1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * CPPC (Collaborative Processor Performance Control) driver for 4 * interfacing with the CPUfreq layer and governors. See 5 * cppc_acpi.c for CPPC specific methods. 6 * 7 * (C) Copyright 2014, 2015 Linaro Ltd. 8 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org> 9 */ 10 11 #define pr_fmt(fmt) "CPPC Cpufreq:" fmt 12 13 #include <linux/arch_topology.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/delay.h> 17 #include <linux/cpu.h> 18 #include <linux/cpufreq.h> 19 #include <linux/irq_work.h> 20 #include <linux/kthread.h> 21 #include <linux/time.h> 22 #include <linux/vmalloc.h> 23 #include <uapi/linux/sched/types.h> 24 25 #include <linux/unaligned.h> 26 27 #include <acpi/cppc_acpi.h> 28 29 /* 30 * This list contains information parsed from per CPU ACPI _CPC and _PSD 31 * structures: e.g. the highest and lowest supported performance, capabilities, 32 * desired performance, level requested etc. Depending on the share_type, not 33 * all CPUs will have an entry in the list. 34 */ 35 static LIST_HEAD(cpu_data_list); 36 37 static bool boost_supported; 38 39 static struct cpufreq_driver cppc_cpufreq_driver; 40 41 #ifdef CONFIG_ACPI_CPPC_CPUFREQ_FIE 42 static enum { 43 FIE_UNSET = -1, 44 FIE_ENABLED, 45 FIE_DISABLED 46 } fie_disabled = FIE_UNSET; 47 48 module_param(fie_disabled, int, 0444); 49 MODULE_PARM_DESC(fie_disabled, "Disable Frequency Invariance Engine (FIE)"); 50 51 /* Frequency invariance support */ 52 struct cppc_freq_invariance { 53 int cpu; 54 struct irq_work irq_work; 55 struct kthread_work work; 56 struct cppc_perf_fb_ctrs prev_perf_fb_ctrs; 57 struct cppc_cpudata *cpu_data; 58 }; 59 60 static DEFINE_PER_CPU(struct cppc_freq_invariance, cppc_freq_inv); 61 static struct kthread_worker *kworker_fie; 62 63 static int cppc_perf_from_fbctrs(struct cppc_cpudata *cpu_data, 64 struct cppc_perf_fb_ctrs *fb_ctrs_t0, 65 struct cppc_perf_fb_ctrs *fb_ctrs_t1); 66 67 /** 68 * cppc_scale_freq_workfn - CPPC arch_freq_scale updater for frequency invariance 69 * @work: The work item. 70 * 71 * The CPPC driver register itself with the topology core to provide its own 72 * implementation (cppc_scale_freq_tick()) of topology_scale_freq_tick() which 73 * gets called by the scheduler on every tick. 74 * 75 * Note that the arch specific counters have higher priority than CPPC counters, 76 * if available, though the CPPC driver doesn't need to have any special 77 * handling for that. 78 * 79 * On an invocation of cppc_scale_freq_tick(), we schedule an irq work (since we 80 * reach here from hard-irq context), which then schedules a normal work item 81 * and cppc_scale_freq_workfn() updates the per_cpu arch_freq_scale variable 82 * based on the counter updates since the last tick. 83 */ 84 static void cppc_scale_freq_workfn(struct kthread_work *work) 85 { 86 struct cppc_freq_invariance *cppc_fi; 87 struct cppc_perf_fb_ctrs fb_ctrs = {0}; 88 struct cppc_cpudata *cpu_data; 89 unsigned long local_freq_scale; 90 u64 perf; 91 92 cppc_fi = container_of(work, struct cppc_freq_invariance, work); 93 cpu_data = cppc_fi->cpu_data; 94 95 if (cppc_get_perf_ctrs(cppc_fi->cpu, &fb_ctrs)) { 96 pr_warn("%s: failed to read perf