1 /* 2 * linux/drivers/cpufreq/cpufreq.c 3 * 4 * Copyright (C) 2001 Russell King 5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 6 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org> 7 * 8 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 9 * Added handling for CPU hotplug 10 * Feb 2006 - Jacob Shin <jacob.shin@amd.com> 11 * Fix handling for CPU hotplug -- affected CPUs 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License version 2 as 15 * published by the Free Software Foundation. 16 */ 17 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/cpu.h> 21 #include <linux/cpufreq.h> 22 #include <linux/delay.h> 23 #include <linux/device.h> 24 #include <linux/init.h> 25 #include <linux/kernel_stat.h> 26 #include <linux/module.h> 27 #include <linux/mutex.h> 28 #include <linux/slab.h> 29 #include <linux/suspend.h> 30 #include <linux/syscore_ops.h> 31 #include <linux/tick.h> 32 #include <trace/events/power.h> 33 34 static LIST_HEAD(cpufreq_policy_list); 35 36 static inline bool policy_is_inactive(struct cpufreq_policy *policy) 37 { 38 return cpumask_empty(policy->cpus); 39 } 40 41 /* Macros to iterate over CPU policies */ 42 #define for_each_suitable_policy(__policy, __active) \ 43 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \ 44 if ((__active) == !policy_is_inactive(__policy)) 45 46 #define for_each_active_policy(__policy) \ 47 for_each_suitable_policy(__policy, true) 48 #define for_each_inactive_policy(__policy) \ 49 for_each_suitable_policy(__policy, false) 50 51 #define for_each_policy(__policy) \ 52 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) 53 54 /* Iterate over governors */ 55 static LIST_HEAD(cpufreq_governor_list); 56 #define for_each_governor(__governor) \ 57 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list) 58 59 /** 60 * The "cpufreq driver" - the arch- or hardware-dependent low 61 * level driver of CPUFreq support, and its spinlock. This lock 62 * also protects the cpufreq_cpu_data array. 63 */ 64 static struct cpufreq_driver *cpufreq_driver; 65 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data); 66 static DEFINE_RWLOCK(cpufreq_driver_lock); 67 68 /* Flag to suspend/resume CPUFreq governors */ 69 static bool cpufreq_suspended; 70 71 static inline bool has_target(void) 72 { 73 return cpufreq_driver->target_index || cpufreq_driver->target; 74 } 75 76 /* internal prototypes */ 77 static int cpufreq_governor(struct cpufreq_policy *policy, unsigned int event); 78 static unsigned int __cpufreq_get(struct cpufreq_policy *policy); 79 static int cpufreq_start_governor(struct cpufreq_policy *policy); 80 81 static inline int cpufreq_exit_governor(struct cpufreq_policy *policy) 82 { 83 return cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT); 84 } 85 86 /** 87 * Two notifier lists: the "policy" list is involved in the 88 * validation process for a new CPU frequency policy; the 89 * "transition" list for kernel code that needs to handle 90 * changes to devices when the CPU clock speed changes. 91 * The mutex locks both lists. 92 */ 93 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list); 94 static struct srcu_notifier_head cpufreq_transition_notifier_list; 95 96 static bool init_cpufreq_transition_notifier_list_called; 97 static int __init init_cpufreq_transition_notifier_list(void) 98 { 99 srcu_init_notifier_head(&cpufreq_transition_notifier_list); 100 init_cpufreq_transition_notifier_list_called = true; 101 return 0; 102 } 103 pure_initcall(init_cpufreq_transition_notifier_list); 104 105 static int off __read_mostly; 106 static int cpufreq_disabled(void) 107 { 108 return off; 109 } 110 void disable_cpufreq(void) 111 { 112 off = 1; 113 } 114 static DEFINE_MUTEX(cpufreq_governor_mutex); 115 116 bool have_governor_per_policy(void) 117 { 118 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY); 119 } 120 EXPORT_SYMBOL_GPL(have_governor_per_policy); 121 122 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy) 123 { 124 if (have_governor_per_policy()) 125 return &policy->kobj; 126 else 127 return cpufreq_global_kobject; 128 } 129 EXPORT_SYMBOL_GPL(get_governor_parent_kobj); 130 131 struct cpufreq_frequency_table *cpufreq_frequency_get_table(unsigned int cpu) 132 { 133 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 134 135 return policy && !policy_is_inactive(policy) ? 136 policy->freq_table : NULL; 137 } 138 EXPORT_SYMBOL_GPL(cpufreq_frequency_get_table); 139 140 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) 141 { 142 u64 idle_time; 143 u64 cur_wall_time; 144 u64 busy_time; 145 146 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64()); 147 148 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER]; 149 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM]; 150 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ]; 151 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ]; 152 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL]; 153 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE]; 154 155 idle_time = cur_wall_time - busy_time; 156 if (wall) 157 *wall = cputime_to_usecs(cur_wall_time); 158 159 return cputime_to_usecs(idle_time); 160 } 161 162 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy) 163 { 164 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL); 165 166 if (idle_time == -1ULL) 167 return get_cpu_idle_time_jiffy(cpu, wall); 168 else if (!io_busy) 169 idle_time += get_cpu_iowait_time_us(cpu, wall); 170 171 return idle_time; 172 } 173 EXPORT_SYMBOL_GPL(get_cpu_idle_time); 174 175 /* 176 * This is a generic cpufreq init() routine which can be used by cpufreq 177 * drivers of SMP systems. It will do following: 178 * - validate & show freq table passed 179 * - set policies transition latency 180 * - policy->cpus with all possible CPUs 181 */ 182 int cpufreq_generic_init(struct cpufreq_policy *policy, 183 struct cpufreq_frequency_table *table, 184 unsigned int transition_latency) 185 { 186 int ret; 187 188 ret = cpufreq_table_validate_and_show(policy, table); 189 if (ret) { 190 pr_err("%s: invalid frequency table: %d\n", __func__, ret); 191 return ret; 192 } 193 194 policy->cpuinfo.transition_latency = transition_latency; 195 196 /* 197 * The driver only supports the SMP configuration where all processors 198 * share the clock and voltage and clock. 199 */ 200 cpumask_setall(policy->cpus); 201 202 return 0; 203 } 204 EXPORT_SYMBOL_GPL(cpufreq_generic_init); 205 206 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu) 207 { 208 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 209 210 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL; 211 } 212 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw); 213 214 unsigned int cpufreq_generic_get(unsigned int cpu) 215 { 216 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu); 217 218 if (!policy || IS_ERR(policy->clk)) { 219 pr_err("%s: No %s associated to cpu: %d\n", 220 __func__, policy ? "clk" : "policy", cpu); 221 return 0; 222 } 223 224 return clk_get_rate(policy->clk) / 1000; 225 } 226 EXPORT_SYMBOL_GPL(cpufreq_generic_get); 227 228 /** 229 * cpufreq_cpu_get: returns policy for a cpu and marks it busy. 230 * 231 * @cpu: cpu to find policy for. 232 * 233 * This returns policy for 'cpu', returns NULL if it doesn't exist. 234 * It also increments the kobject reference count to mark it busy and so would 235 * require a corresponding call to cpufreq_cpu_put() to decrement it back. 236 * If corresponding call cpufreq_cpu_put() isn't made, the policy wouldn't be 237 * freed as that depends on the kobj count. 238 * 239 * Return: A valid policy on success, otherwise NULL on failure. 240 */ 241 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) 242 { 243 struct cpufreq_policy *policy = NULL; 244 unsigned long flags; 245 246 if (WARN_ON(cpu >= nr_cpu_ids)) 247 return NULL; 248 249 /* get the cpufreq driver */ 250 read_lock_irqsave(&cpufreq_driver_lock, flags); 251 252 if (cpufreq_driver) { 253 /* get the CPU */ 254 policy = cpufreq_cpu_get_raw(cpu); 255 if (policy) 256 kobject_get(&policy->kobj); 257 } 258 259 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 260 261 return policy; 262 } 263 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 264 265 /** 266 * cpufreq_cpu_put: Decrements the usage count of a policy 267 * 268 * @policy: policy earlier returned by cpufreq_cpu_get(). 269 * 270 * This decrements the kobject reference count incremented earlier by calling 271 * cpufreq_cpu_get(). 272 */ 273 void cpufreq_cpu_put(struct cpufreq_policy *policy) 274 { 275 kobject_put(&policy->kobj); 276 } 277 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 278 279 /********************************************************************* 280 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 281 *********************************************************************/ 282 283 /** 284 * adjust_jiffies - adjust the system "loops_per_jiffy" 285 * 286 * This function alters the system "loops_per_jiffy" for the clock 287 * speed change. Note that loops_per_jiffy cannot be updated on SMP 288 * systems as each CPU might be scaled differently. So, use the arch 289 * per-CPU loops_per_jiffy value wherever possible. 