1 /* 2 * linux/drivers/cpufreq/cpufreq.c 3 * 4 * Copyright (C) 2001 Russell King 5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 6 * 7 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 8 * Added handling for CPU hotplug 9 * Feb 2006 - Jacob Shin <jacob.shin@amd.com> 10 * Fix handling for CPU hotplug -- affected CPUs 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License version 2 as 14 * published by the Free Software Foundation. 15 * 16 */ 17 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/init.h> 23 #include <linux/notifier.h> 24 #include <linux/cpufreq.h> 25 #include <linux/delay.h> 26 #include <linux/interrupt.h> 27 #include <linux/spinlock.h> 28 #include <linux/device.h> 29 #include <linux/slab.h> 30 #include <linux/cpu.h> 31 #include <linux/completion.h> 32 #include <linux/mutex.h> 33 #include <linux/syscore_ops.h> 34 35 #include <trace/events/power.h> 36 37 /** 38 * The "cpufreq driver" - the arch- or hardware-dependent low 39 * level driver of CPUFreq support, and its spinlock. This lock 40 * also protects the cpufreq_cpu_data array. 41 */ 42 static struct cpufreq_driver *cpufreq_driver; 43 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data); 44 #ifdef CONFIG_HOTPLUG_CPU 45 /* This one keeps track of the previously set governor of a removed CPU */ 46 static DEFINE_PER_CPU(char[CPUFREQ_NAME_LEN], cpufreq_cpu_governor); 47 #endif 48 static DEFINE_SPINLOCK(cpufreq_driver_lock); 49 50 /* 51 * cpu_policy_rwsem is a per CPU reader-writer semaphore designed to cure 52 * all cpufreq/hotplug/workqueue/etc related lock issues. 53 * 54 * The rules for this semaphore: 55 * - Any routine that wants to read from the policy structure will 56 * do a down_read on this semaphore. 57 * - Any routine that will write to the policy structure and/or may take away 58 * the policy altogether (eg. CPU hotplug), will hold this lock in write 59 * mode before doing so. 60 * 61 * Additional rules: 62 * - All holders of the lock should check to make sure that the CPU they 63 * are concerned with are online after they get the lock. 64 * - Governor routines that can be called in cpufreq hotplug path should not 65 * take this sem as top level hotplug notifier handler takes this. 66 * - Lock should not be held across 67 * __cpufreq_governor(data, CPUFREQ_GOV_STOP); 68 */ 69 static DEFINE_PER_CPU(int, cpufreq_policy_cpu); 70 static DEFINE_PER_CPU(struct rw_semaphore, cpu_policy_rwsem); 71 72 #define lock_policy_rwsem(mode, cpu) \ 73 static int lock_policy_rwsem_##mode \ 74 (int cpu) \ 75 { \ 76 int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu); \ 77 BUG_ON(policy_cpu == -1); \ 78 down_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu)); \ 79 if (unlikely(!cpu_online(cpu))) { \ 80 up_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu)); \ 81 return -1; \ 82 } \ 83 \ 84 return 0; \ 85 } 86 87 lock_policy_rwsem(read, cpu); 88 89 lock_policy_rwsem(write, cpu); 90 91 static void unlock_policy_rwsem_read(int cpu) 92 { 93 int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu); 94 BUG_ON(policy_cpu == -1); 95 up_read(&per_cpu(cpu_policy_rwsem, policy_cpu)); 96 } 97 98 static void unlock_policy_rwsem_write(int cpu) 99 { 100 int policy_cpu = per_cpu(cpufreq_policy_cpu, cpu); 101 BUG_ON(policy_cpu == -1); 102 up_write(&per_cpu(cpu_policy_rwsem, policy_cpu)); 103 } 104 105 106 /* internal prototypes */ 107 static int __cpufreq_governor(struct cpufreq_policy *policy, 108 unsigned int event); 109 static unsigned int __cpufreq_get(unsigned int cpu); 110 static void handle_update(struct work_struct *work); 111 112 /** 113 * Two notifier lists: the "policy" list is involved in the 114 * validation process for a new CPU frequency policy; the 115 * "transition" list for kernel code that needs to handle 116 * changes to devices when the CPU clock speed changes. 117 * The mutex locks both lists. 118 */ 119 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list); 120 static struct srcu_notifier_head cpufreq_transition_notifier_list; 121 122 static bool init_cpufreq_transition_notifier_list_called; 123 static int __init init_cpufreq_transition_notifier_list(void) 124 { 125 srcu_init_notifier_head(&cpufreq_transition_notifier_list); 126 init_cpufreq_transition_notifier_list_called = true; 127 return 0; 128 } 129 pure_initcall(init_cpufreq_transition_notifier_list); 130 131 static int off __read_mostly; 132 static int cpufreq_disabled(void) 133 { 134 return off; 135 } 136 void disable_cpufreq(void) 137 { 138 off = 1; 139 } 140 static LIST_HEAD(cpufreq_governor_list); 141 static DEFINE_MUTEX(cpufreq_governor_mutex); 142 143 static struct cpufreq_policy *__cpufreq_cpu_get(unsigned int cpu, bool sysfs) 144 { 145 struct cpufreq_policy *data; 146 unsigned long flags; 147 148 if (cpu >= nr_cpu_ids) 149 goto err_out; 150 151 /* get the cpufreq driver */ 152 spin_lock_irqsave(&cpufreq_driver_lock, flags); 153 154 if (!cpufreq_driver) 155 goto err_out_unlock; 156 157 if (!try_module_get(cpufreq_driver->owner)) 158 goto err_out_unlock; 159 160 161 /* get the CPU */ 162 data = per_cpu(cpufreq_cpu_data, cpu); 163 164 if (!data) 165 goto err_out_put_module; 166 167 if (!sysfs && !kobject_get(&data->kobj)) 168 goto err_out_put_module; 169 170 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 171 return data; 172 173 err_out_put_module: 174 module_put(cpufreq_driver->owner); 175 err_out_unlock: 176 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 177 err_out: 178 return NULL; 179 } 180 181 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) 182 { 183 return __cpufreq_cpu_get(cpu, false); 184 } 185 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 186 187 static struct cpufreq_policy *cpufreq_cpu_get_sysfs(unsigned int cpu) 188 { 189 return __cpufreq_cpu_get(cpu, true); 190 } 191 192 static void __cpufreq_cpu_put(struct cpufreq_policy *data, bool sysfs) 193 { 194 if (!sysfs) 195 kobject_put(&data->kobj); 196 module_put(cpufreq_driver->owner); 197 } 198 199 void cpufreq_cpu_put(struct cpufreq_policy *data) 200 { 201 __cpufreq_cpu_put(data, false); 202 } 203 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 204 205 static void cpufreq_cpu_put_sysfs(struct cpufreq_policy *data) 206 { 207 __cpufreq_cpu_put(data, true); 208 } 209 210 /********************************************************************* 211 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 212 *********************************************************************/ 213 214 /** 215 * adjust_jiffies - adjust the system "loops_per_jiffy" 216 * 217 * This function alters the system "loops_per_jiffy" for the clock 218 * speed change. Note that loops_per_jiffy cannot be updated on SMP 219 * systems as each CPU might be scaled differently. So, use the arch 220 * per-CPU loops_per_jiffy value wherever possible. 