1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * CPPC (Collaborative Processor Performance Control) driver for 4 * interfacing with the CPUfreq layer and governors. See 5 * cppc_acpi.c for CPPC specific methods. 6 * 7 * (C) Copyright 2014, 2015 Linaro Ltd. 8 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org> 9 */ 10 11 #define pr_fmt(fmt) "CPPC Cpufreq:" fmt 12 13 #include <linux/arch_topology.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/delay.h> 17 #include <linux/cpu.h> 18 #include <linux/cpufreq.h> 19 #include <linux/dmi.h> 20 #include <linux/irq_work.h> 21 #include <linux/kthread.h> 22 #include <linux/time.h> 23 #include <linux/vmalloc.h> 24 #include <uapi/linux/sched/types.h> 25 26 #include <asm/unaligned.h> 27 28 #include <acpi/cppc_acpi.h> 29 30 /* Minimum struct length needed for the DMI processor entry we want */ 31 #define DMI_ENTRY_PROCESSOR_MIN_LENGTH 48 32 33 /* Offset in the DMI processor structure for the max frequency */ 34 #define DMI_PROCESSOR_MAX_SPEED 0x14 35 36 /* 37 * This list contains information parsed from per CPU ACPI _CPC and _PSD 38 * structures: e.g. the highest and lowest supported performance, capabilities, 39 * desired performance, level requested etc. Depending on the share_type, not 40 * all CPUs will have an entry in the list. 41 */ 42 static LIST_HEAD(cpu_data_list); 43 44 static bool boost_supported; 45 46 struct cppc_workaround_oem_info { 47 char oem_id[ACPI_OEM_ID_SIZE + 1]; 48 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1]; 49 u32 oem_revision; 50 }; 51 52 static struct cppc_workaround_oem_info wa_info[] = { 53 { 54 .oem_id = "HISI ", 55 .oem_table_id = "HIP07 ", 56 .oem_revision = 0, 57 }, { 58 .oem_id = "HISI ", 59 .oem_table_id = "HIP08 ", 60 .oem_revision = 0, 61 } 62 }; 63 64 static struct cpufreq_driver cppc_cpufreq_driver; 65 66 static enum { 67 FIE_UNSET = -1, 68 FIE_ENABLED, 69 FIE_DISABLED 70 } fie_disabled = FIE_UNSET; 71 72 #ifdef CONFIG_ACPI_CPPC_CPUFREQ_FIE 73 module_param(fie_disabled, int, 0444); 74 MODULE_PARM_DESC(fie_disabled, "Disable Frequency Invariance Engine (FIE)"); 75 76 /* Frequency invariance support */ 77 struct cppc_freq_invariance { 78 int cpu; 79 struct irq_work irq_work; 80 struct kthread_work work; 81 struct cppc_perf_fb_ctrs prev_perf_fb_ctrs; 82 struct cppc_cpudata *cpu_data; 83 }; 84 85 static DEFINE_PER_CPU(struct cppc_freq_invariance, cppc_freq_inv); 86 static struct kthread_worker *kworker_fie; 87 88 static unsigned int hisi_cppc_cpufreq_get_rate(unsigned int cpu); 89 static int cppc_perf_from_fbctrs(struct cppc_cpudata *cpu_data, 90 struct cppc_perf_fb_ctrs *fb_ctrs_t0, 91 struct cppc_perf_fb_ctrs *fb_ctrs_t1); 92 93 /** 94 * cppc_scale_freq_workfn - CPPC arch_freq_scale updater for frequency invariance 95 * @work: The work item. 96 * 97 * The CPPC driver register itself with the topology core to provide its own 98 * implementation (cppc_scale_freq_tick()) of topology_scale_freq_tick() which 99 * gets called by the scheduler on every tick. 100 * 101 * Note that the arch specific counters have higher priority than CPPC counters, 102 * if available, though the CPPC driver doesn't need to have any special 103 * handling for that. 104 * 105 * On an invocation of cppc_scale_freq_tick(), we schedule an irq work (since we 106 * reach here from hard-irq context), which then schedules a normal work item 107 * and cppc_scale_freq_workfn() updates the per_cpu arch_freq_scale variable 108 * based on the counter updates since the last tick. 109 */ 110 static void cppc_scale_freq_workfn(struct