290 */ 291 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 292 { 293 #ifndef CONFIG_SMP 294 static unsigned long l_p_j_ref; 295 static unsigned int l_p_j_ref_freq; 296 297 if (ci->flags & CPUFREQ_CONST_LOOPS) 298 return; 299 300 if (!l_p_j_ref_freq) { 301 l_p_j_ref = loops_per_jiffy; 302 l_p_j_ref_freq = ci->old; 303 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n", 304 l_p_j_ref, l_p_j_ref_freq); 305 } 306 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) { 307 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, 308 ci->new); 309 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n", 310 loops_per_jiffy, ci->new); 311 } 312 #endif 313 } 314 315 static void __cpufreq_notify_transition(struct cpufreq_policy *policy, 316 struct cpufreq_freqs *freqs, unsigned int state) 317 { 318 BUG_ON(irqs_disabled()); 319 320 if (cpufreq_disabled()) 321 return; 322 323 freqs->flags = cpufreq_driver->flags; 324 pr_debug("notification %u of frequency transition to %u kHz\n", 325 state, freqs->new); 326 327 switch (state) { 328 329 case CPUFREQ_PRECHANGE: 330 /* detect if the driver reported a value as "old frequency" 331 * which is not equal to what the cpufreq core thinks is 332 * "old frequency". 333 */ 334 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 335 if ((policy) && (policy->cpu == freqs->cpu) && 336 (policy->cur) && (policy->cur != freqs->old)) { 337 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n", 338 freqs->old, policy->cur); 339 freqs->old = policy->cur; 340 } 341 } 342 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 343 CPUFREQ_PRECHANGE, freqs); 344 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 345 break; 346 347 case CPUFREQ_POSTCHANGE: 348 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 349 pr_debug("FREQ: %lu - CPU: %lu\n", 350 (unsigned long)freqs->new, (unsigned long)freqs->cpu); 351 trace_cpu_frequency(freqs->new, freqs->cpu); 352 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 353 CPUFREQ_POSTCHANGE, freqs); 354 if (likely(policy) && likely(policy->cpu == freqs->cpu)) 355 policy->cur = freqs->new; 356 break; 357 } 358 } 359 360 /** 361 * cpufreq_notify_transition - call notifier chain and adjust_jiffies 362 * on frequency transition. 363 * 364 * This function calls the transition notifiers and the "adjust_jiffies" 365 * function. It is called twice on all CPU frequency changes that have 366 * external effects. 367 */ 368 static void cpufreq_notify_transition(struct cpufreq_policy *policy, 369 struct cpufreq_freqs *freqs, unsigned int state) 370 { 371 for_each_cpu(freqs->cpu, policy->cpus) 372 __cpufreq_notify_transition(policy, freqs, state); 373 } 374 375 /* Do post notifications when there are chances that transition has failed */ 376 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy, 377 struct cpufreq_freqs *freqs, int transition_failed) 378 { 379 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 380 if (!transition_failed) 381 return; 382 383 swap(freqs->old, freqs->new); 384 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 385 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 386 } 387 388 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy, 389 struct cpufreq_freqs *freqs) 390 { 391 392 /* 393 * Catch double invocations of _begin() which lead to self-deadlock. 394 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core 395 * doesn't invoke _begin() on their behalf, and hence the chances of 396 * double invocations are very low. Moreover, there are scenarios 397 * where these checks can emit false-positive warnings in these 398 * drivers; so we avoid that by skipping them altogether. 399 */ 400 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION) 401 && current == policy->transition_task); 402 403 wait: 404 wait_event(policy->transition_wait, !policy->transition_ongoing); 405 406 spin_lock(&policy->transition_lock); 407 408 if (unlikely(policy->transition_ongoing)) { 409 spin_unlock(&policy->transition_lock); 410 goto wait; 411 } 412 413 policy->transition_ongoing = true; 414 policy->transition_task = current; 415 416 spin_unlock(&policy->transition_lock); 417 418 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 419 } 420 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin); 421 422 void cpufreq_freq_transition_end(struct cpufreq_policy *policy, 423 struct cpufreq_freqs *freqs, int transition_failed) 424 { 425 if (unlikely(WARN_ON(!policy->transition_ongoing))) 426 return; 427 428 cpufreq_notify_post_transition(policy, freqs, transition_failed); 429 430 policy->transition_ongoing = false; 431 policy->transition_task = NULL; 432 433 wake_up(&policy->transition_wait); 434 } 435 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end); 436 437 /* 438 * Fast frequency switching status count. Positive means "enabled", negative 439 * means "disabled" and 0 means "not decided yet". 440 */ 441 static int cpufreq_fast_switch_count; 442 static DEFINE_MUTEX(cpufreq_fast_switch_lock); 443 444 static void cpufreq_list_transition_notifiers(void) 445 { 446 struct notifier_block *nb; 447 448 pr_info("Registered transition notifiers:\n"); 449 450 mutex_lock(&cpufreq_transition_notifier_list.mutex); 451 452 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next) 453 pr_info("%pF\n", nb->notifier_call); 454 455 mutex_unlock(&cpufreq_transition_notifier_list.mutex); 456 } 457 458 /** 459 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy. 460 * @policy: cpufreq policy to enable fast frequency switching for. 461 * 462 * Try to enable fast frequency switching for @policy. 463 * 464 * The attempt will fail if there is at least one transition notifier registered 465 * at this point, as fast frequency switching is quite fundamentally at odds 466 * with transition notifiers. Thus if successful, it will make registration of 467 * transition notifiers fail going forward. 468 */ 469 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy) 470 { 471 lockdep_assert_held(&policy->rwsem); 472 473 if (!policy->fast_switch_possible) 474 return; 475 476 mutex_lock(&cpufreq_fast_switch_lock); 477 if (cpufreq_fast_switch_count >= 0) { 478 cpufreq_fast_switch_count++; 479 policy->fast_switch_enabled = true; 480 } else { 481 pr_warn("CPU%u: Fast frequency switching not enabled\n", 482 policy->cpu); 483 cpufreq_list_transition_notifiers(); 484 } 485 mutex_unlock(&cpufreq_fast_switch_lock); 486 } 487 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch); 488 489 /** 490 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy. 491 * @policy: cpufreq policy to disable fast frequency switching for. 492 */ 493 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy) 494 { 495 mutex_lock(&cpufreq_fast_switch_lock); 496 if (policy->fast_switch_enabled) { 497 policy->fast_switch_enabled = false; 498 if (!WARN_ON(cpufreq_fast_switch_count <= 0)) 499 cpufreq_fast_switch_count--; 500 } 501 mutex_unlock(&cpufreq_fast_switch_lock); 502 } 503 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch); 504 505 /********************************************************************* 506 * SYSFS INTERFACE * 507 *********************************************************************/ 508 static ssize_t show_boost(struct kobject *kobj, 509 struct attribute *attr, char *buf) 510 { 511 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled); 512 } 513 514 static ssize_t store_boost(struct kobject *kobj, struct attribute *attr, 515 const char *buf, size_t count) 516 { 517 int ret, enable; 518 519 ret = sscanf(buf, "%d", &enable); 520 if (ret != 1 || enable < 0 || enable > 1) 521 return -EINVAL; 522 523 if (cpufreq_boost_trigger_state(enable)) { 524 pr_err("%s: Cannot %s BOOST!\n", 525 __func__, enable ? "enable" : "disable"); 526 return -EINVAL; 527 } 528 529 pr_debug("%s: cpufreq BOOST %s\n", 530 __func__, enable ? "enabled" : "disabled"); 531 532 return count; 533 } 534 define_one_global_rw(boost); 535 536 static struct cpufreq_governor *find_governor(const char *str_governor) 537 { 538 struct cpufreq_governor *t; 539 540 for_each_governor(t) 541 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN)) 542 return t; 543 544 return NULL; 545 } 546 547 /** 548 * cpufreq_parse_governor - parse a governor string 549 */ 550 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy, 551 struct cpufreq_governor **governor) 552 { 553 int err = -EINVAL; 554 555 if (cpufreq_driver->setpolicy) { 556 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) { 557 *policy = CPUFREQ_POLICY_PERFORMANCE; 558 err = 0; 559 } else if (!strncasecmp(str_governor, "powersave", 560 CPUFREQ_NAME_LEN)) { 561 *policy = CPUFREQ_POLICY_POWERSAVE; 562 err = 0; 563 } 564 } else { 565 struct cpufreq_governor *t; 566 567 mutex_lock(&cpufreq_governor_mutex); 568 569 t = find_governor(str_governor); 570 571 if (t == NULL) { 572 int ret; 573 574 mutex_unlock(&cpufreq_governor_mutex); 575 ret = request_module("cpufreq_%s", str_governor); 576 mutex_lock(&cpufreq_governor_mutex); 577 578 if (ret == 0) 579 t = find_governor(str_governor); 580 } 581 582 if (t != NULL) { 583 *governor = t; 584 err = 0; 585 } 586 587 mutex_unlock(&cpufreq_governor_mutex); 588 } 589 return err; 590 } 591 592 /** 593 * cpufreq_per_cpu_attr_read() / show_##file_name() - 594 * print out cpufreq information 595 * 596 * Write out information from cpufreq_driver->policy[cpu]; object must be 597 * "unsigned int". 