counters\n", __func__); 97 return; 98 } 99 100 perf = cppc_perf_from_fbctrs(cpu_data, &cppc_fi->prev_perf_fb_ctrs, 101 &fb_ctrs); 102 if (!perf) 103 return; 104 105 cppc_fi->prev_perf_fb_ctrs = fb_ctrs; 106 107 perf <<= SCHED_CAPACITY_SHIFT; 108 local_freq_scale = div64_u64(perf, cpu_data->perf_caps.highest_perf); 109 110 /* This can happen due to counter's overflow */ 111 if (unlikely(local_freq_scale > 1024)) 112 local_freq_scale = 1024; 113 114 per_cpu(arch_freq_scale, cppc_fi->cpu) = local_freq_scale; 115 } 116 117 static void cppc_irq_work(struct irq_work *irq_work) 118 { 119 struct cppc_freq_invariance *cppc_fi; 120 121 cppc_fi = container_of(irq_work, struct cppc_freq_invariance, irq_work); 122 kthread_queue_work(kworker_fie, &cppc_fi->work); 123 } 124 125 static void cppc_scale_freq_tick(void) 126 { 127 struct cppc_freq_invariance *cppc_fi = &per_cpu(cppc_freq_inv, smp_processor_id()); 128 129 /* 130 * cppc_get_perf_ctrs() can potentially sleep, call that from the right 131 * context. 132 */ 133 irq_work_queue(&cppc_fi->irq_work); 134 } 135 136 static struct scale_freq_data cppc_sftd = { 137 .source = SCALE_FREQ_SOURCE_CPPC, 138 .set_freq_scale = cppc_scale_freq_tick, 139 }; 140 141 static void cppc_cpufreq_cpu_fie_init(struct cpufreq_policy *policy) 142 { 143 struct cppc_freq_invariance *cppc_fi; 144 int cpu, ret; 145 146 if (fie_disabled) 147 return; 148 149 for_each_cpu(cpu, policy->cpus) { 150 cppc_fi = &per_cpu(cppc_freq_inv, cpu); 151 cppc_fi->cpu = cpu; 152 cppc_fi->cpu_data = policy->driver_data; 153 kthread_init_work(&cppc_fi->work, cppc_scale_freq_workfn); 154 init_irq_work(&cppc_fi->irq_work, cppc_irq_work); 155 156 ret = cppc_get_perf_ctrs(cpu, &cppc_fi->prev_perf_fb_ctrs); 157 if (ret) { 158 pr_warn("%s: failed to read perf counters for cpu:%d: %d\n", 159 __func__, cpu, ret); 160 161 /* 162 * Don't abort if the CPU was offline while the driver 163 * was getting registered. 164 */ 165 if (cpu_online(cpu)) 166 return; 167 } 168 } 169 170 /* Register for freq-invariance */ 171 topology_set_scale_freq_source(&cppc_sftd, policy->cpus); 172 } 173 174 /* 175 * We free all the resources on policy's removal and not on CPU removal as the 176 * irq-work are per-cpu and the hotplug core takes care of flushing the pending 177 * irq-works (hint: smpcfd_dying_cpu()) on CPU hotplug. Even if the kthread-work 178 * fires on another CPU after the concerned CPU is removed, it won't harm. 179 * 180 * We just need to make sure to remove them all on policy->exit(). 181 */ 182 static void cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy *policy) 183 { 184 struct cppc_freq_invariance *cppc_fi; 185 int cpu; 186 187 if (fie_disabled) 188 return; 189 190 /* policy->cpus will be empty here, use related_cpus instead */ 191 topology_clear_scale_freq_source(SCALE_FREQ_SOURCE_CPPC, policy->related_cpus); 192 193 for_each_cpu(cpu, policy->related_cpus) { 194 cppc_fi = &per_cpu(cppc_freq_inv, cpu); 195 irq_work_sync(&cppc_fi->irq_work); 196 kthread_cancel_work_sync(&cppc_fi->work); 197 } 198 } 199 200 static void __init cppc_freq_invariance_init(void) 201 { 202 struct sched_attr attr = { 203 .size = sizeof(struct sched_attr), 204 .sched_policy = SCHED_DEADLINE, 205 .sched_nice = 0, 206 .sched_priority = 0, 207 /* 208 * Fake (unused) bandwidth; workaround to "fix" 209 * priority inheritance. 