221 */ 222 #ifndef CONFIG_SMP 223 static unsigned long l_p_j_ref; 224 static unsigned int l_p_j_ref_freq; 225 226 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 227 { 228 if (ci->flags & CPUFREQ_CONST_LOOPS) 229 return; 230 231 if (!l_p_j_ref_freq) { 232 l_p_j_ref = loops_per_jiffy; 233 l_p_j_ref_freq = ci->old; 234 pr_debug("saving %lu as reference value for loops_per_jiffy; " 235 "freq is %u kHz\n", l_p_j_ref, l_p_j_ref_freq); 236 } 237 if ((val == CPUFREQ_POSTCHANGE && ci->old != ci->new) || 238 (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) { 239 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, 240 ci->new); 241 pr_debug("scaling loops_per_jiffy to %lu " 242 "for frequency %u kHz\n", loops_per_jiffy, ci->new); 243 } 244 } 245 #else 246 static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 247 { 248 return; 249 } 250 #endif 251 252 253 /** 254 * cpufreq_notify_transition - call notifier chain and adjust_jiffies 255 * on frequency transition. 256 * 257 * This function calls the transition notifiers and the "adjust_jiffies" 258 * function. It is called twice on all CPU frequency changes that have 259 * external effects. 260 */ 261 void cpufreq_notify_transition(struct cpufreq_freqs *freqs, unsigned int state) 262 { 263 struct cpufreq_policy *policy; 264 265 BUG_ON(irqs_disabled()); 266 267 freqs->flags = cpufreq_driver->flags; 268 pr_debug("notification %u of frequency transition to %u kHz\n", 269 state, freqs->new); 270 271 policy = per_cpu(cpufreq_cpu_data, freqs->cpu); 272 switch (state) { 273 274 case CPUFREQ_PRECHANGE: 275 /* detect if the driver reported a value as "old frequency" 276 * which is not equal to what the cpufreq core thinks is 277 * "old frequency". 278 */ 279 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 280 if ((policy) && (policy->cpu == freqs->cpu) && 281 (policy->cur) && (policy->cur != freqs->old)) { 282 pr_debug("Warning: CPU frequency is" 283 " %u, cpufreq assumed %u kHz.\n", 284 freqs->old, policy->cur); 285 freqs->old = policy->cur; 286 } 287 } 288 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 289 CPUFREQ_PRECHANGE, freqs); 290 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 291 break; 292 293 case CPUFREQ_POSTCHANGE: 294 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 295 pr_debug("FREQ: %lu - CPU: %lu", (unsigned long)freqs->new, 296 (unsigned long)freqs->cpu); 297 trace_power_frequency(POWER_PSTATE, freqs->new, freqs->cpu); 298 trace_cpu_frequency(freqs->new, freqs->cpu); 299 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 300 CPUFREQ_POSTCHANGE, freqs); 301 if (likely(policy) && likely(policy->cpu == freqs->cpu)) 302 policy->cur = freqs->new; 303 break; 304 } 305 } 306 EXPORT_SYMBOL_GPL(cpufreq_notify_transition); 307 308 309 310 /********************************************************************* 311 * SYSFS INTERFACE * 312 *********************************************************************/ 313 314 static struct cpufreq_governor *__find_governor(const char *str_governor) 315 { 316 struct cpufreq_governor *t; 317 318 list_for_each_entry(t, &cpufreq_governor_list, governor_list) 319 if (!strnicmp(str_governor, t->name, CPUFREQ_NAME_LEN)) 320 return t; 321 322 return NULL; 323 } 324 325 /** 326 * cpufreq_parse_governor - parse a governor string 327 */ 328 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy, 329 struct cpufreq_governor **governor) 330 { 331 int err = -EINVAL; 332 333 if (!cpufreq_driver) 334 goto out; 335 336 if (cpufreq_driver->setpolicy) { 337 if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) { 338 *policy = CPUFREQ_POLICY_PERFORMANCE; 339 err = 0; 340 } else if (!strnicmp(str_governor, "powersave", 341 CPUFREQ_NAME_LEN)) { 342 *policy = CPUFREQ_POLICY_POWERSAVE; 343 err = 0; 344 } 345 } else if (cpufreq_driver->target) { 346 struct cpufreq_governor *t; 347 348 mutex_lock(&cpufreq_governor_mutex); 349 350 t = __find_governor(str_governor); 351 352 if (t == NULL) { 353 int ret; 354 355 mutex_unlock(&cpufreq_governor_mutex); 356 ret = request_module("cpufreq_%s", str_governor); 357 mutex_lock(&cpufreq_governor_mutex); 358 359 if (ret == 0) 360 t = __find_governor(str_governor); 361 } 362 363 if (t != NULL) { 364 *governor = t; 365 err = 0; 366 } 367 368 mutex_unlock(&cpufreq_governor_mutex); 369 } 370 out: 371 return err; 372 } 373 374 375 /** 376 * cpufreq_per_cpu_attr_read() / show_##file_name() - 377 * print out cpufreq information 378 * 379 * Write out information from cpufreq_driver->policy[cpu]; object must be 380 * "unsigned int". 381 */ 382 383 #define show_one(file_name, object) \ 384 static ssize_t show_##file_name \ 385 (struct cpufreq_policy *policy, char *buf) \ 386 { \ 387 return sprintf(buf, "%u\n", policy->object); \ 388 } 389 390 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 391 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 392 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency); 393 show_one(scaling_min_freq, min); 394 show_one(scaling_max_freq, max); 395 show_one(scaling_cur_freq, cur); 396 397 static int __cpufreq_set_policy(struct cpufreq_policy *data, 398 struct cpufreq_policy *policy); 399 400 /** 401 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 402 */ 403 #define store_one(file_name, object) \ 404 static ssize_t store_##file_name \ 405 (struct cpufreq_policy *policy, const char *buf, size_t count) \ 406 { \ 407 unsigned int ret; \ 408 struct cpufreq_policy new_policy; \ 409 \ 410 ret = cpufreq_get_policy(&new_policy, policy->cpu); \ 411 if (ret) \ 412 return -EINVAL; \ 413 \ 414 ret = sscanf(buf, "%u", &new_policy.object); \ 415 if (ret != 1) \ 416 return -EINVAL; \ 417 \ 418 ret = __cpufreq_set_policy(policy, &new_policy); \ 419 policy->user_policy.object = policy->object; \ 420 \ 421 return ret ? ret : count; \ 422 } 423 424 store_one(scaling_min_freq, min); 425 store_one(scaling_max_freq, max); 426 427 /** 428 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 429 */ 430 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy, 431 char *buf) 432 { 433 unsigned int cur_freq = __cpufreq_get(policy->cpu); 434 if (!cur_freq) 435 return sprintf(buf, "<unknown>"); 436 return sprintf(buf, "%u\n", cur_freq); 437 } 438 439 440 /** 441 * show_scaling_governor - show the current policy for the specified CPU 442 */ 443 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf) 444 { 445 if (policy->policy == CPUFREQ_POLICY_POWERSAVE) 446 return sprintf(buf, "powersave\n"); 447 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 448 return sprintf(buf, "performance\n"); 449 else if (policy->governor) 450 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", 451 policy->governor->name); 452 return -EINVAL; 453 } 454 455 456 /** 457 * store_scaling_governor - store policy for the specified CPU 458 */ 459 static ssize_t store_scaling_governor(struct cpufreq_policy *policy, 460 const char *buf, size_t count) 461 { 462 unsigned int ret; 463 char str_governor[16]; 464 struct cpufreq_policy new_policy; 465 466 ret = cpufreq_get_policy(&new_policy, policy->cpu); 467 if (ret) 468 return ret; 469 470 ret = sscanf(buf, "%15s", str_governor); 