1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/cpufreq/cpufreq.c 4 * 5 * Copyright (C) 2001 Russell King 6 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de> 7 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org> 8 * 9 * Oct 2005 - Ashok Raj <ashok.raj@intel.com> 10 * Added handling for CPU hotplug 11 * Feb 2006 - Jacob Shin <jacob.shin@amd.com> 12 * Fix handling for CPU hotplug -- affected CPUs 13 */ 14 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/cpu.h> 18 #include <linux/cpufreq.h> 19 #include <linux/cpu_cooling.h> 20 #include <linux/delay.h> 21 #include <linux/device.h> 22 #include <linux/init.h> 23 #include <linux/kernel_stat.h> 24 #include <linux/module.h> 25 #include <linux/mutex.h> 26 #include <linux/pm_qos.h> 27 #include <linux/slab.h> 28 #include <linux/string_choices.h> 29 #include <linux/suspend.h> 30 #include <linux/syscore_ops.h> 31 #include <linux/tick.h> 32 #include <linux/units.h> 33 #include <trace/events/power.h> 34 35 static LIST_HEAD(cpufreq_policy_list); 36 37 /* Macros to iterate over CPU policies */ 38 #define for_each_suitable_policy(__policy, __active) \ 39 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \ 40 if ((__active) == !policy_is_inactive(__policy)) 41 42 #define for_each_active_policy(__policy) \ 43 for_each_suitable_policy(__policy, true) 44 #define for_each_inactive_policy(__policy) \ 45 for_each_suitable_policy(__policy, false) 46 47 /* Iterate over governors */ 48 static LIST_HEAD(cpufreq_governor_list); 49 #define for_each_governor(__governor) \ 50 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list) 51 52 static char default_governor[CPUFREQ_NAME_LEN]; 53 54 /* 55 * The "cpufreq driver" - the arch- or hardware-dependent low 56 * level driver of CPUFreq support, and its spinlock. This lock 57 * also protects the cpufreq_cpu_data array. 58 */ 59 static struct cpufreq_driver *cpufreq_driver; 60 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data); 61 static DEFINE_RWLOCK(cpufreq_driver_lock); 62 63 static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance); 64 bool cpufreq_supports_freq_invariance(void) 65 { 66 return static_branch_likely(&cpufreq_freq_invariance); 67 } 68 69 /* Flag to suspend/resume CPUFreq governors */ 70 static bool cpufreq_suspended; 71 72 static inline bool has_target(void) 73 { 74 return cpufreq_driver->target_index || cpufreq_driver->target; 75 } 76 77 bool has_target_index(void) 78 { 79 return !!cpufreq_driver->target_index; 80 } 81 82 /* internal prototypes */ 83 static unsigned int __cpufreq_get(struct cpufreq_policy *policy); 84 static int cpufreq_init_governor(struct cpufreq_policy *policy); 85 static void cpufreq_exit_governor(struct cpufreq_policy *policy); 86 static void cpufreq_governor_limits(struct cpufreq_policy *policy); 87 static int cpufreq_set_policy(struct cpufreq_policy *policy, 88 struct cpufreq_governor *new_gov, 89 unsigned int new_pol); 90 static bool cpufreq_boost_supported(void); 91 92 /* 93 * Two notifier lists: the "policy" list is involved in the 94 * validation process for a new CPU frequency policy; the 95 * "transition" list for kernel code that needs to handle 96 * changes to devices when the CPU clock speed changes. 97 * The mutex locks both lists. 98 */ 99 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list); 100 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list); 101 102 static int off __read_mostly; 103 static int cpufreq_disabled(void) 104 { 105 return off; 106 } 107 void disable_cpufreq(void) 108 { 109 off = 1; 110 } 111 static DEFINE_MUTEX(cpufreq_governor_mutex); 112 113 bool have_governor_per_policy(void) 114 { 115 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY); 116 } 117 EXPORT_SYMBOL_GPL(have_governor_per_policy); 118 119 static struct kobject *cpufreq_global_kobject; 120 121 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy) 122 { 123 if (have_governor_per_policy()) 124 return &policy->kobj; 125 else 126 return cpufreq_global_kobject; 127 } 128 EXPORT_SYMBOL_GPL(get_governor_parent_kobj); 129 130 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall) 131 { 132 struct kernel_cpustat kcpustat; 133 u64 cur_wall_time; 134 u64 idle_time; 135 u64 busy_time; 136 137 cur_wall_time = jiffies64_to_nsecs(get_jiffies_64()); 138 139 kcpustat_cpu_fetch(&kcpustat, cpu); 140 141 busy_time = kcpustat.cpustat[CPUTIME_USER]; 142 busy_time += kcpustat.cpustat[CPUTIME_SYSTEM]; 143 busy_time += kcpustat.cpustat[CPUTIME_IRQ]; 144 busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ]; 145 busy_time += kcpustat.cpustat[CPUTIME_STEAL]; 146 busy_time += kcpustat.cpustat[CPUTIME_NICE]; 147 148 idle_time = cur_wall_time - busy_time; 149 if (wall) 150 *wall = div_u64(cur_wall_time, NSEC_PER_USEC); 151 152 return div_u64(idle_time, NSEC_PER_USEC); 153 } 154 155 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy) 156 { 157 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL); 158 159 if (idle_time == -1ULL) 160 return get_cpu_idle_time_jiffy(cpu, wall); 161 else if (!io_busy) 162 idle_time += get_cpu_iowait_time_us(cpu, wall); 163 164 return idle_time; 165 } 166 EXPORT_SYMBOL_GPL(get_cpu_idle_time); 167 168 /* 169 * This is a generic cpufreq init() routine which can be used by cpufreq 170 * drivers of SMP systems. It will do following: 171 * - validate & show freq table passed 172 * - set policies transition latency 173 * - policy->cpus with all possible CPUs 174 */ 175 void cpufreq_generic_init(struct cpufreq_policy *policy, 176 struct cpufreq_frequency_table *table, 177 unsigned int transition_latency) 178 { 179 policy->freq_table = table; 180 policy->cpuinfo.transition_latency = transition_latency; 181 182 /* 183 * The driver only supports the SMP configuration where all processors 184 * share the clock and voltage and clock. 185 */ 186 cpumask_setall(policy->cpus); 187 } 188 EXPORT_SYMBOL_GPL(cpufreq_generic_init); 189 190 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu) 191 { 192 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 193 194 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL; 195 } 196 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw); 197 198 unsigned int cpufreq_generic_get(unsigned int cpu) 199 { 200 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu); 201 202 if (!policy || IS_ERR(policy->clk)) { 203 pr_err("%s: No %s associated to cpu: %d\n", 204 __func__, policy ? "clk" : "policy", cpu); 205 return 0; 206 } 207 208 return clk_get_rate(policy->clk) / 1000; 209 } 210 EXPORT_SYMBOL_GPL(cpufreq_generic_get); 211 212 /** 213 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy. 214 * @cpu: CPU to find the policy for. 215 * 216 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment 217 * the kobject reference counter of that policy. Return a valid policy on 218 * success or NULL on failure. 219 * 220 * The policy returned by this function has to be released with the help of 221 * cpufreq_cpu_put() to balance its kobject reference counter properly. 222 */ 223 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu) 224 { 225 struct cpufreq_policy *policy = NULL; 226 unsigned long flags; 227 228 if (WARN_ON(cpu >= nr_cpu_ids)) 229 return NULL; 230 231 /* get the cpufreq driver */ 232 read_lock_irqsave(&cpufreq_driver_lock, flags); 233 234 if (cpufreq_driver) { 235 /* get the CPU */ 236 policy = cpufreq_cpu_get_raw(cpu); 237 if (policy) 238 kobject_get(&policy->kobj); 239 } 240 241 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 242 243 return policy; 244 } 245 EXPORT_SYMBOL_GPL(cpufreq_cpu_get); 246 247 /** 248 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy. 249 * @policy: cpufreq policy returned by cpufreq_cpu_get(). 250 */ 251 void cpufreq_cpu_put(struct cpufreq_policy *policy) 252 { 253 kobject_put(&policy->kobj); 254 } 255 EXPORT_SYMBOL_GPL(cpufreq_cpu_put); 256 257 /** 258 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter. 259 * @policy: cpufreq policy returned by cpufreq_cpu_acquire(). 260 */ 261 void cpufreq_cpu_release(struct cpufreq_policy *policy) 262 { 263 if (WARN_ON(!policy)) 264 return; 265 266 lockdep_assert_held(&policy->rwsem); 267 268 up_write(&policy->rwsem); 269 270 cpufreq_cpu_put(policy); 271 } 272 273 /** 274 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it. 275 * @cpu: CPU to find the policy for. 276 * 277 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and 278 * if the policy returned by it is not NULL, acquire its rwsem for writing. 279 * Return the policy if it is active or release it and return NULL otherwise. 280 * 281 * The policy returned by this function has to be released with the help of 282 * cpufreq_cpu_release() in order to release its rwsem and balance its usage 283 * counter properly. 284 */ 285 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu) 286 { 287 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 288 289 if (!policy) 290 return NULL; 291 292 down_write(&policy->rwsem); 293 294 if (policy_is_inactive(policy)) { 295 cpufreq_cpu_release(policy); 296 return NULL; 297 } 298 299 return policy; 300 } 301 302 /********************************************************************* 303 * EXTERNALLY AFFECTING FREQUENCY CHANGES * 304 *********************************************************************/ 305 306 /** 307 * adjust_jiffies - Adjust the system "loops_per_jiffy". 308 * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE. 309 * @ci: Frequency change information. 310 * 311 * This function alters the system "loops_per_jiffy" for the clock 312 * speed change. Note that loops_per_jiffy cannot be updated on SMP 313 * systems as each CPU might be scaled differently. So, use the arch 314 * per-CPU loops_per_jiffy value wherever possible. 315 */ 316 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci) 317 { 318 #ifndef CONFIG_SMP 319 static unsigned long l_p_j_ref; 320 static unsigned int l_p_j_ref_freq; 321 322 if (ci->flags & CPUFREQ_CONST_LOOPS) 323 return; 324 325 if (!l_p_j_ref_freq) { 326 l_p_j_ref = loops_per_jiffy; 327 l_p_j_ref_freq = ci->old; 328 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n", 329 l_p_j_ref, l_p_j_ref_freq); 330 } 331 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) { 332 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq, 333 ci->new); 334 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n", 335 loops_per_jiffy, ci->new); 336 } 337 #endif 338 } 339 340 /** 341 * cpufreq_notify_transition - Notify frequency transition and adjust jiffies. 342 * @policy: cpufreq policy to enable fast frequency switching for. 343 * @freqs: contain details of the frequency update. 344 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE. 345 * 346 * This function calls the transition notifiers and adjust_jiffies(). 347 * 348 * It is called twice on all CPU frequency changes that have external effects. 349 */ 350 static void cpufreq_notify_transition(struct cpufreq_policy *policy, 351 struct cpufreq_freqs *freqs, 352 unsigned int state) 353 { 354 int cpu; 355 356 BUG_ON(irqs_disabled()); 357 358 if (cpufreq_disabled()) 359 return; 360 361 freqs->policy = policy; 362 freqs->flags = cpufreq_driver->flags; 363 pr_debug("notification %u of frequency transition to %u kHz\n", 364 state, freqs->new); 365 366 switch (state) { 367 case CPUFREQ_PRECHANGE: 368 /* 369 * Detect if the driver reported a value as "old frequency" 370 * which is not equal to what the cpufreq core thinks is 371 * "old frequency". 