210 */ 211 .sched_runtime = NSEC_PER_MSEC, 212 .sched_deadline = 10 * NSEC_PER_MSEC, 213 .sched_period = 10 * NSEC_PER_MSEC, 214 }; 215 int ret; 216 217 if (fie_disabled != FIE_ENABLED && fie_disabled != FIE_DISABLED) { 218 fie_disabled = FIE_ENABLED; 219 if (cppc_perf_ctrs_in_pcc()) { 220 pr_info("FIE not enabled on systems with registers in PCC\n"); 221 fie_disabled = FIE_DISABLED; 222 } 223 } 224 225 if (fie_disabled) 226 return; 227 228 kworker_fie = kthread_run_worker(0, "cppc_fie"); 229 if (IS_ERR(kworker_fie)) { 230 pr_warn("%s: failed to create kworker_fie: %ld\n", __func__, 231 PTR_ERR(kworker_fie)); 232 fie_disabled = FIE_DISABLED; 233 return; 234 } 235 236 ret = sched_setattr_nocheck(kworker_fie->task, &attr); 237 if (ret) { 238 pr_warn("%s: failed to set SCHED_DEADLINE: %d\n", __func__, 239 ret); 240 kthread_destroy_worker(kworker_fie); 241 fie_disabled = FIE_DISABLED; 242 } 243 } 244 245 static void cppc_freq_invariance_exit(void) 246 { 247 if (fie_disabled) 248 return; 249 250 kthread_destroy_worker(kworker_fie); 251 } 252 253 #else 254 static inline void cppc_cpufreq_cpu_fie_init(struct cpufreq_policy *policy) 255 { 256 } 257 258 static inline void cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy *policy) 259 { 260 } 261 262 static inline void cppc_freq_invariance_init(void) 263 { 264 } 265 266 static inline void cppc_freq_invariance_exit(void) 267 { 268 } 269 #endif /* CONFIG_ACPI_CPPC_CPUFREQ_FIE */ 270 271 static int cppc_cpufreq_set_target(struct cpufreq_policy *policy, 272 unsigned int target_freq, 273 unsigned int relation) 274 { 275 struct cppc_cpudata *cpu_data = policy->driver_data; 276 unsigned int cpu = policy->cpu; 277 struct cpufreq_freqs freqs; 278 int ret = 0; 279 280 cpu_data->perf_ctrls.desired_perf = 281 cppc_khz_to_perf(&cpu_data->perf_caps, target_freq); 282 freqs.old = policy->cur; 283 freqs.new = target_freq; 284 285 cpufreq_freq_transition_begin(policy, &freqs); 286 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls); 287 cpufreq_freq_transition_end(policy, &freqs, ret != 0); 288 289 if (ret) 290 pr_debug("Failed to set target on CPU:%d. ret:%d\n", 291 cpu, ret); 292 293 return ret; 294 } 295 296 static unsigned int cppc_cpufreq_fast_switch(struct cpufreq_policy *policy, 297 unsigned int target_freq) 298 { 299 struct cppc_cpudata *cpu_data = policy->driver_data; 300 unsigned int cpu = policy->cpu; 301 u32 desired_perf; 302 int ret; 303 304 desired_perf = cppc_khz_to_perf(&cpu_data->perf_caps, target_freq); 305 cpu_data->perf_ctrls.desired_perf = desired_perf; 306 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls); 307 308 if (ret) { 309 pr_debug("Failed to set target on CPU:%d. ret:%d\n", 310 cpu, ret); 311 return 0; 312 } 313 314 return target_freq; 315 } 316 317 static int cppc_verify_policy(struct cpufreq_policy_data *policy) 318 { 319 cpufreq_verify_within_cpu_limits(policy); 320 return 0; 321 } 322 323 /* 324 * The PCC subspace describes the rate at which platform can accept commands 325 * on the shared PCC channel (including READs which do not count towards freq 326 * transition requests), so ideally we need to use the PCC values as a fallback 327 * if we don't have a platform specific transition_delay_us 328 */ 329 #ifdef CONFIG_ARM64 330 #include <asm/cputype.h> 331 332 static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu) 333 { 334 unsigned long implementor = read_cpuid_implementor(); 335 unsigned long part_num = read_cpuid_part_number(); 336 337 switch (implementor) { 338 case ARM_CPU_IMP_QCOM: 339 switch (part_num) { 340 case QCOM_CPU_PART_FALKOR_V1: 341 case QCOM_CPU_PART_FALKOR: 342 return 10000; 343 } 344 } 345 return cppc_get_transition_latency(cpu) / NSEC_PER_USEC; 346 } 347 #else 348 static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu) 349 { 350 return cppc_get_transition_latency(cpu) / NSEC_PER_USEC; 351 } 352 #endif 353 354 #if defined(CONFIG_ARM64) && defined(CONFIG_ENERGY_MODEL) 355 356 static DEFINE_PER_CPU(unsigned int, efficiency_class); 357 static void cppc_cpufreq_register_em(struct cpufreq_policy *policy); 358 359 /* Create an artificial performance state every CPPC_EM_CAP_STEP capacity unit. */ 360 #define CPPC_EM_CAP_STEP (20) 361 /* Increase the cost value by CPPC_EM_COST_STEP every performance state. */ 362 #define CPPC_EM_COST_STEP (1) 363 /* Add a cost gap correspnding to the energy of 4 CPUs. */ 364 #define CPPC_EM_COST_GAP (4 * SCHED_CAPACITY_SCALE * CPPC_EM_COST_STEP \ 365 / CPPC_EM_CAP_STEP) 366 367 static unsigned int get_perf_level_count(struct cpufreq_policy *policy) 368 { 369 struct cppc_perf_caps *perf_caps; 370 unsigned int min_cap, max_cap; 371 struct cppc_cpudata *cpu_data; 372 int cpu = policy->cpu; 373 374 cpu_data = policy->driver_data; 375 perf_caps = &cpu_data->perf_caps; 376 max_cap = arch_scale_cpu_capacity(cpu); 377 min_cap = div_u64((u64)max_cap * perf_caps->lowest_perf, 378 perf_caps->highest_perf); 379 if ((min_cap == 0) || (max_cap < min_cap)) 380 return 0; 381 return 1 + max_cap / CPPC_EM_CAP_STEP - min_cap / CPPC_EM_CAP_STEP; 382 } 383 384 /* 385 * The cost is defined as: 386 * cost = power * max_frequency / frequency 387 */ 388 static inline unsigned long compute_cost(int cpu, int step) 389 { 390 return CPPC_EM_COST_GAP * per_cpu(efficiency_class, cpu) + 391 step * CPPC_EM_COST_STEP; 392 } 393 394 static int cppc_get_cpu_power(struct device *cpu_dev, 395 unsigned long *power, unsigned long *KHz) 396 { 397 unsigned long perf_step, perf_prev, perf, perf_check; 398 unsigned int min_step, max_step, step, step_check; 399 unsigned long prev_freq = *KHz; 400 unsigned int min_cap, max_cap; 401 struct cpufreq_policy *policy; 402 403 struct cppc_perf_caps *perf_caps; 404 struct cppc_cpudata *cpu_data; 405 406 policy = cpufreq_cpu_get_raw(cpu_dev->id); 407 if (!policy) 408 return -EINVAL; 409 410 cpu_data = policy->driver_data; 411 perf_caps = &cpu_data->perf_caps; 412 max_cap = arch_scale_cpu_capacity(cpu_dev->id); 413 min_cap = div_u64((u64)max_cap * perf_caps->lowest_perf, 414 perf_caps->highest_perf); 415 perf_step = div_u64((u64)CPPC_EM_CAP_STEP * perf_caps->highest_perf, 416 max_cap); 417 min_step = min_cap / CPPC_EM_CAP_STEP; 418 max_step = max_cap / CPPC_EM_CAP_STEP; 419 420 perf_prev = cppc_khz_to_perf(perf_caps, *KHz); 421 step = perf_prev / perf_step; 422 