471 if (ret != 1) 472 return -EINVAL; 473 474 if (cpufreq_parse_governor(str_governor, &new_policy.policy, 475 &new_policy.governor)) 476 return -EINVAL; 477 478 /* Do not use cpufreq_set_policy here or the user_policy.max 479 will be wrongly overridden */ 480 ret = __cpufreq_set_policy(policy, &new_policy); 481 482 policy->user_policy.policy = policy->policy; 483 policy->user_policy.governor = policy->governor; 484 485 if (ret) 486 return ret; 487 else 488 return count; 489 } 490 491 /** 492 * show_scaling_driver - show the cpufreq driver currently loaded 493 */ 494 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf) 495 { 496 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name); 497 } 498 499 /** 500 * show_scaling_available_governors - show the available CPUfreq governors 501 */ 502 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy, 503 char *buf) 504 { 505 ssize_t i = 0; 506 struct cpufreq_governor *t; 507 508 if (!cpufreq_driver->target) { 509 i += sprintf(buf, "performance powersave"); 510 goto out; 511 } 512 513 list_for_each_entry(t, &cpufreq_governor_list, governor_list) { 514 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) 515 - (CPUFREQ_NAME_LEN + 2))) 516 goto out; 517 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name); 518 } 519 out: 520 i += sprintf(&buf[i], "\n"); 521 return i; 522 } 523 524 static ssize_t show_cpus(const struct cpumask *mask, char *buf) 525 { 526 ssize_t i = 0; 527 unsigned int cpu; 528 529 for_each_cpu(cpu, mask) { 530 if (i) 531 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " "); 532 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu); 533 if (i >= (PAGE_SIZE - 5)) 534 break; 535 } 536 i += sprintf(&buf[i], "\n"); 537 return i; 538 } 539 540 /** 541 * show_related_cpus - show the CPUs affected by each transition even if 542 * hw coordination is in use 543 */ 544 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf) 545 { 546 if (cpumask_empty(policy->related_cpus)) 547 return show_cpus(policy->cpus, buf); 548 return show_cpus(policy->related_cpus, buf); 549 } 550 551 /** 552 * show_affected_cpus - show the CPUs affected by each transition 553 */ 554 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf) 555 { 556 return show_cpus(policy->cpus, buf); 557 } 558 559 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy, 560 const char *buf, size_t count) 561 { 562 unsigned int freq = 0; 563 unsigned int ret; 564 565 if (!policy->governor || !policy->governor->store_setspeed) 566 return -EINVAL; 567 568 ret = sscanf(buf, "%u", &freq); 569 if (ret != 1) 570 return -EINVAL; 571 572 policy->governor->store_setspeed(policy, freq); 573 574 return count; 575 } 576 577 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf) 578 { 579 if (!policy->governor || !policy->governor->show_setspeed) 580 return sprintf(buf, "<unsupported>\n"); 581 582 return policy->governor->show_setspeed(policy, buf); 583 } 584 585 /** 586 * show_bios_limit - show the current cpufreq HW/BIOS limitation 587 */ 588 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf) 589 { 590 unsigned int limit; 591 int ret; 592 if (cpufreq_driver->bios_limit) { 593 ret = cpufreq_driver->bios_limit(policy->cpu, &limit); 594 if (!ret) 595 return sprintf(buf, "%u\n", limit); 596 } 597 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq); 598 } 599 600 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400); 601 cpufreq_freq_attr_ro(cpuinfo_min_freq); 602 cpufreq_freq_attr_ro(cpuinfo_max_freq); 603 cpufreq_freq_attr_ro(cpuinfo_transition_latency); 604 cpufreq_freq_attr_ro(scaling_available_governors); 605 cpufreq_freq_attr_ro(scaling_driver); 606 cpufreq_freq_attr_ro(scaling_cur_freq); 607 cpufreq_freq_attr_ro(bios_limit); 608 cpufreq_freq_attr_ro(related_cpus); 609 cpufreq_freq_attr_ro(affected_cpus); 610 cpufreq_freq_attr_rw(scaling_min_freq); 611 cpufreq_freq_attr_rw(scaling_max_freq); 612 cpufreq_freq_attr_rw(scaling_governor); 613 cpufreq_freq_attr_rw(scaling_setspeed); 614 615 static struct attribute *default_attrs[] = { 616 &cpuinfo_min_freq.attr, 617 &cpuinfo_max_freq.attr, 618 &cpuinfo_transition_latency.attr, 619 &scaling_min_freq.attr, 620 &scaling_max_freq.attr, 621 &affected_cpus.attr, 622 &related_cpus.attr, 623 &scaling_governor.attr, 624 &scaling_driver.attr, 625 &scaling_available_governors.attr, 626 &scaling_setspeed.attr, 627 NULL 628 }; 629 630 struct kobject *cpufreq_global_kobject; 631 EXPORT_SYMBOL(cpufreq_global_kobject); 632 633 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj) 634 #define to_attr(a) container_of(a, struct freq_attr, attr) 635 636 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) 637 { 638 struct cpufreq_policy *policy = to_policy(kobj); 639 struct freq_attr *fattr = to_attr(attr); 640 ssize_t ret = -EINVAL; 641 policy = cpufreq_cpu_get_sysfs(policy->cpu); 642 if (!policy) 643 goto no_policy; 644 645 if (lock_policy_rwsem_read(policy->cpu) < 0) 646 goto fail; 647 648 if (fattr->show) 649 ret = fattr->show(policy, buf); 650 else 651 ret = -EIO; 652 653 unlock_policy_rwsem_read(policy->cpu); 654 fail: 655 cpufreq_cpu_put_sysfs(policy); 656 no_policy: 657 return ret; 658 } 659 660 static ssize_t store(struct kobject *kobj, struct attribute *attr, 661 const char *buf, size_t count) 662 { 663 struct cpufreq_policy *policy = to_policy(kobj); 664 struct freq_attr *fattr = to_attr(attr); 665 ssize_t ret = -EINVAL; 666 policy = cpufreq_cpu_get_sysfs(policy->cpu); 667 if (!policy) 668 goto no_policy; 669 670 if (lock_policy_rwsem_write(policy->cpu) < 0) 671 goto fail; 672 673 if (fattr->store) 674 ret = fattr->store(policy, buf, count); 675 else 676 ret = -EIO; 677 678 unlock_policy_rwsem_write(policy->cpu); 679 fail: 680 cpufreq_cpu_put_sysfs(policy); 681 no_policy: 682 return ret; 683 } 684 685 static void cpufreq_sysfs_release(struct kobject *kobj) 686 { 687 struct cpufreq_policy *policy = to_policy(kobj); 688 pr_debug("last reference is dropped\n"); 689 complete(&policy->kobj_unregister); 690 } 691 692 static const struct sysfs_ops sysfs_ops = { 693 .show = show, 694 .store = store, 695 }; 696 697 static struct kobj_type ktype_cpufreq = { 698 .sysfs_ops = &sysfs_ops, 699 .default_attrs = default_attrs, 700 .release = cpufreq_sysfs_release, 701 }; 702 703 /* 704 * Returns: 705 * Negative: Failure 706 * 0: Success 707 * Positive: When we have a managed CPU and the sysfs got symlinked 708 */ 709 static int cpufreq_add_dev_policy(unsigned int cpu, 710 struct cpufreq_policy *policy, 711 struct device *dev) 712 { 713 int ret = 0; 714 #ifdef CONFIG_SMP 715 unsigned long flags; 716 unsigned int j; 717 #ifdef CONFIG_HOTPLUG_CPU 718 struct cpufreq_governor *gov; 719 720 gov = __find_governor(per_cpu(cpufreq_cpu_governor, cpu)); 721 if (gov) { 722 policy->governor = gov; 723 pr_debug("Restoring governor %s for cpu %d\n", 724 policy->governor->name, cpu); 725 } 726 #endif 727 728 for_each_cpu(j, policy->cpus) { 729 struct cpufreq_policy *managed_policy; 730 731 if (cpu == j) 732 continue; 733 734 /* Check for existing affected CPUs. 735 * They may not be aware of it due to CPU Hotplug. 