598 */ 599 600 #define show_one(file_name, object) \ 601 static ssize_t show_##file_name \ 602 (struct cpufreq_policy *policy, char *buf) \ 603 { \ 604 return sprintf(buf, "%u\n", policy->object); \ 605 } 606 607 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 608 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 609 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency); 610 show_one(scaling_min_freq, min); 611 show_one(scaling_max_freq, max); 612 613 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf) 614 { 615 ssize_t ret; 616 617 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) 618 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu)); 619 else 620 ret = sprintf(buf, "%u\n", policy->cur); 621 return ret; 622 } 623 624 static int cpufreq_set_policy(struct cpufreq_policy *policy, 625 struct cpufreq_policy *new_policy); 626 627 /** 628 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 629 */ 630 #define store_one(file_name, object) \ 631 static ssize_t store_##file_name \ 632 (struct cpufreq_policy *policy, const char *buf, size_t count) \ 633 { \ 634 int ret, temp; \ 635 struct cpufreq_policy new_policy; \ 636 \ 637 memcpy(&new_policy, policy, sizeof(*policy)); \ 638 \ 639 ret = sscanf(buf, "%u", &new_policy.object); \ 640 if (ret != 1) \ 641 return -EINVAL; \ 642 \ 643 temp = new_policy.object; \ 644 ret = cpufreq_set_policy(policy, &new_policy); \ 645 if (!ret) \ 646 policy->user_policy.object = temp; \ 647 \ 648 return ret ? ret : count; \ 649 } 650 651 store_one(scaling_min_freq, min); 652 store_one(scaling_max_freq, max); 653 654 /** 655 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 656 */ 657 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy, 658 char *buf) 659 { 660 unsigned int cur_freq = __cpufreq_get(policy); 661 if (!cur_freq) 662 return sprintf(buf, "<unknown>"); 663 return sprintf(buf, "%u\n", cur_freq); 664 } 665 666 /** 667 * show_scaling_governor - show the current policy for the specified CPU 668 */ 669 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf) 670 { 671 if (policy->policy == CPUFREQ_POLICY_POWERSAVE) 672 return sprintf(buf, "powersave\n"); 673 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 674 return sprintf(buf, "performance\n"); 675 else if (policy->governor) 676 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", 677 policy->governor->name); 678 return -EINVAL; 679 } 680 681 /** 682 * store_scaling_governor - store policy for the specified CPU 683 */ 684 static ssize_t store_scaling_governor(struct cpufreq_policy *policy, 685 const char *buf, size_t count) 686 { 687 int ret; 688 char str_governor[16]; 689 struct cpufreq_policy new_policy; 690 691 memcpy(&new_policy, policy, sizeof(*policy)); 692 693 ret = sscanf(buf, "%15s", str_governor); 694 if (ret != 1) 695 return -EINVAL; 696 697 if (cpufreq_parse_governor(str_governor, &new_policy.policy, 698 &new_policy.governor)) 699 return -EINVAL; 700 701 ret = cpufreq_set_policy(policy, &new_policy); 702 return ret ? ret : count; 703 } 704 705 /** 706 * show_scaling_driver - show the cpufreq driver currently loaded 707 */ 708 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf) 709 { 710 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name); 711 } 712 713 /** 714 * show_scaling_available_governors - show the available CPUfreq governors 715 */ 716 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy, 717 char *buf) 718 { 719 ssize_t i = 0; 720 struct cpufreq_governor *t; 721 722 if (!has_target()) { 723 i += sprintf(buf, "performance powersave"); 724 goto out; 725 } 726 727 for_each_governor(t) { 728 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) 729 - (CPUFREQ_NAME_LEN + 2))) 730 goto out; 731 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name); 732 } 733 out: 734 i += sprintf(&buf[i], "\n"); 735 return i; 736 } 737 738 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf) 739 { 740 ssize_t i = 0; 741 unsigned int cpu; 742 743 for_each_cpu(cpu, mask) { 744 if (i) 745 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " "); 746 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu); 747 if (i >= (PAGE_SIZE - 5)) 748 break; 749 } 750 i += sprintf(&buf[i], "\n"); 751 return i; 752 } 753 EXPORT_SYMBOL_GPL(cpufreq_show_cpus); 754 755 /** 756 * show_related_cpus - show the CPUs affected by each transition even if 757 * hw coordination is in use 758 */ 759 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf) 760 { 761 return cpufreq_show_cpus(policy->related_cpus, buf); 762 } 763 764 /** 765 * show_affected_cpus - show the CPUs affected by each transition 766 */ 767 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf) 768 { 769 return cpufreq_show_cpus(policy->cpus, buf); 770 } 771 772 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy, 773 const char *buf, size_t count) 774 { 775 unsigned int freq = 0; 776 unsigned int ret; 777 778 if (!policy->governor || !policy->governor->store_setspeed) 779 return -EINVAL; 780 781 ret = sscanf(buf, "%u", &freq); 782 if (ret != 1) 783 return -EINVAL; 784 785 policy->governor->store_setspeed(policy, freq); 786 787 return count; 788 } 789 790 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf) 791 { 792 if (!policy->governor || !policy->governor->show_setspeed) 793 return sprintf(buf, "<unsupported>\n"); 794 795 return policy->governor->show_setspeed(policy, buf); 796 } 797 798 /** 799 * show_bios_limit - show the current cpufreq HW/BIOS limitation 800 */ 801 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf) 802 { 803 unsigned int limit; 804 int ret; 805 if (cpufreq_driver->bios_limit) { 806 ret = cpufreq_driver->bios_limit(policy->cpu, &limit); 807 if (!ret) 808 return sprintf(buf, "%u\n", limit); 809 } 810 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq); 811 } 812 813 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400); 814 cpufreq_freq_attr_ro(cpuinfo_min_freq); 815 cpufreq_freq_attr_ro(cpuinfo_max_freq); 816 cpufreq_freq_attr_ro(cpuinfo_transition_latency); 817 cpufreq_freq_attr_ro(scaling_available_governors); 818 cpufreq_freq_attr_ro(scaling_driver); 819 cpufreq_freq_attr_ro(scaling_cur_freq); 820 cpufreq_freq_attr_ro(bios_limit); 821 cpufreq_freq_attr_ro(related_cpus); 822 cpufreq_freq_attr_ro(affected_cpus); 823 cpufreq_freq_attr_rw(scaling_min_freq); 824 cpufreq_freq_attr_rw(scaling_max_freq); 825 cpufreq_freq_attr_rw(scaling_governor); 826 cpufreq_freq_attr_rw(scaling_setspeed); 827 828 static struct attribute *default_attrs[] = { 829 &cpuinfo_min_freq.attr, 830 &cpuinfo_max_freq.attr, 831 &cpuinfo_transition_latency.attr, 832 &scaling_min_freq.attr, 833 &scaling_max_freq.attr, 834 &affected_cpus.attr, 835 &related_cpus.attr, 836 &scaling_governor.attr, 837 &scaling_driver.attr, 838 &scaling_available_governors.attr, 839 &scaling_setspeed.attr, 840 NULL 841 }; 842 843 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj) 844 #define to_attr(a) container_of(a, struct freq_attr, attr) 845 846 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) 847 { 848 struct cpufreq_policy *policy = to_policy(kobj); 849 struct freq_attr *fattr = to_attr(attr); 850 ssize_t ret; 851 852 down_read(&policy->rwsem); 853 ret = fattr->show(policy, buf); 854 up_read(&policy->rwsem); 855 856 return ret; 857 } 858 859 static ssize_t store(struct kobject *kobj, struct attribute *attr, 860 const char *buf, size_t count) 861 { 862 struct cpufreq_policy *policy = to_policy(kobj); 863 struct freq_attr *fattr = to_attr(attr); 864 ssize_t ret = -EINVAL; 865 866 get_online_cpus(); 867 868 if (cpu_online(policy->cpu)) { 869 down_write(&policy->rwsem); 870 ret = fattr->store(policy, buf, count); 871 up_write(&policy->rwsem); 872 } 873 874 put_online_cpus(); 875 876 return ret; 877 } 878 879 static void cpufreq_sysfs_release(struct kobject *kobj) 880 { 881 struct cpufreq_policy *policy = to_policy(kobj); 882 pr_debug("last reference is dropped\n"); 883 complete(&policy->kobj_unregister); 884 } 885 886 static const struct sysfs_ops sysfs_ops = { 887 .show = show, 888 .store = store, 889 }; 890 891 static struct kobj_type ktype_cpufreq = { 892 .sysfs_ops = &sysfs_ops, 893 .default_attrs = default_attrs, 894 .release = cpufreq_sysfs_release, 895 }; 896 897 static int add_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu) 898 { 899 struct device *cpu_dev; 900 901 pr_debug("%s: Adding symlink for CPU: %u\n", __func__, cpu); 902 903 if (!policy) 904 return 0; 905 906 cpu_dev = get_cpu_device(cpu); 907 if (WARN_ON(!cpu_dev)) 908 return 0; 909 910 return sysfs_create_link(&cpu_dev->kobj, &policy->kobj, "cpufreq"); 911 } 912 913 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu) 914 { 915 struct device *cpu_dev; 916 917 pr_debug("%s: Removing symlink for CPU: %u\n", __func__, cpu); 918 919 cpu_dev = get_cpu_device(cpu); 920 if (WARN_ON(!cpu_dev)) 921 return; 922 923 sysfs_remove_link(&cpu_dev->kobj, "cpufreq"); 924 } 925 926 /* Add/remove symlinks for all related CPUs */ 927 static int cpufreq_add_dev_symlink(struct cpufreq_policy *policy) 928 { 929 unsigned int j; 930 int ret = 0; 931 932 /* Some related CPUs might not be present (physically hotplugged) */ 933 for_each_cpu(j, policy->real_cpus) { 934 ret = add_cpu_dev_symlink(policy, j); 935 if (ret) 936 break; 937 } 938 939 return ret; 940 } 941 942 static void cpufreq_remove_dev_symlink(struct cpufreq_policy *policy) 943 { 944 unsigned int j; 945 946 /* Some related CPUs might not be present (physically hotplugged) */ 947 for_each_cpu(j, policy->real_cpus) 948 remove_cpu_dev_symlink(policy, j); 949 } 950 951 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy) 952 { 953 struct freq_attr **drv_attr; 954 int ret = 0; 955 956 /* set up files for this cpu device */ 957 drv_attr = cpufreq_driver->attr; 958 