372 */ 373 if (policy->cur && policy->cur != freqs->old) { 374 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n", 375 freqs->old, policy->cur); 376 freqs->old = policy->cur; 377 } 378 379 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 380 CPUFREQ_PRECHANGE, freqs); 381 382 adjust_jiffies(CPUFREQ_PRECHANGE, freqs); 383 break; 384 385 case CPUFREQ_POSTCHANGE: 386 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs); 387 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new, 388 cpumask_pr_args(policy->cpus)); 389 390 for_each_cpu(cpu, policy->cpus) 391 trace_cpu_frequency(freqs->new, cpu); 392 393 srcu_notifier_call_chain(&cpufreq_transition_notifier_list, 394 CPUFREQ_POSTCHANGE, freqs); 395 396 cpufreq_stats_record_transition(policy, freqs->new); 397 policy->cur = freqs->new; 398 } 399 } 400 401 /* Do post notifications when there are chances that transition has failed */ 402 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy, 403 struct cpufreq_freqs *freqs, int transition_failed) 404 { 405 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 406 if (!transition_failed) 407 return; 408 409 swap(freqs->old, freqs->new); 410 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 411 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE); 412 } 413 414 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy, 415 struct cpufreq_freqs *freqs) 416 { 417 418 /* 419 * Catch double invocations of _begin() which lead to self-deadlock. 420 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core 421 * doesn't invoke _begin() on their behalf, and hence the chances of 422 * double invocations are very low. Moreover, there are scenarios 423 * where these checks can emit false-positive warnings in these 424 * drivers; so we avoid that by skipping them altogether. 425 */ 426 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION) 427 && current == policy->transition_task); 428 429 wait: 430 wait_event(policy->transition_wait, !policy->transition_ongoing); 431 432 spin_lock(&policy->transition_lock); 433 434 if (unlikely(policy->transition_ongoing)) { 435 spin_unlock(&policy->transition_lock); 436 goto wait; 437 } 438 439 policy->transition_ongoing = true; 440 policy->transition_task = current; 441 442 spin_unlock(&policy->transition_lock); 443 444 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE); 445 } 446 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin); 447 448 void cpufreq_freq_transition_end(struct cpufreq_policy *policy, 449 struct cpufreq_freqs *freqs, int transition_failed) 450 { 451 if (WARN_ON(!policy->transition_ongoing)) 452 return; 453 454 cpufreq_notify_post_transition(policy, freqs, transition_failed); 455 456 arch_set_freq_scale(policy->related_cpus, 457 policy->cur, 458 arch_scale_freq_ref(policy->cpu)); 459 460 spin_lock(&policy->transition_lock); 461 policy->transition_ongoing = false; 462 policy->transition_task = NULL; 463 spin_unlock(&policy->transition_lock); 464 465 wake_up(&policy->transition_wait); 466 } 467 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end); 468 469 /* 470 * Fast frequency switching status count. Positive means "enabled", negative 471 * means "disabled" and 0 means "not decided yet". 472 */ 473 static int cpufreq_fast_switch_count; 474 static DEFINE_MUTEX(cpufreq_fast_switch_lock); 475 476 static void cpufreq_list_transition_notifiers(void) 477 { 478 struct notifier_block *nb; 479 480 pr_info("Registered transition notifiers:\n"); 481 482 mutex_lock(&cpufreq_transition_notifier_list.mutex); 483 484 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next) 485 pr_info("%pS\n", nb->notifier_call); 486 487 mutex_unlock(&cpufreq_transition_notifier_list.mutex); 488 } 489 490 /** 491 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy. 492 * @policy: cpufreq policy to enable fast frequency switching for. 493 * 494 * Try to enable fast frequency switching for @policy. 495 * 496 * The attempt will fail if there is at least one transition notifier registered 497 * at this point, as fast frequency switching is quite fundamentally at odds 498 * with transition notifiers. Thus if successful, it will make registration of 499 * transition notifiers fail going forward. 500 */ 501 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy) 502 { 503 lockdep_assert_held(&policy->rwsem); 504 505 if (!policy->fast_switch_possible) 506 return; 507 508 mutex_lock(&cpufreq_fast_switch_lock); 509 if (cpufreq_fast_switch_count >= 0) { 510 cpufreq_fast_switch_count++; 511 policy->fast_switch_enabled = true; 512 } else { 513 pr_warn("CPU%u: Fast frequency switching not enabled\n", 514 policy->cpu); 515 cpufreq_list_transition_notifiers(); 516 } 517 mutex_unlock(&cpufreq_fast_switch_lock); 518 } 519 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch); 520 521 /** 522 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy. 523 * @policy: cpufreq policy to disable fast frequency switching for. 524 */ 525 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy) 526 { 527 mutex_lock(&cpufreq_fast_switch_lock); 528 if (policy->fast_switch_enabled) { 529 policy->fast_switch_enabled = false; 530 if (!WARN_ON(cpufreq_fast_switch_count <= 0)) 531 cpufreq_fast_switch_count--; 532 } 533 mutex_unlock(&cpufreq_fast_switch_lock); 534 } 535 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch); 536 537 static unsigned int __resolve_freq(struct cpufreq_policy *policy, 538 unsigned int target_freq, unsigned int relation) 539 { 540 unsigned int idx; 541 542 target_freq = clamp_val(target_freq, policy->min, policy->max); 543 544 if (!policy->freq_table) 545 return target_freq; 546 547 idx = cpufreq_frequency_table_target(policy, target_freq, relation); 548 policy->cached_resolved_idx = idx; 549 policy->cached_target_freq = target_freq; 550 return policy->freq_table[idx].frequency; 551 } 552 553 /** 554 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported 555 * one. 556 * @policy: associated policy to interrogate 557 * @target_freq: target frequency to resolve. 558 * 559 * The target to driver frequency mapping is cached in the policy. 560 * 561 * Return: Lowest driver-supported frequency greater than or equal to the 562 * given target_freq, subject to policy (min/max) and driver limitations. 563 */ 564 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy, 565 unsigned int target_freq) 566 { 567 return __resolve_freq(policy, target_freq, CPUFREQ_RELATION_LE); 568 } 569 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq); 570 571 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy) 572 { 573 unsigned int latency; 574 575 if (policy->transition_delay_us) 576 return policy->transition_delay_us; 577 578 latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC; 579 if (latency) 580 /* Give a 50% breathing room between updates */ 581 return latency + (latency >> 1); 582 583 return USEC_PER_MSEC; 584 } 585 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us); 586 587 /********************************************************************* 588 * SYSFS INTERFACE * 589 *********************************************************************/ 590 static ssize_t show_boost(struct kobject *kobj, 591 struct kobj_attribute *attr, char *buf) 592 { 593 return sysfs_emit(buf, "%d\n", cpufreq_driver->boost_enabled); 594 } 595 596 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr, 597 const char *buf, size_t count) 598 { 599 bool enable; 600 601 if (kstrtobool(buf, &enable)) 602 return -EINVAL; 603 604 if (cpufreq_boost_trigger_state(enable)) { 605 pr_err("%s: Cannot %s BOOST!\n", 606 __func__, str_enable_disable(enable)); 607 return -EINVAL; 608 } 609 610 pr_debug("%s: cpufreq BOOST %s\n", 611 __func__, str_enabled_disabled(enable)); 612 613 return count; 614 } 615 define_one_global_rw(boost); 616 617 static ssize_t show_local_boost(struct cpufreq_policy *policy, char *buf) 618 { 619 return sysfs_emit(buf, "%d\n", policy->boost_enabled); 620 } 621 622 static ssize_t store_local_boost(struct cpufreq_policy *policy, 623 const char *buf, size_t count) 624 { 625 int ret; 626 bool enable; 627 628 if (kstrtobool(buf, &enable)) 629 return -EINVAL; 630 631 if (!cpufreq_driver->boost_enabled) 632 return -EINVAL; 633 634 if (policy->boost_enabled == enable) 635 return count; 636 637 policy->boost_enabled = enable; 638 639 cpus_read_lock(); 640 ret = cpufreq_driver->set_boost(policy, enable); 641 cpus_read_unlock(); 642 643 if (ret) { 644 policy->boost_enabled = !policy->boost_enabled; 645 return ret; 646 } 647 648 return count; 649 } 650 651 static struct freq_attr local_boost = __ATTR(boost, 0644, show_local_boost, store_local_boost); 652 653 static struct cpufreq_governor *find_governor(const char *str_governor) 654 { 655 struct cpufreq_governor *t; 656 657 for_each_governor(t) 658 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN)) 659 return t; 660 661 return NULL; 662 } 663 664 static struct cpufreq_governor *get_governor(const char *str_governor) 665 { 666 struct cpufreq_governor *t; 667 668 mutex_lock(&cpufreq_governor_mutex); 669 t = find_governor(str_governor); 670 if (!t) 671 goto unlock; 672 673 if (!try_module_get(t->owner)) 674 t = NULL; 675 676 unlock: 677 mutex_unlock(&cpufreq_governor_mutex); 678 679 return t; 680 } 681 682 static unsigned int cpufreq_parse_policy(char *str_governor) 683 { 684 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) 685 return CPUFREQ_POLICY_PERFORMANCE; 686 687 if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) 688 return CPUFREQ_POLICY_POWERSAVE; 689 690 return CPUFREQ_POLICY_UNKNOWN; 691 } 692 693 /** 694 * cpufreq_parse_governor - parse a governor string only for has_target() 695 * @str_governor: Governor name. 696 */ 697 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor) 698 { 699 struct cpufreq_governor *t; 700 701 t = get_governor(str_governor); 702 if (t) 703 return t; 704 705 if (request_module("cpufreq_%s", str_governor)) 706 return NULL; 707 708 return get_governor(str_governor); 709 } 710 711 /* 712 * cpufreq_per_cpu_attr_read() / show_##file_name() - 713 * print out cpufreq information 714 * 715 * Write out information from cpufreq_driver->policy[cpu]; object must be 716 * "unsigned int". 