1 /* 2 * linux/drivers/cpufreq/cpufreq.c 3 * 4 * Copyright (C) 2001 Russell King 5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 6 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org> 7 * 8 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 9 * Added handling for CPU hotplug 10 * Feb 2006 - Jacob Shin <jacob.shin@amd.com> 11 * Fix handling for CPU hotplug -- affected CPUs 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License version 2 as 15 * published by the Free Software Foundation. 16 */ 17 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/cpu.h> 21 #include <linux/cpufreq.h> 22 #include <linux/delay.h> 23 #include <linux/device.h> 24 #include <linux/init.h> 25 #include <linux/kernel_stat.h> 26 #include <linux/module.h> 27 #include <linux/mutex.h> 28 #include <linux/slab.h> 29 #include <linux/suspend.h> 30 #include <linux/syscore_ops.h> 31 #include <linux/tick.h> 32 #include <trace/events/power.h> 33 34 static LIST_HEAD(cpufreq_policy_list); 35 36 static inline bool policy_is_inactive(struct cpufreq_policy *policy) 37 { 38 return cpumask_empty(policy->cpus); 39 } 40 41 /* Macros to iterate over CPU policies */ 42 #define for_each_suitable_policy(__policy, __active) \ 43 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \ 44 if ((__active) == !policy_is_inactive(__policy)) 45 46 #define for_each_active_policy(__policy) \ 47 for_each_suitable_policy(__policy, true) 48 #define for_each_inactive_policy(__policy) \ 49 for_each_suitable_policy(__policy, false) 50 51 #define for_each_policy(__policy) \ 52 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) 53 54 /* Iterate over governors */ 55 static LIST_HEAD(cpufreq_governor_list); 56 #define for_each_governor(__governor) \ 57 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list) 58 59 /** 60 * The "cpufreq driver" - the arch- or hardware-dependent low 61 * level driver of CPUFreq support, and its spinlock. This lock 62 * also protects the cpufreq_cpu_data array. 63 */ 64 static struct cpufreq_driver *cpufreq_driver; 65 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data); 66 static DEFINE_RWLOCK(cpufreq_driver_lock); 67 68 /* Flag to suspend/resume CPUFreq governors */ 69 static bool cpufreq_suspended; 70 71 static inline bool has_target(void) 72 { 73 return cpufreq_driver->target_index || cpufreq_driver->target; 74 } 75 76 /* internal prototypes */ 77 static int cpufreq_governor(struct cpufreq_policy *policy, unsigned int event); 78 static unsigned int __cpufreq_get(struct cpufreq_policy *policy); 79 static int cpufreq_start_governor(struct cpufreq_policy *policy); 80 81 static inline void cpufreq_exit_governor(struct cpufreq_policy *policy) 82 { 83 (void)cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT); 84 } 85 86 static inline void cpufreq_stop_governor(struct cpufreq_policy *policy) 87 { 88 (void)cpufreq_governor(policy, CPUFREQ_GOV_STOP); 89 } 90 91 /** 92 * Two notifier lists: the "policy" list is involved in the 93 * validation process for a new CPU frequency policy; the 94 * "transition" list for kernel code that needs to handle 95 * changes to devices when the CPU clock speed changes. 96 * The mutex locks both lists. 97 */ 98 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list); 99 static struct srcu_notifier_head cpufreq_transition_notifier_list; 100 101 static bool init_cpufreq_transition_notifier_list_called; 102 static int __init init_cpufreq_transition_notifier_list(void) 103 { 104 srcu_init_notifier_head(&cpufreq_transition_notifier_list); 105 init_cpufreq_transition_notifier_list_called = true; 106 return 0; 107 } 108 pure_initcall(init_cpufreq_transition_notifier_list); 109 110 static int off __read_mostly; 111 static int cpufreq_disabled(void) 112 { 113 return off; 114 } 115 void disable_cpufreq(void) 116 { 117 off = 1; 118 } 119 static DEFINE_MUTEX(cpufreq_governor_mutex); 120 121 bool have_governor_per_policy(void) 122 { 123 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY); 124 } 125 EXPORT_SYMBOL_GPL(have_governor_per_policy); 126 127 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy) 128 { 129 if (have_governor_per_policy()) 130 return &policy->kobj; 131 else 132 return cpufreq_global_kobject; 133 } 134 EXPORT_SYMBOL_GPL(get_governor_parent_kobj); 135 136 struct cpufreq_frequency_table *cpufreq_frequency_get_table(unsigned int cpu) 137 { 138 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 139 140 return policy && !policy_is_inactive(policy) ? 141 policy->freq_table : NULL; 142 } 143 EXPORT_SYMBOL_GPL(cpufreq_frequency_get_table); 144 145 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) 146 { 147 u64 idle_time; 148 u64 cur_wall_time; 149 u64 busy_time; 150 151 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64()); 152 153 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER]; 154 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM]; 155 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ]; 156 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ]; 157 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL]; 158 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE]; 159 160 idle_time = cur_wall_time - busy_time; 161 if (wall) 162 *wall = cputime_to_usecs(cur_wall_time); 163 164 return cputime_to_usecs(idle_time); 165 } 166 167 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy) 168 { 169 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL); 170 171 if (idle_time == -1ULL) 172 return get_cpu_idle_time_jiffy(cpu, wall); 173 else if (!io_busy) 174 idle_time += get_cpu_iowait_time_us(cpu, wall); 175 176 return idle_time; 177 } 178 EXPORT_SYMBOL_GPL(get_cpu_idle_time); 179 180 /* 181 * This is a generic cpufreq init() routine which can be used by cpufreq 182 * drivers of SMP systems. It will do following: 183 * - validate & show freq table passed 184 * - set policies transition latency 185 * - policy->cpus with all possible CPUs 186 */ 187 int cpufreq_generic_init(struct cpufreq_policy *policy, 188 struct cpufreq_frequency_table *table, 189 unsigned int transition_latency) 190 { 191 int ret; 192 193 ret = cpufreq_table_validate_and_show(policy, table); 194 if (ret) { 195 pr_err("%s: invalid frequency table: %d\n", __func__, ret); 196 return ret; 197 } 198 199 policy->cpuinfo.transition_latency = transition_latency; 200 201 /* 202 * The driver only supports the SMP configuration where all processors 203 * share the clock and voltage and clock. 204 */ 205 cpumask_setall(policy->cpus); 206 207 return 0; 208 } 209 EXPORT_SYMBOL_GPL(cpufreq_generic_init); 210 211 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu) 212 { 213 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 214 215 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL; 216 } 217 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw); 218 219 unsigned int cpufreq_generic_get(unsigned int cpu) 220 { 221 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu); 222 223 if (!policy || IS_ERR(policy->clk)) { 224 pr_err("%s: No %s associated to cpu: %d\n", 225 __func__, policy ? "clk" : "policy", cpu); 226 return 0; 227 } 228 229 return clk_get_rate(policy->clk) / 1000; 230 } 231 EXPORT_SYMBOL_GPL(cpufreq_generic_get); 232 233 /** 234 * cpufreq_cpu_get: returns policy for a cpu and marks it busy. 235 * 236 * @cpu: cpu to find policy for. 237 * 238 * This returns policy for 'cpu', returns NULL if it doesn't exist. 239 * It also increments the kobject reference count to mark it busy and so would 240 * require a corresponding call to cpufreq_cpu_put() to decrement it back. 241 * If corresponding call cpufreq_cpu_put() isn't made, the policy wouldn't be 242 * freed as that depends on the kobj count. 243 * 244 * Return: A valid policy on success, otherwise NULL on failure. 245 */ 246 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) 247 { 248 struct cpufreq_policy *policy = NULL; 249 unsigned long flags; 250 251 if (WARN_ON(cpu >= nr_cpu_ids)) 252 return NULL; 253 254 /* get the cpufreq driver */ 255 read_lock_irqsave(&cpufreq_driver_lock, flags); 256 257 if (cpufreq_driver) { 258 /* get the CPU */ 259 policy = cpufreq_cpu_get_raw(cpu); 260 if (policy) 261 kobject_get(&policy->kobj); 262 } 263 264 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 265 266 return policy; 267 } 268 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 269 270 /** 271 * cpufreq_cpu_put: Decrements the usage count of a policy 272 * 273 * @policy: policy earlier returned by cpufreq_cpu_get(). 274 * 275 * This decrements the kobject reference count incremented earlier by calling 276 * cpufreq_cpu_get(). 277 */ 278 void cpufreq_cpu_put(struct cpufreq_policy *policy) 279 { 280 kobject_put(&policy->kobj); 281 } 282 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 283 284 /********************************************************************* 285 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 286 *********************************************************************/ 287 288 /** 289 * adjust_jiffies - adjust the system "loops_per_jiffy" 290 * 291 * This function alters the system "loops_per_jiffy" for the clock 292 * speed change. Note that loops_per_jiffy cannot be updated on SMP 293 * systems as each CPU might be scaled differently. So, use the arch 294 * per-CPU loops_per_jiffy value wherever possible. 