while (drv_attr && *drv_attr) { 959 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 960 if (ret) 961 return ret; 962 drv_attr++; 963 } 964 if (cpufreq_driver->get) { 965 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 966 if (ret) 967 return ret; 968 } 969 970 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 971 if (ret) 972 return ret; 973 974 if (cpufreq_driver->bios_limit) { 975 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr); 976 if (ret) 977 return ret; 978 } 979 980 return cpufreq_add_dev_symlink(policy); 981 } 982 983 __weak struct cpufreq_governor *cpufreq_default_governor(void) 984 { 985 return NULL; 986 } 987 988 static int cpufreq_init_policy(struct cpufreq_policy *policy) 989 { 990 struct cpufreq_governor *gov = NULL; 991 struct cpufreq_policy new_policy; 992 993 memcpy(&new_policy, policy, sizeof(*policy)); 994 995 /* Update governor of new_policy to the governor used before hotplug */ 996 gov = find_governor(policy->last_governor); 997 if (gov) { 998 pr_debug("Restoring governor %s for cpu %d\n", 999 policy->governor->name, policy->cpu); 1000 } else { 1001 gov = cpufreq_default_governor(); 1002 if (!gov) 1003 return -ENODATA; 1004 } 1005 1006 new_policy.governor = gov; 1007 1008 /* Use the default policy if there is no last_policy. */ 1009 if (cpufreq_driver->setpolicy) { 1010 if (policy->last_policy) 1011 new_policy.policy = policy->last_policy; 1012 else 1013 cpufreq_parse_governor(gov->name, &new_policy.policy, 1014 NULL); 1015 } 1016 /* set default policy */ 1017 return cpufreq_set_policy(policy, &new_policy); 1018 } 1019 1020 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu) 1021 { 1022 int ret = 0; 1023 1024 /* Has this CPU been taken care of already? */ 1025 if (cpumask_test_cpu(cpu, policy->cpus)) 1026 return 0; 1027 1028 down_write(&policy->rwsem); 1029 if (has_target()) { 1030 ret = cpufreq_governor(policy, CPUFREQ_GOV_STOP); 1031 if (ret) { 1032 pr_err("%s: Failed to stop governor\n", __func__); 1033 goto unlock; 1034 } 1035 } 1036 1037 cpumask_set_cpu(cpu, policy->cpus); 1038 1039 if (has_target()) { 1040 ret = cpufreq_start_governor(policy); 1041 if (ret) 1042 pr_err("%s: Failed to start governor\n", __func__); 1043 } 1044 1045 unlock: 1046 up_write(&policy->rwsem); 1047 return ret; 1048 } 1049 1050 static void handle_update(struct work_struct *work) 1051 { 1052 struct cpufreq_policy *policy = 1053 container_of(work, struct cpufreq_policy, update); 1054 unsigned int cpu = policy->cpu; 1055 pr_debug("handle_update for cpu %u called\n", cpu); 1056 cpufreq_update_policy(cpu); 1057 } 1058 1059 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu) 1060 { 1061 struct device *dev = get_cpu_device(cpu); 1062 struct cpufreq_policy *policy; 1063 int ret; 1064 1065 if (WARN_ON(!dev)) 1066 return NULL; 1067 1068 policy = kzalloc(sizeof(*policy), GFP_KERNEL); 1069 if (!policy) 1070 return NULL; 1071 1072 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) 1073 goto err_free_policy; 1074 1075 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) 1076 goto err_free_cpumask; 1077 1078 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL)) 1079 goto err_free_rcpumask; 1080 1081 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, 1082 cpufreq_global_kobject, "policy%u", cpu); 1083 if (ret) { 1084 pr_err("%s: failed to init policy->kobj: %d\n", __func__, ret); 1085 goto err_free_real_cpus; 1086 } 1087 1088 INIT_LIST_HEAD(&policy->policy_list); 1089 init_rwsem(&policy->rwsem); 1090 spin_lock_init(&policy->transition_lock); 1091 init_waitqueue_head(&policy->transition_wait); 1092 init_completion(&policy->kobj_unregister); 1093 INIT_WORK(&policy->update, handle_update); 1094 1095 policy->cpu = cpu; 1096 return policy; 1097 1098 err_free_real_cpus: 1099 free_cpumask_var(policy->real_cpus); 1100 err_free_rcpumask: 1101 free_cpumask_var(policy->related_cpus); 1102 err_free_cpumask: 1103 free_cpumask_var(policy->cpus); 1104 err_free_policy: 1105 kfree(policy); 1106 1107 return NULL; 1108 } 1109 1110 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy, bool notify) 1111 { 1112 struct kobject *kobj; 1113 struct completion *cmp; 1114 1115 if (notify) 1116 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1117 CPUFREQ_REMOVE_POLICY, policy); 1118 1119 down_write(&policy->rwsem); 1120 cpufreq_remove_dev_symlink(policy); 1121 kobj = &policy->kobj; 1122 cmp = &policy->kobj_unregister; 1123 up_write(&policy->rwsem); 1124 kobject_put(kobj); 1125 1126 /* 1127 * We need to make sure that the underlying kobj is 1128 * actually not referenced anymore by anybody before we 1129 * proceed with unloading. 1130 */ 1131 pr_debug("waiting for dropping of refcount\n"); 1132 wait_for_completion(cmp); 1133 pr_debug("wait complete\n"); 1134 } 1135 1136 static void cpufreq_policy_free(struct cpufreq_policy *policy, bool notify) 1137 { 1138 unsigned long flags; 1139 int cpu; 1140 1141 /* Remove policy from list */ 1142 write_lock_irqsave(&cpufreq_driver_lock, flags); 1143 list_del(&policy->policy_list); 1144 1145 for_each_cpu(cpu, policy->related_cpus) 1146 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1147 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1148 1149 cpufreq_policy_put_kobj(policy, notify); 1150 free_cpumask_var(policy->real_cpus); 1151 free_cpumask_var(policy->related_cpus); 1152 free_cpumask_var(policy->cpus); 1153 kfree(policy); 1154 } 1155 1156 static int cpufreq_online(unsigned int cpu) 1157 { 1158 struct cpufreq_policy *policy; 1159 bool new_policy; 1160 unsigned long flags; 1161 unsigned int j; 1162 int ret; 1163 1164 pr_debug("%s: bringing CPU%u online\n", __func__, cpu); 1165 1166 /* Check if this CPU already has a policy to manage it */ 1167 policy = per_cpu(cpufreq_cpu_data, cpu); 1168 if (policy) { 1169 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus)); 1170 if (!policy_is_inactive(policy)) 1171 return cpufreq_add_policy_cpu(policy, cpu); 1172 1173 /* This is the only online CPU for the policy. Start over. */ 1174 new_policy = false; 1175 down_write(&policy->rwsem); 1176 policy->cpu = cpu; 1177 policy->governor = NULL; 1178 up_write(&policy->rwsem); 1179 } else { 1180 new_policy = true; 1181 policy = cpufreq_policy_alloc(cpu); 1182 if (!policy) 1183 return -ENOMEM; 1184 } 1185 1186 cpumask_copy(policy->cpus, cpumask_of(cpu)); 1187 1188 /* call driver. From then on the cpufreq must be able 1189 * to accept all calls to ->verify and ->setpolicy for this CPU 1190 */ 1191 ret = cpufreq_driver->init(policy); 1192 if (ret) { 1193 pr_debug("initialization failed\n"); 1194 goto out_free_policy; 1195 } 1196 1197 down_write(&policy->rwsem); 1198 1199 if (new_policy) { 1200 /* related_cpus should at least include policy->cpus. */ 1201 cpumask_copy(policy->related_cpus, policy->cpus); 1202 /* Remember CPUs present at the policy creation time. */ 1203 cpumask_and(policy->real_cpus, policy->cpus, cpu_present_mask); 1204 } 1205 1206 /* 1207 * affected cpus must always be the one, which are online. We aren't 1208 * managing offline cpus here. 1209 */ 1210 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask); 1211 1212 if (new_policy) { 1213 policy->user_policy.min = policy->min; 1214 policy->user_policy.max = policy->max; 1215 1216 write_lock_irqsave(&cpufreq_driver_lock, flags); 1217 for_each_cpu(j, policy->related_cpus) 1218 per_cpu(cpufreq_cpu_data, j) = policy; 1219 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1220 } 1221 1222 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) { 1223 policy->cur = cpufreq_driver->get(policy->cpu); 1224 if (!policy->cur) { 1225 pr_err("%s: ->get() failed\n", __func__); 1226 goto out_exit_policy; 1227 } 1228 } 1229 1230 /* 1231 * Sometimes boot loaders set CPU frequency to a value outside of 1232 * frequency table present with cpufreq core. In such cases CPU might be 1233 * unstable if it has to run on that frequency for long duration of time 1234 * and so its better to set it to a frequency which is specified in 1235 * freq-table. This also makes cpufreq stats inconsistent as 1236 * cpufreq-stats would fail to register because current frequency of CPU 1237 * isn't found in freq-table. 1238 * 1239 * Because we don't want this change to effect boot process badly, we go 1240 * for the next freq which is >= policy->cur ('cur' must be set by now, 1241 * otherwise we will end up setting freq to lowest of the table as 'cur' 1242 * is initialized to zero). 1243 * 1244 * We are passing target-freq as "policy->cur - 1" otherwise 1245 * __cpufreq_driver_target() would simply fail, as policy->cur will be 1246 * equal to target-freq. 1247 */ 1248 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK) 1249 && has_target()) { 1250 /* Are we running at unknown frequency ? */ 1251 ret = cpufreq_frequency_table_get_index(policy, policy->cur); 1252 if (ret == -EINVAL) { 1253 /* Warn user and fix it */ 1254 pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n", 1255 __func__, policy->cpu, policy->cur); 1256 ret = __cpufreq_driver_target(policy, policy->cur - 1, 1257 CPUFREQ_RELATION_L); 1258 1259 /* 1260 * Reaching here after boot in a few seconds may not 1261 * mean that system will remain stable at "unknown" 1262 * frequency for longer duration. Hence, a BUG_ON(). 