717 */ 718 719 #define show_one(file_name, object) \ 720 static ssize_t show_##file_name \ 721 (struct cpufreq_policy *policy, char *buf) \ 722 { \ 723 return sysfs_emit(buf, "%u\n", policy->object); \ 724 } 725 726 show_one(cpuinfo_min_freq, cpuinfo.min_freq); 727 show_one(cpuinfo_max_freq, cpuinfo.max_freq); 728 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency); 729 show_one(scaling_min_freq, min); 730 show_one(scaling_max_freq, max); 731 732 __weak unsigned int arch_freq_get_on_cpu(int cpu) 733 { 734 return 0; 735 } 736 737 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf) 738 { 739 ssize_t ret; 740 unsigned int freq; 741 742 freq = arch_freq_get_on_cpu(policy->cpu); 743 if (freq) 744 ret = sysfs_emit(buf, "%u\n", freq); 745 else if (cpufreq_driver->setpolicy && cpufreq_driver->get) 746 ret = sysfs_emit(buf, "%u\n", cpufreq_driver->get(policy->cpu)); 747 else 748 ret = sysfs_emit(buf, "%u\n", policy->cur); 749 return ret; 750 } 751 752 /* 753 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access 754 */ 755 #define store_one(file_name, object) \ 756 static ssize_t store_##file_name \ 757 (struct cpufreq_policy *policy, const char *buf, size_t count) \ 758 { \ 759 unsigned long val; \ 760 int ret; \ 761 \ 762 ret = kstrtoul(buf, 0, &val); \ 763 if (ret) \ 764 return ret; \ 765 \ 766 ret = freq_qos_update_request(policy->object##_freq_req, val);\ 767 return ret >= 0 ? count : ret; \ 768 } 769 770 store_one(scaling_min_freq, min); 771 store_one(scaling_max_freq, max); 772 773 /* 774 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware 775 */ 776 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy, 777 char *buf) 778 { 779 unsigned int cur_freq = __cpufreq_get(policy); 780 781 if (cur_freq) 782 return sysfs_emit(buf, "%u\n", cur_freq); 783 784 return sysfs_emit(buf, "<unknown>\n"); 785 } 786 787 /* 788 * show_scaling_governor - show the current policy for the specified CPU 789 */ 790 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf) 791 { 792 if (policy->policy == CPUFREQ_POLICY_POWERSAVE) 793 return sysfs_emit(buf, "powersave\n"); 794 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) 795 return sysfs_emit(buf, "performance\n"); 796 else if (policy->governor) 797 return sysfs_emit(buf, "%s\n", policy->governor->name); 798 return -EINVAL; 799 } 800 801 /* 802 * store_scaling_governor - store policy for the specified CPU 803 */ 804 static ssize_t store_scaling_governor(struct cpufreq_policy *policy, 805 const char *buf, size_t count) 806 { 807 char str_governor[16]; 808 int ret; 809 810 ret = sscanf(buf, "%15s", str_governor); 811 if (ret != 1) 812 return -EINVAL; 813 814 if (cpufreq_driver->setpolicy) { 815 unsigned int new_pol; 816 817 new_pol = cpufreq_parse_policy(str_governor); 818 if (!new_pol) 819 return -EINVAL; 820 821 ret = cpufreq_set_policy(policy, NULL, new_pol); 822 } else { 823 struct cpufreq_governor *new_gov; 824 825 new_gov = cpufreq_parse_governor(str_governor); 826 if (!new_gov) 827 return -EINVAL; 828 829 ret = cpufreq_set_policy(policy, new_gov, 830 CPUFREQ_POLICY_UNKNOWN); 831 832 module_put(new_gov->owner); 833 } 834 835 return ret ? ret : count; 836 } 837 838 /* 839 * show_scaling_driver - show the cpufreq driver currently loaded 840 */ 841 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf) 842 { 843 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name); 844 } 845 846 /* 847 * show_scaling_available_governors - show the available CPUfreq governors 848 */ 849 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy, 850 char *buf) 851 { 852 ssize_t i = 0; 853 struct cpufreq_governor *t; 854 855 if (!has_target()) { 856 i += sysfs_emit(buf, "performance powersave"); 857 goto out; 858 } 859 860 mutex_lock(&cpufreq_governor_mutex); 861 for_each_governor(t) { 862 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) 863 - (CPUFREQ_NAME_LEN + 2))) 864 break; 865 i += sysfs_emit_at(buf, i, "%s ", t->name); 866 } 867 mutex_unlock(&cpufreq_governor_mutex); 868 out: 869 i += sysfs_emit_at(buf, i, "\n"); 870 return i; 871 } 872 873 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf) 874 { 875 ssize_t i = 0; 876 unsigned int cpu; 877 878 for_each_cpu(cpu, mask) { 879 i += sysfs_emit_at(buf, i, "%u ", cpu); 880 if (i >= (PAGE_SIZE - 5)) 881 break; 882 } 883 884 /* Remove the extra space at the end */ 885 i--; 886 887 i += sysfs_emit_at(buf, i, "\n"); 888 return i; 889 } 890 EXPORT_SYMBOL_GPL(cpufreq_show_cpus); 891 892 /* 893 * show_related_cpus - show the CPUs affected by each transition even if 894 * hw coordination is in use 895 */ 896 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf) 897 { 898 return cpufreq_show_cpus(policy->related_cpus, buf); 899 } 900 901 /* 902 * show_affected_cpus - show the CPUs affected by each transition 903 */ 904 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf) 905 { 906 return cpufreq_show_cpus(policy->cpus, buf); 907 } 908 909 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy, 910 const char *buf, size_t count) 911 { 912 unsigned int freq = 0; 913 unsigned int ret; 914 915 if (!policy->governor || !policy->governor->store_setspeed) 916 return -EINVAL; 917 918 ret = sscanf(buf, "%u", &freq); 919 if (ret != 1) 920 return -EINVAL; 921 922 policy->governor->store_setspeed(policy, freq); 923 924 return count; 925 } 926 927 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf) 928 { 929 if (!policy->governor || !policy->governor->show_setspeed) 930 return sysfs_emit(buf, "<unsupported>\n"); 931 932 return policy->governor->show_setspeed(policy, buf); 933 } 934 935 /* 936 * show_bios_limit - show the current cpufreq HW/BIOS limitation 937 */ 938 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf) 939 { 940 unsigned int limit; 941 int ret; 942 ret = cpufreq_driver->bios_limit(policy->cpu, &limit); 943 if (!ret) 944 return sysfs_emit(buf, "%u\n", limit); 945 return sysfs_emit(buf, "%u\n", policy->cpuinfo.max_freq); 946 } 947 948 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400); 949 cpufreq_freq_attr_ro(cpuinfo_min_freq); 950 cpufreq_freq_attr_ro(cpuinfo_max_freq); 951 cpufreq_freq_attr_ro(cpuinfo_transition_latency); 952 cpufreq_freq_attr_ro(scaling_available_governors); 953 cpufreq_freq_attr_ro(scaling_driver); 954 cpufreq_freq_attr_ro(scaling_cur_freq); 955 cpufreq_freq_attr_ro(bios_limit); 956 cpufreq_freq_attr_ro(related_cpus); 957 cpufreq_freq_attr_ro(affected_cpus); 958 cpufreq_freq_attr_rw(scaling_min_freq); 959 cpufreq_freq_attr_rw(scaling_max_freq); 960 cpufreq_freq_attr_rw(scaling_governor); 961 cpufreq_freq_attr_rw(scaling_setspeed); 962 963 static struct attribute *cpufreq_attrs[] = { 964 &cpuinfo_min_freq.attr, 965 &cpuinfo_max_freq.attr, 966 &cpuinfo_transition_latency.attr, 967 &scaling_min_freq.attr, 968 &scaling_max_freq.attr, 969 &affected_cpus.attr, 970 &related_cpus.attr, 971 &scaling_governor.attr, 972 &scaling_driver.attr, 973 &scaling_available_governors.attr, 974 &scaling_setspeed.attr, 975 NULL 976 }; 977 ATTRIBUTE_GROUPS(cpufreq); 978 979 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj) 980 #define to_attr(a) container_of(a, struct freq_attr, attr) 981 982 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf) 983 { 984 struct cpufreq_policy *policy = to_policy(kobj); 985 struct freq_attr *fattr = to_attr(attr); 986 ssize_t ret = -EBUSY; 987 988 if (!fattr->show) 989 return -EIO; 990 991 down_read(&policy->rwsem); 992 if (likely(!policy_is_inactive(policy))) 993 ret = fattr->show(policy, buf); 994 up_read(&policy->rwsem); 995 996 return ret; 997 } 998 999 static ssize_t store(struct kobject *kobj, struct attribute *attr, 1000 const char *buf, size_t count) 1001 { 1002 struct cpufreq_policy *policy = to_policy(kobj); 1003 struct freq_attr *fattr = to_attr(attr); 1004 ssize_t ret = -EBUSY; 1005 1006 if (!fattr->store) 1007 return -EIO; 1008 1009 down_write(&policy->rwsem); 1010 if (likely(!policy_is_inactive(policy))) 1011 ret = fattr->store(policy, buf, count); 1012 up_write(&policy->rwsem); 1013 1014 return ret; 1015 } 1016 1017 static void cpufreq_sysfs_release(struct kobject *kobj) 1018 { 1019 struct cpufreq_policy *policy = to_policy(kobj); 1020 pr_debug("last reference is dropped\n"); 1021 complete(&policy->kobj_unregister); 1022 } 1023 1024 static const struct sysfs_ops sysfs_ops = { 1025 .show = show, 1026 .store = store, 1027 }; 1028 1029 static const struct kobj_type ktype_cpufreq = { 1030 .sysfs_ops = &sysfs_ops, 1031 .default_groups = cpufreq_groups, 1032 .release = cpufreq_sysfs_release, 1033 }; 1034 1035 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu, 1036 struct device *dev) 1037 { 1038 if (unlikely(!dev)) 1039 return; 1040 1041 if (cpumask_test_and_set_cpu(cpu, policy->real_cpus)) 1042 return; 1043 1044 dev_dbg(dev, "%s: Adding symlink\n", __func__); 1045 if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq")) 1046 dev_err(dev, "cpufreq symlink creation failed\n"); 1047 } 1048 1049 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu, 1050 struct device *dev) 1051 { 1052 dev_dbg(dev, "%s: Removing symlink\n", __func__); 1053 sysfs_remove_link(&dev->kobj, "cpufreq"); 1054 cpumask_clear_cpu(cpu, policy->real_cpus); 1055 } 1056 1057 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy) 1058 { 1059 struct freq_attr **drv_attr; 1060 int ret = 0; 1061 1062 /* set up files for this cpu device */ 1063 drv_attr = cpufreq_driver->attr; 1064 while (drv_attr && *drv_attr) { 1065 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr)); 1066 if (ret) 1067 return ret; 1068 drv_attr++; 1069 } 1070 if (cpufreq_driver->get) { 1071 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr); 1072 if (ret) 1073 return ret; 1074 } 1075 1076 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr); 1077 if (ret) 1078 return ret; 1079 1080 if (cpufreq_driver->bios_limit) { 1081 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr); 1082 if (ret) 1083 return ret; 1084 } 1085 1086 if (cpufreq_boost_supported()) { 1087 ret = sysfs_create_file(&policy->kobj, &local_boost.attr); 1088 if (ret) 1089 return ret; 1090 } 1091 1092 return 0; 1093 } 1094 1095 static int cpufreq_init_policy(struct cpufreq_policy *policy) 1096 { 1097 struct cpufreq_governor *gov = NULL; 1098 unsigned int pol = CPUFREQ_POLICY_UNKNOWN; 1099 int ret; 1100 1101 if (has_target()) { 1102 /* Update policy governor to the one used before hotplug. */ 1103 gov = get_governor(policy->last_governor); 1104 if (gov) { 1105 pr_debug("Restoring governor %s for cpu %d\n", 1106 gov->name, policy->cpu); 1107 } else { 1108 gov = get_governor(default_governor); 1109 } 1110 1111 if (!gov) { 1112 gov = cpufreq_default_governor(); 1113 __module_get(gov->owner); 1114 } 1115 1116 } else { 1117 1118 /* Use the default policy if there is no last_policy. */ 1119 if (policy->last_policy) { 1120 pol = policy->last_policy; 1121 } else { 1122 pol = cpufreq_parse_policy(default_governor); 1123 /* 1124 * In case the default governor is neither "performance" 1125 * nor "powersave", fall back to the initial policy 1126 * value set by the driver. 