295 */ 296 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 297 { 298 #ifndef CONFIG_SMP 299 static unsigned long l_p_j_ref; 300 static unsigned int l_p_j_ref_freq; 301 302 if (ci->flags & CPUFREQ_CONST_LOOPS) 303 return; 304 305 if (!l_p_j_ref_freq) { 306 l_p_j_ref = loops_per_jiffy; 307 l_p_j_ref_freq = ci->old; 308 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n", 309 l_p_j_ref, l_p_j_ref_freq); 310 } 311 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) { 312 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, 313 ci->new); 314 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n", 315 loops_per_jiffy, ci->new); 316 } 317 #endif 318 } 319 320 static void __cpufreq_notify_transition(struct cpufreq_policy *policy, 321 struct cpufreq_freqs *freqs, unsigned int state) 322 { 323 BUG_ON(irqs_disabled()); 324 325 if (cpufreq_disabled()) 326 return; 327 328 freqs->flags = cpufreq_driver->flags; 329 pr_debug("notification %u of frequency transition to %u kHz\n", 330 state, freqs->new); 331 332 switch (state) { 333 334 case CPUFREQ_PRECHANGE: 335 /* detect if the driver reported a value as "old frequency" 336 * which is not equal to what the cpufreq core thinks is 337 * "old frequency". 338 */ 339 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 340 if ((policy) && (policy->cpu == freqs->cpu) && 341 (policy->cur) && (policy->cur != freqs->old)) { 342 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n", 343 freqs->old, policy->cur); 344 freqs->old = policy->cur; 345 } 346 } 347 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 348 CPUFREQ_PRECHANGE, freqs); 349 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 350 break; 351 352 case CPUFREQ_POSTCHANGE: 353 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 354 pr_debug("FREQ: %lu - CPU: %lu\n", 355 (unsigned long)freqs->new, (unsigned long)freqs->cpu); 356 trace_cpu_frequency(freqs->new, freqs->cpu); 357 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 358 CPUFREQ_POSTCHANGE, freqs); 359 if (likely(policy) && likely(policy->cpu == freqs->cpu)) 360 policy->cur = freqs->new; 361 break; 362 } 363 } 364 365 /** 366 * cpufreq_notify_transition - call notifier chain and adjust_jiffies 367 * on frequency transition. 368 * 369 * This function calls the transition notifiers and the "adjust_jiffies" 370 * function. It is called twice on all CPU frequency changes that have 371 * external effects. 372 */ 373 static void cpufreq_notify_transition(struct cpufreq_policy *policy, 374 struct cpufreq_freqs *freqs, unsigned int state) 375 { 376 for_each_cpu(freqs->cpu, policy->cpus) 377 __cpufreq_notify_transition(policy, freqs, state); 378 } 379 380 /* Do post notifications when there are chances that transition has failed */ 381 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy, 382 struct cpufreq_freqs *freqs, int transition_failed) 383 { 384 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 385 if (!transition_failed) 386 return; 387 388 swap(freqs->old, freqs->new); 389 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 390 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 391 } 392 393 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy, 394 struct cpufreq_freqs *freqs) 395 { 396 397 /* 398 * Catch double invocations of _begin() which lead to self-deadlock. 399 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core 400 * doesn't invoke _begin() on their behalf, and hence the chances of 401 * double invocations are very low. Moreover, there are scenarios 402 * where these checks can emit false-positive warnings in these 403 * drivers; so we avoid that by skipping them altogether. 404 */ 405 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION) 406 && current == policy->transition_task); 407 408 wait: 409 wait_event(policy->transition_wait, !policy->transition_ongoing); 410 411 spin_lock(&policy->transition_lock); 412 413 if (unlikely(policy->transition_ongoing)) { 414 spin_unlock(&policy->transition_lock); 415 goto wait; 416 } 417 418 policy->transition_ongoing = true; 419 policy->transition_task = current; 420 421 spin_unlock(&policy->transition_lock); 422 423 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 424 } 425 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin); 426 427 void cpufreq_freq_transition_end(struct cpufreq_policy *policy, 428 struct cpufreq_freqs *freqs, int transition_failed) 429 { 430 if (unlikely(WARN_ON(!policy->transition_ongoing))) 431 return; 432 433 cpufreq_notify_post_transition(policy, freqs, transition_failed); 434 435 policy->transition_ongoing = false; 436 policy->transition_task = NULL; 437 438 wake_up(&policy->transition_wait); 439 } 440 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end); 441 442 /* 443 * Fast frequency switching status count. Positive means "enabled", negative 444 * means "disabled" and 0 means "not decided yet". 445 */ 446 static int cpufreq_fast_switch_count; 447 static DEFINE_MUTEX(cpufreq_fast_switch_lock); 448 449 static void cpufreq_list_transition_notifiers(void) 450 { 451 struct notifier_block *nb; 452 453 pr_info("Registered transition notifiers:\n"); 454 455 mutex_lock(&cpufreq_transition_notifier_list.mutex); 456 457 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next) 458 pr_info("%pF\n", nb->notifier_call); 459 460 mutex_unlock(&cpufreq_transition_notifier_list.mutex); 461 } 462 463 /** 464 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy. 465 * @policy: cpufreq policy to enable fast frequency switching for. 466 * 467 * Try to enable fast frequency switching for @policy. 468 * 469 * The attempt will fail if there is at least one transition notifier registered 470 * at this point, as fast frequency switching is quite fundamentally at odds 471 * with transition notifiers. Thus if successful, it will make registration of 472 * transition notifiers fail going forward. 473 */ 474 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy) 475 { 476 lockdep_assert_held(&policy->rwsem); 477 478 if (!policy->fast_switch_possible) 479 return; 480 481 mutex_lock(&cpufreq_fast_switch_lock); 482 if (cpufreq_fast_switch_count >= 0) { 483 cpufreq_fast_switch_count++; 484 policy->fast_switch_enabled = true; 485 } else { 486 pr_warn("CPU%u: Fast frequency switching not enabled\n", 487 policy->cpu); 488 cpufreq_list_transition_notifiers(); 489 } 490 mutex_unlock(&cpufreq_fast_switch_lock); 491 } 492 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch); 493 494 /** 495 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy. 496 * @policy: cpufreq policy to disable fast frequency switching for. 497 */ 498 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy) 499 { 500 mutex_lock(&cpufreq_fast_switch_lock); 501 if (policy->fast_switch_enabled) { 502 policy->fast_switch_enabled = false; 503 if (!WARN_ON(cpufreq_fast_switch_count <= 0)) 504 cpufreq_fast_switch_count--; 505 } 506 mutex_unlock(&cpufreq_fast_switch_lock); 507 } 508 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch); 509 510 /********************************************************************* 511 * SYSFS INTERFACE * 512 *********************************************************************/ 513 static ssize_t show_boost(struct kobject *kobj, 514 struct attribute *attr, char *buf) 515 { 516 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled); 517 } 518 519 static ssize_t store_boost(struct kobject *kobj, struct attribute *attr, 520 const char *buf, size_t count) 521 { 522 int ret, enable; 523 524 ret = sscanf(buf, "%d", &enable); 525 if (ret != 1 || enable < 0 || enable > 1) 526 return -EINVAL; 527 528 if (cpufreq_boost_trigger_state(enable)) { 529 pr_err("%s: Cannot %s BOOST!\n", 530 __func__, enable ? "enable" : "disable"); 531 return -EINVAL; 532 } 533 534 pr_debug("%s: cpufreq BOOST %s\n", 535 __func__, enable ? "enabled" : "disabled"); 536 537 return count; 538 } 539 define_one_global_rw(boost); 540 541 static struct cpufreq_governor *find_governor(const char *str_governor) 542 { 543 struct cpufreq_governor *t; 544 545 for_each_governor(t) 546 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN)) 547 return t; 548 549 return NULL; 550 } 551 552 /** 553 * cpufreq_parse_governor - parse a governor string 554 */ 555 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy, 556 struct cpufreq_governor **governor) 557 { 558 int err = -EINVAL; 559 560 if (cpufreq_driver->setpolicy) { 561 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) { 562 *policy = CPUFREQ_POLICY_PERFORMANCE; 563 err = 0; 564 } else if (!strncasecmp(str_governor, "powersave", 565 CPUFREQ_NAME_LEN)) { 566 *policy = CPUFREQ_POLICY_POWERSAVE; 567 err = 0; 568 } 569 } else { 570 struct cpufreq_governor *t; 571 572 mutex_lock(&cpufreq_governor_mutex); 573 574 t = find_governor(str_governor); 575 576 if (t == NULL) { 577 int ret; 578 579 mutex_unlock(&cpufreq_governor_mutex); 580 ret = request_module("cpufreq_%s", str_governor); 581 mutex_lock(&cpufreq_governor_mutex); 582 583 if (ret == 0) 584 t = find_governor(str_governor); 585 } 586 587 if (t != NULL) { 588 *governor = t; 589 err = 0; 590 } 591 592 mutex_unlock(&cpufreq_governor_mutex); 593 } 594 return err; 595 } 596 597 /** 598 * cpufreq_per_cpu_attr_read() / show_##file_name() - 599 * print out cpufreq information 600 * 601 * Write out information from cpufreq_driver->policy[cpu]; object must be 602 * "unsigned int". 