpu(policy->cpu); 709 if (freq) 710 ret = sprintf(buf, "%u\n", freq); 711 else if (cpufreq_driver->setpolicy && cpufreq_driver->get) 712 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu)); 713 else 714 ret = sprintf(buf, "%u\n", policy->cur); 715 return ret; 716 } 717 718 /* 719 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 720 */ 721 #define store_one(file_name, object) \ 722 static ssize_t store_##file_name \ 723 (struct cpufreq_policy *policy, const char *buf, size_t count) \ 724 { \ 725 unsigned long val; \ 726 int ret; \ 727 \ 728 ret = sscanf(buf, "%lu", &val); \ 729 if (ret != 1) \ 730 return -EINVAL; \ 731 \ 732 ret = freq_qos_update_request(policy->object##_freq_req, val);\ 733 return ret >= 0 ? count : ret; \ 734 } 735 736 store_one(scaling_min_freq, min); 737 store_one(scaling_max_freq, max); 738 739 /* 740 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 741 */ 742 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy, 743 char *buf) 744 { 745 unsigned int cur_freq = __cpufreq_get(policy); 746 747 if (cur_freq) 748 return sprintf(buf, "%u\n", cur_freq); 749 750 return sprintf(buf, "<unknown>\n"); 751 } 752 753 /* 754 * show_scaling_governor - show the current policy for the specified CPU 755 */ 756 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf) 757 { 758 if (policy->policy == CPUFREQ_POLICY_POWERSAVE) 759 return sprintf(buf, "powersave\n"); 760 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 761 return sprintf(buf, "performance\n"); 762 else if (policy->governor) 763 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", 764 policy->governor->name); 765 return -EINVAL; 766 } 767 768 /* 769 * store_scaling_governor - store policy for the specified CPU 770 */ 771 static ssize_t store_scaling_governor(struct cpufreq_policy *policy, 772 const char *buf, size_t count) 773 { 774 char str_governor[16]; 775 int ret; 776 777 ret = sscanf(buf, "%15s", str_governor); 778 if (ret != 1) 779 return -EINVAL; 780 781 if (cpufreq_driver->setpolicy) { 782 unsigned int new_pol; 783 784 new_pol = cpufreq_parse_policy(str_governor); 785 if (!new_pol) 786 return -EINVAL; 787 788 ret = cpufreq_set_policy(policy, NULL, new_pol); 789 } else { 790 struct cpufreq_governor *new_gov; 791 792 new_gov = cpufreq_parse_governor(str_governor); 793 if (!new_gov) 794 return -EINVAL; 795 796 ret = cpufreq_set_policy(policy, new_gov, 797 CPUFREQ_POLICY_UNKNOWN); 798 799 module_put(new_gov->owner); 800 } 801 802 return ret ? ret : count; 803 } 804 805 /* 806 * show_scaling_driver - show the cpufreq driver currently loaded 807 */ 808 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf) 809 { 810 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name); 811 } 812 813 /* 814 * show_scaling_available_governors - show the available CPUfreq governors 815 */ 816 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy, 817 char *buf) 818 { 819 ssize_t i = 0; 820 struct cpufreq_governor *t; 821 822 if (!has_target()) { 823 i += sprintf(buf, "performance powersave"); 824 goto out; 825 } 826 827 mutex_lock(&cpufreq_governor_mutex); 828 for_each_governor(t) { 829 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) 830 - (CPUFREQ_NAME_LEN + 2))) 831 break; 832 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name); 833 } 834 mutex_unlock(&cpufreq_governor_mutex); 835 out: 836 i += sprintf(&buf[i], "\n"); 837 return i; 838 } 839 840 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf) 841 { 842 ssize_t i = 0; 843 unsigned int cpu; 844 845 for_each_cpu(cpu, mask) { 846 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u ", cpu); 847 if (i >= (PAGE_SIZE - 5)) 848 break; 849 } 850 851 /* Remove the extra space at the end */ 852 i--; 853 854 i += sprintf(&buf[i], "\n"); 855 return i; 856 } 857 EXPORT_SYMBOL_GPL(cpufreq_show_cpus); 858 859 /* 860 * show_related_cpus - show the CPUs affected by each transition even if 861 * hw coordination is in use 862 */ 863 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf) 864 { 865 return cpufreq_show_cpus(policy->related_cpus, buf); 866 } 867 868 /* 869 * show_affected_cpus - show the CPUs affected by each transition 870 */ 871 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf) 872 { 873 return cpufreq_show_cpus(policy->cpus, buf); 874 } 875 876 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy, 877 const char *buf, size_t count) 878 { 879 unsigned int freq = 0; 880 unsigned int ret; 881 882 if (!policy->governor || !policy->governor->store_setspeed) 883 return -EINVAL; 884 885 ret = sscanf(buf, "%u", &freq); 886 if (ret != 1) 887 return -EINVAL; 888 889 policy->governor->store_setspeed(policy, freq); 890 891 return count; 892 } 893 894 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf) 895 { 896 if (!policy->governor || !policy->governor->show_setspeed) 897 return sprintf(buf, "<unsupported>\n"); 898 899 return policy->governor->show_setspeed(policy, buf); 900 } 901 902 /* 903 * show_bios_limit - show the current cpufreq HW/BIOS limitation 904 */ 905 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf) 906 { 907 unsigned int limit; 908 int ret; 909 ret = cpufreq_driver->bios_limit(policy->cpu, &limit); 910 if (!ret) 911 return sprintf(buf, "%u\n", limit); 912 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq); 913 } 914 915 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400); 916 cpufreq_freq_attr_ro(cpuinfo_min_freq); 917 cpufreq_freq_attr_ro(cpuinfo_max_freq); 918 cpufreq_freq_attr_ro(cpuinfo_transition_latency); 919 cpufreq_freq_attr_ro(scaling_available_governors); 920 cpufreq_freq_attr_ro(scaling_driver); 921 cpufreq_freq_attr_ro(scaling_cur_freq); 922 cpufreq_freq_attr_ro(bios_limit); 923 cpufreq_freq_attr_ro(related_cpus); 924 cpufreq_freq_attr_ro(affected_cpus); 925 cpufreq_freq_attr_rw(scaling_min_freq); 926 cpufreq_freq_attr_rw(scaling_max_freq); 927 cpufreq_freq_attr_rw(scaling_governor); 928 cpufreq_freq_attr_rw(scaling_setspeed); 929 930 static struct attribute *cpufreq_attrs[] = { 931 &cpuinfo_min_freq.attr, 932 &cpuinfo_max_freq.attr, 933 &cpuinfo_transition_latency.attr, 934 &scaling_min_freq.attr, 935 &scaling_max_freq.attr, 936 &affected_cpus.attr, 937 &related_cpus.attr, 938 &scaling_governor.attr, 939 &scaling_driver.attr, 940 &scaling_available_governors.attr, 941 &scaling_setspeed.attr, 942 NULL 943 }; 944 ATTRIBUTE_GROUPS(cpufreq); 945 946 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj) 947 #define to_attr(a) container_of(a, struct freq_attr, attr) 948 949 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) 950 { 951 struct cpufreq_policy *policy = to_policy(kobj); 952 struct freq_attr *fattr = to_attr(attr); 953 ssize_t ret = -EBUSY; 954 955 if (!fattr->show) 956 return -EIO; 957 958 down_read(&policy->rwsem); 959 if (likely(!policy_is_inactive(policy))) 960 ret = fattr->show(policy, buf); 961 up_read(&policy->rwsem); 962 963 return ret; 964 } 965 966 static ssize_t store(struct kobject *kobj, struct attribute *attr, 967 const char *buf, size_t count) 968 { 969 struct cpufreq_policy *policy = to_policy(kobj); 970 struct freq_attr *fattr = to_attr(attr); 971 ssize_t ret = -EBUSY; 972 973 if (!fattr->store) 974 return -EIO; 975 976 down_write(&policy->rwsem); 977 if (likely(!policy_is_inactive(policy))) 978 ret = fattr->store(policy, buf, count); 979 up_write(&policy->rwsem); 980 981 return ret; 982 } 983 984 static void cpufreq_sysfs_release(struct kobject *kobj) 985 { 986 struct cpufreq_policy *policy = to_policy(kobj); 987 pr_debug("last reference is dropped\n"); 988 complete(&policy->kobj_unregister); 989 } 990 991 static const struct sysfs_ops sysfs_ops = { 992 .show = show, 993 .store = store, 994 }; 995 996 static const struct kobj_type ktype_cpufreq = { 997 .sysfs_ops = &sysfs_ops, 998 .default_groups = cpufreq_groups, 999 .release = cpufreq_sysfs_release, 1000 }; 1001 1002 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu, 1003 struct device *dev) 1004 { 1005 if (unlikely(!dev)) 1006 return; 1007 1008 if (cpumask_test_and_set_cpu(cpu, policy->real_cpus)) 1009 return; 1010 1011 dev_dbg(dev, "%s: Adding symlink\n", __func__); 