423 if (step > max_step) 424 return -EINVAL; 425 426 if (min_step == max_step) { 427 step = max_step; 428 perf = perf_caps->highest_perf; 429 } else if (step < min_step) { 430 step = min_step; 431 perf = perf_caps->lowest_perf; 432 } else { 433 step++; 434 if (step == max_step) 435 perf = perf_caps->highest_perf; 436 else 437 perf = step * perf_step; 438 } 439 440 *KHz = cppc_perf_to_khz(perf_caps, perf); 441 perf_check = cppc_khz_to_perf(perf_caps, *KHz); 442 step_check = perf_check / perf_step; 443 444 /* 445 * To avoid bad integer approximation, check that new frequency value 446 * increased and that the new frequency will be converted to the 447 * desired step value. 448 */ 449 while ((*KHz == prev_freq) || (step_check != step)) { 450 perf++; 451 *KHz = cppc_perf_to_khz(perf_caps, perf); 452 perf_check = cppc_khz_to_perf(perf_caps, *KHz); 453 step_check = perf_check / perf_step; 454 } 455 456 /* 457 * With an artificial EM, only the cost value is used. Still the power 458 * is populated such as 0 < power < EM_MAX_POWER. This allows to add 459 * more sense to the artificial performance states. 460 */ 461 *power = compute_cost(cpu_dev->id, step); 462 463 return 0; 464 } 465 466 static int cppc_get_cpu_cost(struct device *cpu_dev, unsigned long KHz, 467 unsigned long *cost) 468 { 469 unsigned long perf_step, perf_prev; 470 struct cppc_perf_caps *perf_caps; 471 struct cpufreq_policy *policy; 472 struct cppc_cpudata *cpu_data; 473 unsigned int max_cap; 474 int step; 475 476 policy = cpufreq_cpu_get_raw(cpu_dev->id); 477 if (!policy) 478 return -EINVAL; 479 480 cpu_data = policy->driver_data; 481 perf_caps = &cpu_data->perf_caps; 482 max_cap = arch_scale_cpu_capacity(cpu_dev->id); 483 484 perf_prev = cppc_khz_to_perf(perf_caps, KHz); 485 perf_step = CPPC_EM_CAP_STEP * perf_caps->highest_perf / max_cap; 486 step = perf_prev / perf_step; 487 488 *cost = compute_cost(cpu_dev->id, step); 489 490 return 0; 491 } 492 493 static int populate_efficiency_class(void) 494 { 495 struct acpi_madt_generic_interrupt *gicc; 496 DECLARE_BITMAP(used_classes, 256) = {}; 497 int class, cpu, index; 498 499 for_each_possible_cpu(cpu) { 500 gicc = acpi_cpu_get_madt_gicc(cpu); 501 class = gicc->efficiency_class; 502 bitmap_set(used_classes, class, 1); 503 } 504 505 if (bitmap_weight(used_classes, 256) <= 1) { 506 pr_debug("Efficiency classes are all equal (=%d). " 507 "No EM registered", class); 508 return -EINVAL; 509 } 510 511 /* 512 * Squeeze efficiency class values on [0:#efficiency_class-1]. 513 * Values are per spec in [0:255]. 514 */ 515 index = 0; 516 for_each_set_bit(class, used_classes, 256) { 517 for_each_possible_cpu(cpu) { 518 gicc = acpi_cpu_get_madt_gicc(cpu); 519 if (gicc->efficiency_class == class) 520 per_cpu(efficiency_class, cpu) = index; 521 } 522 index++; 523 } 524 cppc_cpufreq_driver.register_em = cppc_cpufreq_register_em; 525 526 return 0; 527 } 528 529 static void cppc_cpufreq_register_em(struct cpufreq_policy *policy) 530 { 531 struct cppc_cpudata *cpu_data; 532 struct em_data_callback em_cb = 533 EM_ADV_DATA_CB(cppc_get_cpu_power, cppc_get_cpu_cost); 534 535 cpu_data = policy->driver_data; 536 em_dev_register_perf_domain(get_cpu_device(policy->cpu), 537 