1127 */ 1128 if (pol == CPUFREQ_POLICY_UNKNOWN) 1129 pol = policy->policy; 1130 } 1131 if (pol != CPUFREQ_POLICY_PERFORMANCE && 1132 pol != CPUFREQ_POLICY_POWERSAVE) 1133 return -ENODATA; 1134 } 1135 1136 ret = cpufreq_set_policy(policy, gov, pol); 1137 if (gov) 1138 module_put(gov->owner); 1139 1140 return ret; 1141 } 1142 1143 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu) 1144 { 1145 int ret = 0; 1146 1147 /* Has this CPU been taken care of already? */ 1148 if (cpumask_test_cpu(cpu, policy->cpus)) 1149 return 0; 1150 1151 down_write(&policy->rwsem); 1152 if (has_target()) 1153 cpufreq_stop_governor(policy); 1154 1155 cpumask_set_cpu(cpu, policy->cpus); 1156 1157 if (has_target()) { 1158 ret = cpufreq_start_governor(policy); 1159 if (ret) 1160 pr_err("%s: Failed to start governor\n", __func__); 1161 } 1162 up_write(&policy->rwsem); 1163 return ret; 1164 } 1165 1166 void refresh_frequency_limits(struct cpufreq_policy *policy) 1167 { 1168 if (!policy_is_inactive(policy)) { 1169 pr_debug("updating policy for CPU %u\n", policy->cpu); 1170 1171 cpufreq_set_policy(policy, policy->governor, policy->policy); 1172 } 1173 } 1174 EXPORT_SYMBOL(refresh_frequency_limits); 1175 1176 static void handle_update(struct work_struct *work) 1177 { 1178 struct cpufreq_policy *policy = 1179 container_of(work, struct cpufreq_policy, update); 1180 1181 pr_debug("handle_update for cpu %u called\n", policy->cpu); 1182 down_write(&policy->rwsem); 1183 refresh_frequency_limits(policy); 1184 up_write(&policy->rwsem); 1185 } 1186 1187 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq, 1188 void *data) 1189 { 1190 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min); 1191 1192 schedule_work(&policy->update); 1193 return 0; 1194 } 1195 1196 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq, 1197 void *data) 1198 { 1199 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max); 1200 1201 schedule_work(&policy->update); 1202 return 0; 1203 } 1204 1205 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy) 1206 { 1207 struct kobject *kobj; 1208 struct completion *cmp; 1209 1210 down_write(&policy->rwsem); 1211 cpufreq_stats_free_table(policy); 1212 kobj = &policy->kobj; 1213 cmp = &policy->kobj_unregister; 1214 up_write(&policy->rwsem); 1215 kobject_put(kobj); 1216 1217 /* 1218 * We need to make sure that the underlying kobj is 1219 * actually not referenced anymore by anybody before we 1220 * proceed with unloading. 1221 */ 1222 pr_debug("waiting for dropping of refcount\n"); 1223 wait_for_completion(cmp); 1224 pr_debug("wait complete\n"); 1225 } 1226 1227 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu) 1228 { 1229 struct cpufreq_policy *policy; 1230 struct device *dev = get_cpu_device(cpu); 1231 int ret; 1232 1233 if (!dev) 1234 return NULL; 1235 1236 policy = kzalloc(sizeof(*policy), GFP_KERNEL); 1237 if (!policy) 1238 return NULL; 1239 1240 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) 1241 goto err_free_policy; 1242 1243 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) 1244 goto err_free_cpumask; 1245 1246 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL)) 1247 goto err_free_rcpumask; 1248 1249 init_completion(&policy->kobj_unregister); 1250 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, 1251 cpufreq_global_kobject, "policy%u", cpu); 1252 if (ret) { 1253 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret); 1254 /* 1255 * The entire policy object will be freed below, but the extra 1256 * memory allocated for the kobject name needs to be freed by 1257 * releasing the kobject. 1258 */ 1259 kobject_put(&policy->kobj); 1260 goto err_free_real_cpus; 1261 } 1262 1263 freq_constraints_init(&policy->constraints); 1264 1265 policy->nb_min.notifier_call = cpufreq_notifier_min; 1266 policy->nb_max.notifier_call = cpufreq_notifier_max; 1267 1268 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN, 1269 &policy->nb_min); 1270 if (ret) { 1271 dev_err(dev, "Failed to register MIN QoS notifier: %d (CPU%u)\n", 1272 ret, cpu); 1273 goto err_kobj_remove; 1274 } 1275 1276 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX, 1277 &policy->nb_max); 1278 if (ret) { 1279 dev_err(dev, "Failed to register MAX QoS notifier: %d (CPU%u)\n", 1280 ret, cpu); 1281 goto err_min_qos_notifier; 1282 } 1283 1284 INIT_LIST_HEAD(&policy->policy_list); 1285 init_rwsem(&policy->rwsem); 1286 spin_lock_init(&policy->transition_lock); 1287 init_waitqueue_head(&policy->transition_wait); 1288 INIT_WORK(&policy->update, handle_update); 1289 1290 policy->cpu = cpu; 1291 return policy; 1292 1293 err_min_qos_notifier: 1294 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN, 1295 &policy->nb_min); 1296 err_kobj_remove: 1297 cpufreq_policy_put_kobj(policy); 1298 err_free_real_cpus: 1299 free_cpumask_var(policy->real_cpus); 1300 err_free_rcpumask: 1301 free_cpumask_var(policy->related_cpus); 1302 err_free_cpumask: 1303 free_cpumask_var(policy->cpus); 1304 err_free_policy: 1305 kfree(policy); 1306 1307 return NULL; 1308 } 1309 1310 static void cpufreq_policy_free(struct cpufreq_policy *policy) 1311 { 1312 unsigned long flags; 1313 int cpu; 1314 1315 /* 1316 * The callers must ensure the policy is inactive by now, to avoid any 1317 * races with show()/store() callbacks. 1318 */ 1319 if (unlikely(!policy_is_inactive(policy))) 1320 pr_warn("%s: Freeing active policy\n", __func__); 1321 1322 /* Remove policy from list */ 1323 write_lock_irqsave(&cpufreq_driver_lock, flags); 1324 list_del(&policy->policy_list); 1325 1326 for_each_cpu(cpu, policy->related_cpus) 1327 per_cpu(cpufreq_cpu_data, cpu) = NULL; 1328 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1329 1330 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX, 1331 &policy->nb_max); 1332 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN, 1333 &policy->nb_min); 1334 1335 /* Cancel any pending policy->update work before freeing the policy. */ 1336 cancel_work_sync(&policy->update); 1337 1338 if (policy->max_freq_req) { 1339 /* 1340 * Remove max_freq_req after sending CPUFREQ_REMOVE_POLICY 1341 * notification, since CPUFREQ_CREATE_POLICY notification was 1342 * sent after adding max_freq_req earlier. 1343 */ 1344 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1345 CPUFREQ_REMOVE_POLICY, policy); 1346 freq_qos_remove_request(policy->max_freq_req); 1347 } 1348 1349 freq_qos_remove_request(policy->min_freq_req); 1350 kfree(policy->min_freq_req); 1351 1352 cpufreq_policy_put_kobj(policy); 1353 free_cpumask_var(policy->real_cpus); 1354 free_cpumask_var(policy->related_cpus); 1355 free_cpumask_var(policy->cpus); 1356 kfree(policy); 1357 } 1358 1359 static int cpufreq_online(unsigned int cpu) 1360 { 1361 struct cpufreq_policy *policy; 1362 bool new_policy; 1363 unsigned long flags; 1364 unsigned int j; 1365 int ret; 1366 1367 pr_debug("%s: bringing CPU%u online\n", __func__, cpu); 1368 1369 /* Check if this CPU already has a policy to manage it */ 1370 policy = per_cpu(cpufreq_cpu_data, cpu); 1371 if (policy) { 1372 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus)); 1373 if (!policy_is_inactive(policy)) 1374 return cpufreq_add_policy_cpu(policy, cpu); 1375 1376 /* This is the only online CPU for the policy. Start over. */ 1377 new_policy = false; 1378 down_write(&policy->rwsem); 1379 policy->cpu = cpu; 1380 policy->governor = NULL; 1381 } else { 1382 new_policy = true; 1383 policy = cpufreq_policy_alloc(cpu); 1384 if (!policy) 1385 return -ENOMEM; 1386 down_write(&policy->rwsem); 1387 } 1388 1389 if (!new_policy && cpufreq_driver->online) { 1390 /* Recover policy->cpus using related_cpus */ 1391 cpumask_copy(policy->cpus, policy->related_cpus); 1392 1393 ret = cpufreq_driver->online(policy); 1394 if (ret) { 1395 pr_debug("%s: %d: initialization failed\n", __func__, 1396 __LINE__); 1397 goto out_exit_policy; 1398 } 1399 } else { 1400 cpumask_copy(policy->cpus, cpumask_of(cpu)); 1401 1402 /* 1403 * Call driver. From then on the cpufreq must be able 1404 * to accept all calls to ->verify and ->setpolicy for this CPU. 1405 */ 1406 ret = cpufreq_driver->init(policy); 1407 if (ret) { 1408 pr_debug("%s: %d: initialization failed\n", __func__, 1409 __LINE__); 1410 goto out_free_policy; 1411 } 1412 1413 /* 1414 * The initialization has succeeded and the policy is online. 1415 * If there is a problem with its frequency table, take it 1416 * offline and drop it. 1417 */ 1418 ret = cpufreq_table_validate_and_sort(policy); 1419 if (ret) 1420 goto out_offline_policy; 1421 1422 /* related_cpus should at least include policy->cpus. */ 1423 cpumask_copy(policy->related_cpus, policy->cpus); 1424 } 1425 1426 /* 1427 * affected cpus must always be the one, which are online. We aren't 1428 * managing offline cpus here. 1429 */ 1430 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask); 1431 1432 if (new_policy) { 1433 for_each_cpu(j, policy->related_cpus) { 1434 per_cpu(cpufreq_cpu_data, j) = policy; 1435 add_cpu_dev_symlink(policy, j, get_cpu_device(j)); 1436 } 1437 1438 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req), 1439 GFP_KERNEL); 1440 if (!policy->min_freq_req) { 1441 ret = -ENOMEM; 1442 goto out_destroy_policy; 1443 } 1444 1445 ret = freq_qos_add_request(&policy->constraints, 1446 policy->min_freq_req, FREQ_QOS_MIN, 1447 FREQ_QOS_MIN_DEFAULT_VALUE); 1448 if (ret < 0) { 1449 /* 1450 * So we don't call freq_qos_remove_request() for an 1451 * uninitialized request. 1452 */ 1453 kfree(policy->min_freq_req); 1454 policy->min_freq_req = NULL; 1455 goto out_destroy_policy; 1456 } 1457 1458 /* 1459 * This must be initialized right here to avoid calling 1460 * freq_qos_remove_request() on uninitialized request in case 1461 * of errors. 1462 */ 1463 policy->max_freq_req = policy->min_freq_req + 1; 1464 1465 ret = freq_qos_add_request(&policy->constraints, 1466 policy->max_freq_req, FREQ_QOS_MAX, 1467 FREQ_QOS_MAX_DEFAULT_VALUE); 1468 if (ret < 0) { 1469 policy->max_freq_req = NULL; 1470 goto out_destroy_policy; 1471 } 1472 1473 blocking_notifier_call_chain(&cpufreq_policy_notifier_list, 1474 CPUFREQ_CREATE_POLICY, policy); 1475 } else { 1476 ret = freq_qos_update_request(policy->max_freq_req, policy->max); 1477 if (ret < 0) 1478 goto out_destroy_policy; 1479 } 1480 1481 if (cpufreq_driver->get && has_target()) { 1482 policy->cur = cpufreq_driver->get(policy->cpu); 1483 if (!policy->cur) { 1484 ret = -EIO; 1485 pr_err("%s: ->get() failed\n", __func__); 1486 goto out_destroy_policy; 1487 } 1488 } 1489 1490 /* 1491 * Sometimes boot loaders set CPU frequency to a value outside of 1492 * frequency table present with cpufreq core. In such cases CPU might be 1493 * unstable if it has to run on that frequency for long duration of time 1494 * and so its better to set it to a frequency which is specified in 1495 * freq-table. This also makes cpufreq stats inconsistent as 1496 * cpufreq-stats would fail to register because current frequency of CPU 1497 * isn't found in freq-table. 1498 * 1499 * Because we don't want this change to effect boot process badly, we go 1500 * for the next freq which is >= policy->cur ('cur' must be set by now, 1501 * otherwise we will end up setting freq to lowest of the table as 'cur' 1502 * is initialized to zero). 1503 * 1504 * We are passing target-freq as "policy->cur - 1" otherwise 1505 * __cpufreq_driver_target() would simply fail, as policy->cur will be 1506 * equal to target-freq. 1507 */ 1508 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK) 1509 && has_target()) { 1510 unsigned int old_freq = policy->cur; 1511 1512 /* Are we running at unknown frequency ? */ 1513 ret = cpufreq_frequency_table_get_index(policy, old_freq); 1514 if (ret == -EINVAL) { 1515 ret = __cpufreq_driver_target(policy, old_freq - 1, 1516 CPUFREQ_RELATION_L); 1517 1518 /* 1519 * Reaching here after boot in a few seconds may not 1520 * mean that system will remain stable at "unknown" 1521 * frequency for longer duration. Hence, a BUG_ON(). 