603 */ 604 605 #define show_one(file_name, object) \ 606 static ssize_t show_##file_name \ 607 (struct cpufreq_policy *policy, char *buf) \ 608 { \ 609 return sprintf(buf, "%u\n", policy->object); \ 610 } 611 612 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 613 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 614 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency); 615 show_one(scaling_min_freq, min); 616 show_one(scaling_max_freq, max); 617 618 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf) 619 { 620 ssize_t ret; 621 622 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) 623 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu)); 624 else 625 ret = sprintf(buf, "%u\n", policy->cur); 626 return ret; 627 } 628 629 static int cpufreq_set_policy(struct cpufreq_policy *policy, 630 struct cpufreq_policy *new_policy); 631 632 /** 633 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 634 */ 635 #define store_one(file_name, object) \ 636 static ssize_t store_##file_name \ 637 (struct cpufreq_policy *policy, const char *buf, size_t count) \ 638 { \ 639 int ret, temp; \ 640 struct cpufreq_policy new_policy; \ 641 \ 642 memcpy(&new_policy, policy, sizeof(*policy)); \ 643 \ 644 ret = sscanf(buf, "%u", &new_policy.object); \ 645 if (ret != 1) \ 646 return -EINVAL; \ 647 \ 648 temp = new_policy.object; \ 649 ret = cpufreq_set_policy(policy, &new_policy); \ 650 if (!ret) \ 651 policy->user_policy.object = temp; \ 652 \ 653 return ret ? ret : count; \ 654 } 655 656 store_one(scaling_min_freq, min); 657 store_one(scaling_max_freq, max); 658 659 /** 660 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 661 */ 662 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy, 663 char *buf) 664 { 665 unsigned int cur_freq = __cpufreq_get(policy); 666 if (!cur_freq) 667 return sprintf(buf, "<unknown>"); 668 return sprintf(buf, "%u\n", cur_freq); 669 } 670 671 /** 672 * show_scaling_governor - show the current policy for the specified CPU 673 */ 674 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf) 675 { 676 if (policy->policy == CPUFREQ_POLICY_POWERSAVE) 677 return sprintf(buf, "powersave\n"); 678 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 679 return sprintf(buf, "performance\n"); 680 else if (policy->governor) 681 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", 682 policy->governor->name); 683 return -EINVAL; 684 } 685 686 /** 687 * store_scaling_governor - store policy for the specified CPU 688 */ 689 static ssize_t store_scaling_governor(struct cpufreq_policy *policy, 690 const char *buf, size_t count) 691 { 692 int ret; 693 char str_governor[16]; 694 struct cpufreq_policy new_policy; 695 696 memcpy(&new_policy, policy, sizeof(*policy)); 697 698 ret = sscanf(buf, "%15s", str_governor); 699 if (ret != 1) 700 return -EINVAL; 701 702 if (cpufreq_parse_governor(str_governor, &new_policy.policy, 703 &new_policy.governor)) 704 return -EINVAL; 705 706 ret = cpufreq_set_policy(policy, &new_policy); 707 return ret ? ret : count; 708 } 709 710 /** 711 * show_scaling_driver - show the cpufreq driver currently loaded 712 */ 713 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf) 714 { 715 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name); 716 } 717 718 /** 719 * show_scaling_available_governors - show the available CPUfreq governors 720 */ 721 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy, 722 char *buf) 723 { 724 ssize_t i = 0; 725 struct cpufreq_governor *t; 726 727 if (!has_target()) { 728 i += sprintf(buf, "performance powersave"); 729 goto out; 730 } 731 732 for_each_governor(t) { 733 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) 734 - (CPUFREQ_NAME_LEN + 2))) 735 goto out; 736 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name); 737 } 738 out: 739 i += sprintf(&buf[i], "\n"); 740 return i; 741 } 742 743 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf) 744 { 745 ssize_t i = 0; 746 unsigned int cpu; 747 748 for_each_cpu(cpu, mask) { 749 if (i) 750 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " "); 751 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu); 752 if (i >= (PAGE_SIZE - 5)) 753 break; 754 } 755 i += sprintf(&buf[i], "\n"); 756 return i; 757 } 758 EXPORT_SYMBOL_GPL(cpufreq_show_cpus); 759 760 /** 761 * show_related_cpus - show the CPUs affected by each transition even if 762 * hw coordination is in use 763 */ 764 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf) 765 { 766 return cpufreq_show_cpus(policy->related_cpus, buf); 767 } 768 769 /** 770 * show_affected_cpus - show the CPUs affected by each transition 771 */ 772 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf) 773 { 774 return cpufreq_show_cpus(policy->cpus, buf); 775 } 776 777 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy, 778 const char *buf, size_t count) 779 { 780 unsigned int freq = 0; 781 unsigned int ret; 782 783 if (!policy->governor || !policy->governor->store_setspeed) 784 return -EINVAL; 785 786 ret = sscanf(buf, "%u", &freq); 787 if (ret != 1) 788 return -EINVAL; 789 790 policy->governor->store_setspeed(policy, freq); 791 792 return count; 793 } 794 795 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf) 796 { 797 if (!policy->governor || !policy->governor->show_setspeed) 798 return sprintf(buf, "<unsupported>\n"); 799 800 return policy->governor->show_setspeed(policy, buf); 801 } 802 803 /** 804 * show_bios_limit - show the current cpufreq HW/BIOS limitation 805 */ 806 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf) 807 { 808 unsigned int limit; 809 int ret; 810 if (cpufreq_driver->bios_limit) { 811 ret = cpufreq_driver->bios_limit(policy->cpu, &limit); 812 if (!ret) 813 return sprintf(buf, "%u\n", limit); 814 } 815 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq); 816 } 817 818 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400); 819 cpufreq_freq_attr_ro(cpuinfo_min_freq); 820 cpufreq_freq_attr_ro(cpuinfo_max_freq); 821 cpufreq_freq_attr_ro(cpuinfo_transition_latency); 822 cpufreq_freq_attr_ro(scaling_available_governors); 823 cpufreq_freq_attr_ro(scaling_driver); 824 cpufreq_freq_attr_ro(scaling_cur_freq); 825 cpufreq_freq_attr_ro(bios_limit); 826 cpufreq_freq_attr_ro(related_cpus); 827 cpufreq_freq_attr_ro(affected_cpus); 828 cpufreq_freq_attr_rw(scaling_min_freq); 829 cpufreq_freq_attr_rw(scaling_max_freq); 830 cpufreq_freq_attr_rw(scaling_governor); 831 cpufreq_freq_attr_rw(scaling_setspeed); 832 833 static struct attribute *default_attrs[] = { 834 &cpuinfo_min_freq.attr, 835 &cpuinfo_max_freq.attr, 836 &cpuinfo_transition_latency.attr, 837 &scaling_min_freq.attr, 838 &scaling_max_freq.attr, 839 &affected_cpus.attr, 840 &related_cpus.attr, 841 &scaling_governor.attr, 842 &scaling_driver.attr, 843 &scaling_available_governors.attr, 844 &scaling_setspeed.attr, 845 NULL 846 }; 847 848 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj) 849 #define to_attr(a) container_of(a, struct freq_attr, attr) 850 851 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) 852 { 853 struct cpufreq_policy *policy = to_policy(kobj); 854 struct freq_attr *fattr = to_attr(attr); 855 ssize_t ret; 856 857 down_read(&policy->rwsem); 858 ret = fattr->show(policy, buf); 859 up_read(&policy->rwsem); 860 861 return ret; 862 } 863 864 static ssize_t store(struct kobject *kobj, struct attribute *attr, 865 const char *buf, size_t count) 866 { 867 struct cpufreq_policy *policy = to_policy(kobj); 868 struct freq_attr *fattr = to_attr(attr); 869 ssize_t ret = -EINVAL; 870 871 get_online_cpus(); 872 873 if (cpu_online(policy->cpu)) { 874 down_write(&policy->rwsem); 875 ret = fattr->store(policy, buf, count); 876 up_write(&policy->rwsem); 877 } 878 879 put_online_cpus(); 880 881 return ret; 882 } 883 884 static void cpufreq_sysfs_release(struct kobject *kobj) 885 { 886 struct cpufreq_policy *policy = to_policy(kobj); 887 pr_debug("last reference is dropped\n"); 888 complete(&policy->kobj_unregister); 889 } 890 891 static const struct sysfs_ops sysfs_ops = { 892 .show = show, 893 .store = store, 894 }; 895 896 static struct kobj_type ktype_cpufreq = { 897 .sysfs_ops = &sysfs_ops, 898 .default_attrs = default_attrs, 899 .release = cpufreq_sysfs_release, 900 }; 901 902 static int add_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu) 903 { 904 struct device *cpu_dev; 905 906 pr_debug("%s: Adding symlink for CPU: %u\n", __func__, cpu); 907 908 if (!policy) 909 return 0; 910 911 cpu_dev = get_cpu_device(cpu); 912 if (WARN_ON(!cpu_dev)) 913 return 0; 914 915 return sysfs_create_link(&cpu_dev->kobj, &policy->kobj, "cpufreq"); 916 } 917 918 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu) 919 { 920 struct device *cpu_dev; 921 922 pr_debug("%s: Removing symlink for CPU: %u\n", __func__, cpu); 923 924 cpu_dev = get_cpu_device(cpu); 925 if (WARN_ON(!cpu_dev)) 926 return; 927 928 sysfs_remove_link(&cpu_dev->kobj, "cpufreq"); 929 } 930 931 /* Add/remove symlinks for all related CPUs */ 932 static int cpufreq_add_dev_symlink(struct cpufreq_policy *policy) 933 { 934 unsigned int j; 935 int ret = 0; 936 937 /* Some related CPUs might not be present (physically hotplugged) */ 938 for_each_cpu(j, policy->real_cpus) { 939 ret = add_cpu_dev_symlink(policy, j); 940 if (ret) 941 break; 942 } 943 944 return ret; 945 } 946 947 static void