kthread_work *work) 111 { 112 struct cppc_freq_invariance *cppc_fi; 113 struct cppc_perf_fb_ctrs fb_ctrs = {0}; 114 struct cppc_cpudata *cpu_data; 115 unsigned long local_freq_scale; 116 u64 perf; 117 118 cppc_fi = container_of(work, struct cppc_freq_invariance, work); 119 cpu_data = cppc_fi->cpu_data; 120 121 if (cppc_get_perf_ctrs(cppc_fi->cpu, &fb_ctrs)) { 122 pr_warn("%s: failed to read perf counters\n", __func__); 123 return; 124 } 125 126 perf = cppc_perf_from_fbctrs(cpu_data, &cppc_fi->prev_perf_fb_ctrs, 127 &fb_ctrs); 128 cppc_fi->prev_perf_fb_ctrs = fb_ctrs; 129 130 perf <<= SCHED_CAPACITY_SHIFT; 131 local_freq_scale = div64_u64(perf, cpu_data->perf_caps.highest_perf); 132 133 /* This can happen due to counter's overflow */ 134 if (unlikely(local_freq_scale > 1024)) 135 local_freq_scale = 1024; 136 137 per_cpu(arch_freq_scale, cppc_fi->cpu) = local_freq_scale; 138 } 139 140 static void cppc_irq_work(struct irq_work *irq_work) 141 { 142 struct cppc_freq_invariance *cppc_fi; 143 144 cppc_fi = container_of(irq_work, struct cppc_freq_invariance, irq_work); 145 kthread_queue_work(kworker_fie, &cppc_fi->work); 146 } 147 148 static void cppc_scale_freq_tick(void) 149 { 150 struct cppc_freq_invariance *cppc_fi = &per_cpu(cppc_freq_inv, smp_processor_id()); 151 152 /* 153 * cppc_get_perf_ctrs() can potentially sleep, call that from the right 154 * context. 155 */ 156 irq_work_queue(&cppc_fi->irq_work); 157 } 158 159 static struct scale_freq_data cppc_sftd = { 160 .source = SCALE_FREQ_SOURCE_CPPC, 161 .set_freq_scale = cppc_scale_freq_tick, 162 }; 163 164 static void cppc_cpufreq_cpu_fie_init(struct cpufreq_policy *policy) 165 { 166 struct cppc_freq_invariance *cppc_fi; 167 int cpu, ret; 168 169 if (fie_disabled) 170 return; 171 172 for_each_cpu(cpu, policy->cpus) { 173 cppc_fi = &per_cpu(cppc_freq_inv, cpu); 174 cppc_fi->cpu = cpu; 175 cppc_fi->cpu_data = policy->driver_data; 176 kthread_init_work(&cppc_fi->work, cppc_scale_freq_workfn); 177 init_irq_work(&cppc_fi->irq_work, cppc_irq_work); 178 179 ret = cppc_get_perf_ctrs(cpu, &cppc_fi->prev_perf_fb_ctrs); 180 if (ret) { 181 pr_warn("%s: failed to read perf counters for cpu:%d: %d\n", 182 __func__, cpu, ret); 183 184 /* 185 * Don't abort if the CPU was offline while the driver 186 * was getting registered. 187 */ 188 if (cpu_online(cpu)) 189 return; 190 } 191 } 192 193 /* Register for freq-invariance */ 194 topology_set_scale_freq_source(&cppc_sftd, policy->cpus); 195 } 196 197 /* 198 * We free all the resources on policy's removal and not on CPU removal as the 199 * irq-work are per-cpu and the hotplug core takes care of flushing the pending 200 * irq-works (hint: smpcfd_dying_cpu()) on CPU hotplug. Even if the kthread-work 201 * fires on another CPU after the concerned CPU is removed, it won't harm. 202 * 203 * We just need to make sure to remove them all on policy->exit(). 204 */ 205 static void cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy *policy) 206 { 207 struct cppc_freq_invariance *cppc_fi; 208 int cpu; 209 210 if (fie_disabled) 211 return; 212 213 /* policy->cpus will be empty here, use related_cpus instead */ 214 topology_clear_scale_freq_source(SCALE_FREQ_SOURCE_CPPC, policy->related_cpus); 215 216 for_each_cpu(cpu, policy->related_cpus) { 217 cppc_fi = &per_cpu(cppc_freq_inv, cpu); 218 irq_work_sync(&cppc_fi->irq_work); 219 kthread_cancel_work_sync(&cppc_fi->work); 220 } 221 } 222 223 static void __init cppc_freq_invariance_init(void) 224 { 225 struct sched_attr attr = { 226 .size = sizeof(struct sched_attr), 227 .sched_policy = SCHED_DEADLINE, 228 .sched_nice = 0, 229 .sched_priority = 0, 230 /* 231 * Fake (unused) bandwidth; workaround to "fix" 232 * priority inheritance. 