736 * cpufreq_cpu_put is called when the device is removed 737 * in __cpufreq_remove_dev() 738 */ 739 managed_policy = cpufreq_cpu_get(j); 740 if (unlikely(managed_policy)) { 741 742 /* Set proper policy_cpu */ 743 unlock_policy_rwsem_write(cpu); 744 per_cpu(cpufreq_policy_cpu, cpu) = managed_policy->cpu; 745 746 if (lock_policy_rwsem_write(cpu) < 0) { 747 /* Should not go through policy unlock path */ 748 if (cpufreq_driver->exit) 749 cpufreq_driver->exit(policy); 750 cpufreq_cpu_put(managed_policy); 751 return -EBUSY; 752 } 753 754 spin_lock_irqsave(&cpufreq_driver_lock, flags); 755 cpumask_copy(managed_policy->cpus, policy->cpus); 756 per_cpu(cpufreq_cpu_data, cpu) = managed_policy; 757 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 758 759 pr_debug("CPU already managed, adding link\n"); 760 ret = sysfs_create_link(&dev->kobj, 761 &managed_policy->kobj, 762 "cpufreq"); 763 if (ret) 764 cpufreq_cpu_put(managed_policy); 765 /* 766 * Success. We only needed to be added to the mask. 767 * Call driver->exit() because only the cpu parent of 768 * the kobj needed to call init(). 769 */ 770 if (cpufreq_driver->exit) 771 cpufreq_driver->exit(policy); 772 773 if (!ret) 774 return 1; 775 else 776 return ret; 777 } 778 } 779 #endif 780 return ret; 781 } 782 783 784 /* symlink affected CPUs */ 785 static int cpufreq_add_dev_symlink(unsigned int cpu, 786 struct cpufreq_policy *policy) 787 { 788 unsigned int j; 789 int ret = 0; 790 791 for_each_cpu(j, policy->cpus) { 792 struct cpufreq_policy *managed_policy; 793 struct device *cpu_dev; 794 795 if (j == cpu) 796 continue; 797 if (!cpu_online(j)) 798 continue; 799 800 pr_debug("CPU %u already managed, adding link\n", j); 801 managed_policy = cpufreq_cpu_get(cpu); 802 cpu_dev = get_cpu_device(j); 803 ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj, 804 "cpufreq"); 805 if (ret) { 806 cpufreq_cpu_put(managed_policy); 807 return ret; 808 } 809 } 810 return ret; 811 } 812 813 static int cpufreq_add_dev_interface(unsigned int cpu, 814 struct cpufreq_policy *policy, 815 struct device *dev) 816 { 817 struct cpufreq_policy new_policy; 818 struct freq_attr **drv_attr; 819 unsigned long flags; 820 int ret = 0; 821 unsigned int j; 822 823 /* prepare interface data */ 824 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, 825 &dev->kobj, "cpufreq"); 826 if (ret) 827 return ret; 828 829 /* set up files for this cpu device */ 830 drv_attr = cpufreq_driver->attr; 831 while ((drv_attr) && (*drv_attr)) { 832 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 833 if (ret) 834 goto err_out_kobj_put; 835 drv_attr++; 836 } 837 if (cpufreq_driver->get) { 838 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 839 if (ret) 840 goto err_out_kobj_put; 841 } 842 if (cpufreq_driver->target) { 843 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 844 if (ret) 845 goto err_out_kobj_put; 846 } 847 if (cpufreq_driver->bios_limit) { 848 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr); 849 if (ret) 850 goto err_out_kobj_put; 851 } 852 853 spin_lock_irqsave(&cpufreq_driver_lock, flags); 854 for_each_cpu(j, policy->cpus) { 855 if (!cpu_online(j)) 856 continue; 857 per_cpu(cpufreq_cpu_data, j) = policy; 858 per_cpu(cpufreq_policy_cpu, j) = policy->cpu; 859 } 860 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 861 862 ret = cpufreq_add_dev_symlink(cpu, policy); 863 if (ret) 864 goto err_out_kobj_put; 865 866 memcpy(&new_policy, policy, sizeof(struct cpufreq_policy)); 867 /* assure that the starting sequence is run in __cpufreq_set_policy */ 868 policy->governor = NULL; 869 870 /* set default policy */ 871 ret = __cpufreq_set_policy(policy, &new_policy); 872 policy->user_policy.policy = policy->policy; 873 policy->user_policy.governor = policy->governor; 874 875 if (ret) { 876 pr_debug("setting policy failed\n"); 877 if (cpufreq_driver->exit) 878 cpufreq_driver->exit(policy); 879 } 880 return ret; 881 882 err_out_kobj_put: 883 kobject_put(&policy->kobj); 884 wait_for_completion(&policy->kobj_unregister); 885 return ret; 886 } 887 888 889 /** 890 * cpufreq_add_dev - add a CPU device 891 * 892 * Adds the cpufreq interface for a CPU device. 893 * 894 * The Oracle says: try running cpufreq registration/unregistration concurrently 895 * with with cpu hotplugging and all hell will break loose. Tried to clean this 896 * mess up, but more thorough testing is needed. - Mathieu 897 */ 898 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 899 { 900 unsigned int cpu = dev->id; 901 int ret = 0, found = 0; 902 struct cpufreq_policy *policy; 903 unsigned long flags; 904 unsigned int j; 905 #ifdef CONFIG_HOTPLUG_CPU 906 int sibling; 907 #endif 908 909 if (cpu_is_offline(cpu)) 910 return 0; 911 912 pr_debug("adding CPU %u\n", cpu); 913 914 #ifdef CONFIG_SMP 915 /* check whether a different CPU already registered this 916 * CPU because it is in the same boat. */ 917 policy = cpufreq_cpu_get(cpu); 918 if (unlikely(policy)) { 919 cpufreq_cpu_put(policy); 920 return 0; 921 } 922 #endif 923 924 if (!try_module_get(cpufreq_driver->owner)) { 925 ret = -EINVAL; 926 goto module_out; 927 } 928 929 ret = -ENOMEM; 930 policy = kzalloc(sizeof(struct cpufreq_policy), GFP_KERNEL); 931 if (!policy) 932 goto nomem_out; 933 934 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) 935 goto err_free_policy; 936 937 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) 938 goto err_free_cpumask; 939 940 policy->cpu = cpu; 941 cpumask_copy(policy->cpus, cpumask_of(cpu)); 942 943 /* Initially set CPU itself as the policy_cpu */ 944 per_cpu(cpufreq_policy_cpu, cpu) = cpu; 945 ret = (lock_policy_rwsem_write(cpu) < 0); 946 WARN_ON(ret); 947 948 init_completion(&policy->kobj_unregister); 949 INIT_WORK(&policy->update, handle_update); 950 951 /* Set governor before ->init, so that driver could check it */ 952 #ifdef CONFIG_HOTPLUG_CPU 953 for_each_online_cpu(sibling) { 954 struct cpufreq_policy *cp = per_cpu(cpufreq_cpu_data, sibling); 955 if (cp && cp->governor && 956 (cpumask_test_cpu(cpu, cp->related_cpus))) { 957 policy->governor = cp->governor; 958 found = 1; 959 break; 960 } 961 } 962 #endif 963 if (!found) 964 policy->governor = CPUFREQ_DEFAULT_GOVERNOR; 965 /* call driver. From then on the cpufreq must be able 966 * to accept all calls to ->verify and ->setpolicy for this CPU 967 */ 968 ret = cpufreq_driver->init(policy); 969 if (ret) { 970 pr_debug("initialization failed\n"); 971 goto err_unlock_policy; 972 } 973 policy->user_policy.min = policy->min; 974 policy->user_policy.max = policy->max; 975 976 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 977 CPUFREQ_START, policy); 978 979 ret = cpufreq_add_dev_policy(cpu, policy, dev); 980 if (ret) { 981 if (ret > 0) 982 /* This is a managed cpu, symlink created, 983 exit with 0 */ 984 ret = 0; 985 goto err_unlock_policy; 986 } 987 988 ret = cpufreq_add_dev_interface(cpu, policy, dev); 989 if (ret) 990 goto err_out_unregister; 991 992 unlock_policy_rwsem_write(cpu); 993 994 kobject_uevent(&policy->kobj, KOBJ_ADD); 995 module_put(cpufreq_driver->owner); 996 pr_debug("initialization complete\n"); 997 998 return 0; 999 1000 1001 err_out_unregister: 1002 spin_lock_irqsave(&cpufreq_driver_lock, flags); 1003 for_each_cpu(j, policy->cpus) 1004 per_cpu(cpufreq_cpu_data, j) = NULL; 1005 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 1006 1007 kobject_put(&policy->kobj); 1008 wait_for_completion(&policy->kobj_unregister); 1009 1010 err_unlock_policy: 1011 unlock_policy_rwsem_write(cpu); 1012 free_cpumask_var(policy->related_cpus); 1013 err_free_cpumask: 1014 free_cpumask_var(policy->cpus); 1015 err_free_policy: 1016 kfree(policy); 1017 nomem_out: 1018 module_put(cpufreq_driver->owner); 1019 module_out: 1020 return ret; 1021 } 1022 1023 1024 /** 1025 * __cpufreq_remove_dev - remove a CPU device 1026 * 1027 * Removes the cpufreq interface for a CPU device. 