1522 */ 1523 BUG_ON(ret); 1524 pr_info("%s: CPU%d: Running at unlisted initial frequency: %u kHz, changing to: %u kHz\n", 1525 __func__, policy->cpu, old_freq, policy->cur); 1526 } 1527 } 1528 1529 if (new_policy) { 1530 ret = cpufreq_add_dev_interface(policy); 1531 if (ret) 1532 goto out_destroy_policy; 1533 1534 cpufreq_stats_create_table(policy); 1535 1536 write_lock_irqsave(&cpufreq_driver_lock, flags); 1537 list_add(&policy->policy_list, &cpufreq_policy_list); 1538 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 1539 1540 /* 1541 * Register with the energy model before 1542 * em_rebuild_sched_domains() is called, which will result 1543 * in rebuilding of the sched domains, which should only be done 1544 * once the energy model is properly initialized for the policy 1545 * first. 1546 * 1547 * Also, this should be called before the policy is registered 1548 * with cooling framework. 1549 */ 1550 if (cpufreq_driver->register_em) 1551 cpufreq_driver->register_em(policy); 1552 } 1553 1554 ret = cpufreq_init_policy(policy); 1555 if (ret) { 1556 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n", 1557 __func__, cpu, ret); 1558 goto out_destroy_policy; 1559 } 1560 1561 up_write(&policy->rwsem); 1562 1563 kobject_uevent(&policy->kobj, KOBJ_ADD); 1564 1565 /* Callback for handling stuff after policy is ready */ 1566 if (cpufreq_driver->ready) 1567 cpufreq_driver->ready(policy); 1568 1569 /* Register cpufreq cooling only for a new policy */ 1570 if (new_policy && cpufreq_thermal_control_enabled(cpufreq_driver)) 1571 policy->cdev = of_cpufreq_cooling_register(policy); 1572 1573 /* Let the per-policy boost flag mirror the cpufreq_driver boost during init */ 1574 if (cpufreq_driver->set_boost && 1575 policy->boost_enabled != cpufreq_boost_enabled()) { 1576 policy->boost_enabled = cpufreq_boost_enabled(); 1577 ret = cpufreq_driver->set_boost(policy, policy->boost_enabled); 1578 if (ret) { 1579 /* If the set_boost fails, the online operation is not affected */ 1580 pr_info("%s: CPU%d: Cannot %s BOOST\n", __func__, policy->cpu, 1581 policy->boost_enabled ? "enable" : "disable"); 1582 policy->boost_enabled = !policy->boost_enabled; 1583 } 1584 } 1585 1586 pr_debug("initialization complete\n"); 1587 1588 return 0; 1589 1590 out_destroy_policy: 1591 for_each_cpu(j, policy->real_cpus) 1592 remove_cpu_dev_symlink(policy, j, get_cpu_device(j)); 1593 1594 out_offline_policy: 1595 if (cpufreq_driver->offline) 1596 cpufreq_driver->offline(policy); 1597 1598 out_exit_policy: 1599 if (cpufreq_driver->exit) 1600 cpufreq_driver->exit(policy); 1601 1602 out_free_policy: 1603 cpumask_clear(policy->cpus); 1604 up_write(&policy->rwsem); 1605 1606 cpufreq_policy_free(policy); 1607 return ret; 1608 } 1609 1610 /** 1611 * cpufreq_add_dev - the cpufreq interface for a CPU device. 1612 * @dev: CPU device. 1613 * @sif: Subsystem interface structure pointer (not used) 1614 */ 1615 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif) 1616 { 1617 struct cpufreq_policy *policy; 1618 unsigned cpu = dev->id; 1619 int ret; 1620 1621 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu); 1622 1623 if (cpu_online(cpu)) { 1624 ret = cpufreq_online(cpu); 1625 if (ret) 1626 return ret; 1627 } 1628 1629 /* Create sysfs link on CPU registration */ 1630 policy = per_cpu(cpufreq_cpu_data, cpu); 1631 if (policy) 1632 add_cpu_dev_symlink(policy, cpu, dev); 1633 1634 return 0; 1635 } 1636 1637 static void __cpufreq_offline(unsigned int cpu, struct cpufreq_policy *policy) 1638 { 1639 int ret; 1640 1641 if (has_target()) 1642 cpufreq_stop_governor(policy); 1643 1644 cpumask_clear_cpu(cpu, policy->cpus); 1645 1646 if (!policy_is_inactive(policy)) { 1647 /* Nominate a new CPU if necessary. */ 1648 if (cpu == policy->cpu) 1649 policy->cpu = cpumask_any(policy->cpus); 1650 1651 /* Start the governor again for the active policy. */ 1652 if (has_target()) { 1653 ret = cpufreq_start_governor(policy); 1654 if (ret) 1655 pr_err("%s: Failed to start governor\n", __func__); 1656 } 1657 1658 return; 1659 } 1660 1661 if (has_target()) 1662 strscpy(policy->last_governor, policy->governor->name, 1663 CPUFREQ_NAME_LEN); 1664 else 1665 policy->last_policy = policy->policy; 1666 1667 if (has_target()) 1668 cpufreq_exit_governor(policy); 1669 1670 /* 1671 * Perform the ->offline() during light-weight tear-down, as 1672 * that allows fast recovery when the CPU comes back. 1673 */ 1674 if (cpufreq_driver->offline) { 1675 cpufreq_driver->offline(policy); 1676 return; 1677 } 1678 1679 if (cpufreq_driver->exit) 1680 cpufreq_driver->exit(policy); 1681 1682 policy->freq_table = NULL; 1683 } 1684 1685 static int cpufreq_offline(unsigned int cpu) 1686 { 1687 struct cpufreq_policy *policy; 1688 1689 pr_debug("%s: unregistering CPU %u\n", __func__, cpu); 1690 1691 policy = cpufreq_cpu_get_raw(cpu); 1692 if (!policy) { 1693 pr_debug("%s: No cpu_data found\n", __func__); 1694 return 0; 1695 } 1696 1697 down_write(&policy->rwsem); 1698 1699 __cpufreq_offline(cpu, policy); 1700 1701 up_write(&policy->rwsem); 1702 return 0; 1703 } 1704 1705 /* 1706 * cpufreq_remove_dev - remove a CPU device 1707 * 1708 * Removes the cpufreq interface for a CPU device. 1709 */ 1710 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif) 1711 { 1712 unsigned int cpu = dev->id; 1713 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); 1714 1715 if (!policy) 1716 return; 1717 1718 down_write(&policy->rwsem); 1719 1720 if (cpu_online(cpu)) 1721 __cpufreq_offline(cpu, policy); 1722 1723 remove_cpu_dev_symlink(policy, cpu, dev); 1724 1725 if (!cpumask_empty(policy->real_cpus)) { 1726 up_write(&policy->rwsem); 1727 return; 1728 } 1729 1730 /* 1731 * Unregister cpufreq cooling once all the CPUs of the policy are 1732 * removed. 1733 */ 1734 if (cpufreq_thermal_control_enabled(cpufreq_driver)) { 1735 cpufreq_cooling_unregister(policy->cdev); 1736 policy->cdev = NULL; 1737 } 1738 1739 /* We did light-weight exit earlier, do full tear down now */ 1740 if (cpufreq_driver->offline && cpufreq_driver->exit) 1741 cpufreq_driver->exit(policy); 1742 1743 up_write(&policy->rwsem); 1744 1745 cpufreq_policy_free(policy); 1746 } 1747 1748 /** 1749 * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference. 1750 * @policy: Policy managing CPUs. 1751 * @new_freq: New CPU frequency. 1752 * 1753 * Adjust to the current frequency first and clean up later by either calling 1754 * cpufreq_update_policy(), or scheduling handle_update(). 1755 */ 1756 static void cpufreq_out_of_sync(struct cpufreq_policy *policy, 1757 unsigned int new_freq) 1758 { 1759 struct cpufreq_freqs freqs; 1760 1761 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n", 1762 policy->cur, new_freq); 1763 1764 freqs.old = policy->cur; 1765 freqs.new = new_freq; 1766 1767 cpufreq_freq_transition_begin(policy, &freqs); 1768 cpufreq_freq_transition_end(policy, &freqs, 0); 1769 } 1770 1771 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update) 1772 { 1773 unsigned int new_freq; 1774 1775 new_freq = cpufreq_driver->get(policy->cpu); 1776 if (!new_freq) 1777 return 0; 1778 1779 /* 1780 * If fast frequency switching is used with the given policy, the check 1781 * against policy->cur is pointless, so skip it in that case. 1782 */ 1783 if (policy->fast_switch_enabled || !has_target()) 1784 return new_freq; 1785 1786 if (policy->cur != new_freq) { 1787 /* 1788 * For some platforms, the frequency returned by hardware may be 1789 * slightly different from what is provided in the frequency 1790 * table, for example hardware may return 499 MHz instead of 500 1791 * MHz. In such cases it is better to avoid getting into 1792 * unnecessary frequency updates. 1793 */ 1794 if (abs(policy->cur - new_freq) < KHZ_PER_MHZ) 1795 return policy->cur; 1796 1797 cpufreq_out_of_sync(policy, new_freq); 1798 if (update) 1799 schedule_work(&policy->update); 1800 } 1801 1802 return new_freq; 1803 } 1804 1805 /** 1806 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur 1807 * @cpu: CPU number 1808 * 1809 * This is the last known freq, without actually getting it from the driver. 1810 * Return value will be same as what is shown in scaling_cur_freq in sysfs. 1811 */ 1812 unsigned int cpufreq_quick_get(unsigned int cpu) 1813 { 1814 struct cpufreq_policy *policy; 1815 unsigned int ret_freq = 0; 1816 unsigned long flags; 1817 1818 read_lock_irqsave(&cpufreq_driver_lock, flags); 1819 1820 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) { 1821 ret_freq = cpufreq_driver->get(cpu); 1822 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1823 return ret_freq; 1824 } 1825 1826 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 1827 1828 policy = cpufreq_cpu_get(cpu); 1829 if (policy) { 1830 ret_freq = policy->cur; 1831 cpufreq_cpu_put(policy); 1832 } 1833 1834 return ret_freq; 1835 } 1836 EXPORT_SYMBOL(cpufreq_quick_get); 1837 1838 /** 1839 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU 1840 * @cpu: CPU number 1841 * 1842 * Just return the max possible frequency for a given CPU. 1843 */ 1844 unsigned int cpufreq_quick_get_max(unsigned int cpu) 1845 { 1846 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1847 unsigned int ret_freq = 0; 1848 1849 if (policy) { 1850 ret_freq = policy->max; 1851 cpufreq_cpu_put(policy); 1852 } 1853 1854 return ret_freq; 1855 } 1856 EXPORT_SYMBOL(cpufreq_quick_get_max); 1857 1858 /** 1859 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU 1860 * @cpu: CPU number 1861 * 1862 * The default return value is the max_freq field of cpuinfo. 1863 */ 1864 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu) 1865 { 1866 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1867 unsigned int ret_freq = 0; 1868 1869 if (policy) { 1870 ret_freq = policy->cpuinfo.max_freq; 1871 cpufreq_cpu_put(policy); 1872 } 1873 1874 return ret_freq; 1875 } 1876 EXPORT_SYMBOL(cpufreq_get_hw_max_freq); 1877 1878 static unsigned int __cpufreq_get(struct cpufreq_policy *policy) 1879 { 1880 if (unlikely(policy_is_inactive(policy))) 1881 return 0; 1882 1883 return cpufreq_verify_current_freq(policy, true); 1884 } 1885 1886 /** 1887 * cpufreq_get - get the current CPU frequency (in kHz) 1888 * @cpu: CPU number 1889 * 1890 * Get the CPU current (static) CPU frequency 1891 */ 1892 unsigned int cpufreq_get(unsigned int cpu) 1893 { 1894 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 1895 unsigned int ret_freq = 0; 1896 1897 if (policy) { 1898 down_read(&policy->rwsem); 1899 if (cpufreq_driver->get) 1900 ret_freq = __cpufreq_get(policy); 1901 up_read(&policy->rwsem); 1902 1903 cpufreq_cpu_put(policy); 1904 } 1905 1906 return ret_freq; 1907 } 1908 EXPORT_SYMBOL(cpufreq_get); 1909 1910 static struct subsys_interface cpufreq_interface = { 1911 .name = "cpufreq", 1912 .subsys = &cpu_subsys, 1913 .add_dev = cpufreq_add_dev, 1914 .remove_dev = cpufreq_remove_dev, 1915 }; 1916 1917 /* 1918 * In case platform wants some specific frequency to be configured 1919 * during suspend.. 1920 */ 1921 int cpufreq_generic_suspend(struct cpufreq_policy *policy) 1922 { 1923 int ret; 1924 1925 if (!policy->suspend_freq) { 1926 pr_debug("%s: suspend_freq not defined\n", __func__); 1927 return 0; 1928 } 1929 1930 pr_debug("%s: Setting suspend-freq: %u\n", __func__, 1931 policy->suspend_freq); 1932 1933 ret = __cpufreq_driver_target(policy, policy->suspend_freq, 1934 CPUFREQ_RELATION_H); 1935 if (ret) 1936 pr_err("%s: unable to set suspend-freq: %u. err: %d\n", 1937 __func__, policy->suspend_freq, ret); 1938 1939 return ret; 1940 } 1941 EXPORT_SYMBOL(cpufreq_generic_suspend); 1942 1943 /** 1944 * cpufreq_suspend() - Suspend CPUFreq governors. 