1012 if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq")) 1013 dev_err(dev, "cpufreq symlink creation failed\n"); 1014 } 1015 1016 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu, 1017 struct device *dev) 1018 { 1019 dev_dbg(dev, "%s: Removing symlink\n", __func__); 1020 sysfs_remove_link(&dev->kobj, "cpufreq"); 1021 cpumask_clear_cpu(cpu, policy->real_cpus); 1022 } 1023 1024 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy) 1025 { 1026 struct freq_attr **drv_attr; 1027 int ret = 0; 1028 1029 /* set up files for this cpu device */ 1030 drv_attr = cpufreq_driver->attr; 1031 while (drv_attr && *drv_attr) { 1032 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 1033 if (ret) 1034 return ret; 1035 drv_attr++; 1036 } 1037 if (cpufreq_driver->get) { 1038 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 1039 if (ret) 1040 return ret; 1041 } 1042 1043 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 1044 if (ret) 1045 return ret; 1046 1047 if (cpufreq_driver->bios_limit) { 1048 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr); 1049 if (ret) 1050 return ret; 1051 } 1052 1053 return 0; 1054 } 1055 1056 static int cpufreq_init_policy(struct cpufreq_policy *policy) 1057 { 1058 struct cpufreq_governor *gov = NULL; 1059 unsigned int pol = CPUFREQ_POLICY_UNKNOWN; 1060 int ret; 1061 1062 if (has_target()) { 1063 /* Update policy governor to the one used before hotplug. */ 1064 gov = get_governor(policy->last_governor); 1065 if (gov) { 1066 pr_debug("Restoring governor %s for cpu %d\n", 1067 gov->name, policy->cpu); 1068 } else { 1069 gov = get_governor(default_governor); 1070 } 1071 1072 if (!gov) { 1073 gov = cpufreq_default_governor(); 1074 __module_get(gov->owner); 1075 } 1076 1077 } else { 1078 1079 /* Use the default policy if there is no last_policy. */ 1080 if (policy->last_policy) { 1081 pol = policy->last_policy; 1082 } else { 1083 pol = cpufreq_parse_policy(default_governor); 1084 /* 1085 * In case the default governor is neither "performance" 1086 * nor "powersave", fall back to the initial policy 1087 * value set by the driver. 1088 */ 1089 if (pol == CPUFREQ_POLICY_UNKNOWN) 1090 pol = policy->policy; 1091 } 1092 if (pol != CPUFREQ_POLICY_PERFORMANCE && 1093 pol != CPUFREQ_POLICY_POWERSAVE) 1094 return -ENODATA; 1095 } 1096 1097 ret = cpufreq_set_policy(policy, gov, pol); 1098 if (gov) 1099 module_put(gov->owner); 1100 1101 return ret; 1102 } 1103 1104 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu) 1105 { 1106 int ret = 0; 1107 1108 /* Has this CPU been taken care of already? */ 1109 if (cpumask_test_cpu(cpu, policy->cpus)) 1110 return 0; 1111 1112 down_write(&policy->rwsem); 1113 if (has_target()) 1114 cpufreq_stop_governor(policy); 1115 1116 cpumask_set_cpu(cpu, policy->cpus); 1117 1118 if (has_target()) { 1119 ret = cpufreq_start_governor(policy); 1120 if (ret) 1121 pr_err("%s: Failed to start governor\n", __func__); 1122 } 1123 up_write(&policy->rwsem); 1124 return ret; 1125 } 1126 1127 void refresh_frequency_limits(struct cpufreq_policy *policy) 1128 { 1129 if (!policy_is_inactive(policy)) { 1130 pr_debug("updating policy for CPU %u\n", policy->cpu); 1131 1132 cpufreq_set_policy(policy, policy->governor, policy->policy); 1133 } 1134 } 1135 EXPORT_SYMBOL(refresh_frequency_limits); 1136 1137 static void handle_update(struct work_struct *work) 1138 { 1139 struct cpufreq_policy *policy = 1140 container_of(work, struct cpufreq_policy, update); 1141 1142 pr_debug("handle_update for cpu %u called\n", policy->cpu); 1143 down_write(&policy->rwsem); 1144 refresh_frequency_limits(policy); 1145 up_write(&policy->rwsem); 1146 } 1147 1148 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq, 1149 void *data) 1150 { 1151 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min); 1152 1153 schedule_work(&policy->update); 1154 return 0; 1155 } 1156 1157 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq, 1158 void *data) 1159 { 1160 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max); 1161 1162 schedule_work(&policy->update); 1163 return 0; 1164 } 1165 1166 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy) 1167 { 1168 struct kobject *kobj; 1169 struct completion *cmp; 1170 1171 down_write(&policy->rwsem); 1172 cpufreq_stats_free_table(policy); 1173 kobj = &policy->kobj; 1174 cmp = &policy->kobj_unregister; 1175 up_write(&policy->rwsem); 1176 kobject_put(kobj); 1177 1178 /* 1179 * We need to make sure that the underlying kobj is 1180 * actually not referenced anymore by anybody before we 1181 * proceed with unloading. 1182 */ 1183 pr_debug("waiting for dropping of refcount\n"); 1184 wait_for_completion(cmp); 1185 pr_debug("wait complete\n"); 1186 } 1187 1188 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu) 1189 { 1190 struct cpufreq_policy *policy; 1191 struct device *dev = get_cpu_device(cpu); 1192 int ret; 1193 1194 if (!dev) 1195 return NULL; 1196 1197 policy = kzalloc(sizeof(*policy), GFP_KERNEL); 1198 if (!policy) 1199 return NULL; 1200 1201 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) 1202 goto err_free_policy; 1203 1204 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) 1205 goto err_free_cpumask; 1206 1207 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL)) 1208 goto err_free_rcpumask; 1209 1210 init_completion(&policy->kobj_unregister); 1211 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, 1212 cpufreq_global_kobject, "policy%u", cpu); 1213 if (ret) { 1214 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret); 1215 /* 1216 * The entire policy object will be freed below, but the extra 1217 * memory allocated for the kobject name needs to be freed by 1218 * releasing the kobject. 1219 */ 1220 kobject_put(&policy->kobj); 1221 goto err_free_real_cpus; 1222 } 1223 1224 freq_constraints_init(&policy->constraints); 1225 1226 policy->nb_min.notifier_call = cpufreq_notifier_min; 1227 policy->nb_max.notifier_call = cpufreq_notifier_max; 1228 1229 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN, 1230 &policy->nb_min); 1231 if (ret) { 1232 dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n", 1233 ret, cpumask_pr_args(policy->cpus)); 1234 goto err_kobj_remove; 1235 } 1236 1237 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX, 1238 &policy->nb_max); 1239 if (ret) { 1240 dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n", 1241 ret, cpumask_pr_args(policy->cpus)); 1242 goto err_min_qos_notifier; 1243 } 1244 1245 INIT_LIST_HEAD(&policy->policy_list); 1246 init_rwsem(&policy->rwsem); 1247 spin_lock_init(&policy->transition_lock); 1248 init_waitqueue_head(&policy->transition_wait); 1249 INIT_WORK(&policy->update, handle_update); 1250 1251 policy->cpu = cpu; 1252 return policy; 1253 1254 err_min_qos_notifier: 1255 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN, 1256 &policy->nb_min); 1257 err_kobj_remove: 1258 cpufreq_policy_put_kobj(policy); 1259 err_free_real_cpus: 1260 free_cpumask_var(policy->real_cpus); 1261 err_free_rcpumask: 1262 free_cpumask_var(policy->related_cpus); 1263 err_free_cpumask: 1264 free_cpumask_var(policy->cpus); 1265 err_free_policy: 1266 kfree(policy); 1267 1268 return NULL; 1269 } 1270 1271 static void cpufreq_policy_free(struct cpufreq_policy *policy) 1272 { 1273 unsigned long flags; 1274 int cpu; 1275 1276 /* 1277 * The callers must ensure the policy is inactive by now, to avoid any 1278 * races with show()/store() callbacks. 1279 */ 1280 if (unlikely(!policy_is_inactive(policy))) 1281 pr_warn("%s: Freeing active policy\n", __func__); 1282 1283 /* Remove policy from list */ 1284 write_lock_irqsave(&cpufreq_driver_lock, flags); 1285 list_del(&policy->policy_list); 1286 1287 for_each_cpu(cpu, policy->related_cpus) 1288 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1289 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1290 1291 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX, 1292 &policy->nb_max); 1293 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN, 1294 &policy->nb_min); 1295 1296 /* Cancel any pending policy->update work before freeing the policy. */ 1297 cancel_work_sync(&policy->update); 1298 1299 if (policy->max_freq_req) { 1300 /* 1301 * Remove max_freq_req after sending CPUFREQ_REMOVE_POLICY 1302 * notification, since CPUFREQ_CREATE_POLICY notification was 1303 * sent after adding max_freq_req earlier. 