1028 * Caller should already have policy_rwsem in write mode for this CPU. 1029 * This routine frees the rwsem before returning. 1030 */ 1031 static int __cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif) 1032 { 1033 unsigned int cpu = dev->id; 1034 unsigned long flags; 1035 struct cpufreq_policy *data; 1036 struct kobject *kobj; 1037 struct completion *cmp; 1038 #ifdef CONFIG_SMP 1039 struct device *cpu_dev; 1040 unsigned int j; 1041 #endif 1042 1043 pr_debug("unregistering CPU %u\n", cpu); 1044 1045 spin_lock_irqsave(&cpufreq_driver_lock, flags); 1046 data = per_cpu(cpufreq_cpu_data, cpu); 1047 1048 if (!data) { 1049 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 1050 unlock_policy_rwsem_write(cpu); 1051 return -EINVAL; 1052 } 1053 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1054 1055 1056 #ifdef CONFIG_SMP 1057 /* if this isn't the CPU which is the parent of the kobj, we 1058 * only need to unlink, put and exit 1059 */ 1060 if (unlikely(cpu != data->cpu)) { 1061 pr_debug("removing link\n"); 1062 cpumask_clear_cpu(cpu, data->cpus); 1063 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 1064 kobj = &dev->kobj; 1065 cpufreq_cpu_put(data); 1066 unlock_policy_rwsem_write(cpu); 1067 sysfs_remove_link(kobj, "cpufreq"); 1068 return 0; 1069 } 1070 #endif 1071 1072 #ifdef CONFIG_SMP 1073 1074 #ifdef CONFIG_HOTPLUG_CPU 1075 strncpy(per_cpu(cpufreq_cpu_governor, cpu), data->governor->name, 1076 CPUFREQ_NAME_LEN); 1077 #endif 1078 1079 /* if we have other CPUs still registered, we need to unlink them, 1080 * or else wait_for_completion below will lock up. Clean the 1081 * per_cpu(cpufreq_cpu_data) while holding the lock, and remove 1082 * the sysfs links afterwards. 1083 */ 1084 if (unlikely(cpumask_weight(data->cpus) > 1)) { 1085 for_each_cpu(j, data->cpus) { 1086 if (j == cpu) 1087 continue; 1088 per_cpu(cpufreq_cpu_data, j) = NULL; 1089 } 1090 } 1091 1092 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 1093 1094 if (unlikely(cpumask_weight(data->cpus) > 1)) { 1095 for_each_cpu(j, data->cpus) { 1096 if (j == cpu) 1097 continue; 1098 pr_debug("removing link for cpu %u\n", j); 1099 #ifdef CONFIG_HOTPLUG_CPU 1100 strncpy(per_cpu(cpufreq_cpu_governor, j), 1101 data->governor->name, CPUFREQ_NAME_LEN); 1102 #endif 1103 cpu_dev = get_cpu_device(j); 1104 kobj = &cpu_dev->kobj; 1105 unlock_policy_rwsem_write(cpu); 1106 sysfs_remove_link(kobj, "cpufreq"); 1107 lock_policy_rwsem_write(cpu); 1108 cpufreq_cpu_put(data); 1109 } 1110 } 1111 #else 1112 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 1113 #endif 1114 1115 if (cpufreq_driver->target) 1116 __cpufreq_governor(data, CPUFREQ_GOV_STOP); 1117 1118 kobj = &data->kobj; 1119 cmp = &data->kobj_unregister; 1120 unlock_policy_rwsem_write(cpu); 1121 kobject_put(kobj); 1122 1123 /* we need to make sure that the underlying kobj is actually 1124 * not referenced anymore by anybody before we proceed with 1125 * unloading. 1126 */ 1127 pr_debug("waiting for dropping of refcount\n"); 1128 wait_for_completion(cmp); 1129 pr_debug("wait complete\n"); 1130 1131 lock_policy_rwsem_write(cpu); 1132 if (cpufreq_driver->exit) 1133 cpufreq_driver->exit(data); 1134 unlock_policy_rwsem_write(cpu); 1135 1136 #ifdef CONFIG_HOTPLUG_CPU 1137 /* when the CPU which is the parent of the kobj is hotplugged 1138 * offline, check for siblings, and create cpufreq sysfs interface 1139 * and symlinks 1140 */ 1141 if (unlikely(cpumask_weight(data->cpus) > 1)) { 1142 /* first sibling now owns the new sysfs dir */ 1143 cpumask_clear_cpu(cpu, data->cpus); 1144 cpufreq_add_dev(get_cpu_device(cpumask_first(data->cpus)), NULL); 1145 1146 /* finally remove our own symlink */ 1147 lock_policy_rwsem_write(cpu); 1148 __cpufreq_remove_dev(dev, sif); 1149 } 1150 #endif 1151 1152 free_cpumask_var(data->related_cpus); 1153 free_cpumask_var(data->cpus); 1154 kfree(data); 1155 1156 return 0; 1157 } 1158 1159 1160 static int cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif) 1161 { 1162 unsigned int cpu = dev->id; 1163 int retval; 1164 1165 if (cpu_is_offline(cpu)) 1166 return 0; 1167 1168 if (unlikely(lock_policy_rwsem_write(cpu))) 1169 BUG(); 1170 1171 retval = __cpufreq_remove_dev(dev, sif); 1172 return retval; 1173 } 1174 1175 1176 static void handle_update(struct work_struct *work) 1177 { 1178 struct cpufreq_policy *policy = 1179 container_of(work, struct cpufreq_policy, update); 1180 unsigned int cpu = policy->cpu; 1181 pr_debug("handle_update for cpu %u called\n", cpu); 1182 cpufreq_update_policy(cpu); 1183 } 1184 1185 /** 1186 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're in deep trouble. 1187 * @cpu: cpu number 1188 * @old_freq: CPU frequency the kernel thinks the CPU runs at 1189 * @new_freq: CPU frequency the CPU actually runs at 1190 * 1191 * We adjust to current frequency first, and need to clean up later. 1192 * So either call to cpufreq_update_policy() or schedule handle_update()). 1193 */ 1194 static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq, 1195 unsigned int new_freq) 1196 { 1197 struct cpufreq_freqs freqs; 1198 1199 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing " 1200 "core thinks of %u, is %u kHz.\n", old_freq, new_freq); 1201 1202 freqs.cpu = cpu; 1203 freqs.old = old_freq; 1204 freqs.new = new_freq; 1205 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE); 1206 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE); 1207 } 1208 1209 1210 /** 1211 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur 1212 * @cpu: CPU number 1213 * 1214 * This is the last known freq, without actually getting it from the driver. 1215 * Return value will be same as what is shown in scaling_cur_freq in sysfs. 