1945 * 1946 * Called during system wide Suspend/Hibernate cycles for suspending governors 1947 * as some platforms can't change frequency after this point in suspend cycle. 1948 * Because some of the devices (like: i2c, regulators, etc) they use for 1949 * changing frequency are suspended quickly after this point. 1950 */ 1951 void cpufreq_suspend(void) 1952 { 1953 struct cpufreq_policy *policy; 1954 1955 if (!cpufreq_driver) 1956 return; 1957 1958 if (!has_target() && !cpufreq_driver->suspend) 1959 goto suspend; 1960 1961 pr_debug("%s: Suspending Governors\n", __func__); 1962 1963 for_each_active_policy(policy) { 1964 if (has_target()) { 1965 down_write(&policy->rwsem); 1966 cpufreq_stop_governor(policy); 1967 up_write(&policy->rwsem); 1968 } 1969 1970 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy)) 1971 pr_err("%s: Failed to suspend driver: %s\n", __func__, 1972 cpufreq_driver->name); 1973 } 1974 1975 suspend: 1976 cpufreq_suspended = true; 1977 } 1978 1979 /** 1980 * cpufreq_resume() - Resume CPUFreq governors. 1981 * 1982 * Called during system wide Suspend/Hibernate cycle for resuming governors that 1983 * are suspended with cpufreq_suspend(). 1984 */ 1985 void cpufreq_resume(void) 1986 { 1987 struct cpufreq_policy *policy; 1988 int ret; 1989 1990 if (!cpufreq_driver) 1991 return; 1992 1993 if (unlikely(!cpufreq_suspended)) 1994 return; 1995 1996 cpufreq_suspended = false; 1997 1998 if (!has_target() && !cpufreq_driver->resume) 1999 return; 2000 2001 pr_debug("%s: Resuming Governors\n", __func__); 2002 2003 for_each_active_policy(policy) { 2004 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) { 2005 pr_err("%s: Failed to resume driver: %s\n", __func__, 2006 cpufreq_driver->name); 2007 } else if (has_target()) { 2008 down_write(&policy->rwsem); 2009 ret = cpufreq_start_governor(policy); 2010 up_write(&policy->rwsem); 2011 2012 if (ret) 2013 pr_err("%s: Failed to start governor for CPU%u's policy\n", 2014 __func__, policy->cpu); 2015 } 2016 } 2017 } 2018 2019 /** 2020 * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones. 2021 * @flags: Flags to test against the current cpufreq driver's flags. 2022 * 2023 * Assumes that the driver is there, so callers must ensure that this is the 2024 * case. 2025 */ 2026 bool cpufreq_driver_test_flags(u16 flags) 2027 { 2028 return !!(cpufreq_driver->flags & flags); 2029 } 2030 2031 /** 2032 * cpufreq_get_current_driver - Return the current driver's name. 2033 * 2034 * Return the name string of the currently registered cpufreq driver or NULL if 2035 * none. 2036 */ 2037 const char *cpufreq_get_current_driver(void) 2038 { 2039 if (cpufreq_driver) 2040 return cpufreq_driver->name; 2041 2042 return NULL; 2043 } 2044 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver); 2045 2046 /** 2047 * cpufreq_get_driver_data - Return current driver data. 2048 * 2049 * Return the private data of the currently registered cpufreq driver, or NULL 2050 * if no cpufreq driver has been registered. 2051 */ 2052 void *cpufreq_get_driver_data(void) 2053 { 2054 if (cpufreq_driver) 2055 return cpufreq_driver->driver_data; 2056 2057 return NULL; 2058 } 2059 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data); 2060 2061 /********************************************************************* 2062 * NOTIFIER LISTS INTERFACE * 2063 *********************************************************************/ 2064 2065 /** 2066 * cpufreq_register_notifier - Register a notifier with cpufreq. 2067 * @nb: notifier function to register. 2068 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER. 2069 * 2070 * Add a notifier to one of two lists: either a list of notifiers that run on 2071 * clock rate changes (once before and once after every transition), or a list 2072 * of notifiers that ron on cpufreq policy changes. 2073 * 2074 * This function may sleep and it has the same return values as 2075 * blocking_notifier_chain_register(). 2076 */ 2077 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list) 2078 { 2079 int ret; 2080 2081 if (cpufreq_disabled()) 2082 return -EINVAL; 2083 2084 switch (list) { 2085 case CPUFREQ_TRANSITION_NOTIFIER: 2086 mutex_lock(&cpufreq_fast_switch_lock); 2087 2088 if (cpufreq_fast_switch_count > 0) { 2089 mutex_unlock(&cpufreq_fast_switch_lock); 2090 return -EBUSY; 2091 } 2092 ret = srcu_notifier_chain_register( 2093 &cpufreq_transition_notifier_list, nb); 2094 if (!ret) 2095 cpufreq_fast_switch_count--; 2096 2097 mutex_unlock(&cpufreq_fast_switch_lock); 2098 break; 2099 case CPUFREQ_POLICY_NOTIFIER: 2100 ret = blocking_notifier_chain_register( 2101 &cpufreq_policy_notifier_list, nb); 2102 break; 2103 default: 2104 ret = -EINVAL; 2105 } 2106 2107 return ret; 2108 } 2109 EXPORT_SYMBOL(cpufreq_register_notifier); 2110 2111 /** 2112 * cpufreq_unregister_notifier - Unregister a notifier from cpufreq. 2113 * @nb: notifier block to be unregistered. 2114 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER. 2115 * 2116 * Remove a notifier from one of the cpufreq notifier lists. 2117 * 2118 * This function may sleep and it has the same return values as 2119 * blocking_notifier_chain_unregister(). 2120 */ 2121 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list) 2122 { 2123 int ret; 2124 2125 if (cpufreq_disabled()) 2126 return -EINVAL; 2127 2128 switch (list) { 2129 case CPUFREQ_TRANSITION_NOTIFIER: 2130 mutex_lock(&cpufreq_fast_switch_lock); 2131 2132 ret = srcu_notifier_chain_unregister( 2133 &cpufreq_transition_notifier_list, nb); 2134 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0)) 2135 cpufreq_fast_switch_count++; 2136 2137 mutex_unlock(&cpufreq_fast_switch_lock); 2138 break; 2139 case CPUFREQ_POLICY_NOTIFIER: 2140 ret = blocking_notifier_chain_unregister( 2141 &cpufreq_policy_notifier_list, nb); 2142 break; 2143 default: 2144 ret = -EINVAL; 2145 } 2146 2147 return ret; 2148 } 2149 EXPORT_SYMBOL(cpufreq_unregister_notifier); 2150 2151 2152 /********************************************************************* 2153 * GOVERNORS * 2154 *********************************************************************/ 2155 2156 /** 2157 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch. 2158 * @policy: cpufreq policy to switch the frequency for. 2159 * @target_freq: New frequency to set (may be approximate). 2160 * 2161 * Carry out a fast frequency switch without sleeping. 2162 * 2163 * The driver's ->fast_switch() callback invoked by this function must be 2164 * suitable for being called from within RCU-sched read-side critical sections 2165 * and it is expected to select the minimum available frequency greater than or 2166 * equal to @target_freq (CPUFREQ_RELATION_L). 2167 * 2168 * This function must not be called if policy->fast_switch_enabled is unset. 2169 * 2170 * Governors calling this function must guarantee that it will never be invoked 2171 * twice in parallel for the same policy and that it will never be called in 2172 * parallel with either ->target() or ->target_index() for the same policy. 2173 * 2174 * Returns the actual frequency set for the CPU. 2175 * 2176 * If 0 is returned by the driver's ->fast_switch() callback to indicate an 2177 * error condition, the hardware configuration must be preserved. 2178 */ 2179 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy, 2180 unsigned int target_freq) 2181 { 2182 unsigned int freq; 2183 int cpu; 2184 2185 target_freq = clamp_val(target_freq, policy->min, policy->max); 2186 freq = cpufreq_driver->fast_switch(policy, target_freq); 2187 2188 if (!freq) 2189 return 0; 2190 2191 policy->cur = freq; 2192 arch_set_freq_scale(policy->related_cpus, freq, 2193 arch_scale_freq_ref(policy->cpu)); 2194 cpufreq_stats_record_transition(policy, freq); 2195 2196 if (trace_cpu_frequency_enabled()) { 2197 for_each_cpu(cpu, policy->cpus) 2198 trace_cpu_frequency(freq, cpu); 2199 } 2200 2201 return freq; 2202 } 2203 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch); 2204 2205 /** 2206 * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go. 2207 * @cpu: Target CPU. 2208 * @min_perf: Minimum (required) performance level (units of @capacity). 2209 * @target_perf: Target (desired) performance level (units of @capacity). 2210 * @capacity: Capacity of the target CPU. 2211 * 2212 * Carry out a fast performance level switch of @cpu without sleeping. 2213 * 2214 * The driver's ->adjust_perf() callback invoked by this function must be 2215 * suitable for being called from within RCU-sched read-side critical sections 2216 * and it is expected to select a suitable performance level equal to or above 2217 * @min_perf and preferably equal to or below @target_perf. 2218 * 2219 * This function must not be called if policy->fast_switch_enabled is unset. 2220 * 2221 * Governors calling this function must guarantee that it will never be invoked 2222 * twice in parallel for the same CPU and that it will never be called in 2223 * parallel with either ->target() or ->target_index() or ->fast_switch() for 2224 * the same CPU. 2225 */ 2226 void cpufreq_driver_adjust_perf(unsigned int cpu, 2227 unsigned long min_perf, 2228 unsigned long target_perf, 2229 unsigned long capacity) 2230 { 2231 cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity); 2232 } 2233 2234 /** 2235 * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback. 2236 * 2237 * Return 'true' if the ->adjust_perf callback is present for the 2238 * current driver or 'false' otherwise. 