cpufreq_remove_dev_symlink(struct cpufreq_policy *policy) 948 { 949 unsigned int j; 950 951 /* Some related CPUs might not be present (physically hotplugged) */ 952 for_each_cpu(j, policy->real_cpus) 953 remove_cpu_dev_symlink(policy, j); 954 } 955 956 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy) 957 { 958 struct freq_attr **drv_attr; 959 int ret = 0; 960 961 /* set up files for this cpu device */ 962 drv_attr = cpufreq_driver->attr; 963 while (drv_attr && *drv_attr) { 964 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 965 if (ret) 966 return ret; 967 drv_attr++; 968 } 969 if (cpufreq_driver->get) { 970 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 971 if (ret) 972 return ret; 973 } 974 975 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 976 if (ret) 977 return ret; 978 979 if (cpufreq_driver->bios_limit) { 980 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr); 981 if (ret) 982 return ret; 983 } 984 985 return cpufreq_add_dev_symlink(policy); 986 } 987 988 __weak struct cpufreq_governor *cpufreq_default_governor(void) 989 { 990 return NULL; 991 } 992 993 static int cpufreq_init_policy(struct cpufreq_policy *policy) 994 { 995 struct cpufreq_governor *gov = NULL; 996 struct cpufreq_policy new_policy; 997 998 memcpy(&new_policy, policy, sizeof(*policy)); 999 1000 /* Update governor of new_policy to the governor used before hotplug */ 1001 gov = find_governor(policy->last_governor); 1002 if (gov) { 1003 pr_debug("Restoring governor %s for cpu %d\n", 1004 policy->governor->name, policy->cpu); 1005 } else { 1006 gov = cpufreq_default_governor(); 1007 if (!gov) 1008 return -ENODATA; 1009 } 1010 1011 new_policy.governor = gov; 1012 1013 /* Use the default policy if there is no last_policy. */ 1014 if (cpufreq_driver->setpolicy) { 1015 if (policy->last_policy) 1016 new_policy.policy = policy->last_policy; 1017 else 1018 cpufreq_parse_governor(gov->name, &new_policy.policy, 1019 NULL); 1020 } 1021 /* set default policy */ 1022 return cpufreq_set_policy(policy, &new_policy); 1023 } 1024 1025 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu) 1026 { 1027 int ret = 0; 1028 1029 /* Has this CPU been taken care of already? */ 1030 if (cpumask_test_cpu(cpu, policy->cpus)) 1031 return 0; 1032 1033 down_write(&policy->rwsem); 1034 if (has_target()) 1035 cpufreq_stop_governor(policy); 1036 1037 cpumask_set_cpu(cpu, policy->cpus); 1038 1039 if (has_target()) { 1040 ret = cpufreq_start_governor(policy); 1041 if (ret) 1042 pr_err("%s: Failed to start governor\n", __func__); 1043 } 1044 up_write(&policy->rwsem); 1045 return ret; 1046 } 1047 1048 static void handle_update(struct work_struct *work) 1049 { 1050 struct cpufreq_policy *policy = 1051 container_of(work, struct cpufreq_policy, update); 1052 unsigned int cpu = policy->cpu; 1053 pr_debug("handle_update for cpu %u called\n", cpu); 1054 cpufreq_update_policy(cpu); 1055 } 1056 1057 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu) 1058 { 1059 struct device *dev = get_cpu_device(cpu); 1060 struct cpufreq_policy *policy; 1061 int ret; 1062 1063 if (WARN_ON(!dev)) 1064 return NULL; 1065 1066 policy = kzalloc(sizeof(*policy), GFP_KERNEL); 1067 if (!policy) 1068 return NULL; 1069 1070 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) 1071 goto err_free_policy; 1072 1073 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) 1074 goto err_free_cpumask; 1075 1076 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL)) 1077 goto err_free_rcpumask; 1078 1079 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, 1080 cpufreq_global_kobject, "policy%u", cpu); 1081 if (ret) { 1082 pr_err("%s: failed to init policy->kobj: %d\n", __func__, ret); 1083 goto err_free_real_cpus; 1084 } 1085 1086 INIT_LIST_HEAD(&policy->policy_list); 1087 init_rwsem(&policy->rwsem); 1088 spin_lock_init(&policy->transition_lock); 1089 init_waitqueue_head(&policy->transition_wait); 1090 init_completion(&policy->kobj_unregister); 1091 INIT_WORK(&policy->update, handle_update); 1092 1093 policy->cpu = cpu; 1094 return policy; 1095 1096 err_free_real_cpus: 1097 free_cpumask_var(policy->real_cpus); 1098 err_free_rcpumask: 1099 free_cpumask_var(policy->related_cpus); 1100 err_free_cpumask: 1101 free_cpumask_var(policy->cpus); 1102 err_free_policy: 1103 kfree(policy); 1104 1105 return NULL; 1106 } 1107 1108 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy, bool notify) 1109 { 1110 struct kobject *kobj; 1111 struct completion *cmp; 1112 1113 if (notify) 1114 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1115 CPUFREQ_REMOVE_POLICY, policy); 1116 1117 down_write(&policy->rwsem); 1118 cpufreq_remove_dev_symlink(policy); 1119 kobj = &policy->kobj; 1120 cmp = &policy->kobj_unregister; 1121 up_write(&policy->rwsem); 1122 kobject_put(kobj); 1123 1124 /* 1125 * We need to make sure that the underlying kobj is 1126 * actually not referenced anymore by anybody before we 1127 * proceed with unloading. 1128 */ 1129 pr_debug("waiting for dropping of refcount\n"); 1130 wait_for_completion(cmp); 1131 pr_debug("wait complete\n"); 1132 } 1133 1134 static void cpufreq_policy_free(struct cpufreq_policy *policy, bool notify) 1135 { 1136 unsigned long flags; 1137 int cpu; 1138 1139 /* Remove policy from list */ 1140 write_lock_irqsave(&cpufreq_driver_lock, flags); 1141 list_del(&policy->policy_list); 1142 1143 for_each_cpu(cpu, policy->related_cpus) 1144 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1145 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1146 1147 cpufreq_policy_put_kobj(policy, notify); 1148 free_cpumask_var(policy->real_cpus); 1149 free_cpumask_var(policy->related_cpus); 1150 free_cpumask_var(policy->cpus); 1151 kfree(policy); 1152 } 1153 1154 static int cpufreq_online(unsigned int cpu) 1155 { 1156 struct cpufreq_policy *policy; 1157 bool new_policy; 1158 unsigned long flags; 1159 unsigned int j; 1160 int ret; 1161 1162 pr_debug("%s: bringing CPU%u online\n", __func__, cpu); 1163 1164 /* Check if this CPU already has a policy to manage it */ 1165 policy = per_cpu(cpufreq_cpu_data, cpu); 1166 if (policy) { 1167 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus)); 1168 if (!policy_is_inactive(policy)) 1169 return cpufreq_add_policy_cpu(policy, cpu); 1170 1171 /* This is the only online CPU for the policy. Start over. */ 1172 new_policy = false; 1173 down_write(&policy->rwsem); 1174 policy->cpu = cpu; 1175 policy->governor = NULL; 1176 up_write(&policy->rwsem); 1177 } else { 1178 new_policy = true; 1179 policy = cpufreq_policy_alloc(cpu); 1180 if (!policy) 1181 return -ENOMEM; 1182 } 1183 1184 cpumask_copy(policy->cpus, cpumask_of(cpu)); 1185 1186 /* call driver. From then on the cpufreq must be able 1187 * to accept all calls to ->verify and ->setpolicy for this CPU 1188 */ 1189 ret = cpufreq_driver->init(policy); 1190 if (ret) { 1191 pr_debug("initialization failed\n"); 1192 goto out_free_policy; 1193 } 1194 1195 down_write(&policy->rwsem); 1196 1197 if (new_policy) { 1198 /* related_cpus should at least include policy->cpus. */ 1199 cpumask_copy(policy->related_cpus, policy->cpus); 1200 /* Remember CPUs present at the policy creation time. */ 1201 cpumask_and(policy->real_cpus, policy->cpus, cpu_present_mask); 1202 } 1203 1204 /* 1205 * affected cpus must always be the one, which are online. We aren't 1206 * managing offline cpus here. 1207 */ 1208 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask); 1209 1210 if (new_policy) { 1211 policy->user_policy.min = policy->min; 1212 policy->user_policy.max = policy->max; 1213 1214 write_lock_irqsave(&cpufreq_driver_lock, flags); 1215 for_each_cpu(j, policy->related_cpus) 1216 per_cpu(cpufreq_cpu_data, j) = policy; 1217 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1218 } 1219 1220 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) { 1221 policy->cur = cpufreq_driver->get(policy->cpu); 1222 if (!policy->cur) { 1223 pr_err("%s: ->get() failed\n", __func__); 1224 goto out_exit_policy; 1225 } 1226 } 1227 1228 /* 1229 * Sometimes boot loaders set CPU frequency to a value outside of 1230 * frequency table present with cpufreq core. In such cases CPU might be 1231 * unstable if it has to run on that frequency for long duration of time 1232 * and so its better to set it to a frequency which is specified in 1233 * freq-table. This also makes cpufreq stats inconsistent as 1234 * cpufreq-stats would fail to register because current frequency of CPU 1235 * isn't found in freq-table. 1236 * 1237 * Because we don't want this change to effect boot process badly, we go 1238 * for the next freq which is >= policy->cur ('cur' must be set by now, 1239 * otherwise we will end up setting freq to lowest of the table as 'cur' 1240 * is initialized to zero). 1241 * 1242 * We are passing target-freq as "policy->cur - 1" otherwise 1243 * __cpufreq_driver_target() would simply fail, as policy->cur will be 1244 * equal to target-freq. 1245 */ 1246 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK) 1247 && has_target()) { 1248 /* Are we running at unknown frequency ? */ 1249 ret = cpufreq_frequency_table_get_index(policy, policy->cur); 1250 if (ret == -EINVAL) { 1251 /* Warn user and fix it */ 1252 pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n", 1253 __func__, policy->cpu, policy->cur); 1254 ret = __cpufreq_driver_target(policy, policy->cur - 1, 1255 CPUFREQ_RELATION_L); 1256 1257 /* 1258 * Reaching here after boot in a few seconds may not 1259 * mean that system will remain stable at "unknown" 1260 * frequency for longer duration. Hence, a BUG_ON(). 