1216 */ 1217 unsigned int cpufreq_quick_get(unsigned int cpu) 1218 { 1219 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1220 unsigned int ret_freq = 0; 1221 1222 if (policy) { 1223 ret_freq = policy->cur; 1224 cpufreq_cpu_put(policy); 1225 } 1226 1227 return ret_freq; 1228 } 1229 EXPORT_SYMBOL(cpufreq_quick_get); 1230 1231 /** 1232 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU 1233 * @cpu: CPU number 1234 * 1235 * Just return the max possible frequency for a given CPU. 1236 */ 1237 unsigned int cpufreq_quick_get_max(unsigned int cpu) 1238 { 1239 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1240 unsigned int ret_freq = 0; 1241 1242 if (policy) { 1243 ret_freq = policy->max; 1244 cpufreq_cpu_put(policy); 1245 } 1246 1247 return ret_freq; 1248 } 1249 EXPORT_SYMBOL(cpufreq_quick_get_max); 1250 1251 1252 static unsigned int __cpufreq_get(unsigned int cpu) 1253 { 1254 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1255 unsigned int ret_freq = 0; 1256 1257 if (!cpufreq_driver->get) 1258 return ret_freq; 1259 1260 ret_freq = cpufreq_driver->get(cpu); 1261 1262 if (ret_freq && policy->cur && 1263 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 1264 /* verify no discrepancy between actual and 1265 saved value exists */ 1266 if (unlikely(ret_freq != policy->cur)) { 1267 cpufreq_out_of_sync(cpu, policy->cur, ret_freq); 1268 schedule_work(&policy->update); 1269 } 1270 } 1271 1272 return ret_freq; 1273 } 1274 1275 /** 1276 * cpufreq_get - get the current CPU frequency (in kHz) 1277 * @cpu: CPU number 1278 * 1279 * Get the CPU current (static) CPU frequency 1280 */ 1281 unsigned int cpufreq_get(unsigned int cpu) 1282 { 1283 unsigned int ret_freq = 0; 1284 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1285 1286 if (!policy) 1287 goto out; 1288 1289 if (unlikely(lock_policy_rwsem_read(cpu))) 1290 goto out_policy; 1291 1292 ret_freq = __cpufreq_get(cpu); 1293 1294 unlock_policy_rwsem_read(cpu); 1295 1296 out_policy: 1297 cpufreq_cpu_put(policy); 1298 out: 1299 return ret_freq; 1300 } 1301 EXPORT_SYMBOL(cpufreq_get); 1302 1303 static struct subsys_interface cpufreq_interface = { 1304 .name = "cpufreq", 1305 .subsys = &cpu_subsys, 1306 .add_dev = cpufreq_add_dev, 1307 .remove_dev = cpufreq_remove_dev, 1308 }; 1309 1310 1311 /** 1312 * cpufreq_bp_suspend - Prepare the boot CPU for system suspend. 1313 * 1314 * This function is only executed for the boot processor. The other CPUs 1315 * have been put offline by means of CPU hotplug. 1316 */ 1317 static int cpufreq_bp_suspend(void) 1318 { 1319 int ret = 0; 1320 1321 int cpu = smp_processor_id(); 1322 struct cpufreq_policy *cpu_policy; 1323 1324 pr_debug("suspending cpu %u\n", cpu); 1325 1326 /* If there's no policy for the boot CPU, we have nothing to do. */ 1327 cpu_policy = cpufreq_cpu_get(cpu); 1328 if (!cpu_policy) 1329 return 0; 1330 1331 if (cpufreq_driver->suspend) { 1332 ret = cpufreq_driver->suspend(cpu_policy); 1333 if (ret) 1334 printk(KERN_ERR "cpufreq: suspend failed in ->suspend " 1335 "step on CPU %u\n", cpu_policy->cpu); 1336 } 1337 1338 cpufreq_cpu_put(cpu_policy); 1339 return ret; 1340 } 1341 1342 /** 1343 * cpufreq_bp_resume - Restore proper frequency handling of the boot CPU. 1344 * 1345 * 1.) resume CPUfreq hardware support (cpufreq_driver->resume()) 1346 * 2.) schedule call cpufreq_update_policy() ASAP as interrupts are 1347 * restored. It will verify that the current freq is in sync with 1348 * what we believe it to be. This is a bit later than when it 1349 * should be, but nonethteless it's better than calling 1350 * cpufreq_driver->get() here which might re-enable interrupts... 1351 * 1352 * This function is only executed for the boot CPU. The other CPUs have not 1353 * been turned on yet. 1354 */ 1355 static void cpufreq_bp_resume(void) 1356 { 1357 int ret = 0; 1358 1359 int cpu = smp_processor_id(); 1360 struct cpufreq_policy *cpu_policy; 1361 1362 pr_debug("resuming cpu %u\n", cpu); 1363 1364 /* If there's no policy for the boot CPU, we have nothing to do. */ 1365 cpu_policy = cpufreq_cpu_get(cpu); 1366 if (!cpu_policy) 1367 return; 1368 1369 if (cpufreq_driver->resume) { 1370 ret = cpufreq_driver->resume(cpu_policy); 1371 if (ret) { 1372 printk(KERN_ERR "cpufreq: resume failed in ->resume " 1373 "step on CPU %u\n", cpu_policy->cpu); 1374 goto fail; 1375 } 1376 } 1377 1378 schedule_work(&cpu_policy->update); 1379 1380 fail: 1381 cpufreq_cpu_put(cpu_policy); 1382 } 1383 1384 static struct syscore_ops cpufreq_syscore_ops = { 1385 .suspend = cpufreq_bp_suspend, 1386 .resume = cpufreq_bp_resume, 1387 }; 1388 1389 1390 /********************************************************************* 1391 * NOTIFIER LISTS INTERFACE * 1392 *********************************************************************/ 1393 1394 /** 1395 * cpufreq_register_notifier - register a driver with cpufreq 1396 * @nb: notifier function to register 1397 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1398 * 1399 * Add a driver to one of two lists: either a list of drivers that 1400 * are notified about clock rate changes (once before and once after 1401 * the transition), or a list of drivers that are notified about 1402 * changes in cpufreq policy. 1403 * 1404 * This function may sleep, and has the same return conditions as 1405 * blocking_notifier_chain_register. 1406 */ 1407 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 1408 { 1409 int ret; 1410 1411 WARN_ON(!init_cpufreq_transition_notifier_list_called); 1412 1413 switch (list) { 1414 case CPUFREQ_TRANSITION_NOTIFIER: 1415 ret = srcu_notifier_chain_register( 1416 &cpufreq_transition_notifier_list, nb); 1417 break; 1418 case CPUFREQ_POLICY_NOTIFIER: 1419 ret = blocking_notifier_chain_register( 1420 &cpufreq_policy_notifier_list, nb); 1421 break; 1422 default: 1423 ret = -EINVAL; 1424 } 1425 1426 return ret; 1427 } 1428 EXPORT_SYMBOL(cpufreq_register_notifier); 1429 1430 1431 /** 1432 * cpufreq_unregister_notifier - unregister a driver with cpufreq 1433 * @nb: notifier block to be unregistered 1434 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1435 * 1436 * Remove a driver from the CPU frequency notifier list. 1437 * 1438 * This function may sleep, and has the same return conditions as 1439 * blocking_notifier_chain_unregister. 