1304 */ 1305 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1306 CPUFREQ_REMOVE_POLICY, policy); 1307 freq_qos_remove_request(policy->max_freq_req); 1308 } 1309 1310 freq_qos_remove_request(policy->min_freq_req); 1311 kfree(policy->min_freq_req); 1312 1313 cpufreq_policy_put_kobj(policy); 1314 free_cpumask_var(policy->real_cpus); 1315 free_cpumask_var(policy->related_cpus); 1316 free_cpumask_var(policy->cpus); 1317 kfree(policy); 1318 } 1319 1320 static int cpufreq_online(unsigned int cpu) 1321 { 1322 struct cpufreq_policy *policy; 1323 bool new_policy; 1324 unsigned long flags; 1325 unsigned int j; 1326 int ret; 1327 1328 pr_debug("%s: bringing CPU%u online\n", __func__, cpu); 1329 1330 /* Check if this CPU already has a policy to manage it */ 1331 policy = per_cpu(cpufreq_cpu_data, cpu); 1332 if (policy) { 1333 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus)); 1334 if (!policy_is_inactive(policy)) 1335 return cpufreq_add_policy_cpu(policy, cpu); 1336 1337 /* This is the only online CPU for the policy. Start over. */ 1338 new_policy = false; 1339 down_write(&policy->rwsem); 1340 policy->cpu = cpu; 1341 policy->governor = NULL; 1342 } else { 1343 new_policy = true; 1344 policy = cpufreq_policy_alloc(cpu); 1345 if (!policy) 1346 return -ENOMEM; 1347 down_write(&policy->rwsem); 1348 } 1349 1350 if (!new_policy && cpufreq_driver->online) { 1351 /* Recover policy->cpus using related_cpus */ 1352 cpumask_copy(policy->cpus, policy->related_cpus); 1353 1354 ret = cpufreq_driver->online(policy); 1355 if (ret) { 1356 pr_debug("%s: %d: initialization failed\n", __func__, 1357 __LINE__); 1358 goto out_exit_policy; 1359 } 1360 } else { 1361 cpumask_copy(policy->cpus, cpumask_of(cpu)); 1362 1363 /* 1364 * Call driver. From then on the cpufreq must be able 1365 * to accept all calls to ->verify and ->setpolicy for this CPU. 1366 */ 1367 ret = cpufreq_driver->init(policy); 1368 if (ret) { 1369 pr_debug("%s: %d: initialization failed\n", __func__, 1370 __LINE__); 1371 goto out_free_policy; 1372 } 1373 1374 /* 1375 * The initialization has succeeded and the policy is online. 1376 * If there is a problem with its frequency table, take it 1377 * offline and drop it. 1378 */ 1379 ret = cpufreq_table_validate_and_sort(policy); 1380 if (ret) 1381 goto out_offline_policy; 1382 1383 /* related_cpus should at least include policy->cpus. */ 1384 cpumask_copy(policy->related_cpus, policy->cpus); 1385 } 1386 1387 /* 1388 * affected cpus must always be the one, which are online. We aren't 1389 * managing offline cpus here. 1390 */ 1391 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask); 1392 1393 if (new_policy) { 1394 for_each_cpu(j, policy->related_cpus) { 1395 per_cpu(cpufreq_cpu_data, j) = policy; 1396 add_cpu_dev_symlink(policy, j, get_cpu_device(j)); 1397 } 1398 1399 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req), 1400 GFP_KERNEL); 1401 if (!policy->min_freq_req) { 1402 ret = -ENOMEM; 1403 goto out_destroy_policy; 1404 } 1405 1406 ret = freq_qos_add_request(&policy->constraints, 1407 policy->min_freq_req, FREQ_QOS_MIN, 1408 FREQ_QOS_MIN_DEFAULT_VALUE); 1409 if (ret < 0) { 1410 /* 1411 * So we don't call freq_qos_remove_request() for an 1412 * uninitialized request. 1413 */ 1414 kfree(policy->min_freq_req); 1415 policy->min_freq_req = NULL; 1416 goto out_destroy_policy; 1417 } 1418 1419 /* 1420 * This must be initialized right here to avoid calling 1421 * freq_qos_remove_request() on uninitialized request in case 1422 * of errors. 1423 */ 1424 policy->max_freq_req = policy->min_freq_req + 1; 1425 1426 ret = freq_qos_add_request(&policy->constraints, 1427 policy->max_freq_req, FREQ_QOS_MAX, 1428 FREQ_QOS_MAX_DEFAULT_VALUE); 1429 if (ret < 0) { 1430 policy->max_freq_req = NULL; 1431 goto out_destroy_policy; 1432 } 1433 1434 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1435 CPUFREQ_CREATE_POLICY, policy); 1436 } 1437 1438 if (cpufreq_driver->get && has_target()) { 1439 policy->cur = cpufreq_driver->get(policy->cpu); 1440 if (!policy->cur) { 1441 ret = -EIO; 1442 pr_err("%s: ->get() failed\n", __func__); 1443 goto out_destroy_policy; 1444 } 1445 } 1446 1447 /* 1448 * Sometimes boot loaders set CPU frequency to a value outside of 1449 * frequency table present with cpufreq core. In such cases CPU might be 1450 * unstable if it has to run on that frequency for long duration of time 1451 * and so its better to set it to a frequency which is specified in 1452 * freq-table. This also makes cpufreq stats inconsistent as 1453 * cpufreq-stats would fail to register because current frequency of CPU 1454 * isn't found in freq-table. 1455 * 1456 * Because we don't want this change to effect boot process badly, we go 1457 * for the next freq which is >= policy->cur ('cur' must be set by now, 1458 * otherwise we will end up setting freq to lowest of the table as 'cur' 1459 * is initialized to zero). 1460 * 1461 * We are passing target-freq as "policy->cur - 1" otherwise 1462 * __cpufreq_driver_target() would simply fail, as policy->cur will be 1463 * equal to target-freq. 1464 */ 1465 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK) 1466 && has_target()) { 1467 unsigned int old_freq = policy->cur; 1468 1469 /* Are we running at unknown frequency ? */ 1470 ret = cpufreq_frequency_table_get_index(policy, old_freq); 1471 if (ret == -EINVAL) { 1472 ret = __cpufreq_driver_target(policy, old_freq - 1, 1473 CPUFREQ_RELATION_L); 1474 1475 /* 1476 * Reaching here after boot in a few seconds may not 1477 * mean that system will remain stable at "unknown" 1478 * frequency for longer duration. Hence, a BUG_ON(). 1479 */ 1480 BUG_ON(ret); 1481 pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n", 1482 __func__, policy->cpu, old_freq, policy->cur); 1483 } 1484 } 1485 1486 if (new_policy) { 1487 ret = cpufreq_add_dev_interface(policy); 1488 if (ret) 1489 goto out_destroy_policy; 1490 1491 cpufreq_stats_create_table(policy); 1492 1493 write_lock_irqsave(&cpufreq_driver_lock, flags); 1494 list_add(&policy->policy_list, &cpufreq_policy_list); 1495 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1496 1497 /* 1498 * Register with the energy model before 1499 * sched_cpufreq_governor_change() is called, which will result 1500 * in rebuilding of the sched domains, which should only be done 1501 * once the energy model is properly initialized for the policy 1502 * first. 1503 * 1504 * Also, this should be called before the policy is registered 1505 * with cooling framework. 1506 */ 1507 if (cpufreq_driver->register_em) 1508 cpufreq_driver->register_em(policy); 1509 } 1510 1511 ret = cpufreq_init_policy(policy); 1512 if (ret) { 1513 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n", 1514 __func__, cpu, ret); 1515 goto out_destroy_policy; 1516 } 1517 1518 up_write(&policy->rwsem); 1519 1520 kobject_uevent(&policy->kobj, KOBJ_ADD); 1521 1522 /* Callback for handling stuff after policy is ready */ 1523 if (cpufreq_driver->ready) 1524 cpufreq_driver->ready(policy); 1525 1526 if (cpufreq_thermal_control_enabled(cpufreq_driver)) 1527 policy->cdev = of_cpufreq_cooling_register(policy); 1528 1529 pr_debug("initialization complete\n"); 1530 1531 return 0; 1532 1533 out_destroy_policy: 1534 for_each_cpu(j, policy->real_cpus) 1535 remove_cpu_dev_symlink(policy, j, get_cpu_device(j)); 1536 1537 out_offline_policy: 1538 if (cpufreq_driver->offline) 1539 cpufreq_driver->offline(policy); 1540 1541 out_exit_policy: 1542 if (cpufreq_driver->exit) 1543 cpufreq_driver->exit(policy); 1544 1545 out_free_policy: 1546 cpumask_clear(policy->cpus); 1547 up_write(&policy->rwsem); 1548 1549 cpufreq_policy_free(policy); 1550 return ret; 1551 } 1552 1553 /** 1554 * cpufreq_add_dev - the cpufreq interface for a CPU device. 1555 * @dev: CPU device. 