1263 */ 1264 BUG_ON(ret); 1265 pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n", 1266 __func__, policy->cpu, policy->cur); 1267 } 1268 } 1269 1270 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1271 CPUFREQ_START, policy); 1272 1273 if (new_policy) { 1274 ret = cpufreq_add_dev_interface(policy); 1275 if (ret) 1276 goto out_exit_policy; 1277 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1278 CPUFREQ_CREATE_POLICY, policy); 1279 1280 write_lock_irqsave(&cpufreq_driver_lock, flags); 1281 list_add(&policy->policy_list, &cpufreq_policy_list); 1282 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1283 } 1284 1285 ret = cpufreq_init_policy(policy); 1286 if (ret) { 1287 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n", 1288 __func__, cpu, ret); 1289 /* cpufreq_policy_free() will notify based on this */ 1290 new_policy = false; 1291 goto out_exit_policy; 1292 } 1293 1294 up_write(&policy->rwsem); 1295 1296 kobject_uevent(&policy->kobj, KOBJ_ADD); 1297 1298 /* Callback for handling stuff after policy is ready */ 1299 if (cpufreq_driver->ready) 1300 cpufreq_driver->ready(policy); 1301 1302 pr_debug("initialization complete\n"); 1303 1304 return 0; 1305 1306 out_exit_policy: 1307 up_write(&policy->rwsem); 1308 1309 if (cpufreq_driver->exit) 1310 cpufreq_driver->exit(policy); 1311 out_free_policy: 1312 cpufreq_policy_free(policy, !new_policy); 1313 return ret; 1314 } 1315 1316 /** 1317 * cpufreq_add_dev - the cpufreq interface for a CPU device. 1318 * @dev: CPU device. 1319 * @sif: Subsystem interface structure pointer (not used) 1320 */ 1321 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 1322 { 1323 struct cpufreq_policy *policy; 1324 unsigned cpu = dev->id; 1325 1326 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu); 1327 1328 if (cpu_online(cpu)) 1329 return cpufreq_online(cpu); 1330 1331 /* 1332 * A hotplug notifier will follow and we will handle it as CPU online 1333 * then. For now, just create the sysfs link, unless there is no policy 1334 * or the link is already present. 1335 */ 1336 policy = per_cpu(cpufreq_cpu_data, cpu); 1337 if (!policy || cpumask_test_and_set_cpu(cpu, policy->real_cpus)) 1338 return 0; 1339 1340 return add_cpu_dev_symlink(policy, cpu); 1341 } 1342 1343 static void cpufreq_offline(unsigned int cpu) 1344 { 1345 struct cpufreq_policy *policy; 1346 int ret; 1347 1348 pr_debug("%s: unregistering CPU %u\n", __func__, cpu); 1349 1350 policy = cpufreq_cpu_get_raw(cpu); 1351 if (!policy) { 1352 pr_debug("%s: No cpu_data found\n", __func__); 1353 return; 1354 } 1355 1356 down_write(&policy->rwsem); 1357 if (has_target()) { 1358 ret = cpufreq_governor(policy, CPUFREQ_GOV_STOP); 1359 if (ret) 1360 pr_err("%s: Failed to stop governor\n", __func__); 1361 } 1362 1363 cpumask_clear_cpu(cpu, policy->cpus); 1364 1365 if (policy_is_inactive(policy)) { 1366 if (has_target()) 1367 strncpy(policy->last_governor, policy->governor->name, 1368 CPUFREQ_NAME_LEN); 1369 else 1370 policy->last_policy = policy->policy; 1371 } else if (cpu == policy->cpu) { 1372 /* Nominate new CPU */ 1373 policy->cpu = cpumask_any(policy->cpus); 1374 } 1375 1376 /* Start governor again for active policy */ 1377 if (!policy_is_inactive(policy)) { 1378 if (has_target()) { 1379 ret = cpufreq_start_governor(policy); 1380 if (ret) 1381 pr_err("%s: Failed to start governor\n", __func__); 1382 } 1383 1384 goto unlock; 1385 } 1386 1387 if (cpufreq_driver->stop_cpu) 1388 cpufreq_driver->stop_cpu(policy); 1389 1390 /* If cpu is last user of policy, free policy */ 1391 if (has_target()) { 1392 ret = cpufreq_exit_governor(policy); 1393 if (ret) 1394 pr_err("%s: Failed to exit governor\n", __func__); 1395 } 1396 1397 /* 1398 * Perform the ->exit() even during light-weight tear-down, 1399 * since this is a core component, and is essential for the 1400 * subsequent light-weight ->init() to succeed. 1401 */ 1402 if (cpufreq_driver->exit) { 1403 cpufreq_driver->exit(policy); 1404 policy->freq_table = NULL; 1405 } 1406 1407 unlock: 1408 up_write(&policy->rwsem); 1409 } 1410 1411 /** 1412 * cpufreq_remove_dev - remove a CPU device 1413 * 1414 * Removes the cpufreq interface for a CPU device. 1415 */ 1416 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif) 1417 { 1418 unsigned int cpu = dev->id; 1419 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1420 1421 if (!policy) 1422 return; 1423 1424 if (cpu_online(cpu)) 1425 cpufreq_offline(cpu); 1426 1427 cpumask_clear_cpu(cpu, policy->real_cpus); 1428 remove_cpu_dev_symlink(policy, cpu); 1429 1430 if (cpumask_empty(policy->real_cpus)) 1431 cpufreq_policy_free(policy, true); 1432 } 1433 1434 /** 1435 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're 1436 * in deep trouble. 1437 * @policy: policy managing CPUs 1438 * @new_freq: CPU frequency the CPU actually runs at 1439 * 1440 * We adjust to current frequency first, and need to clean up later. 1441 * So either call to cpufreq_update_policy() or schedule handle_update()). 1442 */ 1443 static void cpufreq_out_of_sync(struct cpufreq_policy *policy, 1444 unsigned int new_freq) 1445 { 1446 struct cpufreq_freqs freqs; 1447 1448 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n", 1449 policy->cur, new_freq); 1450 1451 freqs.old = policy->cur; 1452 freqs.new = new_freq; 1453 1454 cpufreq_freq_transition_begin(policy, &freqs); 1455 cpufreq_freq_transition_end(policy, &freqs, 0); 1456 } 1457 1458 /** 1459 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur 1460 * @cpu: CPU number 1461 * 1462 * This is the last known freq, without actually getting it from the driver. 1463 * Return value will be same as what is shown in scaling_cur_freq in sysfs. 1464 */ 1465 unsigned int cpufreq_quick_get(unsigned int cpu) 1466 { 1467 struct cpufreq_policy *policy; 1468 unsigned int ret_freq = 0; 1469 unsigned long flags; 1470 1471 read_lock_irqsave(&cpufreq_driver_lock, flags); 1472 1473 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) { 1474 ret_freq = cpufreq_driver->get(cpu); 1475 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1476 return ret_freq; 1477 } 1478 1479 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1480 1481 policy = cpufreq_cpu_get(cpu); 1482 if (policy) { 1483 ret_freq = policy->cur; 1484 cpufreq_cpu_put(policy); 1485 } 1486 1487 return ret_freq; 1488 } 1489 EXPORT_SYMBOL(cpufreq_quick_get); 1490 1491 /** 1492 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU 1493 * @cpu: CPU number 1494 * 1495 * Just return the max possible frequency for a given CPU. 1496 */ 1497 unsigned int cpufreq_quick_get_max(unsigned int cpu) 1498 { 1499 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1500 unsigned int ret_freq = 0; 1501 1502 if (policy) { 1503 ret_freq = policy->max; 1504 cpufreq_cpu_put(policy); 1505 } 1506 1507 return ret_freq; 1508 } 1509 EXPORT_SYMBOL(cpufreq_quick_get_max); 1510 1511 static unsigned int __cpufreq_get(struct cpufreq_policy *policy) 1512 { 1513 unsigned int ret_freq = 0; 1514 1515 if (!cpufreq_driver->get) 1516 return ret_freq; 1517 1518 ret_freq = cpufreq_driver->get(policy->cpu); 1519 1520 /* 1521 * Updating inactive policies is invalid, so avoid doing that. Also 1522 * if fast frequency switching is used with the given policy, the check 1523 * against policy->cur is pointless, so skip it in that case too. 1524 */ 1525 if (unlikely(policy_is_inactive(policy)) || policy->fast_switch_enabled) 1526 return ret_freq; 1527 1528 if (ret_freq && policy->cur && 1529 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 1530 /* verify no discrepancy between actual and 1531 saved value exists */ 1532 if (unlikely(ret_freq != policy->cur)) { 1533 cpufreq_out_of_sync(policy, ret_freq); 1534 schedule_work(&policy->update); 1535 } 1536 } 1537 1538 return ret_freq; 1539 } 1540 1541 /** 1542 * cpufreq_get - get the current CPU frequency (in kHz) 1543 * @cpu: CPU number 1544 * 1545 * Get the CPU current (static) CPU frequency 1546 */ 1547 unsigned int cpufreq_get(unsigned int cpu) 1548 { 1549 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1550 unsigned int ret_freq = 0; 1551 1552 if (policy) { 1553 down_read(&policy->rwsem); 1554 ret_freq = __cpufreq_get(policy); 1555 up_read(&policy->rwsem); 1556 1557 cpufreq_cpu_put(policy); 1558 } 1559 1560 return ret_freq; 1561 } 1562 EXPORT_SYMBOL(cpufreq_get); 1563 1564 static unsigned int cpufreq_update_current_freq(struct cpufreq_policy *policy) 1565 { 1566 unsigned int new_freq; 1567 1568 if (cpufreq_suspended) 1569 return 0; 1570 1571 new_freq = cpufreq_driver->get(policy->cpu); 1572 if (!new_freq) 1573 return 0; 1574 1575 if (!policy->cur) { 1576 pr_debug("cpufreq: Driver did not initialize current freq\n"); 1577 policy->cur = new_freq; 1578 } else if (policy->cur != new_freq && has_target()) { 1579 cpufreq_out_of_sync(policy, new_freq); 1580 } 1581 1582 return new_freq; 1583 } 1584 1585 static struct subsys_interface cpufreq_interface = { 1586 .name = "cpufreq", 1587 .subsys = &cpu_subsys, 1588 .add_dev = cpufreq_add_dev, 1589 .remove_dev = cpufreq_remove_dev, 1590 }; 1591 1592 /* 1593 * In case platform wants some specific frequency to be configured 1594 * during suspend.. 1595 */ 1596 int cpufreq_generic_suspend(struct cpufreq_policy *policy) 1597 { 1598 int ret; 1599 1600 if (!policy->suspend_freq) { 1601 pr_debug("%s: suspend_freq not defined\n", __func__); 1602 return 0; 1603 } 1604 1605 pr_debug("%s: Setting suspend-freq: %u\n", __func__, 1606 policy->suspend_freq); 1607 1608 ret = __cpufreq_driver_target(policy, policy->suspend_freq, 1609 CPUFREQ_RELATION_H); 1610 if (ret) 1611 pr_err("%s: unable to set suspend-freq: %u. err: %d\n", 1612 __func__, policy->suspend_freq, ret); 1613 1614 return ret; 1615 } 1616 EXPORT_SYMBOL(cpufreq_generic_suspend); 1617 1618 /** 1619 * cpufreq_suspend() - Suspend CPUFreq governors 1620 * 1621 * Called during system wide Suspend/Hibernate cycles for suspending governors 1622 * as some platforms can't change frequency after this point in suspend cycle. 