get_perf_level_count(policy), &em_cb, 538 cpu_data->shared_cpu_map, 0); 539 } 540 541 #else 542 static int populate_efficiency_class(void) 543 { 544 return 0; 545 } 546 #endif 547 548 static struct cppc_cpudata *cppc_cpufreq_get_cpu_data(unsigned int cpu) 549 { 550 struct cppc_cpudata *cpu_data; 551 int ret; 552 553 cpu_data = kzalloc(sizeof(struct cppc_cpudata), GFP_KERNEL); 554 if (!cpu_data) 555 goto out; 556 557 if (!zalloc_cpumask_var(&cpu_data->shared_cpu_map, GFP_KERNEL)) 558 goto free_cpu; 559 560 ret = acpi_get_psd_map(cpu, cpu_data); 561 if (ret) { 562 pr_debug("Err parsing CPU%d PSD data: ret:%d\n", cpu, ret); 563 goto free_mask; 564 } 565 566 ret = cppc_get_perf_caps(cpu, &cpu_data->perf_caps); 567 if (ret) { 568 pr_debug("Err reading CPU%d perf caps: ret:%d\n", cpu, ret); 569 goto free_mask; 570 } 571 572 list_add(&cpu_data->node, &cpu_data_list); 573 574 return cpu_data; 575 576 free_mask: 577 free_cpumask_var(cpu_data->shared_cpu_map); 578 free_cpu: 579 kfree(cpu_data); 580 out: 581 return NULL; 582 } 583 584 static void cppc_cpufreq_put_cpu_data(struct cpufreq_policy *policy) 585 { 586 struct cppc_cpudata *cpu_data = policy->driver_data; 587 588 list_del(&cpu_data->node); 589 free_cpumask_var(cpu_data->shared_cpu_map); 590 kfree(cpu_data); 591 policy->driver_data = NULL; 592 } 593 594 static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy) 595 { 596 unsigned int cpu = policy->cpu; 597 struct cppc_cpudata *cpu_data; 598 struct cppc_perf_caps *caps; 599 int ret; 600 601 cpu_data = cppc_cpufreq_get_cpu_data(cpu); 602 if (!cpu_data) { 603 pr_err("Error in acquiring _CPC/_PSD data for CPU%d.\n", cpu); 604 return -ENODEV; 605 } 606 caps = &cpu_data->perf_caps; 607 policy->driver_data = cpu_data; 608 609 /* 610 * Set min to lowest nonlinear perf to avoid any efficiency penalty (see 611 * Section 8.4.7.1.1.5 of ACPI 6.1 spec) 612 */ 613 policy->min = cppc_perf_to_khz(caps, caps->lowest_nonlinear_perf); 614 policy->max = cppc_perf_to_khz(caps, policy->boost_enabled ? 615 caps->highest_perf : caps->nominal_perf); 616 617 /* 618 * Set cpuinfo.min_freq to Lowest to make the full range of performance 619 * available if userspace wants to use any perf between lowest & lowest 620 * nonlinear perf 621 */ 622 policy->cpuinfo.min_freq = cppc_perf_to_khz(caps, caps->lowest_perf); 623 policy->cpuinfo.max_freq = policy->max; 624 625 policy->transition_delay_us = cppc_cpufreq_get_transition_delay_us(cpu); 626 policy->shared_type = cpu_data->shared_type; 627 628 switch (policy->shared_type) { 629 case CPUFREQ_SHARED_TYPE_HW: 630 case CPUFREQ_SHARED_TYPE_NONE: 631 /* Nothing to be done - we'll have a policy for each CPU */ 632 break; 633 case CPUFREQ_SHARED_TYPE_ANY: 634 /* 635 * All CPUs in the domain will share a policy and all cpufreq 636 * operations will use a single cppc_cpudata structure stored 637 * in policy->driver_data. 638 */ 639 cpumask_copy(policy->cpus, cpu_data->shared_cpu_map); 640 break; 641 default: 642 pr_debug("Unsupported CPU co-ord type: %d\n", 643 policy->shared_type); 644 ret = -EFAULT; 645 goto out; 646 } 647 648 policy->fast_switch_possible = cppc_allow_fast_switch(); 649 policy->dvfs_possible_from_any_cpu = true; 650 651 /* 652 * If 'highest_perf' is greater than 'nominal_perf', we assume CPU Boost 653 * is supported. 