2239 */ 2240 bool cpufreq_driver_has_adjust_perf(void) 2241 { 2242 return !!cpufreq_driver->adjust_perf; 2243 } 2244 2245 /* Must set freqs->new to intermediate frequency */ 2246 static int __target_intermediate(struct cpufreq_policy *policy, 2247 struct cpufreq_freqs *freqs, int index) 2248 { 2249 int ret; 2250 2251 freqs->new = cpufreq_driver->get_intermediate(policy, index); 2252 2253 /* We don't need to switch to intermediate freq */ 2254 if (!freqs->new) 2255 return 0; 2256 2257 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n", 2258 __func__, policy->cpu, freqs->old, freqs->new); 2259 2260 cpufreq_freq_transition_begin(policy, freqs); 2261 ret = cpufreq_driver->target_intermediate(policy, index); 2262 cpufreq_freq_transition_end(policy, freqs, ret); 2263 2264 if (ret) 2265 pr_err("%s: Failed to change to intermediate frequency: %d\n", 2266 __func__, ret); 2267 2268 return ret; 2269 } 2270 2271 static int __target_index(struct cpufreq_policy *policy, int index) 2272 { 2273 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0}; 2274 unsigned int restore_freq, intermediate_freq = 0; 2275 unsigned int newfreq = policy->freq_table[index].frequency; 2276 int retval = -EINVAL; 2277 bool notify; 2278 2279 if (newfreq == policy->cur) 2280 return 0; 2281 2282 /* Save last value to restore later on errors */ 2283 restore_freq = policy->cur; 2284 2285 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION); 2286 if (notify) { 2287 /* Handle switching to intermediate frequency */ 2288 if (cpufreq_driver->get_intermediate) { 2289 retval = __target_intermediate(policy, &freqs, index); 2290 if (retval) 2291 return retval; 2292 2293 intermediate_freq = freqs.new; 2294 /* Set old freq to intermediate */ 2295 if (intermediate_freq) 2296 freqs.old = freqs.new; 2297 } 2298 2299 freqs.new = newfreq; 2300 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n", 2301 __func__, policy->cpu, freqs.old, freqs.new); 2302 2303 cpufreq_freq_transition_begin(policy, &freqs); 2304 } 2305 2306 retval = cpufreq_driver->target_index(policy, index); 2307 if (retval) 2308 pr_err("%s: Failed to change cpu frequency: %d\n", __func__, 2309 retval); 2310 2311 if (notify) { 2312 cpufreq_freq_transition_end(policy, &freqs, retval); 2313 2314 /* 2315 * Failed after setting to intermediate freq? Driver should have 2316 * reverted back to initial frequency and so should we. Check 2317 * here for intermediate_freq instead of get_intermediate, in 2318 * case we haven't switched to intermediate freq at all. 2319 */ 2320 if (unlikely(retval && intermediate_freq)) { 2321 freqs.old = intermediate_freq; 2322 freqs.new = restore_freq; 2323 cpufreq_freq_transition_begin(policy, &freqs); 2324 cpufreq_freq_transition_end(policy, &freqs, 0); 2325 } 2326 } 2327 2328 return retval; 2329 } 2330 2331 int __cpufreq_driver_target(struct cpufreq_policy *policy, 2332 unsigned int target_freq, 2333 unsigned int relation) 2334 { 2335 unsigned int old_target_freq = target_freq; 2336 2337 if (cpufreq_disabled()) 2338 return -ENODEV; 2339 2340 target_freq = __resolve_freq(policy, target_freq, relation); 2341 2342 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n", 2343 policy->cpu, target_freq, relation, old_target_freq); 2344 2345 /* 2346 * This might look like a redundant call as we are checking it again 2347 * after finding index. But it is left intentionally for cases where 2348 * exactly same freq is called again and so we can save on few function 2349 * calls. 2350 */ 2351 if (target_freq == policy->cur && 2352 !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS)) 2353 return 0; 2354 2355 if (cpufreq_driver->target) { 2356 /* 2357 * If the driver hasn't setup a single inefficient frequency, 2358 * it's unlikely it knows how to decode CPUFREQ_RELATION_E. 2359 */ 2360 if (!policy->efficiencies_available) 2361 relation &= ~CPUFREQ_RELATION_E; 2362 2363 return cpufreq_driver->target(policy, target_freq, relation); 2364 } 2365 2366 if (!cpufreq_driver->target_index) 2367 return -EINVAL; 2368 2369 return __target_index(policy, policy->cached_resolved_idx); 2370 } 2371 EXPORT_SYMBOL_GPL(__cpufreq_driver_target); 2372 2373 int cpufreq_driver_target(struct cpufreq_policy *policy, 2374 unsigned int target_freq, 2375 unsigned int relation) 2376 { 2377 int ret; 2378 2379 down_write(&policy->rwsem); 2380 2381 ret = __cpufreq_driver_target(policy, target_freq, relation); 2382 2383 up_write(&policy->rwsem); 2384 2385 return ret; 2386 } 2387 EXPORT_SYMBOL_GPL(cpufreq_driver_target); 2388 2389 __weak struct cpufreq_governor *cpufreq_fallback_governor(void) 2390 { 2391 return NULL; 2392 } 2393 2394 static int cpufreq_init_governor(struct cpufreq_policy *policy) 2395 { 2396 int ret; 2397 2398 /* Don't start any governor operations if we are entering suspend */ 2399 if (cpufreq_suspended) 2400 return 0; 2401 /* 2402 * Governor might not be initiated here if ACPI _PPC changed 2403 * notification happened, so check it. 2404 */ 2405 if (!policy->governor) 2406 return -EINVAL; 2407 2408 /* Platform doesn't want dynamic frequency switching ? */ 2409 if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING && 2410 cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) { 2411 struct cpufreq_governor *gov = cpufreq_fallback_governor(); 2412 2413 if (gov) { 2414 pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n", 2415 policy->governor->name, gov->name); 2416 policy->governor = gov; 2417 } else { 2418 return -EINVAL; 2419 } 2420 } 2421 2422 if (!try_module_get(policy->governor->owner)) 2423 return -EINVAL; 2424 2425 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2426 2427 if (policy->governor->init) { 2428 ret = policy->governor->init(policy); 2429 if (ret) { 2430 module_put(policy->governor->owner); 2431 return ret; 2432 } 2433 } 2434 2435 policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET); 2436 2437 return 0; 2438 } 2439 2440 static void cpufreq_exit_governor(struct cpufreq_policy *policy) 2441 { 2442 if (cpufreq_suspended || !policy->governor) 2443 return; 2444 2445 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2446 2447 if (policy->governor->exit) 2448 policy->governor->exit(policy); 2449 2450 module_put(policy->governor->owner); 2451 } 2452 2453 int cpufreq_start_governor(struct cpufreq_policy *policy) 2454 { 2455 int ret; 2456 2457 if (cpufreq_suspended) 2458 return 0; 2459 2460 if (!policy->governor) 2461 return -EINVAL; 2462 2463 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2464 2465 if (cpufreq_driver->get) 2466 cpufreq_verify_current_freq(policy, false); 2467 2468 if (policy->governor->start) { 2469 ret = policy->governor->start(policy); 2470 if (ret) 2471 return ret; 2472 } 2473 2474 if (policy->governor->limits) 2475 policy->governor->limits(policy); 2476 2477 return 0; 2478 } 2479 2480 void cpufreq_stop_governor(struct cpufreq_policy *policy) 2481 { 2482 if (cpufreq_suspended || !policy->governor) 2483 return; 2484 2485 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2486 2487 if (policy->governor->stop) 2488 policy->governor->stop(policy); 2489 } 2490 2491 static void cpufreq_governor_limits(struct cpufreq_policy *policy) 2492 { 2493 if (cpufreq_suspended || !policy->governor) 2494 return; 2495 2496 pr_debug("%s: for CPU %u\n", __func__, policy->cpu); 2497 2498 if (policy->governor->limits) 2499 policy->governor->limits(policy); 2500 } 2501 2502 int cpufreq_register_governor(struct cpufreq_governor *governor) 2503 { 2504 int err; 2505 2506 if (!governor) 2507 return -EINVAL; 2508 2509 if (cpufreq_disabled()) 2510 return -ENODEV; 2511 2512 mutex_lock(&cpufreq_governor_mutex); 2513 2514 err = -EBUSY; 2515 if (!find_governor(governor->name)) { 2516 err = 0; 2517 list_add(&governor->governor_list, &cpufreq_governor_list); 2518 } 2519 2520 mutex_unlock(&cpufreq_governor_mutex); 2521 return err; 2522 } 2523 EXPORT_SYMBOL_GPL(cpufreq_register_governor); 2524 2525 void cpufreq_unregister_governor(struct cpufreq_governor *governor) 2526 { 2527 struct cpufreq_policy *policy; 2528 unsigned long flags; 2529 2530 if (!governor) 2531 return; 2532 2533 if (cpufreq_disabled()) 2534 return; 2535 2536 /* clear last_governor for all inactive policies */ 2537 read_lock_irqsave(&cpufreq_driver_lock, flags); 2538 for_each_inactive_policy(policy) { 2539 if (!strcmp(policy->last_governor, governor->name)) { 2540 policy->governor = NULL; 2541 strcpy(policy->last_governor, "\0"); 2542 } 2543 } 2544 read_unlock_irqrestore(&cpufreq_driver_lock, flags); 2545 2546 mutex_lock(&cpufreq_governor_mutex); 2547 list_del(&governor->governor_list); 2548 mutex_unlock(&cpufreq_governor_mutex); 2549 } 2550 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor); 2551 2552 2553 /********************************************************************* 2554 * POLICY INTERFACE * 2555 *********************************************************************/ 2556 2557 /** 2558 * cpufreq_get_policy - get the current cpufreq_policy 2559 * @policy: struct cpufreq_policy into which the current cpufreq_policy 2560 * is written 2561 * @cpu: CPU to find the policy for 2562 * 2563 * Reads the current cpufreq policy. 2564 */ 2565 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu) 2566 { 2567 struct cpufreq_policy *cpu_policy; 2568 if (!policy) 2569 return -EINVAL; 2570 2571 cpu_policy = cpufreq_cpu_get(cpu); 2572 if (!cpu_policy) 2573 return -EINVAL; 2574 2575 memcpy(policy, cpu_policy, sizeof(*policy)); 2576 2577 cpufreq_cpu_put(cpu_policy); 2578 return 0; 2579 } 2580 EXPORT_SYMBOL(cpufreq_get_policy); 2581 2582 DEFINE_PER_CPU(unsigned long, cpufreq_pressure); 2583 2584 /** 2585 * cpufreq_update_pressure() - Update cpufreq pressure for CPUs 2586 * @policy: cpufreq policy of the CPUs. 2587 * 2588 * Update the value of cpufreq pressure for all @cpus in the policy. 2589 */ 2590 static void cpufreq_update_pressure(struct cpufreq_policy *policy) 2591 { 2592 unsigned long max_capacity, capped_freq, pressure; 2593 u32 max_freq; 2594 int cpu; 2595 2596 cpu = cpumask_first(policy->related_cpus); 2597 max_freq = arch_scale_freq_ref(cpu); 2598 capped_freq = policy->max; 2599 2600 /* 2601 * Handle properly the boost frequencies, which should simply clean 2602 * the cpufreq pressure value. 2603 */ 2604 if (max_freq <= capped_freq) { 2605 pressure = 0; 2606 } else { 2607 max_capacity = arch_scale_cpu_capacity(cpu); 2608 pressure = max_capacity - 2609 mult_frac(max_capacity, capped_freq, max_freq); 2610 } 2611 2612 for_each_cpu(cpu, policy->related_cpus) 2613 WRITE_ONCE(per_cpu(cpufreq_pressure, cpu), pressure); 2614 } 2615 2616 /** 2617 * cpufreq_set_policy - Modify cpufreq policy parameters. 2618 * @policy: Policy object to modify. 2619 * @new_gov: Policy governor pointer. 2620 * @new_pol: Policy value (for drivers with built-in governors). 2621 * 2622 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency 2623 * limits to be set for the policy, update @policy with the verified limits 2624 * values and either invoke the driver's ->setpolicy() callback (if present) or 2625 * carry out a governor update for @policy. That is, run the current governor's 2626 * ->limits() callback (if @new_gov points to the same object as the one in 2627 * @policy) or replace the governor for @policy with @new_gov. 2628 * 2629 * The cpuinfo part of @policy is not updated by this function. 2630 */ 2631 static int cpufreq_set_policy(struct cpufreq_policy *policy, 2632 struct cpufreq_governor *new_gov, 2633 unsigned int new_pol) 2634 { 2635 struct cpufreq_policy_data new_data; 2636 struct cpufreq_governor *old_gov; 2637 int ret; 2638 2639 memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo)); 2640 new_data.freq_table = policy->freq_table; 2641 new_data.cpu = policy->cpu; 2642 /* 2643 * PM QoS framework collects all the requests from users and provide us 2644 * the final aggregated value here. 2645 */ 2646 new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN); 2647 new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX); 2648 2649 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", 2650 new_data.cpu, new_data.min, new_data.max); 2651 2652 /* 2653 * Verify that the CPU speed can be set within these limits and make sure 2654 * that min <= max. 2655 */ 2656 ret = cpufreq_driver->verify(&new_data); 2657 if (ret) 2658 return ret; 2659 2660 /* 2661 * Resolve policy min/max to available frequencies. It ensures 2662 * no frequency resolution will neither overshoot the requested maximum 2663 * nor undershoot the requested minimum. 