1556 * @sif: Subsystem interface structure pointer (not used) 1557 */ 1558 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 1559 { 1560 struct cpufreq_policy *policy; 1561 unsigned cpu = dev->id; 1562 int ret; 1563 1564 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu); 1565 1566 if (cpu_online(cpu)) { 1567 ret = cpufreq_online(cpu); 1568 if (ret) 1569 return ret; 1570 } 1571 1572 /* Create sysfs link on CPU registration */ 1573 policy = per_cpu(cpufreq_cpu_data, cpu); 1574 if (policy) 1575 add_cpu_dev_symlink(policy, cpu, dev); 1576 1577 return 0; 1578 } 1579 1580 static void __cpufreq_offline(unsigned int cpu, struct cpufreq_policy *policy) 1581 { 1582 int ret; 1583 1584 if (has_target()) 1585 cpufreq_stop_governor(policy); 1586 1587 cpumask_clear_cpu(cpu, policy->cpus); 1588 1589 if (!policy_is_inactive(policy)) { 1590 /* Nominate a new CPU if necessary. */ 1591 if (cpu == policy->cpu) 1592 policy->cpu = cpumask_any(policy->cpus); 1593 1594 /* Start the governor again for the active policy. */ 1595 if (has_target()) { 1596 ret = cpufreq_start_governor(policy); 1597 if (ret) 1598 pr_err("%s: Failed to start governor\n", __func__); 1599 } 1600 1601 return; 1602 } 1603 1604 if (has_target()) 1605 strncpy(policy->last_governor, policy->governor->name, 1606 CPUFREQ_NAME_LEN); 1607 else 1608 policy->last_policy = policy->policy; 1609 1610 if (cpufreq_thermal_control_enabled(cpufreq_driver)) { 1611 cpufreq_cooling_unregister(policy->cdev); 1612 policy->cdev = NULL; 1613 } 1614 1615 if (has_target()) 1616 cpufreq_exit_governor(policy); 1617 1618 /* 1619 * Perform the ->offline() during light-weight tear-down, as 1620 * that allows fast recovery when the CPU comes back. 1621 */ 1622 if (cpufreq_driver->offline) { 1623 cpufreq_driver->offline(policy); 1624 } else if (cpufreq_driver->exit) { 1625 cpufreq_driver->exit(policy); 1626 policy->freq_table = NULL; 1627 } 1628 } 1629 1630 static int cpufreq_offline(unsigned int cpu) 1631 { 1632 struct cpufreq_policy *policy; 1633 1634 pr_debug("%s: unregistering CPU %u\n", __func__, cpu); 1635 1636 policy = cpufreq_cpu_get_raw(cpu); 1637 if (!policy) { 1638 pr_debug("%s: No cpu_data found\n", __func__); 1639 return 0; 1640 } 1641 1642 down_write(&policy->rwsem); 1643 1644 __cpufreq_offline(cpu, policy); 1645 1646 up_write(&policy->rwsem); 1647 return 0; 1648 } 1649 1650 /* 1651 * cpufreq_remove_dev - remove a CPU device 1652 * 1653 * Removes the cpufreq interface for a CPU device. 1654 */ 1655 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif) 1656 { 1657 unsigned int cpu = dev->id; 1658 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1659 1660 if (!policy) 1661 return; 1662 1663 down_write(&policy->rwsem); 1664 1665 if (cpu_online(cpu)) 1666 __cpufreq_offline(cpu, policy); 1667 1668 remove_cpu_dev_symlink(policy, cpu, dev); 1669 1670 if (!cpumask_empty(policy->real_cpus)) { 1671 up_write(&policy->rwsem); 1672 return; 1673 } 1674 1675 /* We did light-weight exit earlier, do full tear down now */ 1676 if (cpufreq_driver->offline) 1677 cpufreq_driver->exit(policy); 1678 1679 up_write(&policy->rwsem); 1680 1681 cpufreq_policy_free(policy); 1682 } 1683 1684 /** 1685 * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference. 1686 * @policy: Policy managing CPUs. 1687 * @new_freq: New CPU frequency. 1688 * 1689 * Adjust to the current frequency first and clean up later by either calling 1690 * cpufreq_update_policy(), or scheduling handle_update(). 1691 */ 1692 static void cpufreq_out_of_sync(struct cpufreq_policy *policy, 1693 unsigned int new_freq) 1694 { 1695 struct cpufreq_freqs freqs; 1696 1697 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n", 1698 policy->cur, new_freq); 1699 1700 freqs.old = policy->cur; 1701 freqs.new = new_freq; 1702 1703 cpufreq_freq_transition_begin(policy, &freqs); 1704 cpufreq_freq_transition_end(policy, &freqs, 0); 1705 } 1706 1707 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update) 1708 { 1709 unsigned int new_freq; 1710 1711 new_freq = cpufreq_driver->get(policy->cpu); 1712 if (!new_freq) 1713 return 0; 1714 1715 /* 1716 * If fast frequency switching is used with the given policy, the check 1717 * against policy->cur is pointless, so skip it in that case. 1718 */ 1719 if (policy->fast_switch_enabled || !has_target()) 1720 return new_freq; 1721 1722 if (policy->cur != new_freq) { 1723 /* 1724 * For some platforms, the frequency returned by hardware may be 1725 * slightly different from what is provided in the frequency 1726 * table, for example hardware may return 499 MHz instead of 500 1727 * MHz. In such cases it is better to avoid getting into 1728 * unnecessary frequency updates. 1729 */ 1730 if (abs(policy->cur - new_freq) < HZ_PER_MHZ) 1731 return policy->cur; 1732 1733 cpufreq_out_of_sync(policy, new_freq); 1734 if (update) 1735 schedule_work(&policy->update); 1736 } 1737 1738 return new_freq; 1739 } 1740 1741 /** 1742 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur 1743 * @cpu: CPU number 1744 * 1745 * This is the last known freq, without actually getting it from the driver. 1746 * Return value will be same as what is shown in scaling_cur_freq in sysfs. 1747 */ 1748 unsigned int cpufreq_quick_get(unsigned int cpu) 1749 { 1750 struct cpufreq_policy *policy; 1751 unsigned int ret_freq = 0; 1752 unsigned long flags; 1753 1754 read_lock_irqsave(&cpufreq_driver_lock, flags); 1755 1756 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) { 1757 ret_freq = cpufreq_driver->get(cpu); 1758 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1759 return ret_freq; 1760 } 1761 1762 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1763 1764 policy = cpufreq_cpu_get(cpu); 1765 if (policy) { 1766 ret_freq = policy->cur; 1767 cpufreq_cpu_put(policy); 1768 } 1769 1770 return ret_freq; 1771 } 1772 EXPORT_SYMBOL(cpufreq_quick_get); 1773 1774 /** 1775 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU 1776 * @cpu: CPU number 1777 * 1778 * Just return the max possible frequency for a given CPU. 1779 */ 1780 unsigned int cpufreq_quick_get_max(unsigned int cpu) 1781 { 1782 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1783 unsigned int ret_freq = 0; 1784 1785 if (policy) { 1786 ret_freq = policy->max; 1787 cpufreq_cpu_put(policy); 1788 } 1789 1790 return ret_freq; 1791 } 1792 EXPORT_SYMBOL(cpufreq_quick_get_max); 1793 1794 /** 1795 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU 1796 * @cpu: CPU number 1797 * 1798 * The default return value is the max_freq field of cpuinfo. 1799 */ 1800 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu) 1801 { 1802 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1803 unsigned int ret_freq = 0; 1804 1805 if (policy) { 1806 ret_freq = policy->cpuinfo.max_freq; 1807 cpufreq_cpu_put(policy); 1808 } 1809 1810 return ret_freq; 1811 } 1812 EXPORT_SYMBOL(cpufreq_get_hw_max_freq); 1813 1814 static unsigned int __cpufreq_get(struct cpufreq_policy *policy) 1815 { 1816 if (unlikely(policy_is_inactive(policy))) 1817 return 0; 1818 1819 return cpufreq_verify_current_freq(policy, true); 1820 } 1821 1822 /** 1823 * cpufreq_get - get the current CPU frequency (in kHz) 1824 * @cpu: CPU number 1825 * 1826 * Get the CPU current (static) CPU frequency 1827 */ 1828 unsigned int cpufreq_get(unsigned int cpu) 1829 { 1830 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1831 unsigned int ret_freq = 0; 1832 1833 if (policy) { 1834 down_read(&policy->rwsem); 1835 if (cpufreq_driver->get) 1836 ret_freq = __cpufreq_get(policy); 1837 up_read(&policy->rwsem); 1838 1839 cpufreq_cpu_put(policy); 1840 } 1841 1842 return ret_freq; 1843 } 1844 EXPORT_SYMBOL(cpufreq_get); 1845 1846 static struct subsys_interface cpufreq_interface = { 1847 .name = "cpufreq", 1848 .subsys = &cpu_subsys, 1849 .add_dev = cpufreq_add_dev, 1850 .remove_dev = cpufreq_remove_dev, 1851 }; 1852 1853 /* 1854 * In case platform wants some specific frequency to be configured 1855 * during suspend.. 