1440 */ 1441 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 1442 { 1443 int ret; 1444 1445 switch (list) { 1446 case CPUFREQ_TRANSITION_NOTIFIER: 1447 ret = srcu_notifier_chain_unregister( 1448 &cpufreq_transition_notifier_list, nb); 1449 break; 1450 case CPUFREQ_POLICY_NOTIFIER: 1451 ret = blocking_notifier_chain_unregister( 1452 &cpufreq_policy_notifier_list, nb); 1453 break; 1454 default: 1455 ret = -EINVAL; 1456 } 1457 1458 return ret; 1459 } 1460 EXPORT_SYMBOL(cpufreq_unregister_notifier); 1461 1462 1463 /********************************************************************* 1464 * GOVERNORS * 1465 *********************************************************************/ 1466 1467 1468 int __cpufreq_driver_target(struct cpufreq_policy *policy, 1469 unsigned int target_freq, 1470 unsigned int relation) 1471 { 1472 int retval = -EINVAL; 1473 unsigned int old_target_freq = target_freq; 1474 1475 if (cpufreq_disabled()) 1476 return -ENODEV; 1477 1478 /* Make sure that target_freq is within supported range */ 1479 if (target_freq > policy->max) 1480 target_freq = policy->max; 1481 if (target_freq < policy->min) 1482 target_freq = policy->min; 1483 1484 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n", 1485 policy->cpu, target_freq, relation, old_target_freq); 1486 1487 if (target_freq == policy->cur) 1488 return 0; 1489 1490 if (cpu_online(policy->cpu) && cpufreq_driver->target) 1491 retval = cpufreq_driver->target(policy, target_freq, relation); 1492 1493 return retval; 1494 } 1495 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 1496 1497 int cpufreq_driver_target(struct cpufreq_policy *policy, 1498 unsigned int target_freq, 1499 unsigned int relation) 1500 { 1501 int ret = -EINVAL; 1502 1503 policy = cpufreq_cpu_get(policy->cpu); 1504 if (!policy) 1505 goto no_policy; 1506 1507 if (unlikely(lock_policy_rwsem_write(policy->cpu))) 1508 goto fail; 1509 1510 ret = __cpufreq_driver_target(policy, target_freq, relation); 1511 1512 unlock_policy_rwsem_write(policy->cpu); 1513 1514 fail: 1515 cpufreq_cpu_put(policy); 1516 no_policy: 1517 return ret; 1518 } 1519 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 1520 1521 int __cpufreq_driver_getavg(struct cpufreq_policy *policy, unsigned int cpu) 1522 { 1523 int ret = 0; 1524 1525 if (!(cpu_online(cpu) && cpufreq_driver->getavg)) 1526 return 0; 1527 1528 policy = cpufreq_cpu_get(policy->cpu); 1529 if (!policy) 1530 return -EINVAL; 1531 1532 ret = cpufreq_driver->getavg(policy, cpu); 1533 1534 cpufreq_cpu_put(policy); 1535 return ret; 1536 } 1537 EXPORT_SYMBOL_GPL(__cpufreq_driver_getavg); 1538 1539 /* 1540 * when "event" is CPUFREQ_GOV_LIMITS 1541 */ 1542 1543 static int __cpufreq_governor(struct cpufreq_policy *policy, 1544 unsigned int event) 1545 { 1546 int ret; 1547 1548 /* Only must be defined when default governor is known to have latency 1549 restrictions, like e.g. conservative or ondemand. 1550 That this is the case is already ensured in Kconfig 1551 */ 1552 #ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE 1553 struct cpufreq_governor *gov = &cpufreq_gov_performance; 1554 #else 1555 struct cpufreq_governor *gov = NULL; 1556 #endif 1557 1558 if (policy->governor->max_transition_latency && 1559 policy->cpuinfo.transition_latency > 1560 policy->governor->max_transition_latency) { 1561 if (!gov) 1562 return -EINVAL; 1563 else { 1564 printk(KERN_WARNING "%s governor failed, too long" 1565 " transition latency of HW, fallback" 1566 " to %s governor\n", 1567 policy->governor->name, 1568 gov->name); 1569 policy->governor = gov; 1570 } 1571 } 1572 1573 if (!try_module_get(policy->governor->owner)) 1574 return -EINVAL; 1575 1576 pr_debug("__cpufreq_governor for CPU %u, event %u\n", 1577 policy->cpu, event); 1578 ret = policy->governor->governor(policy, event); 1579 1580 /* we keep one module reference alive for 1581 each CPU governed by this CPU */ 1582 if ((event != CPUFREQ_GOV_START) || ret) 1583 module_put(policy->governor->owner); 1584 if ((event == CPUFREQ_GOV_STOP) && !ret) 1585 module_put(policy->governor->owner); 1586 1587 return ret; 1588 } 1589 1590 1591 int cpufreq_register_governor(struct cpufreq_governor *governor) 1592 { 1593 int err; 1594 1595 if (!governor) 1596 return -EINVAL; 1597 1598 if (cpufreq_disabled()) 1599 return -ENODEV; 1600 1601 mutex_lock(&cpufreq_governor_mutex); 1602 1603 err = -EBUSY; 1604 if (__find_governor(governor->name) == NULL) { 1605 err = 0; 1606 list_add(&governor->governor_list, &cpufreq_governor_list); 1607 } 1608 1609 mutex_unlock(&cpufreq_governor_mutex); 1610 return err; 1611 } 1612 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 1613 1614 1615 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 1616 { 1617 #ifdef CONFIG_HOTPLUG_CPU 1618 int cpu; 1619 #endif 1620 1621 if (!governor) 1622 return; 1623 1624 if (cpufreq_disabled()) 1625 return; 1626 1627 #ifdef CONFIG_HOTPLUG_CPU 1628 for_each_present_cpu(cpu) { 1629 if (cpu_online(cpu)) 1630 continue; 1631 if (!strcmp(per_cpu(cpufreq_cpu_governor, cpu), governor->name)) 1632 strcpy(per_cpu(cpufreq_cpu_governor, cpu), "\0"); 1633 } 1634 #endif 1635 1636 mutex_lock(&cpufreq_governor_mutex); 1637 list_del(&governor->governor_list); 1638 mutex_unlock(&cpufreq_governor_mutex); 1639 return; 1640 } 1641 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 1642 1643 1644 1645 /********************************************************************* 1646 * POLICY INTERFACE * 1647 *********************************************************************/ 1648 1649 /** 1650 * cpufreq_get_policy - get the current cpufreq_policy 1651 * @policy: struct cpufreq_policy into which the current cpufreq_policy 1652 * is written 1653 * 1654 * Reads the current cpufreq policy. 1655 */ 1656 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 1657 { 1658 struct cpufreq_policy *cpu_policy; 1659 if (!policy) 1660 return -EINVAL; 1661 1662 cpu_policy = cpufreq_cpu_get(cpu); 1663 if (!cpu_policy) 1664 return -EINVAL; 1665 1666 memcpy(policy, cpu_policy, sizeof(struct cpufreq_policy)); 1667 1668 cpufreq_cpu_put(cpu_policy); 1669 return 0; 1670 } 1671 EXPORT_SYMBOL(cpufreq_get_policy); 1672 1673 1674 /* 1675 * data : current policy. 1676 * policy : policy to be set. 1677 */ 1678 static int __cpufreq_set_policy(struct cpufreq_policy *data, 1679 struct cpufreq_policy *policy) 1680 { 1681 int ret = 0; 1682 1683 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", policy->cpu, 1684 policy->min, policy->max); 1685 1686 memcpy(&policy->cpuinfo, &data->cpuinfo, 1687 sizeof(struct cpufreq_cpuinfo)); 1688 1689 if (policy->min > data->max || policy->max < data->min) { 1690 ret = -EINVAL; 1691 goto error_out; 1692 } 1693 1694 /* verify the cpu speed can be set within this limit */ 1695 ret = cpufreq_driver->verify(policy); 1696 if (ret) 1697 goto error_out; 1698 1699 /* adjust if necessary - all reasons */ 1700 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1701 CPUFREQ_ADJUST, policy); 1702 1703 /* adjust if necessary - hardware incompatibility*/ 1704 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1705 CPUFREQ_INCOMPATIBLE, policy); 1706 1707 /* verify the cpu speed can be set within this limit, 1708 which might be different to the first one */ 1709 ret = cpufreq_driver->verify(policy); 1710 if (ret) 1711 goto error_out; 1712 1713 /* notification of the new policy */ 1714 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1715 CPUFREQ_NOTIFY, policy); 1716 1717 data->min = policy->min; 1718 data->max = policy->max; 1719 1720 pr_debug("new min and max freqs are %u - %u kHz\n", 1721 data->min, data->max); 1722 1723 if (cpufreq_driver->setpolicy) { 1724 data->policy = policy->policy; 1725 pr_debug("setting range\n"); 1726 ret = cpufreq_driver->setpolicy(policy); 1727 } else { 1728 if (policy->governor != data->governor) { 1729 /* save old, working values */ 1730 struct cpufreq_governor *old_gov = data->governor; 1731 1732 pr_debug("governor switch\n"); 1733 1734 /* end old governor */ 1735 if (data->governor) 1736 __cpufreq_governor(data, CPUFREQ_GOV_STOP); 1737 1738 /* start new governor */ 1739 data->governor = policy->governor; 1740 if (__cpufreq_governor(data, CPUFREQ_GOV_START)) { 1741 /* new governor failed, so re-start old one */ 1742 pr_debug("starting governor %s failed\n", 1743 data->governor->name); 1744 if (old_gov) { 1745 data->governor = old_gov; 1746 __cpufreq_governor(data, 1747 CPUFREQ_GOV_START); 1748 } 1749 ret = -EINVAL; 1750 goto error_out; 1751 } 1752 /* might be a policy change, too, so fall through */ 1753 } 1754 pr_debug("governor: change or update limits\n"); 1755 __cpufreq_governor(data, CPUFREQ_GOV_LIMITS); 1756 } 1757 1758 error_out: 1759 return ret; 1760 } 1761 1762 /** 1763 * cpufreq_update_policy - re-evaluate an existing cpufreq policy 1764 * @cpu: CPU which shall be re-evaluated 1765 * 1766 * Useful for policy notifiers which have different necessities 1767 * at different times. 