654 */ 655 if (caps->highest_perf > caps->nominal_perf) 656 boost_supported = true; 657 658 /* Set policy->cur to max now. The governors will adjust later. */ 659 policy->cur = cppc_perf_to_khz(caps, caps->highest_perf); 660 cpu_data->perf_ctrls.desired_perf = caps->highest_perf; 661 662 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls); 663 if (ret) { 664 pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n", 665 caps->highest_perf, cpu, ret); 666 goto out; 667 } 668 669 cppc_cpufreq_cpu_fie_init(policy); 670 return 0; 671 672 out: 673 cppc_cpufreq_put_cpu_data(policy); 674 return ret; 675 } 676 677 static void cppc_cpufreq_cpu_exit(struct cpufreq_policy *policy) 678 { 679 struct cppc_cpudata *cpu_data = policy->driver_data; 680 struct cppc_perf_caps *caps = &cpu_data->perf_caps; 681 unsigned int cpu = policy->cpu; 682 int ret; 683 684 cppc_cpufreq_cpu_fie_exit(policy); 685 686 cpu_data->perf_ctrls.desired_perf = caps->lowest_perf; 687 688 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls); 689 if (ret) 690 pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n", 691 caps->lowest_perf, cpu, ret); 692 693 cppc_cpufreq_put_cpu_data(policy); 694 } 695 696 static inline u64 get_delta(u64 t1, u64 t0) 697 { 698 if (t1 > t0 || t0 > ~(u32)0) 699 return t1 - t0; 700 701 return (u32)t1 - (u32)t0; 702 } 703 704 static int cppc_perf_from_fbctrs(struct cppc_cpudata *cpu_data, 705 struct cppc_perf_fb_ctrs *fb_ctrs_t0, 706 struct cppc_perf_fb_ctrs *fb_ctrs_t1) 707 { 708 u64 delta_reference, delta_delivered; 709 u64 reference_perf; 710 711 reference_perf = fb_ctrs_t0->reference_perf; 712 713 delta_reference = get_delta(fb_ctrs_t1->reference, 714 fb_ctrs_t0->reference); 715 delta_delivered = get_delta(fb_ctrs_t1->delivered, 716 fb_ctrs_t0->delivered); 717 718 /* 719 * Avoid divide-by zero and unchanged feedback counters. 720 * Leave it for callers to handle. 721 */ 722 if (!delta_reference || !delta_delivered) 723 return 0; 724 725 return (reference_perf * delta_delivered) / delta_reference; 726 } 727 728 static int cppc_get_perf_ctrs_sample(int cpu, 729 struct cppc_perf_fb_ctrs *fb_ctrs_t0, 730 struct cppc_perf_fb_ctrs *fb_ctrs_t1) 731 { 732 int ret; 733 734 ret = cppc_get_perf_ctrs(cpu, fb_ctrs_t0); 735 if (ret) 736 return ret; 737 738 udelay(2); /* 2usec delay between sampling */ 739 740 return cppc_get_perf_ctrs(cpu, fb_ctrs_t1); 741 } 742 743 static unsigned int cppc_cpufreq_get_rate(unsigned int cpu) 744 { 745 struct cppc_perf_fb_ctrs fb_ctrs_t0 = {0}, fb_ctrs_t1 = {0}; 746 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 747 struct cppc_cpudata *cpu_data; 748 u64 delivered_perf; 749 int ret; 750 751 if (!policy) 752 return -ENODEV; 753 754 cpu_data = policy->driver_data; 755 756 cpufreq_cpu_put(policy); 757 758 ret = cppc_get_perf_ctrs_sample(cpu, &fb_ctrs_t0, &fb_ctrs_t1); 759 if (ret) { 760 if (ret == -EFAULT) 761 /* Any of the associated CPPC regs is 0. */ 762 goto out_invalid_counters; 763 else 764 return 0; 765 } 766 767 delivered_perf = cppc_perf_from_fbctrs(cpu_data, &fb_ctrs_t0, 768 &fb_ctrs_t1); 769 if (!delivered_perf) 770 goto out_invalid_counters; 771 772 return cppc_perf_to_khz(&cpu_data->perf_caps, delivered_perf); 773 774 out_invalid_counters: 775 /* 776 * Feedback counters could be unchanged or 0 when a cpu enters a 777 * low-power idle state, e.g. clock-gated or power-gated. 