1856 */ 1857 int cpufreq_generic_suspend(struct cpufreq_policy *policy) 1858 { 1859 int ret; 1860 1861 if (!policy->suspend_freq) { 1862 pr_debug("%s: suspend_freq not defined\n", __func__); 1863 return 0; 1864 } 1865 1866 pr_debug("%s: Setting suspend-freq: %u\n", __func__, 1867 policy->suspend_freq); 1868 1869 ret = __cpufreq_driver_target(policy, policy->suspend_freq, 1870 CPUFREQ_RELATION_H); 1871 if (ret) 1872 pr_err("%s: unable to set suspend-freq: %u. err: %d\n", 1873 __func__, policy->suspend_freq, ret); 1874 1875 return ret; 1876 } 1877 EXPORT_SYMBOL(cpufreq_generic_suspend); 1878 1879 /** 1880 * cpufreq_suspend() - Suspend CPUFreq governors. 1881 * 1882 * Called during system wide Suspend/Hibernate cycles for suspending governors 1883 * as some platforms can't change frequency after this point in suspend cycle. 1884 * Because some of the devices (like: i2c, regulators, etc) they use for 1885 * changing frequency are suspended quickly after this point. 1886 */ 1887 void cpufreq_suspend(void) 1888 { 1889 struct cpufreq_policy *policy; 1890 1891 if (!cpufreq_driver) 1892 return; 1893 1894 if (!has_target() && !cpufreq_driver->suspend) 1895 goto suspend; 1896 1897 pr_debug("%s: Suspending Governors\n", __func__); 1898 1899 for_each_active_policy(policy) { 1900 if (has_target()) { 1901 down_write(&policy->rwsem); 1902 cpufreq_stop_governor(policy); 1903 up_write(&policy->rwsem); 1904 } 1905 1906 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy)) 1907 pr_err("%s: Failed to suspend driver: %s\n", __func__, 1908 cpufreq_driver->name); 1909 } 1910 1911 suspend: 1912 cpufreq_suspended = true; 1913 } 1914 1915 /** 1916 * cpufreq_resume() - Resume CPUFreq governors. 1917 * 1918 * Called during system wide Suspend/Hibernate cycle for resuming governors that 1919 * are suspended with cpufreq_suspend(). 1920 */ 1921 void cpufreq_resume(void) 1922 { 1923 struct cpufreq_policy *policy; 1924 int ret; 1925 1926 if (!cpufreq_driver) 1927 return; 1928 1929 if (unlikely(!cpufreq_suspended)) 1930 return; 1931 1932 cpufreq_suspended = false; 1933 1934 if (!has_target() && !cpufreq_driver->resume) 1935 return; 1936 1937 pr_debug("%s: Resuming Governors\n", __func__); 1938 1939 for_each_active_policy(policy) { 1940 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) { 1941 pr_err("%s: Failed to resume driver: %p\n", __func__, 1942 policy); 1943 } else if (has_target()) { 1944 down_write(&policy->rwsem); 1945 ret = cpufreq_start_governor(policy); 1946 up_write(&policy->rwsem); 1947 1948 if (ret) 1949 pr_err("%s: Failed to start governor for policy: %p\n", 1950 __func__, policy); 1951 } 1952 } 1953 } 1954 1955 /** 1956 * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones. 1957 * @flags: Flags to test against the current cpufreq driver's flags. 1958 * 1959 * Assumes that the driver is there, so callers must ensure that this is the 1960 * case. 1961 */ 1962 bool cpufreq_driver_test_flags(u16 flags) 1963 { 1964 return !!(cpufreq_driver->flags & flags); 1965 } 1966 1967 /** 1968 * cpufreq_get_current_driver - Return the current driver's name. 1969 * 1970 * Return the name string of the currently registered cpufreq driver or NULL if 1971 * none. 1972 */ 1973 const char *cpufreq_get_current_driver(void) 1974 { 1975 if (cpufreq_driver) 1976 return cpufreq_driver->name; 1977 1978 return NULL; 1979 } 1980 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver); 1981 1982 /** 1983 * cpufreq_get_driver_data - Return current driver data. 1984 * 1985 * Return the private data of the currently registered cpufreq driver, or NULL 1986 * if no cpufreq driver has been registered. 1987 */ 1988 void *cpufreq_get_driver_data(void) 1989 { 1990 if (cpufreq_driver) 1991 return cpufreq_driver->driver_data; 1992 1993 return NULL; 1994 } 1995 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data); 1996 1997 /********************************************************************* 1998 * NOTIFIER LISTS INTERFACE * 1999 *********************************************************************/ 2000 2001 /** 2002 * cpufreq_register_notifier - Register a notifier with cpufreq. 2003 * @nb: notifier function to register. 2004 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER. 2005 * 2006 * Add a notifier to one of two lists: either a list of notifiers that run on 2007 * clock rate changes (once before and once after every transition), or a list 2008 * of notifiers that ron on cpufreq policy changes. 2009 * 2010 * This function may sleep and it has the same return values as 2011 * blocking_notifier_chain_register(). 2012 */ 2013 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 2014 { 2015 int ret; 2016 2017 if (cpufreq_disabled()) 2018 return -EINVAL; 2019 2020 switch (list) { 2021 case CPUFREQ_TRANSITION_NOTIFIER: 2022 mutex_lock(&cpufreq_fast_switch_lock); 2023 2024 if (cpufreq_fast_switch_count > 0) { 2025 mutex_unlock(&cpufreq_fast_switch_lock); 2026 return -EBUSY; 2027 } 2028 ret = srcu_notifier_chain_register( 2029 &cpufreq_transition_notifier_list, nb); 2030 if (!ret) 2031 cpufreq_fast_switch_count--; 2032 2033 mutex_unlock(&cpufreq_fast_switch_lock); 2034 break; 2035 case CPUFREQ_POLICY_NOTIFIER: 2036 ret = blocking_notifier_chain_register( 2037 &cpufreq_policy_notifier_list, nb); 2038 break; 2039 default: 2040 ret = -EINVAL; 2041 } 2042 2043 return ret; 2044 } 2045 EXPORT_SYMBOL(cpufreq_register_notifier); 2046 2047 /** 2048 * cpufreq_unregister_notifier - Unregister a notifier from cpufreq. 2049 * @nb: notifier block to be unregistered. 2050 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER. 2051 * 2052 * Remove a notifier from one of the cpufreq notifier lists. 2053 * 2054 * This function may sleep and it has the same return values as 2055 * blocking_notifier_chain_unregister(). 2056 */ 2057 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 2058 { 2059 int ret; 2060 2061 if (cpufreq_disabled()) 2062 return -EINVAL; 2063 2064 switch (list) { 2065 case CPUFREQ_TRANSITION_NOTIFIER: 2066 mutex_lock(&cpufreq_fast_switch_lock); 2067 2068 ret = srcu_notifier_chain_unregister( 2069 &cpufreq_transition_notifier_list, nb); 2070 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0)) 2071 cpufreq_fast_switch_count++; 2072 2073 mutex_unlock(&cpufreq_fast_switch_lock); 2074 break; 2075 case CPUFREQ_POLICY_NOTIFIER: 2076 ret = blocking_notifier_chain_unregister( 2077 &cpufreq_policy_notifier_list, nb); 2078 break; 2079 default: 2080 ret = -EINVAL; 2081 } 2082 2083 return ret; 2084 } 2085 EXPORT_SYMBOL(cpufreq_unregister_notifier); 2086 2087 2088 /********************************************************************* 2089 * GOVERNORS * 2090 *********************************************************************/ 2091 2092 /** 2093 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch. 2094 * @policy: cpufreq policy to switch the frequency for. 2095 * @target_freq: New frequency to set (may be approximate). 2096 * 2097 * Carry out a fast frequency switch without sleeping. 2098 * 2099 * The driver's ->fast_switch() callback invoked by this function must be 2100 * suitable for being called from within RCU-sched read-side critical sections 2101 * and it is expected to select the minimum available frequency greater than or 2102 * equal to @target_freq (CPUFREQ_RELATION_L). 2103 * 2104 * This function must not be called if policy->fast_switch_enabled is unset. 2105 * 2106 * Governors calling this function must guarantee that it will never be invoked 2107 * twice in parallel for the same policy and that it will never be called in 2108 * parallel with either ->target() or ->target_index() for the same policy. 2109 * 2110 * Returns the actual frequency set for the CPU. 2111 * 2112 * If 0 is returned by the driver's ->fast_switch() callback to indicate an 2113 * error condition, the hardware configuration must be preserved. 2114 */ 2115 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy, 2116 unsigned int target_freq) 2117 { 2118 unsigned int freq; 2119 int cpu; 2120 2121 target_freq = clamp_val(target_freq, policy->min, policy->max); 2122 freq = cpufreq_driver->fast_switch(policy, target_freq); 2123 2124 if (!freq) 2125 return 0; 2126 2127 policy->cur = freq; 2128 arch_set_freq_scale(policy->related_cpus, freq, 2129 policy->cpuinfo.max_freq); 2130 cpufreq_stats_record_transition(policy, freq); 2131 2132 if (trace_cpu_frequency_enabled()) { 2133 for_each_cpu(cpu, policy->cpus) 2134 trace_cpu_frequency(freq, cpu); 2135 } 2136 2137 return freq; 2138 } 2139 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch); 2140 2141 /** 2142 * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go. 2143 * @cpu: Target CPU. 2144 * @min_perf: Minimum (required) performance level (units of @capacity). 