1623 * Because some of the devices (like: i2c, regulators, etc) they use for 1624 * changing frequency are suspended quickly after this point. 1625 */ 1626 void cpufreq_suspend(void) 1627 { 1628 struct cpufreq_policy *policy; 1629 int ret; 1630 1631 if (!cpufreq_driver) 1632 return; 1633 1634 if (!has_target() && !cpufreq_driver->suspend) 1635 goto suspend; 1636 1637 pr_debug("%s: Suspending Governors\n", __func__); 1638 1639 for_each_active_policy(policy) { 1640 if (has_target()) { 1641 down_write(&policy->rwsem); 1642 ret = cpufreq_governor(policy, CPUFREQ_GOV_STOP); 1643 up_write(&policy->rwsem); 1644 1645 if (ret) { 1646 pr_err("%s: Failed to stop governor for policy: %p\n", 1647 __func__, policy); 1648 continue; 1649 } 1650 } 1651 1652 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy)) 1653 pr_err("%s: Failed to suspend driver: %p\n", __func__, 1654 policy); 1655 } 1656 1657 suspend: 1658 cpufreq_suspended = true; 1659 } 1660 1661 /** 1662 * cpufreq_resume() - Resume CPUFreq governors 1663 * 1664 * Called during system wide Suspend/Hibernate cycle for resuming governors that 1665 * are suspended with cpufreq_suspend(). 1666 */ 1667 void cpufreq_resume(void) 1668 { 1669 struct cpufreq_policy *policy; 1670 int ret; 1671 1672 if (!cpufreq_driver) 1673 return; 1674 1675 cpufreq_suspended = false; 1676 1677 if (!has_target() && !cpufreq_driver->resume) 1678 return; 1679 1680 pr_debug("%s: Resuming Governors\n", __func__); 1681 1682 for_each_active_policy(policy) { 1683 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) { 1684 pr_err("%s: Failed to resume driver: %p\n", __func__, 1685 policy); 1686 } else if (has_target()) { 1687 down_write(&policy->rwsem); 1688 ret = cpufreq_start_governor(policy); 1689 up_write(&policy->rwsem); 1690 1691 if (ret) 1692 pr_err("%s: Failed to start governor for policy: %p\n", 1693 __func__, policy); 1694 } 1695 } 1696 } 1697 1698 /** 1699 * cpufreq_get_current_driver - return current driver's name 1700 * 1701 * Return the name string of the currently loaded cpufreq driver 1702 * or NULL, if none. 1703 */ 1704 const char *cpufreq_get_current_driver(void) 1705 { 1706 if (cpufreq_driver) 1707 return cpufreq_driver->name; 1708 1709 return NULL; 1710 } 1711 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver); 1712 1713 /** 1714 * cpufreq_get_driver_data - return current driver data 1715 * 1716 * Return the private data of the currently loaded cpufreq 1717 * driver, or NULL if no cpufreq driver is loaded. 1718 */ 1719 void *cpufreq_get_driver_data(void) 1720 { 1721 if (cpufreq_driver) 1722 return cpufreq_driver->driver_data; 1723 1724 return NULL; 1725 } 1726 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data); 1727 1728 /********************************************************************* 1729 * NOTIFIER LISTS INTERFACE * 1730 *********************************************************************/ 1731 1732 /** 1733 * cpufreq_register_notifier - register a driver with cpufreq 1734 * @nb: notifier function to register 1735 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1736 * 1737 * Add a driver to one of two lists: either a list of drivers that 1738 * are notified about clock rate changes (once before and once after 1739 * the transition), or a list of drivers that are notified about 1740 * changes in cpufreq policy. 1741 * 1742 * This function may sleep, and has the same return conditions as 1743 * blocking_notifier_chain_register. 1744 */ 1745 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 1746 { 1747 int ret; 1748 1749 if (cpufreq_disabled()) 1750 return -EINVAL; 1751 1752 WARN_ON(!init_cpufreq_transition_notifier_list_called); 1753 1754 switch (list) { 1755 case CPUFREQ_TRANSITION_NOTIFIER: 1756 mutex_lock(&cpufreq_fast_switch_lock); 1757 1758 if (cpufreq_fast_switch_count > 0) { 1759 mutex_unlock(&cpufreq_fast_switch_lock); 1760 return -EBUSY; 1761 } 1762 ret = srcu_notifier_chain_register( 1763 &cpufreq_transition_notifier_list, nb); 1764 if (!ret) 1765 cpufreq_fast_switch_count--; 1766 1767 mutex_unlock(&cpufreq_fast_switch_lock); 1768 break; 1769 case CPUFREQ_POLICY_NOTIFIER: 1770 ret = blocking_notifier_chain_register( 1771 &cpufreq_policy_notifier_list, nb); 1772 break; 1773 default: 1774 ret = -EINVAL; 1775 } 1776 1777 return ret; 1778 } 1779 EXPORT_SYMBOL(cpufreq_register_notifier); 1780 1781 /** 1782 * cpufreq_unregister_notifier - unregister a driver with cpufreq 1783 * @nb: notifier block to be unregistered 1784 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1785 * 1786 * Remove a driver from the CPU frequency notifier list. 1787 * 1788 * This function may sleep, and has the same return conditions as 1789 * blocking_notifier_chain_unregister. 1790 */ 1791 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 1792 { 1793 int ret; 1794 1795 if (cpufreq_disabled()) 1796 return -EINVAL; 1797 1798 switch (list) { 1799 case CPUFREQ_TRANSITION_NOTIFIER: 1800 mutex_lock(&cpufreq_fast_switch_lock); 1801 1802 ret = srcu_notifier_chain_unregister( 1803 &cpufreq_transition_notifier_list, nb); 1804 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0)) 1805 cpufreq_fast_switch_count++; 1806 1807 mutex_unlock(&cpufreq_fast_switch_lock); 1808 break; 1809 case CPUFREQ_POLICY_NOTIFIER: 1810 ret = blocking_notifier_chain_unregister( 1811 &cpufreq_policy_notifier_list, nb); 1812 break; 1813 default: 1814 ret = -EINVAL; 1815 } 1816 1817 return ret; 1818 } 1819 EXPORT_SYMBOL(cpufreq_unregister_notifier); 1820 1821 1822 /********************************************************************* 1823 * GOVERNORS * 1824 *********************************************************************/ 1825 1826 /** 1827 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch. 1828 * @policy: cpufreq policy to switch the frequency for. 1829 * @target_freq: New frequency to set (may be approximate). 1830 * 1831 * Carry out a fast frequency switch without sleeping. 1832 * 1833 * The driver's ->fast_switch() callback invoked by this function must be 1834 * suitable for being called from within RCU-sched read-side critical sections 1835 * and it is expected to select the minimum available frequency greater than or 1836 * equal to @target_freq (CPUFREQ_RELATION_L). 1837 * 1838 * This function must not be called if policy->fast_switch_enabled is unset. 1839 * 1840 * Governors calling this function must guarantee that it will never be invoked 1841 * twice in parallel for the same policy and that it will never be called in 1842 * parallel with either ->target() or ->target_index() for the same policy. 1843 * 1844 * If CPUFREQ_ENTRY_INVALID is returned by the driver's ->fast_switch() 1845 * callback to indicate an error condition, the hardware configuration must be 1846 * preserved. 1847 */ 1848 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy, 1849 unsigned int target_freq) 1850 { 1851 clamp_val(target_freq, policy->min, policy->max); 1852 1853 return cpufreq_driver->fast_switch(policy, target_freq); 1854 } 1855 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch); 1856 1857 /* Must set freqs->new to intermediate frequency */ 1858 static int __target_intermediate(struct cpufreq_policy *policy, 1859 struct cpufreq_freqs *freqs, int index) 1860 { 1861 int ret; 1862 1863 freqs->new = cpufreq_driver->get_intermediate(policy, index); 1864 1865 /* We don't need to switch to intermediate freq */ 1866 if (!freqs->new) 1867 return 0; 1868 1869 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n", 1870 __func__, policy->cpu, freqs->old, freqs->new); 1871 1872 cpufreq_freq_transition_begin(policy, freqs); 1873 ret = cpufreq_driver->target_intermediate(policy, index); 1874 cpufreq_freq_transition_end(policy, freqs, ret); 1875 1876 if (ret) 1877 pr_err("%s: Failed to change to intermediate frequency: %d\n", 1878 __func__, ret); 1879 1880 return ret; 1881 } 1882 1883 static int __target_index(struct cpufreq_policy *policy, 1884 struct cpufreq_frequency_table *freq_table, int index) 1885 { 1886 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0}; 1887 unsigned int intermediate_freq = 0; 1888 int retval = -EINVAL; 1889 bool notify; 1890 1891 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION); 1892 if (notify) { 1893 /* Handle switching to intermediate frequency */ 1894 if (cpufreq_driver->get_intermediate) { 1895 retval = __target_intermediate(policy, &freqs, index); 1896 if (retval) 1897 return retval; 1898 1899 intermediate_freq = freqs.new; 1900 /* Set old freq to intermediate */ 1901 if (intermediate_freq) 1902 freqs.old = freqs.new; 1903 } 1904 1905 freqs.new = freq_table[index].frequency; 1906 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n", 1907 __func__, policy->cpu, freqs.old, freqs.new); 1908 1909 cpufreq_freq_transition_begin(policy, &freqs); 1910 } 1911 1912 retval = cpufreq_driver->target_index(policy, index); 1913 if (retval) 1914 pr_err("%s: Failed to change cpu frequency: %d\n", __func__, 1915 retval); 1916 1917 if (notify) { 1918 cpufreq_freq_transition_end(policy, &freqs, retval); 1919 1920 /* 1921 * Failed after setting to intermediate freq? Driver should have 1922 * reverted back to initial frequency and so should we. Check 1923 * here for intermediate_freq instead of get_intermediate, in 1924 * case we haven't switched to intermediate freq at all. 1925 */ 1926 if (unlikely(retval && intermediate_freq)) { 1927 freqs.old = intermediate_freq; 1928 freqs.new = policy->restore_freq; 1929 cpufreq_freq_transition_begin(policy, &freqs); 1930 cpufreq_freq_transition_end(policy, &freqs, 0); 1931 } 1932 } 1933 1934 return retval; 1935 } 1936 1937 int __cpufreq_driver_target(struct cpufreq_policy *policy, 1938 unsigned int target_freq, 1939 unsigned int relation) 1940 { 1941 unsigned int old_target_freq = target_freq; 1942 struct cpufreq_frequency_table *freq_table; 1943 int index, retval; 1944 1945 if (cpufreq_disabled()) 1946 return -ENODEV; 1947 1948 /* Make sure that target_freq is within supported range */ 1949 if (target_freq > policy->max) 1950 target_freq = policy->max; 1951 if (target_freq < policy->min) 1952 target_freq = policy->min; 1953 1954 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n", 1955 policy->cpu, target_freq, relation, old_target_freq); 1956 1957 /* 1958 * This might look like a redundant call as we are checking it again 1959 * after finding index. But it is left intentionally for cases where 1960 * exactly same freq is called again and so we can save on few function 1961 * calls. 