778 * Use desired perf for reflecting frequency. Get the latest register 779 * value first as some platforms may update the actual delivered perf 780 * there; if failed, resort to the cached desired perf. 781 */ 782 if (cppc_get_desired_perf(cpu, &delivered_perf)) 783 delivered_perf = cpu_data->perf_ctrls.desired_perf; 784 785 return cppc_perf_to_khz(&cpu_data->perf_caps, delivered_perf); 786 } 787 788 static int cppc_cpufreq_set_boost(struct cpufreq_policy *policy, int state) 789 { 790 struct cppc_cpudata *cpu_data = policy->driver_data; 791 struct cppc_perf_caps *caps = &cpu_data->perf_caps; 792 int ret; 793 794 if (!boost_supported) { 795 pr_err("BOOST not supported by CPU or firmware\n"); 796 return -EINVAL; 797 } 798 799 if (state) 800 policy->max = cppc_perf_to_khz(caps, caps->highest_perf); 801 else 802 policy->max = cppc_perf_to_khz(caps, caps->nominal_perf); 803 policy->cpuinfo.max_freq = policy->max; 804 805 ret = freq_qos_update_request(policy->max_freq_req, policy->max); 806 if (ret < 0) 807 return ret; 808 809 return 0; 810 } 811 812 static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf) 813 { 814 struct cppc_cpudata *cpu_data = policy->driver_data; 815 816 return cpufreq_show_cpus(cpu_data->shared_cpu_map, buf); 817 } 818 cpufreq_freq_attr_ro(freqdomain_cpus); 819 820 static struct freq_attr *cppc_cpufreq_attr[] = { 821 &freqdomain_cpus, 822 NULL, 823 }; 824 825 static struct cpufreq_driver cppc_cpufreq_driver = { 826 .flags = CPUFREQ_CONST_LOOPS, 827 .verify = cppc_verify_policy, 828 .target = cppc_cpufreq_set_target, 829 .get = cppc_cpufreq_get_rate, 830 .fast_switch = cppc_cpufreq_fast_switch, 831 .init = cppc_cpufreq_cpu_init, 832 .exit = cppc_cpufreq_cpu_exit, 833 .set_boost = cppc_cpufreq_set_boost, 834 .attr = cppc_cpufreq_attr, 835 .name = "cppc_cpufreq", 836 }; 837 838 static int __init cppc_cpufreq_init(void) 839 { 840 int ret; 841 842 if (!acpi_cpc_valid()) 843 return -ENODEV; 844 845 cppc_freq_invariance_init(); 846 populate_efficiency_class(); 847 848 ret = cpufreq_register_driver(&cppc_cpufreq_driver); 849 if (ret) 850 cppc_freq_invariance_exit(); 851 852 return ret; 853 } 854 855 static inline void free_cpu_data(void) 856 { 857 struct cppc_cpudata *iter, *tmp; 858 859 list_for_each_entry_safe(iter, tmp, &cpu_data_list, node) { 860 free_cpumask_var(iter->shared_cpu_map); 861 list_del(&iter->node); 862 kfree(iter); 863 } 864 865 } 866 867 static void __exit cppc_cpufreq_exit(void) 868 { 869 cpufreq_unregister_driver(&cppc_cpufreq_driver); 870 cppc_freq_invariance_exit(); 871 872 free_cpu_data(); 873 } 874 875 module_exit(cppc_cpufreq_exit); 876 MODULE_AUTHOR("Ashwin Chaugule"); 877 MODULE_DESCRIPTION("CPUFreq driver based on the ACPI CPPC v5.0+ spec"); 878 MODULE_LICENSE("GPL"); 879 880 late_initcall(cppc_cpufreq_init); 881 882 static const struct acpi_device_id cppc_acpi_ids[] __used = { 883 {ACPI_PROCESSOR_DEVICE_HID, }, 884 {} 885 }; 886 887 MODULE_DEVICE_TABLE(acpi, cppc_acpi_ids); 888