2145 * @target_perf: Target (desired) performance level (units of @capacity). 2146 * @capacity: Capacity of the target CPU. 2147 * 2148 * Carry out a fast performance level switch of @cpu without sleeping. 2149 * 2150 * The driver's ->adjust_perf() callback invoked by this function must be 2151 * suitable for being called from within RCU-sched read-side critical sections 2152 * and it is expected to select a suitable performance level equal to or above 2153 * @min_perf and preferably equal to or below @target_perf. 2154 * 2155 * This function must not be called if policy->fast_switch_enabled is unset. 2156 * 2157 * Governors calling this function must guarantee that it will never be invoked 2158 * twice in parallel for the same CPU and that it will never be called in 2159 * parallel with either ->target() or ->target_index() or ->fast_switch() for 2160 * the same CPU. 2161 */ 2162 void cpufreq_driver_adjust_perf(unsigned int cpu, 2163 unsigned long min_perf, 2164 unsigned long target_perf, 2165 unsigned long capacity) 2166 { 2167 cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity); 2168 } 2169 2170 /** 2171 * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback. 2172 * 2173 * Return 'true' if the ->adjust_perf callback is present for the 2174 * current driver or 'false' otherwise. 2175 */ 2176 bool cpufreq_driver_has_adjust_perf(void) 2177 { 2178 return !!cpufreq_driver->adjust_perf; 2179 } 2180 2181 /* Must set freqs->new to intermediate frequency */ 2182 static int __target_intermediate(struct cpufreq_policy *policy, 2183 struct cpufreq_freqs *freqs, int index) 2184 { 2185 int ret; 2186 2187 freqs->new = cpufreq_driver->get_intermediate(policy, index); 2188 2189 /* We don't need to switch to intermediate freq */ 2190 if (!freqs->new) 2191 return 0; 2192 2193 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n", 2194 __func__, policy->cpu, freqs->old, freqs->new); 2195 2196 cpufreq_freq_transition_begin(policy, freqs); 2197 ret = cpufreq_driver->target_intermediate(policy, index); 2198 cpufreq_freq_transition_end(policy, freqs, ret); 2199 2200 if (ret) 2201 pr_err("%s: Failed to change to intermediate frequency: %d\n", 2202 __func__, ret); 2203 2204 return ret; 2205 } 2206 2207 static int __target_index(struct cpufreq_policy *policy, int index) 2208 { 2209 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0}; 2210 unsigned int restore_freq, intermediate_freq = 0; 2211 unsigned int newfreq = policy->freq_table[index].frequency; 2212 int retval = -EINVAL; 2213 bool notify; 2214 2215 if (newfreq == policy->cur) 2216 return 0; 2217 2218 /* Save last value to restore later on errors */ 2219 restore_freq = policy->cur; 2220 2221 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION); 2222 if (notify) { 2223 /* Handle switching to intermediate frequency */ 2224 if (cpufreq_driver->get_intermediate) { 2225 retval = __target_intermediate(policy, &freqs, index); 2226 if (retval) 2227 return retval; 2228 2229 intermediate_freq = freqs.new; 2230 /* Set old freq to intermediate */ 2231 if (intermediate_freq) 2232 freqs.old = freqs.new; 2233 } 2234 2235 freqs.new = newfreq; 2236 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n", 2237 __func__, policy->cpu, freqs.old, freqs.new); 2238 2239 cpufreq_freq_transition_begin(policy, &freqs); 2240 } 2241 2242 retval = cpufreq_driver->target_index(policy, index); 2243 if (retval) 2244 pr_err("%s: Failed to change cpu frequency: %d\n", __func__, 2245 retval); 2246 2247 if (notify) { 2248 cpufreq_freq_transition_end(policy, &freqs, retval); 2249 2250 /* 2251 * Failed after setting to intermediate freq? Driver should have 2252 * reverted back to initial frequency and so should we. Check 2253 * here for intermediate_freq instead of get_intermediate, in 2254 * case we haven't switched to intermediate freq at all. 2255 */ 2256 if (unlikely(retval && intermediate_freq)) { 2257 freqs.old = intermediate_freq; 2258 freqs.new = restore_freq; 2259 cpufreq_freq_transition_begin(policy, &freqs); 2260 cpufreq_freq_transition_end(policy, &freqs, 0); 2261 } 2262 } 2263 2264 return retval; 2265 } 2266 2267 int __cpufreq_driver_target(struct cpufreq_policy *policy, 2268 unsigned int target_freq, 2269 unsigned int relation) 2270 { 2271 unsigned int old_target_freq = target_freq; 2272 2273 if (cpufreq_disabled()) 2274 return -ENODEV; 2275 2276 target_freq = __resolve_freq(policy, target_freq, relation); 2277 2278 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n", 2279 policy->cpu, target_freq, relation, old_target_freq); 2280 2281 /* 2282 * This might look like a redundant call as we are checking it again 2283 * after finding index. But it is left intentionally for cases where 2284 * exactly same freq is called again and so we can save on few function 2285 * calls. 2286 */ 2287 if (target_freq == policy->cur && 2288 !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS)) 2289 return 0; 2290 2291 if (cpufreq_driver->target) { 2292 /* 2293 * If the driver hasn't setup a single inefficient frequency, 2294 * it's unlikely it knows how to decode CPUFREQ_RELATION_E. 2295 */ 2296 if (!policy->efficiencies_available) 2297 relation &= ~CPUFREQ_RELATION_E; 2298 2299 return cpufreq_driver->target(policy, target_freq, relation); 2300 } 2301 2302 if (!cpufreq_driver->target_index) 2303 return -EINVAL; 2304 2305 return __target_index(policy, policy->cached_resolved_idx); 2306 } 2307 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 2308 2309 int cpufreq_driver_target(struct cpufreq_policy *policy, 2310 unsigned int target_freq, 2311 unsigned int relation) 2312 { 2313 int ret; 2314 2315 down_write(&policy->rwsem); 2316 2317 ret = __cpufreq_driver_target(policy, target_freq, relation); 2318 2319 up_write(&policy->rwsem); 2320 2321 return ret; 2322 } 2323 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 2324 2325 __weak struct cpufreq_governor *cpufreq_fallback_governor(void) 2326 { 2327 return NULL; 2328 } 2329 2330 static int cpufreq_init_governor(struct cpufreq_policy *policy) 2331 { 2332 int ret; 2333 2334 /* Don't start any governor operations if we are entering suspend */ 2335 if (cpufreq_suspended) 2336 return 0; 2337 /* 2338 * Governor might not be initiated here if ACPI _PPC changed 2339 * notification happened, so check it. 2340 */ 2341 if (!policy->governor) 2342 return -EINVAL; 2343 2344 /* Platform doesn't want dynamic frequency switching ? */ 2345 if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING && 2346 cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) { 2347 struct cpufreq_governor *gov = cpufreq_fallback_governor(); 2348 2349 if (gov) { 2350 pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n", 2351 policy->governor->name, gov->name); 2352 policy->governor = gov; 2353 } else { 2354 return -EINVAL; 2355 } 2356 } 2357 2358 if (!try_module_get(policy->governor->owner)) 2359 return -EINVAL; 2360 2361 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2362 2363 if (policy->governor->init) { 2364 ret = policy->governor->init(policy); 2365 if (ret) { 2366 module_put(policy->governor->owner); 2367 return ret; 2368 } 2369 } 2370 2371 policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET); 2372 2373 return 0; 2374 } 2375 2376 static void cpufreq_exit_governor(struct cpufreq_policy *policy) 2377 { 2378 if (cpufreq_suspended || !policy->governor) 2379 return; 2380 2381 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2382 2383 if (policy->governor->exit) 2384 policy->governor->exit(policy); 2385 2386 module_put(policy->governor->owner); 2387 } 2388 2389 int cpufreq_start_governor(struct cpufreq_policy *policy) 2390 { 2391 int ret; 2392 2393 if (cpufreq_suspended) 2394 return 0; 2395 2396 if (!policy->governor) 