1962 */ 1963 if (target_freq == policy->cur) 1964 return 0; 1965 1966 /* Save last value to restore later on errors */ 1967 policy->restore_freq = policy->cur; 1968 1969 if (cpufreq_driver->target) 1970 return cpufreq_driver->target(policy, target_freq, relation); 1971 1972 if (!cpufreq_driver->target_index) 1973 return -EINVAL; 1974 1975 freq_table = cpufreq_frequency_get_table(policy->cpu); 1976 if (unlikely(!freq_table)) { 1977 pr_err("%s: Unable to find freq_table\n", __func__); 1978 return -EINVAL; 1979 } 1980 1981 retval = cpufreq_frequency_table_target(policy, freq_table, target_freq, 1982 relation, &index); 1983 if (unlikely(retval)) { 1984 pr_err("%s: Unable to find matching freq\n", __func__); 1985 return retval; 1986 } 1987 1988 if (freq_table[index].frequency == policy->cur) 1989 return 0; 1990 1991 return __target_index(policy, freq_table, index); 1992 } 1993 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 1994 1995 int cpufreq_driver_target(struct cpufreq_policy *policy, 1996 unsigned int target_freq, 1997 unsigned int relation) 1998 { 1999 int ret = -EINVAL; 2000 2001 down_write(&policy->rwsem); 2002 2003 ret = __cpufreq_driver_target(policy, target_freq, relation); 2004 2005 up_write(&policy->rwsem); 2006 2007 return ret; 2008 } 2009 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 2010 2011 __weak struct cpufreq_governor *cpufreq_fallback_governor(void) 2012 { 2013 return NULL; 2014 } 2015 2016 static int cpufreq_governor(struct cpufreq_policy *policy, unsigned int event) 2017 { 2018 int ret; 2019 2020 /* Don't start any governor operations if we are entering suspend */ 2021 if (cpufreq_suspended) 2022 return 0; 2023 /* 2024 * Governor might not be initiated here if ACPI _PPC changed 2025 * notification happened, so check it. 2026 */ 2027 if (!policy->governor) 2028 return -EINVAL; 2029 2030 if (policy->governor->max_transition_latency && 2031 policy->cpuinfo.transition_latency > 2032 policy->governor->max_transition_latency) { 2033 struct cpufreq_governor *gov = cpufreq_fallback_governor(); 2034 2035 if (gov) { 2036 pr_warn("%s governor failed, too long transition latency of HW, fallback to %s governor\n", 2037 policy->governor->name, gov->name); 2038 policy->governor = gov; 2039 } else { 2040 return -EINVAL; 2041 } 2042 } 2043 2044 if (event == CPUFREQ_GOV_POLICY_INIT) 2045 if (!try_module_get(policy->governor->owner)) 2046 return -EINVAL; 2047 2048 pr_debug("%s: for CPU %u, event %u\n", __func__, policy->cpu, event); 2049 2050 ret = policy->governor->governor(policy, event); 2051 2052 if (!ret) { 2053 if (event == CPUFREQ_GOV_POLICY_INIT) 2054 policy->governor->initialized++; 2055 else if (event == CPUFREQ_GOV_POLICY_EXIT) 2056 policy->governor->initialized--; 2057 } 2058 2059 if (((event == CPUFREQ_GOV_POLICY_INIT) && ret) || 2060 ((event == CPUFREQ_GOV_POLICY_EXIT) && !ret)) 2061 module_put(policy->governor->owner); 2062 2063 return ret; 2064 } 2065 2066 static int cpufreq_start_governor(struct cpufreq_policy *policy) 2067 { 2068 int ret; 2069 2070 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) 2071 cpufreq_update_current_freq(policy); 2072 2073 ret = cpufreq_governor(policy, CPUFREQ_GOV_START); 2074 return ret ? ret : cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); 2075 } 2076 2077 int cpufreq_register_governor(struct cpufreq_governor *governor) 2078 { 2079 int err; 2080 2081 if (!governor) 2082 return -EINVAL; 2083 2084 if (cpufreq_disabled()) 2085 return -ENODEV; 2086 2087 mutex_lock(&cpufreq_governor_mutex); 2088 2089 governor->initialized = 0; 2090 err = -EBUSY; 2091 if (!find_governor(governor->name)) { 2092 err = 0; 2093 list_add(&governor->governor_list, &cpufreq_governor_list); 2094 } 2095 2096 mutex_unlock(&cpufreq_governor_mutex); 2097 return err; 2098 } 2099 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 2100 2101 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 2102 { 2103 struct cpufreq_policy *policy; 2104 unsigned long flags; 2105 2106 if (!governor) 2107 return; 2108 2109 if (cpufreq_disabled()) 2110 return; 2111 2112 /* clear last_governor for all inactive policies */ 2113 read_lock_irqsave(&cpufreq_driver_lock, flags); 2114 for_each_inactive_policy(policy) { 2115 if (!strcmp(policy->last_governor, governor->name)) { 2116 policy->governor = NULL; 2117 strcpy(policy->last_governor, "\0"); 2118 } 2119 } 2120 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 2121 2122 mutex_lock(&cpufreq_governor_mutex); 2123 list_del(&governor->governor_list); 2124 mutex_unlock(&cpufreq_governor_mutex); 2125 return; 2126 } 2127 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 2128 2129 2130 /********************************************************************* 2131 * POLICY INTERFACE * 2132 *********************************************************************/ 2133 2134 /** 2135 * cpufreq_get_policy - get the current cpufreq_policy 2136 * @policy: struct cpufreq_policy into which the current cpufreq_policy 2137 * is written 2138 * 2139 * Reads the current cpufreq policy. 2140 */ 2141 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 2142 { 2143 struct cpufreq_policy *cpu_policy; 2144 if (!policy) 2145 return -EINVAL; 2146 2147 cpu_policy = cpufreq_cpu_get(cpu); 2148 if (!cpu_policy) 2149 return -EINVAL; 2150 2151 memcpy(policy, cpu_policy, sizeof(*policy)); 2152 2153 cpufreq_cpu_put(cpu_policy); 2154 return 0; 2155 } 2156 EXPORT_SYMBOL(cpufreq_get_policy); 2157 2158 /* 2159 * policy : current policy. 2160 * new_policy: policy to be set. 2161 */ 2162 static int cpufreq_set_policy(struct cpufreq_policy *policy, 2163 struct cpufreq_policy *new_policy) 2164 { 2165 struct cpufreq_governor *old_gov; 2166 int ret; 2167 2168 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", 2169 new_policy->cpu, new_policy->min, new_policy->max); 2170 2171 memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo)); 2172 2173 /* 2174 * This check works well when we store new min/max freq attributes, 2175 * because new_policy is a copy of policy with one field updated. 2176 */ 2177 if (new_policy->min > new_policy->max) 2178 return -EINVAL; 2179 2180 /* verify the cpu speed can be set within this limit */ 2181 ret = cpufreq_driver->verify(new_policy); 2182 if (ret) 2183 return ret; 2184 2185 /* adjust if necessary - all reasons */ 2186 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 2187 CPUFREQ_ADJUST, new_policy); 2188 2189 /* 2190 * verify the cpu speed can be set within this limit, which might be 2191 * different to the first one 2192 */ 2193 ret = cpufreq_driver->verify(new_policy); 2194 if (ret) 2195 return ret; 2196 2197 /* notification of the new policy */ 2198 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 2199 CPUFREQ_NOTIFY, new_policy); 2200 2201 policy->min = new_policy->min; 2202 policy->max = new_policy->max; 2203 2204 pr_debug("new min and max freqs are %u - %u kHz\n", 2205 policy->min, policy->max); 2206 2207 if (cpufreq_driver->setpolicy) { 2208 policy->policy = new_policy->policy; 2209 pr_debug("setting range\n"); 2210 return cpufreq_driver->setpolicy(new_policy); 2211 } 2212 2213 if (new_policy->governor == policy->governor) { 2214 pr_debug("cpufreq: governor limits update\n"); 2215 return cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); 2216 } 2217 2218 pr_debug("governor switch\n"); 2219 2220 /* save old, working values */ 2221 old_gov = policy->governor; 2222 /* end old governor */ 2223 if (old_gov) { 2224 ret = cpufreq_governor(policy, CPUFREQ_GOV_STOP); 2225 if (ret) { 2226 /* This can happen due to race with other operations */ 2227 pr_debug("%s: Failed to Stop Governor: %s (%d)\n", 2228 __func__, old_gov->name, ret); 2229 return ret; 2230 } 2231 2232 ret = cpufreq_exit_governor(policy); 2233 if (ret) { 2234 pr_err("%s: Failed to Exit Governor: %s (%d)\n", 2235 __func__, old_gov->name, ret); 2236 return ret; 2237 } 2238 } 2239 2240 /* start new governor */ 2241 policy->governor = new_policy->governor; 2242 ret = cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT); 2243 if (!ret) { 2244 ret = cpufreq_start_governor(policy); 2245 if (!ret) { 2246 pr_debug("cpufreq: governor change\n"); 2247 return 0; 2248 } 2249 cpufreq_exit_governor(policy); 2250 } 2251 2252 /* new governor failed, so re-start old one */ 2253 pr_debug("starting governor %s failed\n", policy->governor->name); 2254 if (old_gov) { 2255 policy->governor = old_gov; 2256 if (cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT)) 2257 policy->governor = NULL; 2258 else 2259 cpufreq_start_governor(policy); 2260 } 2261 2262 return ret; 2263 } 2264 2265 /** 2266 * cpufreq_update_policy - re-evaluate an existing cpufreq policy 2267 * @cpu: CPU which shall be re-evaluated 2268 * 2269 * Useful for policy notifiers which have different necessities 2270 * at different times. 