2664 */ 2665 policy->min = new_data.min; 2666 policy->max = new_data.max; 2667 policy->min = __resolve_freq(policy, policy->min, CPUFREQ_RELATION_L); 2668 policy->max = __resolve_freq(policy, policy->max, CPUFREQ_RELATION_H); 2669 trace_cpu_frequency_limits(policy); 2670 2671 cpufreq_update_pressure(policy); 2672 2673 policy->cached_target_freq = UINT_MAX; 2674 2675 pr_debug("new min and max freqs are %u - %u kHz\n", 2676 policy->min, policy->max); 2677 2678 if (cpufreq_driver->setpolicy) { 2679 policy->policy = new_pol; 2680 pr_debug("setting range\n"); 2681 return cpufreq_driver->setpolicy(policy); 2682 } 2683 2684 if (new_gov == policy->governor) { 2685 pr_debug("governor limits update\n"); 2686 cpufreq_governor_limits(policy); 2687 return 0; 2688 } 2689 2690 pr_debug("governor switch\n"); 2691 2692 /* save old, working values */ 2693 old_gov = policy->governor; 2694 /* end old governor */ 2695 if (old_gov) { 2696 cpufreq_stop_governor(policy); 2697 cpufreq_exit_governor(policy); 2698 } 2699 2700 /* start new governor */ 2701 policy->governor = new_gov; 2702 ret = cpufreq_init_governor(policy); 2703 if (!ret) { 2704 ret = cpufreq_start_governor(policy); 2705 if (!ret) { 2706 pr_debug("governor change\n"); 2707 return 0; 2708 } 2709 cpufreq_exit_governor(policy); 2710 } 2711 2712 /* new governor failed, so re-start old one */ 2713 pr_debug("starting governor %s failed\n", policy->governor->name); 2714 if (old_gov) { 2715 policy->governor = old_gov; 2716 if (cpufreq_init_governor(policy)) 2717 policy->governor = NULL; 2718 else 2719 cpufreq_start_governor(policy); 2720 } 2721 2722 return ret; 2723 } 2724 2725 /** 2726 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy. 2727 * @cpu: CPU to re-evaluate the policy for. 2728 * 2729 * Update the current frequency for the cpufreq policy of @cpu and use 2730 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the 2731 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback 2732 * for the policy in question, among other things. 2733 */ 2734 void cpufreq_update_policy(unsigned int cpu) 2735 { 2736 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu); 2737 2738 if (!policy) 2739 return; 2740 2741 /* 2742 * BIOS might change freq behind our back 2743 * -> ask driver for current freq and notify governors about a change 2744 */ 2745 if (cpufreq_driver->get && has_target() && 2746 (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false)))) 2747 goto unlock; 2748 2749 refresh_frequency_limits(policy); 2750 2751 unlock: 2752 cpufreq_cpu_release(policy); 2753 } 2754 EXPORT_SYMBOL(cpufreq_update_policy); 2755 2756 /** 2757 * cpufreq_update_limits - Update policy limits for a given CPU. 2758 * @cpu: CPU to update the policy limits for. 2759 * 2760 * Invoke the driver's ->update_limits callback if present or call 2761 * cpufreq_update_policy() for @cpu. 2762 */ 2763 void cpufreq_update_limits(unsigned int cpu) 2764 { 2765 if (cpufreq_driver->update_limits) 2766 cpufreq_driver->update_limits(cpu); 2767 else 2768 cpufreq_update_policy(cpu); 2769 } 2770 EXPORT_SYMBOL_GPL(cpufreq_update_limits); 2771 2772 /********************************************************************* 2773 * BOOST * 2774 *********************************************************************/ 2775 static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state) 2776 { 2777 int ret; 2778 2779 if (!policy->freq_table) 2780 return -ENXIO; 2781 2782 ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table); 2783 if (ret) { 2784 pr_err("%s: Policy frequency update failed\n", __func__); 2785 return ret; 2786 } 2787 2788 ret = freq_qos_update_request(policy->max_freq_req, policy->max); 2789 if (ret < 0) 2790 return ret; 2791 2792 return 0; 2793 } 2794 2795 int cpufreq_boost_trigger_state(int state) 2796 { 2797 struct cpufreq_policy *policy; 2798 unsigned long flags; 2799 int ret = 0; 2800 2801 if (cpufreq_driver->boost_enabled == state) 2802 return 0; 2803 2804 write_lock_irqsave(&cpufreq_driver_lock, flags); 2805 cpufreq_driver->boost_enabled = state; 2806 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2807 2808 cpus_read_lock(); 2809 for_each_active_policy(policy) { 2810 policy->boost_enabled = state; 2811 ret = cpufreq_driver->set_boost(policy, state); 2812 if (ret) { 2813 policy->boost_enabled = !policy->boost_enabled; 2814 goto err_reset_state; 2815 } 2816 } 2817 cpus_read_unlock(); 2818 2819 return 0; 2820 2821 err_reset_state: 2822 cpus_read_unlock(); 2823 2824 write_lock_irqsave(&cpufreq_driver_lock, flags); 2825 cpufreq_driver->boost_enabled = !state; 2826 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2827 2828 pr_err("%s: Cannot %s BOOST\n", 2829 __func__, str_enable_disable(state)); 2830 2831 return ret; 2832 } 2833 2834 static bool cpufreq_boost_supported(void) 2835 { 2836 return cpufreq_driver->set_boost; 2837 } 2838 2839 static int create_boost_sysfs_file(void) 2840 { 2841 int ret; 2842 2843 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr); 2844 if (ret) 2845 pr_err("%s: cannot register global BOOST sysfs file\n", 2846 __func__); 2847 2848 return ret; 2849 } 2850 2851 static void remove_boost_sysfs_file(void) 2852 { 2853 if (cpufreq_boost_supported()) 2854 sysfs_remove_file(cpufreq_global_kobject, &boost.attr); 2855 } 2856 2857 int cpufreq_enable_boost_support(void) 2858 { 2859 if (!cpufreq_driver) 2860 return -EINVAL; 2861 2862 if (cpufreq_boost_supported()) 2863 return 0; 2864 2865 cpufreq_driver->set_boost = cpufreq_boost_set_sw; 2866 2867 /* This will get removed on driver unregister */ 2868 return create_boost_sysfs_file(); 2869 } 2870 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support); 2871 2872 bool cpufreq_boost_enabled(void) 2873 { 2874 return cpufreq_driver->boost_enabled; 2875 } 2876 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled); 2877 2878 /********************************************************************* 2879 * REGISTER / UNREGISTER CPUFREQ DRIVER * 2880 *********************************************************************/ 2881 static enum cpuhp_state hp_online; 2882 2883 static int cpuhp_cpufreq_online(unsigned int cpu) 2884 { 2885 cpufreq_online(cpu); 2886 2887 return 0; 2888 } 2889 2890 static int cpuhp_cpufreq_offline(unsigned int cpu) 2891 { 2892 cpufreq_offline(cpu); 2893 2894 return 0; 2895 } 2896 2897 /** 2898 * cpufreq_register_driver - register a CPU Frequency driver 2899 * @driver_data: A struct cpufreq_driver containing the values# 2900 * submitted by the CPU Frequency driver. 2901 * 2902 * Registers a CPU Frequency driver to this core code. This code 2903 * returns zero on success, -EEXIST when another driver got here first 2904 * (and isn't unregistered in the meantime). 2905 * 2906 */ 2907 int cpufreq_register_driver(struct cpufreq_driver *driver_data) 2908 { 2909 unsigned long flags; 2910 int ret; 2911 2912 if (cpufreq_disabled()) 2913 return -ENODEV; 2914 2915 /* 2916 * The cpufreq core depends heavily on the availability of device 2917 * structure, make sure they are available before proceeding further. 2918 */ 2919 if (!get_cpu_device(0)) 2920 return -EPROBE_DEFER; 2921 2922 if (!driver_data || !driver_data->verify || !driver_data->init || 2923 !(driver_data->setpolicy || driver_data->target_index || 2924 driver_data->target) || 2925 (driver_data->setpolicy && (driver_data->target_index || 2926 driver_data->target)) || 2927 (!driver_data->get_intermediate != !driver_data->target_intermediate) || 2928 (!driver_data->online != !driver_data->offline) || 2929 (driver_data->adjust_perf && !driver_data->fast_switch)) 2930 return -EINVAL; 2931 2932 pr_debug("trying to register driver %s\n", driver_data->name); 2933 2934 /* Protect against concurrent CPU online/offline. */ 2935 cpus_read_lock(); 2936 2937 write_lock_irqsave(&cpufreq_driver_lock, flags); 2938 if (cpufreq_driver) { 2939 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2940 ret = -EEXIST; 2941 goto out; 2942 } 2943 cpufreq_driver = driver_data; 2944 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2945 2946 /* 2947 * Mark support for the scheduler's frequency invariance engine for 2948 * drivers that implement target(), target_index() or fast_switch(). 2949 */ 2950 if (!cpufreq_driver->setpolicy) { 2951 static_branch_enable_cpuslocked(&cpufreq_freq_invariance); 2952 pr_debug("supports frequency invariance"); 2953 } 2954 2955 if (driver_data->setpolicy) 2956 driver_data->flags |= CPUFREQ_CONST_LOOPS; 2957 2958 if (cpufreq_boost_supported()) { 2959 ret = create_boost_sysfs_file(); 2960 if (ret) 2961 goto err_null_driver; 2962 } 2963 2964 ret = subsys_interface_register(&cpufreq_interface); 2965 if (ret) 2966 goto err_boost_unreg; 2967 2968 if (unlikely(list_empty(&cpufreq_policy_list))) { 2969 /* if all ->init() calls failed, unregister */ 2970 ret = -ENODEV; 2971 pr_debug("%s: No CPU initialized for driver %s\n", __func__, 2972 driver_data->name); 2973 goto err_if_unreg; 2974 } 2975 2976 ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN, 2977 "cpufreq:online", 2978 cpuhp_cpufreq_online, 2979 cpuhp_cpufreq_offline); 2980 if (ret < 0) 2981 goto err_if_unreg; 2982 hp_online = ret; 2983 ret = 0; 2984 2985 pr_debug("driver %s up and running\n", driver_data->name); 2986 goto out; 2987 2988 err_if_unreg: 2989 subsys_interface_unregister(&cpufreq_interface); 2990 err_boost_unreg: 2991 remove_boost_sysfs_file(); 2992 err_null_driver: 2993 write_lock_irqsave(&cpufreq_driver_lock, flags); 2994 cpufreq_driver = NULL; 2995 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 2996 out: 2997 cpus_read_unlock(); 2998 return ret; 2999 } 3000 EXPORT_SYMBOL_GPL(cpufreq_register_driver); 3001 3002 /* 3003 * cpufreq_unregister_driver - unregister the current CPUFreq driver 3004 * 3005 * Unregister the current CPUFreq driver. Only call this if you have 3006 * the right to do so, i.e. if you have succeeded in initialising before! 3007 * Returns zero if successful, and -EINVAL if the cpufreq_driver is 3008 * currently not initialised. 3009 */ 3010 void cpufreq_unregister_driver(struct cpufreq_driver *driver) 3011 { 3012 unsigned long flags; 3013 3014 if (WARN_ON(!cpufreq_driver || (driver != cpufreq_driver))) 3015 return; 3016 3017 pr_debug("unregistering driver %s\n", driver->name); 3018 3019 /* Protect against concurrent cpu hotplug */ 3020 cpus_read_lock(); 3021 subsys_interface_unregister(&cpufreq_interface); 3022 remove_boost_sysfs_file(); 3023 static_branch_disable_cpuslocked(&cpufreq_freq_invariance); 3024 cpuhp_remove_state_nocalls_cpuslocked(hp_online); 3025 3026 write_lock_irqsave(&cpufreq_driver_lock, flags); 3027 3028 cpufreq_driver = NULL; 3029 3030 write_unlock_irqrestore(&cpufreq_driver_lock, flags); 3031 cpus_read_unlock(); 3032 } 3033 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver); 3034 3035 static int __init cpufreq_core_init(void) 3036 { 3037 struct cpufreq_governor *gov = cpufreq_default_governor(); 3038 struct device *dev_root; 3039 3040 if (cpufreq_disabled()) 3041 return -ENODEV; 3042 3043 dev_root = bus_get_dev_root(&cpu_subsys); 3044 if (dev_root) { 3045 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &dev_root->kobj); 3046 put_device(dev_root); 3047 } 3048 BUG_ON(!cpufreq_global_kobject); 3049 3050 if (!strlen(default_governor)) 3051 strscpy(default_governor, gov->name, CPUFREQ_NAME_LEN); 3052 3053 return 0; 3054 } 3055 module_param(off, int, 0444); 3056 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444); 3057 core_initcall(cpufreq_core_init); 3058