1261 */ 1262 BUG_ON(ret); 1263 pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n", 1264 __func__, policy->cpu, policy->cur); 1265 } 1266 } 1267 1268 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1269 CPUFREQ_START, policy); 1270 1271 if (new_policy) { 1272 ret = cpufreq_add_dev_interface(policy); 1273 if (ret) 1274 goto out_exit_policy; 1275 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1276 CPUFREQ_CREATE_POLICY, policy); 1277 1278 write_lock_irqsave(&cpufreq_driver_lock, flags); 1279 list_add(&policy->policy_list, &cpufreq_policy_list); 1280 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1281 } 1282 1283 ret = cpufreq_init_policy(policy); 1284 if (ret) { 1285 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n", 1286 __func__, cpu, ret); 1287 /* cpufreq_policy_free() will notify based on this */ 1288 new_policy = false; 1289 goto out_exit_policy; 1290 } 1291 1292 up_write(&policy->rwsem); 1293 1294 kobject_uevent(&policy->kobj, KOBJ_ADD); 1295 1296 /* Callback for handling stuff after policy is ready */ 1297 if (cpufreq_driver->ready) 1298 cpufreq_driver->ready(policy); 1299 1300 pr_debug("initialization complete\n"); 1301 1302 return 0; 1303 1304 out_exit_policy: 1305 up_write(&policy->rwsem); 1306 1307 if (cpufreq_driver->exit) 1308 cpufreq_driver->exit(policy); 1309 out_free_policy: 1310 cpufreq_policy_free(policy, !new_policy); 1311 return ret; 1312 } 1313 1314 /** 1315 * cpufreq_add_dev - the cpufreq interface for a CPU device. 1316 * @dev: CPU device. 1317 * @sif: Subsystem interface structure pointer (not used) 1318 */ 1319 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 1320 { 1321 struct cpufreq_policy *policy; 1322 unsigned cpu = dev->id; 1323 1324 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu); 1325 1326 if (cpu_online(cpu)) 1327 return cpufreq_online(cpu); 1328 1329 /* 1330 * A hotplug notifier will follow and we will handle it as CPU online 1331 * then. For now, just create the sysfs link, unless there is no policy 1332 * or the link is already present. 1333 */ 1334 policy = per_cpu(cpufreq_cpu_data, cpu); 1335 if (!policy || cpumask_test_and_set_cpu(cpu, policy->real_cpus)) 1336 return 0; 1337 1338 return add_cpu_dev_symlink(policy, cpu); 1339 } 1340 1341 static void cpufreq_offline(unsigned int cpu) 1342 { 1343 struct cpufreq_policy *policy; 1344 int ret; 1345 1346 pr_debug("%s: unregistering CPU %u\n", __func__, cpu); 1347 1348 policy = cpufreq_cpu_get_raw(cpu); 1349 if (!policy) { 1350 pr_debug("%s: No cpu_data found\n", __func__); 1351 return; 1352 } 1353 1354 down_write(&policy->rwsem); 1355 if (has_target()) 1356 cpufreq_stop_governor(policy); 1357 1358 cpumask_clear_cpu(cpu, policy->cpus); 1359 1360 if (policy_is_inactive(policy)) { 1361 if (has_target()) 1362 strncpy(policy->last_governor, policy->governor->name, 1363 CPUFREQ_NAME_LEN); 1364 else 1365 policy->last_policy = policy->policy; 1366 } else if (cpu == policy->cpu) { 1367 /* Nominate new CPU */ 1368 policy->cpu = cpumask_any(policy->cpus); 1369 } 1370 1371 /* Start governor again for active policy */ 1372 if (!policy_is_inactive(policy)) { 1373 if (has_target()) { 1374 ret = cpufreq_start_governor(policy); 1375 if (ret) 1376 pr_err("%s: Failed to start governor\n", __func__); 1377 } 1378 1379 goto unlock; 1380 } 1381 1382 if (cpufreq_driver->stop_cpu) 1383 cpufreq_driver->stop_cpu(policy); 1384 1385 if (has_target()) 1386 cpufreq_exit_governor(policy); 1387 1388 /* 1389 * Perform the ->exit() even during light-weight tear-down, 1390 * since this is a core component, and is essential for the 1391 * subsequent light-weight ->init() to succeed. 1392 */ 1393 if (cpufreq_driver->exit) { 1394 cpufreq_driver->exit(policy); 1395 policy->freq_table = NULL; 1396 } 1397 1398 unlock: 1399 up_write(&policy->rwsem); 1400 } 1401 1402 /** 1403 * cpufreq_remove_dev - remove a CPU device 1404 * 1405 * Removes the cpufreq interface for a CPU device. 1406 */ 1407 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif) 1408 { 1409 unsigned int cpu = dev->id; 1410 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1411 1412 if (!policy) 1413 return; 1414 1415 if (cpu_online(cpu)) 1416 cpufreq_offline(cpu); 1417 1418 cpumask_clear_cpu(cpu, policy->real_cpus); 1419 remove_cpu_dev_symlink(policy, cpu); 1420 1421 if (cpumask_empty(policy->real_cpus)) 1422 cpufreq_policy_free(policy, true); 1423 } 1424 1425 /** 1426 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're 1427 * in deep trouble. 1428 * @policy: policy managing CPUs 1429 * @new_freq: CPU frequency the CPU actually runs at 1430 * 1431 * We adjust to current frequency first, and need to clean up later. 1432 * So either call to cpufreq_update_policy() or schedule handle_update()). 1433 */ 1434 static void cpufreq_out_of_sync(struct cpufreq_policy *policy, 1435 unsigned int new_freq) 1436 { 1437 struct cpufreq_freqs freqs; 1438 1439 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n", 1440 policy->cur, new_freq); 1441 1442 freqs.old = policy->cur; 1443 freqs.new = new_freq; 1444 1445 cpufreq_freq_transition_begin(policy, &freqs); 1446 cpufreq_freq_transition_end(policy, &freqs, 0); 1447 } 1448 1449 /** 1450 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur 1451 * @cpu: CPU number 1452 * 1453 * This is the last known freq, without actually getting it from the driver. 1454 * Return value will be same as what is shown in scaling_cur_freq in sysfs. 1455 */ 1456 unsigned int cpufreq_quick_get(unsigned int cpu) 1457 { 1458 struct cpufreq_policy *policy; 1459 unsigned int ret_freq = 0; 1460 unsigned long flags; 1461 1462 read_lock_irqsave(&cpufreq_driver_lock, flags); 1463 1464 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) { 1465 ret_freq = cpufreq_driver->get(cpu); 1466 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1467 return ret_freq; 1468 } 1469 1470 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1471 1472 policy = cpufreq_cpu_get(cpu); 1473 if (policy) { 1474 ret_freq = policy->cur; 1475 cpufreq_cpu_put(policy); 1476 } 1477 1478 return ret_freq; 1479 } 1480 EXPORT_SYMBOL(cpufreq_quick_get); 1481 1482 /** 1483 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU 1484 * @cpu: CPU number 1485 * 1486 * Just return the max possible frequency for a given CPU. 1487 */ 1488 unsigned int cpufreq_quick_get_max(unsigned int cpu) 1489 { 1490 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1491 unsigned int ret_freq = 0; 1492 1493 if (policy) { 1494 ret_freq = policy->max; 1495 cpufreq_cpu_put(policy); 1496 } 1497 1498 return ret_freq; 1499 } 1500 EXPORT_SYMBOL(cpufreq_quick_get_max); 1501 1502 static unsigned int __cpufreq_get(struct cpufreq_policy *policy) 1503 { 1504 unsigned int ret_freq = 0; 1505 1506 if (!cpufreq_driver->get) 1507 return ret_freq; 1508 1509 ret_freq = cpufreq_driver->get(policy->cpu); 1510 1511 /* 1512 * Updating inactive policies is invalid, so avoid doing that. Also 1513 * if fast frequency switching is used with the given policy, the check 1514 * against policy->cur is pointless, so skip it in that case too. 1515 */ 1516 if (unlikely(policy_is_inactive(policy)) || policy->fast_switch_enabled) 1517 return ret_freq; 1518 1519 if (ret_freq && policy->cur && 1520 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) { 1521 /* verify no discrepancy between actual and 1522 saved value exists */ 1523 if (unlikely(ret_freq != policy->cur)) { 1524 cpufreq_out_of_sync(policy, ret_freq); 1525 schedule_work(&policy->update); 1526 } 1527 } 1528 1529 return ret_freq; 1530 } 1531 1532 /** 1533 * cpufreq_get - get the current CPU frequency (in kHz) 1534 * @cpu: CPU number 1535 * 1536 * Get the CPU current (static) CPU frequency 1537 */ 1538 unsigned int cpufreq_get(unsigned int cpu) 1539 { 1540 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1541 unsigned int ret_freq = 0; 1542 1543 if (policy) { 1544 down_read(&policy->rwsem); 1545 ret_freq = __cpufreq_get(policy); 1546 up_read(&policy->rwsem); 1547 1548 cpufreq_cpu_put(policy); 1549 } 1550 1551 return ret_freq; 1552 } 1553 EXPORT_SYMBOL(cpufreq_get); 1554 1555 static unsigned int cpufreq_update_current_freq(struct cpufreq_policy *policy) 1556 { 1557 unsigned int new_freq; 1558 1559 if (cpufreq_suspended) 1560 return 0; 1561 1562 new_freq = cpufreq_driver->get(policy->cpu); 1563 if (!new_freq) 1564 return 0; 1565 1566 if (!policy->cur) { 1567 pr_debug("cpufreq: Driver did not initialize current freq\n"); 1568 policy->cur = new_freq; 1569 } else if (policy->cur != new_freq && has_target()) { 1570 cpufreq_out_of_sync(policy, new_freq); 1571 } 1572 1573 return new_freq; 1574 } 1575 1576 static struct subsys_interface cpufreq_interface = { 1577 .name = "cpufreq", 1578 .subsys = &cpu_subsys, 1579 .add_dev = cpufreq_add_dev, 1580 .remove_dev = cpufreq_remove_dev, 1581 }; 1582 1583 /* 1584 * In case platform wants some specific frequency to be configured 1585 * during suspend.. 