2397 return -EINVAL; 2398 2399 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2400 2401 if (cpufreq_driver->get) 2402 cpufreq_verify_current_freq(policy, false); 2403 2404 if (policy->governor->start) { 2405 ret = policy->governor->start(policy); 2406 if (ret) 2407 return ret; 2408 } 2409 2410 if (policy->governor->limits) 2411 policy->governor->limits(policy); 2412 2413 return 0; 2414 } 2415 2416 void cpufreq_stop_governor(struct cpufreq_policy *policy) 2417 { 2418 if (cpufreq_suspended || !policy->governor) 2419 return; 2420 2421 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2422 2423 if (policy->governor->stop) 2424 policy->governor->stop(policy); 2425 } 2426 2427 static void cpufreq_governor_limits(struct cpufreq_policy *policy) 2428 { 2429 if (cpufreq_suspended || !policy->governor) 2430 return; 2431 2432 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2433 2434 if (policy->governor->limits) 2435 policy->governor->limits(policy); 2436 } 2437 2438 int cpufreq_register_governor(struct cpufreq_governor *governor) 2439 { 2440 int err; 2441 2442 if (!governor) 2443 return -EINVAL; 2444 2445 if (cpufreq_disabled()) 2446 return -ENODEV; 2447 2448 mutex_lock(&cpufreq_governor_mutex); 2449 2450 err = -EBUSY; 2451 if (!find_governor(governor->name)) { 2452 err = 0; 2453 list_add(&governor->governor_list, &cpufreq_governor_list); 2454 } 2455 2456 mutex_unlock(&cpufreq_governor_mutex); 2457 return err; 2458 } 2459 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 2460 2461 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 2462 { 2463 struct cpufreq_policy *policy; 2464 unsigned long flags; 2465 2466 if (!governor) 2467 return; 2468 2469 if (cpufreq_disabled()) 2470 return; 2471 2472 /* clear last_governor for all inactive policies */ 2473 read_lock_irqsave(&cpufreq_driver_lock, flags); 2474 for_each_inactive_policy(policy) { 2475 if (!strcmp(policy->last_governor, governor->name)) { 2476 policy->governor = NULL; 2477 strcpy(policy->last_governor, "\0"); 2478 } 2479 } 2480 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 2481 2482 mutex_lock(&cpufreq_governor_mutex); 2483 list_del(&governor->governor_list); 2484 mutex_unlock(&cpufreq_governor_mutex); 2485 } 2486 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 2487 2488 2489 /********************************************************************* 2490 * POLICY INTERFACE * 2491 *********************************************************************/ 2492 2493 /** 2494 * cpufreq_get_policy - get the current cpufreq_policy 2495 * @policy: struct cpufreq_policy into which the current cpufreq_policy 2496 * is written 2497 * @cpu: CPU to find the policy for 2498 * 2499 * Reads the current cpufreq policy. 2500 */ 2501 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 2502 { 2503 struct cpufreq_policy *cpu_policy; 2504 if (!policy) 2505 return -EINVAL; 2506 2507 cpu_policy = cpufreq_cpu_get(cpu); 2508 if (!cpu_policy) 2509 return -EINVAL; 2510 2511 memcpy(policy, cpu_policy, sizeof(*policy)); 2512 2513 cpufreq_cpu_put(cpu_policy); 2514 return 0; 2515 } 2516 EXPORT_SYMBOL(cpufreq_get_policy); 2517 2518 /** 2519 * cpufreq_set_policy - Modify cpufreq policy parameters. 2520 * @policy: Policy object to modify. 2521 * @new_gov: Policy governor pointer. 2522 * @new_pol: Policy value (for drivers with built-in governors). 2523 * 2524 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency 2525 * limits to be set for the policy, update @policy with the verified limits 2526 * values and either invoke the driver's ->setpolicy() callback (if present) or 2527 * carry out a governor update for @policy. That is, run the current governor's 2528 * ->limits() callback (if @new_gov points to the same object as the one in 2529 * @policy) or replace the governor for @policy with @new_gov. 2530 * 2531 * The cpuinfo part of @policy is not updated by this function. 2532 */ 2533 static int cpufreq_set_policy(struct cpufreq_policy *policy, 2534 struct cpufreq_governor *new_gov, 2535 unsigned int new_pol) 2536 { 2537 struct cpufreq_policy_data new_data; 2538 struct cpufreq_governor *old_gov; 2539 int ret; 2540 2541 memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo)); 2542 new_data.freq_table = policy->freq_table; 2543 new_data.cpu = policy->cpu; 2544 /* 2545 * PM QoS framework collects all the requests from users and provide us 2546 * the final aggregated value here. 2547 */ 2548 new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN); 2549 new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX); 2550 2551 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", 2552 new_data.cpu, new_data.min, new_data.max); 2553 2554 /* 2555 * Verify that the CPU speed can be set within these limits and make sure 2556 * that min <= max. 2557 */ 2558 ret = cpufreq_driver->verify(&new_data); 2559 if (ret) 2560 return ret; 2561 2562 /* 2563 * Resolve policy min/max to available frequencies. It ensures 2564 * no frequency resolution will neither overshoot the requested maximum 2565 * nor undershoot the requested minimum. 2566 */ 2567 policy->min = new_data.min; 2568 policy->max = new_data.max; 2569 policy->min = __resolve_freq(policy, policy->min, CPUFREQ_RELATION_L); 2570 policy->max = __resolve_freq(policy, policy->max, CPUFREQ_RELATION_H); 2571 trace_cpu_frequency_limits(policy); 2572 2573 policy->cached_target_freq = UINT_MAX; 2574 2575 pr_debug("new min and max freqs are %u - %u kHz\n", 2576 policy->min, policy->max); 2577 2578 if (cpufreq_driver->setpolicy) { 2579 policy->policy = new_pol; 2580 pr_debug("setting range\n"); 2581 return cpufreq_driver->setpolicy(policy); 2582 } 2583 2584 if (new_gov == policy->governor) { 2585 pr_debug("governor limits update\n"); 2586 cpufreq_governor_limits(policy); 2587 return 0; 2588 } 2589 2590 pr_debug("governor switch\n"); 2591 2592 /* save old, working values */ 2593 old_gov = policy->governor; 2594 /* end old governor */ 2595 if (old_gov) { 2596 cpufreq_stop_governor(policy); 2597 cpufreq_exit_governor(policy); 2598 } 2599 2600 /* start new governor */ 2601 policy->governor = new_gov; 2602 ret = cpufreq_init_governor(policy); 2603 if (!ret) { 2604 ret = cpufreq_start_governor(policy); 2605 if (!ret) { 2606 pr_debug("governor change\n"); 2607 sched_cpufreq_governor_change(policy, old_gov); 2608 return 0; 2609 } 2610 cpufreq_exit_governor(policy); 2611 } 2612 2613 /* new governor failed, so re-start old one */ 2614 pr_debug("starting governor %s failed\n", policy->governor->name); 2615 if (old_gov) { 2616 policy->governor = old_gov; 2617 if (cpufreq_init_governor(policy)) 2618 policy->governor = NULL; 2619 else 2620 cpufreq_start_governor(policy); 2621 } 2622 2623 return ret; 2624 } 2625 2626 /** 2627 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy. 2628 * @cpu: CPU to re-evaluate the policy for. 2629 * 2630 * Update the current frequency for the cpufreq policy of @cpu and use 2631 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the 2632 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback 2633 * for the policy in question, among other things. 