1768 */ 1769 int cpufreq_update_policy(unsigned int cpu) 1770 { 1771 struct cpufreq_policy *data = cpufreq_cpu_get(cpu); 1772 struct cpufreq_policy policy; 1773 int ret; 1774 1775 if (!data) { 1776 ret = -ENODEV; 1777 goto no_policy; 1778 } 1779 1780 if (unlikely(lock_policy_rwsem_write(cpu))) { 1781 ret = -EINVAL; 1782 goto fail; 1783 } 1784 1785 pr_debug("updating policy for CPU %u\n", cpu); 1786 memcpy(&policy, data, sizeof(struct cpufreq_policy)); 1787 policy.min = data->user_policy.min; 1788 policy.max = data->user_policy.max; 1789 policy.policy = data->user_policy.policy; 1790 policy.governor = data->user_policy.governor; 1791 1792 /* BIOS might change freq behind our back 1793 -> ask driver for current freq and notify governors about a change */ 1794 if (cpufreq_driver->get) { 1795 policy.cur = cpufreq_driver->get(cpu); 1796 if (!data->cur) { 1797 pr_debug("Driver did not initialize current freq"); 1798 data->cur = policy.cur; 1799 } else { 1800 if (data->cur != policy.cur) 1801 cpufreq_out_of_sync(cpu, data->cur, 1802 policy.cur); 1803 } 1804 } 1805 1806 ret = __cpufreq_set_policy(data, &policy); 1807 1808 unlock_policy_rwsem_write(cpu); 1809 1810 fail: 1811 cpufreq_cpu_put(data); 1812 no_policy: 1813 return ret; 1814 } 1815 EXPORT_SYMBOL(cpufreq_update_policy); 1816 1817 static int __cpuinit cpufreq_cpu_callback(struct notifier_block *nfb, 1818 unsigned long action, void *hcpu) 1819 { 1820 unsigned int cpu = (unsigned long)hcpu; 1821 struct device *dev; 1822 1823 dev = get_cpu_device(cpu); 1824 if (dev) { 1825 switch (action) { 1826 case CPU_ONLINE: 1827 case CPU_ONLINE_FROZEN: 1828 cpufreq_add_dev(dev, NULL); 1829 break; 1830 case CPU_DOWN_PREPARE: 1831 case CPU_DOWN_PREPARE_FROZEN: 1832 if (unlikely(lock_policy_rwsem_write(cpu))) 1833 BUG(); 1834 1835 __cpufreq_remove_dev(dev, NULL); 1836 break; 1837 case CPU_DOWN_FAILED: 1838 case CPU_DOWN_FAILED_FROZEN: 1839 cpufreq_add_dev(dev, NULL); 1840 break; 1841 } 1842 } 1843 return NOTIFY_OK; 1844 } 1845 1846 static struct notifier_block __refdata cpufreq_cpu_notifier = { 1847 .notifier_call = cpufreq_cpu_callback, 1848 }; 1849 1850 /********************************************************************* 1851 * REGISTER / UNREGISTER CPUFREQ DRIVER * 1852 *********************************************************************/ 1853 1854 /** 1855 * cpufreq_register_driver - register a CPU Frequency driver 1856 * @driver_data: A struct cpufreq_driver containing the values# 1857 * submitted by the CPU Frequency driver. 1858 * 1859 * Registers a CPU Frequency driver to this core code. This code 1860 * returns zero on success, -EBUSY when another driver got here first 1861 * (and isn't unregistered in the meantime). 1862 * 1863 */ 1864 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 1865 { 1866 unsigned long flags; 1867 int ret; 1868 1869 if (cpufreq_disabled()) 1870 return -ENODEV; 1871 1872 if (!driver_data || !driver_data->verify || !driver_data->init || 1873 ((!driver_data->setpolicy) && (!driver_data->target))) 1874 return -EINVAL; 1875 1876 pr_debug("trying to register driver %s\n", driver_data->name); 1877 1878 if (driver_data->setpolicy) 1879 driver_data->flags |= CPUFREQ_CONST_LOOPS; 1880 1881 spin_lock_irqsave(&cpufreq_driver_lock, flags); 1882 if (cpufreq_driver) { 1883 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 1884 return -EBUSY; 1885 } 1886 cpufreq_driver = driver_data; 1887 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 1888 1889 ret = subsys_interface_register(&cpufreq_interface); 1890 if (ret) 1891 goto err_null_driver; 1892 1893 if (!(cpufreq_driver->flags & CPUFREQ_STICKY)) { 1894 int i; 1895 ret = -ENODEV; 1896 1897 /* check for at least one working CPU */ 1898 for (i = 0; i < nr_cpu_ids; i++) 1899 if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) { 1900 ret = 0; 1901 break; 1902 } 1903 1904 /* if all ->init() calls failed, unregister */ 1905 if (ret) { 1906 pr_debug("no CPU initialized for driver %s\n", 1907 driver_data->name); 1908 goto err_if_unreg; 1909 } 1910 } 1911 1912 register_hotcpu_notifier(&cpufreq_cpu_notifier); 1913 pr_debug("driver %s up and running\n", driver_data->name); 1914 1915 return 0; 1916 err_if_unreg: 1917 subsys_interface_unregister(&cpufreq_interface); 1918 err_null_driver: 1919 spin_lock_irqsave(&cpufreq_driver_lock, flags); 1920 cpufreq_driver = NULL; 1921 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 1922 return ret; 1923 } 1924 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 1925 1926 1927 /** 1928 * cpufreq_unregister_driver - unregister the current CPUFreq driver 1929 * 1930 * Unregister the current CPUFreq driver. Only call this if you have 1931 * the right to do so, i.e. if you have succeeded in initialising before! 1932 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 1933 * currently not initialised. 1934 */ 1935 int cpufreq_unregister_driver(struct cpufreq_driver *driver) 1936 { 1937 unsigned long flags; 1938 1939 if (!cpufreq_driver || (driver != cpufreq_driver)) 1940 return -EINVAL; 1941 1942 pr_debug("unregistering driver %s\n", driver->name); 1943 1944 subsys_interface_unregister(&cpufreq_interface); 1945 unregister_hotcpu_notifier(&cpufreq_cpu_notifier); 1946 1947 spin_lock_irqsave(&cpufreq_driver_lock, flags); 1948 cpufreq_driver = NULL; 1949 spin_unlock_irqrestore(&cpufreq_driver_lock, flags); 1950 1951 return 0; 1952 } 1953 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 1954 1955 static int __init cpufreq_core_init(void) 1956 { 1957 int cpu; 1958 1959 if (cpufreq_disabled()) 1960 return -ENODEV; 1961 1962 for_each_possible_cpu(cpu) { 1963 per_cpu(cpufreq_policy_cpu, cpu) = -1; 1964 init_rwsem(&per_cpu(cpu_policy_rwsem, cpu)); 1965 } 1966 1967 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj); 1968 BUG_ON(!cpufreq_global_kobject); 1969 register_syscore_ops(&cpufreq_syscore_ops); 1970 1971 return 0; 1972 } 1973 core_initcall(cpufreq_core_init); 1974