1586 */ 1587 int cpufreq_generic_suspend(struct cpufreq_policy *policy) 1588 { 1589 int ret; 1590 1591 if (!policy->suspend_freq) { 1592 pr_debug("%s: suspend_freq not defined\n", __func__); 1593 return 0; 1594 } 1595 1596 pr_debug("%s: Setting suspend-freq: %u\n", __func__, 1597 policy->suspend_freq); 1598 1599 ret = __cpufreq_driver_target(policy, policy->suspend_freq, 1600 CPUFREQ_RELATION_H); 1601 if (ret) 1602 pr_err("%s: unable to set suspend-freq: %u. err: %d\n", 1603 __func__, policy->suspend_freq, ret); 1604 1605 return ret; 1606 } 1607 EXPORT_SYMBOL(cpufreq_generic_suspend); 1608 1609 /** 1610 * cpufreq_suspend() - Suspend CPUFreq governors 1611 * 1612 * Called during system wide Suspend/Hibernate cycles for suspending governors 1613 * as some platforms can't change frequency after this point in suspend cycle. 1614 * Because some of the devices (like: i2c, regulators, etc) they use for 1615 * changing frequency are suspended quickly after this point. 1616 */ 1617 void cpufreq_suspend(void) 1618 { 1619 struct cpufreq_policy *policy; 1620 1621 if (!cpufreq_driver) 1622 return; 1623 1624 if (!has_target() && !cpufreq_driver->suspend) 1625 goto suspend; 1626 1627 pr_debug("%s: Suspending Governors\n", __func__); 1628 1629 for_each_active_policy(policy) { 1630 if (has_target()) { 1631 down_write(&policy->rwsem); 1632 cpufreq_stop_governor(policy); 1633 up_write(&policy->rwsem); 1634 } 1635 1636 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy)) 1637 pr_err("%s: Failed to suspend driver: %p\n", __func__, 1638 policy); 1639 } 1640 1641 suspend: 1642 cpufreq_suspended = true; 1643 } 1644 1645 /** 1646 * cpufreq_resume() - Resume CPUFreq governors 1647 * 1648 * Called during system wide Suspend/Hibernate cycle for resuming governors that 1649 * are suspended with cpufreq_suspend(). 1650 */ 1651 void cpufreq_resume(void) 1652 { 1653 struct cpufreq_policy *policy; 1654 int ret; 1655 1656 if (!cpufreq_driver) 1657 return; 1658 1659 cpufreq_suspended = false; 1660 1661 if (!has_target() && !cpufreq_driver->resume) 1662 return; 1663 1664 pr_debug("%s: Resuming Governors\n", __func__); 1665 1666 for_each_active_policy(policy) { 1667 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) { 1668 pr_err("%s: Failed to resume driver: %p\n", __func__, 1669 policy); 1670 } else if (has_target()) { 1671 down_write(&policy->rwsem); 1672 ret = cpufreq_start_governor(policy); 1673 up_write(&policy->rwsem); 1674 1675 if (ret) 1676 pr_err("%s: Failed to start governor for policy: %p\n", 1677 __func__, policy); 1678 } 1679 } 1680 } 1681 1682 /** 1683 * cpufreq_get_current_driver - return current driver's name 1684 * 1685 * Return the name string of the currently loaded cpufreq driver 1686 * or NULL, if none. 1687 */ 1688 const char *cpufreq_get_current_driver(void) 1689 { 1690 if (cpufreq_driver) 1691 return cpufreq_driver->name; 1692 1693 return NULL; 1694 } 1695 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver); 1696 1697 /** 1698 * cpufreq_get_driver_data - return current driver data 1699 * 1700 * Return the private data of the currently loaded cpufreq 1701 * driver, or NULL if no cpufreq driver is loaded. 1702 */ 1703 void *cpufreq_get_driver_data(void) 1704 { 1705 if (cpufreq_driver) 1706 return cpufreq_driver->driver_data; 1707 1708 return NULL; 1709 } 1710 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data); 1711 1712 /********************************************************************* 1713 * NOTIFIER LISTS INTERFACE * 1714 *********************************************************************/ 1715 1716 /** 1717 * cpufreq_register_notifier - register a driver with cpufreq 1718 * @nb: notifier function to register 1719 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1720 * 1721 * Add a driver to one of two lists: either a list of drivers that 1722 * are notified about clock rate changes (once before and once after 1723 * the transition), or a list of drivers that are notified about 1724 * changes in cpufreq policy. 1725 * 1726 * This function may sleep, and has the same return conditions as 1727 * blocking_notifier_chain_register. 1728 */ 1729 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 1730 { 1731 int ret; 1732 1733 if (cpufreq_disabled()) 1734 return -EINVAL; 1735 1736 WARN_ON(!init_cpufreq_transition_notifier_list_called); 1737 1738 switch (list) { 1739 case CPUFREQ_TRANSITION_NOTIFIER: 1740 mutex_lock(&cpufreq_fast_switch_lock); 1741 1742 if (cpufreq_fast_switch_count > 0) { 1743 mutex_unlock(&cpufreq_fast_switch_lock); 1744 return -EBUSY; 1745 } 1746 ret = srcu_notifier_chain_register( 1747 &cpufreq_transition_notifier_list, nb); 1748 if (!ret) 1749 cpufreq_fast_switch_count--; 1750 1751 mutex_unlock(&cpufreq_fast_switch_lock); 1752 break; 1753 case CPUFREQ_POLICY_NOTIFIER: 1754 ret = blocking_notifier_chain_register( 1755 &cpufreq_policy_notifier_list, nb); 1756 break; 1757 default: 1758 ret = -EINVAL; 1759 } 1760 1761 return ret; 1762 } 1763 EXPORT_SYMBOL(cpufreq_register_notifier); 1764 1765 /** 1766 * cpufreq_unregister_notifier - unregister a driver with cpufreq 1767 * @nb: notifier block to be unregistered 1768 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER 1769 * 1770 * Remove a driver from the CPU frequency notifier list. 1771 * 1772 * This function may sleep, and has the same return conditions as 1773 * blocking_notifier_chain_unregister. 1774 */ 1775 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 1776 { 1777 int ret; 1778 1779 if (cpufreq_disabled()) 1780 return -EINVAL; 1781 1782 switch (list) { 1783 case CPUFREQ_TRANSITION_NOTIFIER: 1784 mutex_lock(&cpufreq_fast_switch_lock); 1785 1786 ret = srcu_notifier_chain_unregister( 1787 &cpufreq_transition_notifier_list, nb); 1788 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0)) 1789 cpufreq_fast_switch_count++; 1790 1791 mutex_unlock(&cpufreq_fast_switch_lock); 1792 break; 1793 case CPUFREQ_POLICY_NOTIFIER: 1794 ret = blocking_notifier_chain_unregister( 1795 &cpufreq_policy_notifier_list, nb); 1796 break; 1797 default: 1798 ret = -EINVAL; 1799 } 1800 1801 return ret; 1802 } 1803 EXPORT_SYMBOL(cpufreq_unregister_notifier); 1804 1805 1806 /********************************************************************* 1807 * GOVERNORS * 1808 *********************************************************************/ 1809 1810 /** 1811 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch. 1812 * @policy: cpufreq policy to switch the frequency for. 1813 * @target_freq: New frequency to set (may be approximate). 1814 * 1815 * Carry out a fast frequency switch without sleeping. 1816 * 1817 * The driver's ->fast_switch() callback invoked by this function must be 1818 * suitable for being called from within RCU-sched read-side critical sections 1819 * and it is expected to select the minimum available frequency greater than or 1820 * equal to @target_freq (CPUFREQ_RELATION_L). 1821 * 1822 * This function must not be called if policy->fast_switch_enabled is unset. 1823 * 1824 * Governors calling this function must guarantee that it will never be invoked 1825 * twice in parallel for the same policy and that it will never be called in 1826 * parallel with either ->target() or ->target_index() for the same policy. 1827 * 1828 * If CPUFREQ_ENTRY_INVALID is returned by the driver's ->fast_switch() 1829 * callback to indicate an error condition, the hardware configuration must be 1830 * preserved. 1831 */ 1832 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy, 1833 unsigned int target_freq) 1834 { 1835 target_freq = clamp_val(target_freq, policy->min, policy->max); 1836 1837 return cpufreq_driver->fast_switch(policy, target_freq); 1838 } 1839 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch); 1840 1841 /* Must set freqs->new to intermediate frequency */ 1842 static int __target_intermediate(struct cpufreq_policy *policy, 1843 struct cpufreq_freqs *freqs, int index) 1844 { 1845 int ret; 1846 1847 freqs->new = cpufreq_driver->get_intermediate(policy, index); 1848 1849 /* We don't need to switch to intermediate freq */ 1850 if (!freqs->new) 1851 return 0; 1852 1853 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n", 1854 __func__, policy->cpu, freqs->old, freqs->new); 1855 1856 cpufreq_freq_transition_begin(policy, freqs); 1857 ret = cpufreq_driver->target_intermediate(policy, index); 1858 cpufreq_freq_transition_end(policy, freqs, ret); 1859 1860 if (ret) 1861 pr_err("%s: Failed to change to intermediate frequency: %d\n", 1862 __func__, ret); 1863 1864 return ret; 1865 } 1866 1867 static int __target_index(struct cpufreq_policy *policy, 1868 struct cpufreq_frequency_table *freq_table, int index) 1869 { 1870 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0}; 1871 unsigned int intermediate_freq = 0; 1872 int retval = -EINVAL; 1873 bool notify; 1874 1875 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION); 1876 if (notify) { 1877 /* Handle switching to intermediate frequency */ 1878 if (cpufreq_driver->get_intermediate) { 1879 retval = __target_intermediate(policy, &freqs, index); 1880 if (retval) 1881 return retval; 1882 1883 intermediate_freq = freqs.new; 1884 /* Set old freq to intermediate */ 1885 if (intermediate_freq) 1886 freqs.old = freqs.new; 1887 } 1888 1889 freqs.new = freq_table[index].frequency; 1890 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n", 1891 __func__, policy->cpu, freqs.old, freqs.new); 1892 1893 cpufreq_freq_transition_begin(policy, &freqs); 1894 } 1895 1896 retval = cpufreq_driver->target_index(policy, index); 1897 if (retval) 1898 pr_err("%s: Failed to change cpu frequency: %d\n", __func__, 1899 retval); 1900 1901 if (notify) { 1902 cpufreq_freq_transition_end(policy, &freqs, retval); 1903 1904 /* 1905 * Failed after setting to intermediate freq? Driver should have 1906 * reverted back to initial frequency and so should we. Check 1907 * here for intermediate_freq instead of get_intermediate, in 1908 * case we haven't switched to intermediate freq at all. 1909 */ 1910 if (unlikely(retval && intermediate_freq)) { 1911 freqs.old = intermediate_freq; 1912 freqs.new = policy->restore_freq; 1913 cpufreq_freq_transition_begin(policy, &freqs); 1914 cpufreq_freq_transition_end(policy, &freqs, 0); 1915 } 1916 } 1917 1918 return retval; 1919 } 1920 1921 int __cpufreq_driver_target(struct cpufreq_policy *policy, 1922 unsigned int target_freq, 1923 unsigned int relation) 1924 { 1925 unsigned int old_target_freq = target_freq; 1926 struct cpufreq_frequency_table *freq_table; 1927 int index, retval; 1928 1929 if (cpufreq_disabled()) 1930 return -ENODEV; 1931 1932 /* Make sure that target_freq is within supported range */ 1933 if (target_freq > policy->max) 1934 target_freq = policy->max; 1935 if (target_freq < policy->min) 1936 target_freq = policy->min; 1937 1938 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n", 1939 policy->cpu, target_freq, relation, old_target_freq); 1940 1941 /* 1942 * This might look like a redundant call as we are checking it again 1943 * after finding index. But it is left intentionally for cases where 1944 * exactly same freq is called again and so we can save on few function 1945 * calls. 1946 */ 1947 if (target_freq == policy->cur) 1948 return 0; 1949 1950 /* Save last value to restore later on errors */ 1951 policy->restore_freq = policy->cur; 1952 1953 if (cpufreq_driver->target) 1954 return cpufreq_driver->target(policy, target_freq, relation); 1955 1956 if (!cpufreq_driver->target_index) 1957 return -EINVAL; 1958 1959 freq_table = cpufreq_frequency_get_table(policy->cpu); 1960 if (unlikely(!freq_table)) { 1961 pr_err("%s: Unable to find freq_table\n", __func__); 1962 return -EINVAL; 1963 } 1964 1965 retval = cpufreq_frequency_table_target(policy, freq_table, target_freq, 1966 relation, &index); 1967 if (unlikely(retval)) { 1968 pr_err("%s: Unable to find matching freq\n", __func__); 1969 return retval; 1970 } 1971 1972 if (freq_table[index].frequency == policy->cur) 1973 return 0; 1974 1975 return __target_index(policy, freq_table, index); 1976 } 1977 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 1978 1979 int cpufreq_driver_target(struct cpufreq_policy *policy, 1980 unsigned int target_freq, 1981 unsigned int relation) 1982 { 1983 int ret = -EINVAL; 1984 1985 down_write(&policy->rwsem); 1986 1987 ret = __cpufreq_driver_target(policy, target_freq, relation); 1988 1989 up_write(&policy->rwsem); 1990 1991 return ret; 1992 } 1993 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 1994 1995 __weak struct cpufreq_governor *cpufreq_fallback_governor(void) 1996 { 1997 return NULL; 1998 } 1999 2000 static int cpufreq_governor(struct cpufreq_policy *policy, unsigned int event) 2001 { 2002 int ret; 2003 2004 /* Don't start any governor operations if we are entering suspend */ 2005 if (cpufreq_suspended) 2006 return 0; 2007 /* 2008 * Governor might not be initiated here if ACPI _PPC changed 2009 * notification happened, so check it. 2010 */ 2011 if (!policy->governor) 2012 return -EINVAL; 2013 2014 if (policy->governor->max_transition_latency && 2015 policy->cpuinfo.transition_latency > 2016 policy->governor->max_transition_latency) { 2017 struct cpufreq_governor *gov = cpufreq_fallback_governor(); 2018 2019 if (gov) { 2020 pr_warn("%s governor failed, too long transition latency of HW, fallback to %s governor\n", 2021 policy->governor->name, gov->name); 2022 policy->governor = gov; 2023 } else { 2024 return -EINVAL; 2025 } 2026 } 2027 2028 if (event == CPUFREQ_GOV_POLICY_INIT) 2029 if (!try_module_get(policy->governor->owner)) 2030 return -EINVAL; 2031 2032 pr_debug("%s: for CPU %u, event %u\n", __func__, policy->cpu, event); 2033 2034 ret = policy->governor->governor(policy, event); 2035 2036 if (event == CPUFREQ_GOV_POLICY_INIT) { 2037 if (ret) 2038 module_put(policy->governor->owner); 2039 else 2040 policy->governor->initialized++; 2041 } else if (event == CPUFREQ_GOV_POLICY_EXIT) { 2042 policy->governor->initialized--; 2043 module_put(policy->governor->owner); 2044 } 2045 2046 return ret; 2047 } 2048 2049 static int cpufreq_start_governor(struct cpufreq_policy *policy) 2050 { 2051 int ret; 2052 2053 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) 2054 cpufreq_update_current_freq(policy); 2055 2056 ret = cpufreq_governor(policy, CPUFREQ_GOV_START); 2057 return ret ? ret : cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); 2058 } 2059 2060 int cpufreq_register_governor(struct cpufreq_governor *governor) 2061 { 2062 int err; 2063 2064 if (!governor) 2065 return -EINVAL; 2066 2067 if (cpufreq_disabled()) 2068 return -ENODEV; 2069 2070 mutex_lock(&cpufreq_governor_mutex); 2071 2072 governor->initialized = 0; 2073 err = -EBUSY; 2074 if (!find_governor(governor->name)) { 2075 err = 0; 2076 list_add(&governor->governor_list, &cpufreq_governor_list); 2077 } 2078 2079 mutex_unlock(&cpufreq_governor_mutex); 2080 return err; 2081 } 2082 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 2083 2084 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 2085 { 2086 struct cpufreq_policy *policy; 2087 unsigned long flags; 2088 2089 if (!governor) 2090 return; 2091 2092 if (cpufreq_disabled()) 2093 return; 2094 2095 /* clear last_governor for all inactive policies */ 2096 read_lock_irqsave(&cpufreq_driver_lock, flags); 2097 for_each_inactive_policy(policy) { 2098 if (!strcmp(policy->last_governor, governor->name)) { 2099 policy->governor = NULL; 2100 strcpy(policy->last_governor, "\0"); 2101 } 2102 } 2103 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 2104 2105 mutex_lock(&cpufreq_governor_mutex); 2106 list_del(&governor->governor_list); 2107 mutex_unlock(&cpufreq_governor_mutex); 2108 return; 2109 } 2110 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 2111 2112 2113 /********************************************************************* 2114 * POLICY INTERFACE * 2115 *********************************************************************/ 2116 2117 /** 2118 * cpufreq_get_policy - get the current cpufreq_policy 2119 * @policy: struct cpufreq_policy into which the current cpufreq_policy 2120 * is written 2121 * 2122 * Reads the current cpufreq policy. 2123 */ 2124 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 2125 { 2126 struct cpufreq_policy *cpu_policy; 2127 if (!policy) 2128 return -EINVAL; 2129 2130 cpu_policy = cpufreq_cpu_get(cpu); 2131 if (!cpu_policy) 2132 return -EINVAL; 2133 2134 memcpy(policy, cpu_policy, sizeof(*policy)); 2135 2136 cpufreq_cpu_put(cpu_policy); 2137 return 0; 2138 } 2139 EXPORT_SYMBOL(cpufreq_get_policy); 2140 2141 /* 2142 * policy : current policy. 2143 * new_policy: policy to be set. 2144 */ 2145 static int cpufreq_set_policy(struct cpufreq_policy *policy, 2146 struct cpufreq_policy *new_policy) 2147 { 2148 struct cpufreq_governor *old_gov; 2149 int ret; 2150 2151 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", 2152 new_policy->cpu, new_policy->min, new_policy->max); 2153 2154 memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo)); 2155 2156 /* 2157 * This check works well when we store new min/max freq attributes, 2158 * because new_policy is a copy of policy with one field updated. 2159 */ 2160 if (new_policy->min > new_policy->max) 2161 return -EINVAL; 2162 2163 /* verify the cpu speed can be set within this limit */ 2164 ret = cpufreq_driver->verify(new_policy); 2165 if (ret) 2166 return ret; 2167 2168 /* adjust if necessary - all reasons */ 2169 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 2170 CPUFREQ_ADJUST, new_policy); 2171 2172 /* 2173 * verify the cpu speed can be set within this limit, which might be 2174 * different to the first one 2175 */ 2176 ret = cpufreq_driver->verify(new_policy); 2177 if (ret) 2178 return ret; 2179 2180 /* notification of the new policy */ 2181 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 2182 CPUFREQ_NOTIFY, new_policy); 2183 2184 policy->min = new_policy->min; 2185 policy->max = new_policy->max; 2186 2187 pr_debug("new min and max freqs are %u - %u kHz\n", 2188 policy->min, policy->max); 2189 2190 if (cpufreq_driver->setpolicy) { 2191 policy->policy = new_policy->policy; 2192 pr_debug("setting range\n"); 2193 return cpufreq_driver->setpolicy(new_policy); 2194 } 2195 2196 if (new_policy->governor == policy->governor) { 2197 pr_debug("cpufreq: governor limits update\n"); 2198 return cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); 2199 } 2200 2201 pr_debug("governor switch\n"); 2202 2203 /* save old, working values */ 2204 old_gov = policy->governor; 2205 /* end old governor */ 2206 if (old_gov) { 2207 cpufreq_stop_governor(policy); 2208 cpufreq_exit_governor(policy); 2209 } 2210 2211 /* start new governor */ 2212 policy->governor = new_policy->governor; 2213 ret = cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT); 2214 if (!ret) { 2215 ret = cpufreq_start_governor(policy); 2216 if (!ret) { 2217 pr_debug("cpufreq: governor change\n"); 2218 return 0; 2219 } 2220 cpufreq_exit_governor(policy); 2221 } 2222 2223 /* new governor failed, so re-start old one */ 2224 pr_debug("starting governor %s failed\n", policy->governor->name); 2225 if (old_gov) { 2226 policy->governor = old_gov; 2227 if (cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT)) 2228 policy->governor = NULL; 2229 else 2230 cpufreq_start_governor(policy); 2231 } 2232 2233 return ret; 2234 } 2235 2236 /** 2237 * cpufreq_update_policy - re-evaluate an existing cpufreq policy 2238 * @cpu: CPU which shall be re-evaluated 2239 * 2240 * Useful for policy notifiers which have different necessities 2241 * at different times. 