2634 */ 2635 void cpufreq_update_policy(unsigned int cpu) 2636 { 2637 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu); 2638 2639 if (!policy) 2640 return; 2641 2642 /* 2643 * BIOS might change freq behind our back 2644 * -> ask driver for current freq and notify governors about a change 2645 */ 2646 if (cpufreq_driver->get && has_target() && 2647 (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false)))) 2648 goto unlock; 2649 2650 refresh_frequency_limits(policy); 2651 2652 unlock: 2653 cpufreq_cpu_release(policy); 2654 } 2655 EXPORT_SYMBOL(cpufreq_update_policy); 2656 2657 /** 2658 * cpufreq_update_limits - Update policy limits for a given CPU. 2659 * @cpu: CPU to update the policy limits for. 2660 * 2661 * Invoke the driver's ->update_limits callback if present or call 2662 * cpufreq_update_policy() for @cpu. 2663 */ 2664 void cpufreq_update_limits(unsigned int cpu) 2665 { 2666 if (cpufreq_driver->update_limits) 2667 cpufreq_driver->update_limits(cpu); 2668 else 2669 cpufreq_update_policy(cpu); 2670 } 2671 EXPORT_SYMBOL_GPL(cpufreq_update_limits); 2672 2673 /********************************************************************* 2674 * BOOST * 2675 *********************************************************************/ 2676 static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state) 2677 { 2678 int ret; 2679 2680 if (!policy->freq_table) 2681 return -ENXIO; 2682 2683 ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table); 2684 if (ret) { 2685 pr_err("%s: Policy frequency update failed\n", __func__); 2686 return ret; 2687 } 2688 2689 ret = freq_qos_update_request(policy->max_freq_req, policy->max); 2690 if (ret < 0) 2691 return ret; 2692 2693 return 0; 2694 } 2695 2696 int cpufreq_boost_trigger_state(int state) 2697 { 2698 struct cpufreq_policy *policy; 2699 unsigned long flags; 2700 int ret = 0; 2701 2702 if (cpufreq_driver->boost_enabled == state) 2703 return 0; 2704 2705 write_lock_irqsave(&cpufreq_driver_lock, flags); 2706 cpufreq_driver->boost_enabled = state; 2707 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2708 2709 cpus_read_lock(); 2710 for_each_active_policy(policy) { 2711 ret = cpufreq_driver->set_boost(policy, state); 2712 if (ret) 2713 goto err_reset_state; 2714 } 2715 cpus_read_unlock(); 2716 2717 return 0; 2718 2719 err_reset_state: 2720 cpus_read_unlock(); 2721 2722 write_lock_irqsave(&cpufreq_driver_lock, flags); 2723 cpufreq_driver->boost_enabled = !state; 2724 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2725 2726 pr_err("%s: Cannot %s BOOST\n", 2727 __func__, state ? "enable" : "disable"); 2728 2729 return ret; 2730 } 2731 2732 static bool cpufreq_boost_supported(void) 2733 { 2734 return cpufreq_driver->set_boost; 2735 } 2736 2737 static int create_boost_sysfs_file(void) 2738 { 2739 int ret; 2740 2741 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr); 2742 if (ret) 2743 pr_err("%s: cannot register global BOOST sysfs file\n", 2744 __func__); 2745 2746 return ret; 2747 } 2748 2749 static void remove_boost_sysfs_file(void) 2750 { 2751 if (cpufreq_boost_supported()) 2752 sysfs_remove_file(cpufreq_global_kobject, &boost.attr); 2753 } 2754 2755 int cpufreq_enable_boost_support(void) 2756 { 2757 if (!cpufreq_driver) 2758 return -EINVAL; 2759 2760 if (cpufreq_boost_supported()) 2761 return 0; 2762 2763 cpufreq_driver->set_boost = cpufreq_boost_set_sw; 2764 2765 /* This will get removed on driver unregister */ 2766 return create_boost_sysfs_file(); 2767 } 2768 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support); 2769 2770 int cpufreq_boost_enabled(void) 2771 { 2772 return cpufreq_driver->boost_enabled; 2773 } 2774 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled); 2775 2776 /********************************************************************* 2777 * REGISTER / UNREGISTER CPUFREQ DRIVER * 2778 *********************************************************************/ 2779 static enum cpuhp_state hp_online; 2780 2781 static int cpuhp_cpufreq_online(unsigned int cpu) 2782 { 2783 cpufreq_online(cpu); 2784 2785 return 0; 2786 } 2787 2788 static int cpuhp_cpufreq_offline(unsigned int cpu) 2789 { 2790 cpufreq_offline(cpu); 2791 2792 return 0; 2793 } 2794 2795 /** 2796 * cpufreq_register_driver - register a CPU Frequency driver 2797 * @driver_data: A struct cpufreq_driver containing the values# 2798 * submitted by the CPU Frequency driver. 2799 * 2800 * Registers a CPU Frequency driver to this core code. This code 2801 * returns zero on success, -EEXIST when another driver got here first 2802 * (and isn't unregistered in the meantime). 2803 * 2804 */ 2805 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 2806 { 2807 unsigned long flags; 2808 int ret; 2809 2810 if (cpufreq_disabled()) 2811 return -ENODEV; 2812 2813 /* 2814 * The cpufreq core depends heavily on the availability of device 2815 * structure, make sure they are available before proceeding further. 2816 */ 2817 if (!get_cpu_device(0)) 2818 return -EPROBE_DEFER; 2819 2820 if (!driver_data || !driver_data->verify || !driver_data->init || 2821 !(driver_data->setpolicy || driver_data->target_index || 2822 driver_data->target) || 2823 (driver_data->setpolicy && (driver_data->target_index || 2824 driver_data->target)) || 2825 (!driver_data->get_intermediate != !driver_data->target_intermediate) || 2826 (!driver_data->online != !driver_data->offline)) 2827 return -EINVAL; 2828 2829 pr_debug("trying to register driver %s\n", driver_data->name); 2830 2831 /* Protect against concurrent CPU online/offline. */ 2832 cpus_read_lock(); 2833 2834 write_lock_irqsave(&cpufreq_driver_lock, flags); 2835 if (cpufreq_driver) { 2836 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2837 ret = -EEXIST; 2838 goto out; 2839 } 2840 cpufreq_driver = driver_data; 2841 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2842 2843 /* 2844 * Mark support for the scheduler's frequency invariance engine for 2845 * drivers that implement target(), target_index() or fast_switch(). 2846 */ 2847 if (!cpufreq_driver->setpolicy) { 2848 static_branch_enable_cpuslocked(&cpufreq_freq_invariance); 2849 pr_debug("supports frequency invariance"); 2850 } 2851 2852 if (driver_data->setpolicy) 2853 driver_data->flags |= CPUFREQ_CONST_LOOPS; 2854 2855 if (cpufreq_boost_supported()) { 2856 ret = create_boost_sysfs_file(); 2857 if (ret) 2858 goto err_null_driver; 2859 } 2860 2861 ret = subsys_interface_register(&cpufreq_interface); 2862 if (ret) 2863 goto err_boost_unreg; 2864 2865 if (unlikely(list_empty(&cpufreq_policy_list))) { 2866 /* if all ->init() calls failed, unregister */ 2867 ret = -ENODEV; 2868 pr_debug("%s: No CPU initialized for driver %s\n", __func__, 2869 driver_data->name); 2870 goto err_if_unreg; 2871 } 2872 2873 ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN, 2874 "cpufreq:online", 2875 cpuhp_cpufreq_online, 2876 cpuhp_cpufreq_offline); 2877 if (ret < 0) 2878 goto err_if_unreg; 2879 hp_online = ret; 2880 ret = 0; 2881 2882 pr_debug("driver %s up and running\n", driver_data->name); 2883 goto out; 2884 2885 err_if_unreg: 2886 subsys_interface_unregister(&cpufreq_interface); 2887 err_boost_unreg: 2888 remove_boost_sysfs_file(); 2889 err_null_driver: 2890 write_lock_irqsave(&cpufreq_driver_lock, flags); 2891 cpufreq_driver = NULL; 2892 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2893 out: 2894 cpus_read_unlock(); 2895 return ret; 2896 } 2897 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 2898 2899 /* 2900 * cpufreq_unregister_driver - unregister the current CPUFreq driver 2901 * 2902 * Unregister the current CPUFreq driver. Only call this if you have 2903 * the right to do so, i.e. if you have succeeded in initialising before! 2904 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 2905 * currently not initialised. 2906 */ 2907 void cpufreq_unregister_driver(struct cpufreq_driver *driver) 2908 { 2909 unsigned long flags; 2910 2911 if (WARN_ON(!cpufreq_driver || (driver != cpufreq_driver))) 2912 return; 2913 2914 pr_debug("unregistering driver %s\n", driver->name); 2915 2916 /* Protect against concurrent cpu hotplug */ 2917 cpus_read_lock(); 2918 subsys_interface_unregister(&cpufreq_interface); 2919 remove_boost_sysfs_file(); 2920 static_branch_disable_cpuslocked(&cpufreq_freq_invariance); 2921 cpuhp_remove_state_nocalls_cpuslocked(hp_online); 2922 2923 write_lock_irqsave(&cpufreq_driver_lock, flags); 2924 2925 cpufreq_driver = NULL; 2926 2927 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2928 cpus_read_unlock(); 2929 } 2930 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 2931 2932 static int __init cpufreq_core_init(void) 2933 { 2934 struct cpufreq_governor *gov = cpufreq_default_governor(); 2935 2936 if (cpufreq_disabled()) 2937 return -ENODEV; 2938 2939 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj); 2940 BUG_ON(!cpufreq_global_kobject); 2941 2942 if (!strlen(default_governor)) 2943 strncpy(default_governor, gov->name, CPUFREQ_NAME_LEN); 2944 2945 return 0; 2946 } 2947 module_param(off, int, 0444); 2948 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444); 2949 core_initcall(cpufreq_core_init); 2950