2271 */ 2272 int cpufreq_update_policy(unsigned int cpu) 2273 { 2274 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 2275 struct cpufreq_policy new_policy; 2276 int ret; 2277 2278 if (!policy) 2279 return -ENODEV; 2280 2281 down_write(&policy->rwsem); 2282 2283 pr_debug("updating policy for CPU %u\n", cpu); 2284 memcpy(&new_policy, policy, sizeof(*policy)); 2285 new_policy.min = policy->user_policy.min; 2286 new_policy.max = policy->user_policy.max; 2287 2288 /* 2289 * BIOS might change freq behind our back 2290 * -> ask driver for current freq and notify governors about a change 2291 */ 2292 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) { 2293 new_policy.cur = cpufreq_update_current_freq(policy); 2294 if (WARN_ON(!new_policy.cur)) { 2295 ret = -EIO; 2296 goto unlock; 2297 } 2298 } 2299 2300 ret = cpufreq_set_policy(policy, &new_policy); 2301 2302 unlock: 2303 up_write(&policy->rwsem); 2304 2305 cpufreq_cpu_put(policy); 2306 return ret; 2307 } 2308 EXPORT_SYMBOL(cpufreq_update_policy); 2309 2310 static int cpufreq_cpu_callback(struct notifier_block *nfb, 2311 unsigned long action, void *hcpu) 2312 { 2313 unsigned int cpu = (unsigned long)hcpu; 2314 2315 switch (action & ~CPU_TASKS_FROZEN) { 2316 case CPU_ONLINE: 2317 case CPU_DOWN_FAILED: 2318 cpufreq_online(cpu); 2319 break; 2320 2321 case CPU_DOWN_PREPARE: 2322 cpufreq_offline(cpu); 2323 break; 2324 } 2325 return NOTIFY_OK; 2326 } 2327 2328 static struct notifier_block __refdata cpufreq_cpu_notifier = { 2329 .notifier_call = cpufreq_cpu_callback, 2330 }; 2331 2332 /********************************************************************* 2333 * BOOST * 2334 *********************************************************************/ 2335 static int cpufreq_boost_set_sw(int state) 2336 { 2337 struct cpufreq_frequency_table *freq_table; 2338 struct cpufreq_policy *policy; 2339 int ret = -EINVAL; 2340 2341 for_each_active_policy(policy) { 2342 freq_table = cpufreq_frequency_get_table(policy->cpu); 2343 if (freq_table) { 2344 ret = cpufreq_frequency_table_cpuinfo(policy, 2345 freq_table); 2346 if (ret) { 2347 pr_err("%s: Policy frequency update failed\n", 2348 __func__); 2349 break; 2350 } 2351 2352 down_write(&policy->rwsem); 2353 policy->user_policy.max = policy->max; 2354 cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); 2355 up_write(&policy->rwsem); 2356 } 2357 } 2358 2359 return ret; 2360 } 2361 2362 int cpufreq_boost_trigger_state(int state) 2363 { 2364 unsigned long flags; 2365 int ret = 0; 2366 2367 if (cpufreq_driver->boost_enabled == state) 2368 return 0; 2369 2370 write_lock_irqsave(&cpufreq_driver_lock, flags); 2371 cpufreq_driver->boost_enabled = state; 2372 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2373 2374 ret = cpufreq_driver->set_boost(state); 2375 if (ret) { 2376 write_lock_irqsave(&cpufreq_driver_lock, flags); 2377 cpufreq_driver->boost_enabled = !state; 2378 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2379 2380 pr_err("%s: Cannot %s BOOST\n", 2381 __func__, state ? "enable" : "disable"); 2382 } 2383 2384 return ret; 2385 } 2386 2387 static bool cpufreq_boost_supported(void) 2388 { 2389 return likely(cpufreq_driver) && cpufreq_driver->set_boost; 2390 } 2391 2392 static int create_boost_sysfs_file(void) 2393 { 2394 int ret; 2395 2396 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr); 2397 if (ret) 2398 pr_err("%s: cannot register global BOOST sysfs file\n", 2399 __func__); 2400 2401 return ret; 2402 } 2403 2404 static void remove_boost_sysfs_file(void) 2405 { 2406 if (cpufreq_boost_supported()) 2407 sysfs_remove_file(cpufreq_global_kobject, &boost.attr); 2408 } 2409 2410 int cpufreq_enable_boost_support(void) 2411 { 2412 if (!cpufreq_driver) 2413 return -EINVAL; 2414 2415 if (cpufreq_boost_supported()) 2416 return 0; 2417 2418 cpufreq_driver->set_boost = cpufreq_boost_set_sw; 2419 2420 /* This will get removed on driver unregister */ 2421 return create_boost_sysfs_file(); 2422 } 2423 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support); 2424 2425 int cpufreq_boost_enabled(void) 2426 { 2427 return cpufreq_driver->boost_enabled; 2428 } 2429 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled); 2430 2431 /********************************************************************* 2432 * REGISTER / UNREGISTER CPUFREQ DRIVER * 2433 *********************************************************************/ 2434 2435 /** 2436 * cpufreq_register_driver - register a CPU Frequency driver 2437 * @driver_data: A struct cpufreq_driver containing the values# 2438 * submitted by the CPU Frequency driver. 2439 * 2440 * Registers a CPU Frequency driver to this core code. This code 2441 * returns zero on success, -EEXIST when another driver got here first 2442 * (and isn't unregistered in the meantime). 2443 * 2444 */ 2445 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 2446 { 2447 unsigned long flags; 2448 int ret; 2449 2450 if (cpufreq_disabled()) 2451 return -ENODEV; 2452 2453 if (!driver_data || !driver_data->verify || !driver_data->init || 2454 !(driver_data->setpolicy || driver_data->target_index || 2455 driver_data->target) || 2456 (driver_data->setpolicy && (driver_data->target_index || 2457 driver_data->target)) || 2458 (!!driver_data->get_intermediate != !!driver_data->target_intermediate)) 2459 return -EINVAL; 2460 2461 pr_debug("trying to register driver %s\n", driver_data->name); 2462 2463 /* Protect against concurrent CPU online/offline. */ 2464 get_online_cpus(); 2465 2466 write_lock_irqsave(&cpufreq_driver_lock, flags); 2467 if (cpufreq_driver) { 2468 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2469 ret = -EEXIST; 2470 goto out; 2471 } 2472 cpufreq_driver = driver_data; 2473 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2474 2475 if (driver_data->setpolicy) 2476 driver_data->flags |= CPUFREQ_CONST_LOOPS; 2477 2478 if (cpufreq_boost_supported()) { 2479 ret = create_boost_sysfs_file(); 2480 if (ret) 2481 goto err_null_driver; 2482 } 2483 2484 ret = subsys_interface_register(&cpufreq_interface); 2485 if (ret) 2486 goto err_boost_unreg; 2487 2488 if (!(cpufreq_driver->flags & CPUFREQ_STICKY) && 2489 list_empty(&cpufreq_policy_list)) { 2490 /* if all ->init() calls failed, unregister */ 2491 pr_debug("%s: No CPU initialized for driver %s\n", __func__, 2492 driver_data->name); 2493 goto err_if_unreg; 2494 } 2495 2496 register_hotcpu_notifier(&cpufreq_cpu_notifier); 2497 pr_debug("driver %s up and running\n", driver_data->name); 2498 2499 out: 2500 put_online_cpus(); 2501 return ret; 2502 2503 err_if_unreg: 2504 subsys_interface_unregister(&cpufreq_interface); 2505 err_boost_unreg: 2506 remove_boost_sysfs_file(); 2507 err_null_driver: 2508 write_lock_irqsave(&cpufreq_driver_lock, flags); 2509 cpufreq_driver = NULL; 2510 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2511 goto out; 2512 } 2513 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 2514 2515 /** 2516 * cpufreq_unregister_driver - unregister the current CPUFreq driver 2517 * 2518 * Unregister the current CPUFreq driver. Only call this if you have 2519 * the right to do so, i.e. if you have succeeded in initialising before! 2520 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 2521 * currently not initialised. 2522 */ 2523 int cpufreq_unregister_driver(struct cpufreq_driver *driver) 2524 { 2525 unsigned long flags; 2526 2527 if (!cpufreq_driver || (driver != cpufreq_driver)) 2528 return -EINVAL; 2529 2530 pr_debug("unregistering driver %s\n", driver->name); 2531 2532 /* Protect against concurrent cpu hotplug */ 2533 get_online_cpus(); 2534 subsys_interface_unregister(&cpufreq_interface); 2535 remove_boost_sysfs_file(); 2536 unregister_hotcpu_notifier(&cpufreq_cpu_notifier); 2537 2538 write_lock_irqsave(&cpufreq_driver_lock, flags); 2539 2540 cpufreq_driver = NULL; 2541 2542 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2543 put_online_cpus(); 2544 2545 return 0; 2546 } 2547 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 2548 2549 /* 2550 * Stop cpufreq at shutdown to make sure it isn't holding any locks 2551 * or mutexes when secondary CPUs are halted. 2552 */ 2553 static struct syscore_ops cpufreq_syscore_ops = { 2554 .shutdown = cpufreq_suspend, 2555 }; 2556 2557 struct kobject *cpufreq_global_kobject; 2558 EXPORT_SYMBOL(cpufreq_global_kobject); 2559 2560 static int __init cpufreq_core_init(void) 2561 { 2562 if (cpufreq_disabled()) 2563 return -ENODEV; 2564 2565 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj); 2566 BUG_ON(!cpufreq_global_kobject); 2567 2568 register_syscore_ops(&cpufreq_syscore_ops); 2569 2570 return 0; 2571 } 2572 core_initcall(cpufreq_core_init); 2573