2242 */ 2243 int cpufreq_update_policy(unsigned int cpu) 2244 { 2245 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 2246 struct cpufreq_policy new_policy; 2247 int ret; 2248 2249 if (!policy) 2250 return -ENODEV; 2251 2252 down_write(&policy->rwsem); 2253 2254 pr_debug("updating policy for CPU %u\n", cpu); 2255 memcpy(&new_policy, policy, sizeof(*policy)); 2256 new_policy.min = policy->user_policy.min; 2257 new_policy.max = policy->user_policy.max; 2258 2259 /* 2260 * BIOS might change freq behind our back 2261 * -> ask driver for current freq and notify governors about a change 2262 */ 2263 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) { 2264 new_policy.cur = cpufreq_update_current_freq(policy); 2265 if (WARN_ON(!new_policy.cur)) { 2266 ret = -EIO; 2267 goto unlock; 2268 } 2269 } 2270 2271 ret = cpufreq_set_policy(policy, &new_policy); 2272 2273 unlock: 2274 up_write(&policy->rwsem); 2275 2276 cpufreq_cpu_put(policy); 2277 return ret; 2278 } 2279 EXPORT_SYMBOL(cpufreq_update_policy); 2280 2281 static int cpufreq_cpu_callback(struct notifier_block *nfb, 2282 unsigned long action, void *hcpu) 2283 { 2284 unsigned int cpu = (unsigned long)hcpu; 2285 2286 switch (action & ~CPU_TASKS_FROZEN) { 2287 case CPU_ONLINE: 2288 case CPU_DOWN_FAILED: 2289 cpufreq_online(cpu); 2290 break; 2291 2292 case CPU_DOWN_PREPARE: 2293 cpufreq_offline(cpu); 2294 break; 2295 } 2296 return NOTIFY_OK; 2297 } 2298 2299 static struct notifier_block __refdata cpufreq_cpu_notifier = { 2300 .notifier_call = cpufreq_cpu_callback, 2301 }; 2302 2303 /********************************************************************* 2304 * BOOST * 2305 *********************************************************************/ 2306 static int cpufreq_boost_set_sw(int state) 2307 { 2308 struct cpufreq_frequency_table *freq_table; 2309 struct cpufreq_policy *policy; 2310 int ret = -EINVAL; 2311 2312 for_each_active_policy(policy) { 2313 freq_table = cpufreq_frequency_get_table(policy->cpu); 2314 if (freq_table) { 2315 ret = cpufreq_frequency_table_cpuinfo(policy, 2316 freq_table); 2317 if (ret) { 2318 pr_err("%s: Policy frequency update failed\n", 2319 __func__); 2320 break; 2321 } 2322 2323 down_write(&policy->rwsem); 2324 policy->user_policy.max = policy->max; 2325 cpufreq_governor(policy, CPUFREQ_GOV_LIMITS); 2326 up_write(&policy->rwsem); 2327 } 2328 } 2329 2330 return ret; 2331 } 2332 2333 int cpufreq_boost_trigger_state(int state) 2334 { 2335 unsigned long flags; 2336 int ret = 0; 2337 2338 if (cpufreq_driver->boost_enabled == state) 2339 return 0; 2340 2341 write_lock_irqsave(&cpufreq_driver_lock, flags); 2342 cpufreq_driver->boost_enabled = state; 2343 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2344 2345 ret = cpufreq_driver->set_boost(state); 2346 if (ret) { 2347 write_lock_irqsave(&cpufreq_driver_lock, flags); 2348 cpufreq_driver->boost_enabled = !state; 2349 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2350 2351 pr_err("%s: Cannot %s BOOST\n", 2352 __func__, state ? "enable" : "disable"); 2353 } 2354 2355 return ret; 2356 } 2357 2358 static bool cpufreq_boost_supported(void) 2359 { 2360 return likely(cpufreq_driver) && cpufreq_driver->set_boost; 2361 } 2362 2363 static int create_boost_sysfs_file(void) 2364 { 2365 int ret; 2366 2367 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr); 2368 if (ret) 2369 pr_err("%s: cannot register global BOOST sysfs file\n", 2370 __func__); 2371 2372 return ret; 2373 } 2374 2375 static void remove_boost_sysfs_file(void) 2376 { 2377 if (cpufreq_boost_supported()) 2378 sysfs_remove_file(cpufreq_global_kobject, &boost.attr); 2379 } 2380 2381 int cpufreq_enable_boost_support(void) 2382 { 2383 if (!cpufreq_driver) 2384 return -EINVAL; 2385 2386 if (cpufreq_boost_supported()) 2387 return 0; 2388 2389 cpufreq_driver->set_boost = cpufreq_boost_set_sw; 2390 2391 /* This will get removed on driver unregister */ 2392 return create_boost_sysfs_file(); 2393 } 2394 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support); 2395 2396 int cpufreq_boost_enabled(void) 2397 { 2398 return cpufreq_driver->boost_enabled; 2399 } 2400 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled); 2401 2402 /********************************************************************* 2403 * REGISTER / UNREGISTER CPUFREQ DRIVER * 2404 *********************************************************************/ 2405 2406 /** 2407 * cpufreq_register_driver - register a CPU Frequency driver 2408 * @driver_data: A struct cpufreq_driver containing the values# 2409 * submitted by the CPU Frequency driver. 2410 * 2411 * Registers a CPU Frequency driver to this core code. This code 2412 * returns zero on success, -EEXIST when another driver got here first 2413 * (and isn't unregistered in the meantime). 2414 * 2415 */ 2416 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 2417 { 2418 unsigned long flags; 2419 int ret; 2420 2421 if (cpufreq_disabled()) 2422 return -ENODEV; 2423 2424 if (!driver_data || !driver_data->verify || !driver_data->init || 2425 !(driver_data->setpolicy || driver_data->target_index || 2426 driver_data->target) || 2427 (driver_data->setpolicy && (driver_data->target_index || 2428 driver_data->target)) || 2429 (!!driver_data->get_intermediate != !!driver_data->target_intermediate)) 2430 return -EINVAL; 2431 2432 pr_debug("trying to register driver %s\n", driver_data->name); 2433 2434 /* Protect against concurrent CPU online/offline. */ 2435 get_online_cpus(); 2436 2437 write_lock_irqsave(&cpufreq_driver_lock, flags); 2438 if (cpufreq_driver) { 2439 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2440 ret = -EEXIST; 2441 goto out; 2442 } 2443 cpufreq_driver = driver_data; 2444 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2445 2446 if (driver_data->setpolicy) 2447 driver_data->flags |= CPUFREQ_CONST_LOOPS; 2448 2449 if (cpufreq_boost_supported()) { 2450 ret = create_boost_sysfs_file(); 2451 if (ret) 2452 goto err_null_driver; 2453 } 2454 2455 ret = subsys_interface_register(&cpufreq_interface); 2456 if (ret) 2457 goto err_boost_unreg; 2458 2459 if (!(cpufreq_driver->flags & CPUFREQ_STICKY) && 2460 list_empty(&cpufreq_policy_list)) { 2461 /* if all ->init() calls failed, unregister */ 2462 pr_debug("%s: No CPU initialized for driver %s\n", __func__, 2463 driver_data->name); 2464 goto err_if_unreg; 2465 } 2466 2467 register_hotcpu_notifier(&cpufreq_cpu_notifier); 2468 pr_debug("driver %s up and running\n", driver_data->name); 2469 goto out; 2470 2471 err_if_unreg: 2472 subsys_interface_unregister(&cpufreq_interface); 2473 err_boost_unreg: 2474 remove_boost_sysfs_file(); 2475 err_null_driver: 2476 write_lock_irqsave(&cpufreq_driver_lock, flags); 2477 cpufreq_driver = NULL; 2478 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2479 out: 2480 put_online_cpus(); 2481 return ret; 2482 } 2483 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 2484 2485 /** 2486 * cpufreq_unregister_driver - unregister the current CPUFreq driver 2487 * 2488 * Unregister the current CPUFreq driver. Only call this if you have 2489 * the right to do so, i.e. if you have succeeded in initialising before! 2490 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 2491 * currently not initialised. 2492 */ 2493 int cpufreq_unregister_driver(struct cpufreq_driver *driver) 2494 { 2495 unsigned long flags; 2496 2497 if (!cpufreq_driver || (driver != cpufreq_driver)) 2498 return -EINVAL; 2499 2500 pr_debug("unregistering driver %s\n", driver->name); 2501 2502 /* Protect against concurrent cpu hotplug */ 2503 get_online_cpus(); 2504 subsys_interface_unregister(&cpufreq_interface); 2505 remove_boost_sysfs_file(); 2506 unregister_hotcpu_notifier(&cpufreq_cpu_notifier); 2507 2508 write_lock_irqsave(&cpufreq_driver_lock, flags); 2509 2510 cpufreq_driver = NULL; 2511 2512 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2513 put_online_cpus(); 2514 2515 return 0; 2516 } 2517 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 2518 2519 /* 2520 * Stop cpufreq at shutdown to make sure it isn't holding any locks 2521 * or mutexes when secondary CPUs are halted. 2522 */ 2523 static struct syscore_ops cpufreq_syscore_ops = { 2524 .shutdown = cpufreq_suspend, 2525 }; 2526 2527 struct kobject *cpufreq_global_kobject; 2528 EXPORT_SYMBOL(cpufreq_global_kobject); 2529 2530 static int __init cpufreq_core_init(void) 2531 { 2532 if (cpufreq_disabled()) 2533 return -ENODEV; 2534 2535 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj); 2536 BUG_ON(!cpufreq_global_kobject); 2537 2538 register_syscore_ops(&cpufreq_syscore_ops); 2539 2540 return 0; 2541 } 2542 core_initcall(cpufreq_core_init); 2543