233 */ 234 .sched_runtime = 1000000, 235 .sched_deadline = 10000000, 236 .sched_period = 10000000, 237 }; 238 int ret; 239 240 if (fie_disabled != FIE_ENABLED && fie_disabled != FIE_DISABLED) { 241 fie_disabled = FIE_ENABLED; 242 if (cppc_perf_ctrs_in_pcc()) { 243 pr_info("FIE not enabled on systems with registers in PCC\n"); 244 fie_disabled = FIE_DISABLED; 245 } 246 } 247 248 if (fie_disabled) 249 return; 250 251 kworker_fie = kthread_create_worker(0, "cppc_fie"); 252 if (IS_ERR(kworker_fie)) 253 return; 254 255 ret = sched_setattr_nocheck(kworker_fie->task, &attr); 256 if (ret) { 257 pr_warn("%s: failed to set SCHED_DEADLINE: %d\n", __func__, 258 ret); 259 kthread_destroy_worker(kworker_fie); 260 return; 261 } 262 } 263 264 static void cppc_freq_invariance_exit(void) 265 { 266 if (fie_disabled) 267 return; 268 269 kthread_destroy_worker(kworker_fie); 270 kworker_fie = NULL; 271 } 272 273 #else 274 static inline void cppc_cpufreq_cpu_fie_init(struct cpufreq_policy *policy) 275 { 276 } 277 278 static inline void cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy *policy) 279 { 280 } 281 282 static inline void cppc_freq_invariance_init(void) 283 { 284 } 285 286 static inline void cppc_freq_invariance_exit(void) 287 { 288 } 289 #endif /* CONFIG_ACPI_CPPC_CPUFREQ_FIE */ 290 291 /* Callback function used to retrieve the max frequency from DMI */ 292 static void cppc_find_dmi_mhz(const struct dmi_header *dm, void *private) 293 { 294 const u8 *dmi_data = (const u8 *)dm; 295 u16 *mhz = (u16 *)private; 296 297 if (dm->type == DMI_ENTRY_PROCESSOR && 298 dm->length >= DMI_ENTRY_PROCESSOR_MIN_LENGTH) { 299 u16 val = (u16)get_unaligned((const u16 *) 300 (dmi_data + DMI_PROCESSOR_MAX_SPEED)); 301 *mhz = val > *mhz ? val : *mhz; 302 } 303 } 304 305 /* Look up the max frequency in DMI */ 306 static u64 cppc_get_dmi_max_khz(void) 307 { 308 u16 mhz = 0; 309 310 dmi_walk(cppc_find_dmi_mhz, &mhz); 311 312 /* 313 * Real stupid fallback value, just in case there is no 314 * actual value set. 315 */ 316 mhz = mhz ? mhz : 1; 317 318 return (1000 * mhz); 319 } 320 321 /* 322 * If CPPC lowest_freq and nominal_freq registers are exposed then we can 323 * use them to convert perf to freq and vice versa. The conversion is 324 * extrapolated as an affine function passing by the 2 points: 325 * - (Low perf, Low freq) 326 * - (Nominal perf, Nominal perf) 327 */ 328 static unsigned int cppc_cpufreq_perf_to_khz(struct cppc_cpudata *cpu_data, 329 unsigned int perf) 330 { 331 struct cppc_perf_caps *caps = &cpu_data->perf_caps; 332 s64 retval, offset = 0; 333 static u64 max_khz; 334 u64 mul, div; 335 336 if (caps->lowest_freq && caps->nominal_freq) { 337 mul = caps->nominal_freq - caps->lowest_freq; 338 div = caps->nominal_perf - caps->lowest_perf; 339 offset = caps->nominal_freq - div64_u64(caps->nominal_perf * mul, div); 340 } else { 341 if (!max_khz) 342 max_khz = cppc_get_dmi_max_khz(); 343 mul = max_khz; 344 div = caps->highest_perf; 345 } 346 347 retval = offset + div64_u64(perf * mul, div); 348 if (retval >= 0) 349 return retval; 350 return 0; 351 } 352 353 static unsigned int cppc_cpufreq_khz_to_perf(struct cppc_cpudata *cpu_data, 354 unsigned int freq) 355 { 356 struct cppc_perf_caps *caps = &cpu_data->perf_caps; 357 s64 retval, offset = 0; 358 static u64 max_khz; 359 u64 mul, div; 360 361 if (caps->lowest_freq && caps->nominal_freq) { 362 mul = caps->nominal_perf - caps->lowest_perf; 363 div = caps->nominal_freq - caps->lowest_freq; 364 offset = caps->nominal_perf - div64_u64(caps->nominal_freq * mul, div); 365 } else { 366 if (!max_khz) 367 max_khz = cppc_get_dmi_max_khz(); 368 mul = caps->highest_perf; 369 div = max_khz; 370 } 371 372 retval = offset + div64_u64(freq * mul, div); 373 if (retval >= 0) 374 return retval; 375 return 0; 376 } 377 378 static int cppc_cpufreq_set_target(struct cpufreq_policy *policy, 379 unsigned int target_freq, 380 unsigned int relation) 381 382 { 383 struct cppc_cpudata *cpu_data = policy->driver_data; 384 unsigned int cpu = policy->cpu; 385 struct cpufreq_freqs freqs; 386 u32 desired_perf; 387 int ret = 0; 388 389 desired_perf = cppc_cpufreq_khz_to_perf(cpu_data, target_freq); 390 /* Return if it is exactly the same perf */ 391 if (desired_perf == cpu_data->perf_ctrls.desired_perf) 392 return ret; 393 394 cpu_data->perf_ctrls.desired_perf = desired_perf; 395 freqs.old = policy->cur; 396 freqs.new = target_freq; 397 398 cpufreq_freq_transition_begin(policy, &freqs); 399 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls); 400 cpufreq_freq_transition_end(policy, &freqs, ret != 0); 401 402 if (ret) 403 pr_debug("Failed to set target on CPU:%d. ret:%d\n", 404 cpu, ret); 405 406 return ret; 407 } 408 409 static unsigned int cppc_cpufreq_fast_switch(struct cpufreq_policy *policy, 410 unsigned int target_freq) 411 { 412 struct cppc_cpudata *cpu_data = policy->driver_data; 413 unsigned int cpu = policy->cpu; 414 u32 desired_perf; 415 int ret; 416 417 desired_perf = cppc_cpufreq_khz_to_perf(cpu_data, target_freq); 418 cpu_data->perf_ctrls.desired_perf = desired_perf; 419 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls); 420 421 if (ret) { 422 pr_debug("Failed to set target on CPU:%d. ret:%d\n", 423 cpu, ret); 424 return 0; 425 } 426 427 return target_freq; 428 } 429 430 static int cppc_verify_policy(struct cpufreq_policy_data *policy) 431 { 432 cpufreq_verify_within_cpu_limits(policy); 433 return 0; 434 } 435 436 /* 437 * The PCC subspace describes the rate at which platform can accept commands 438 * on the shared PCC channel (including READs which do not count towards freq 439 * transition requests), so ideally we need to use the PCC values as a fallback 440 * if we don't have a platform specific transition_delay_us 441 */ 442 #ifdef CONFIG_ARM64 443 #include <asm/cputype.h> 444 445 static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu) 446 { 447 unsigned long implementor = read_cpuid_implementor(); 448 unsigned long part_num = read_cpuid_part_number(); 449 450 switch (implementor) { 451 case ARM_CPU_IMP_QCOM: 452 switch (part_num) { 453 case QCOM_CPU_PART_FALKOR_V1: 454 case QCOM_CPU_PART_FALKOR: 455 return 10000; 456 } 457 } 458 return cppc_get_transition_latency(cpu) / NSEC_PER_USEC; 459 } 460 #else 461 static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu) 462 { 463 return cppc_get_transition_latency(cpu) / NSEC_PER_USEC; 464 } 465 #endif 466 467 #if defined(CONFIG_ARM64) && defined(CONFIG_ENERGY_MODEL) 468 469 static DEFINE_PER_CPU(unsigned int, efficiency_class); 470 static void cppc_cpufreq_register_em(struct cpufreq_policy *policy); 471 472 /* Create an artificial performance state every CPPC_EM_CAP_STEP capacity unit. */ 473 #define CPPC_EM_CAP_STEP (20) 474 /* Increase the cost value by CPPC_EM_COST_STEP every performance state. */ 475 #define CPPC_EM_COST_STEP (1) 476 /* Add a cost gap correspnding to the energy of 4 CPUs. */ 477 #define CPPC_EM_COST_GAP (4 * SCHED_CAPACITY_SCALE * CPPC_EM_COST_STEP \ 478 / CPPC_EM_CAP_STEP) 479 480 static unsigned int get_perf_level_count(struct cpufreq_policy *policy) 481 { 482 struct cppc_perf_caps *perf_caps; 483 unsigned int min_cap, max_cap; 484 struct cppc_cpudata *cpu_data; 485 int cpu = policy->cpu; 486 487 cpu_data = policy->driver_data; 488 perf_caps = &cpu_data->perf_caps; 489 max_cap = arch_scale_cpu_capacity(cpu); 490 min_cap = div_u64((u64)max_cap * perf_caps->lowest_perf, 491 perf_caps->highest_perf); 492 if ((min_cap == 0) || (max_cap < min_cap)) 493 return 0; 494 return 1 + max_cap / CPPC_EM_CAP_STEP - min_cap / CPPC_EM_CAP_STEP; 495 } 496 497 /* 498 * The cost is defined as: 499 * cost = power * max_frequency / frequency 500 */ 501 static inline unsigned long compute_cost(int cpu, int step) 502 { 503 return CPPC_EM_COST_GAP * per_cpu(efficiency_class, cpu) + 504 step * CPPC_EM_COST_STEP; 505 } 506 507 static int cppc_get_cpu_power(struct device *cpu_dev, 508 unsigned long *power, unsigned long *KHz) 509 { 510 unsigned long perf_step, perf_prev, perf, perf_check; 511 unsigned int min_step, max_step, step, step_check; 512 unsigned long prev_freq = *KHz; 513 unsigned int min_cap, max_cap; 514 struct cpufreq_policy *policy; 515 516 struct cppc_perf_caps *perf_caps; 517 struct cppc_cpudata *cpu_data; 518 519 policy = cpufreq_cpu_get_raw(cpu_dev->id); 520 cpu_data = policy->driver_data; 521 perf_caps = &cpu_data->perf_caps; 522 max_cap = arch_scale_cpu_capacity(cpu_dev->id); 523 min_cap = div_u64((u64)max_cap * perf_caps->lowest_perf, 524 perf_caps->highest_perf); 525 perf_step = div_u64((u64)CPPC_EM_CAP_STEP * perf_caps->highest_perf, 526 max_cap); 527 min_step = min_cap / CPPC_EM_CAP_STEP; 528 max_step = max_cap / CPPC_EM_CAP_STEP; 529 530 perf_prev = cppc_cpufreq_khz_to_perf(cpu_data, *KHz); 531 step = perf_prev / perf_step; 532 533 if (step > max_step) 534 return -EINVAL; 535 536 if (min_step == max_step) { 537 step = max_step; 538 perf = perf_caps->highest_perf; 539 } else if (step < min_step) { 540 step = min_step; 541 perf = perf_caps->lowest_perf; 542 } else { 543 step++; 544 if (step == max_step) 545 perf = perf_caps->highest_perf; 546 else 547 perf = step * perf_step; 548 } 549 550 *KHz = cppc_cpufreq_perf_to_khz(cpu_data, perf); 551 perf_check = cppc_cpufreq_khz_to_perf(cpu_data, *KHz); 552 step_check = perf_check / perf_step; 553 554 /* 555 * To avoid bad integer approximation, check that new frequency value 556 * increased and that the new frequency will be converted to the 557 * desired step value. 558 */ 559 while ((*KHz == prev_freq) || (step_check != step)) { 560 perf++; 561 *KHz = cppc_cpufreq_perf_to_khz(cpu_data, perf); 562 perf_check = cppc_cpufreq_khz_to_perf(cpu_data, *KHz); 563 step_check = perf_check / perf_step; 564 } 565 566 /* 567 * With an artificial EM, only the cost value is used. Still the power 568 * is populated such as 0 < power < EM_MAX_POWER. This allows to add 569 * more sense to the artificial performance states. 570 */ 571 *power = compute_cost(cpu_dev->id, step); 572 573 return 0; 574 } 575 576 static int cppc_get_cpu_cost(struct device *cpu_dev, unsigned long KHz, 577 unsigned long *cost) 578 { 579 unsigned long perf_step, perf_prev; 580 struct cppc_perf_caps *perf_caps; 581 struct cpufreq_policy *policy; 582 struct cppc_cpudata *cpu_data; 583 unsigned int max_cap; 584 int step; 585 586 policy = cpufreq_cpu_get_raw(cpu_dev->id); 587 cpu_data = policy->driver_data; 588 perf_caps = &cpu_data->perf_caps; 589 max_cap = arch_scale_cpu_capacity(cpu_dev->id); 590 591 perf_prev = cppc_cpufreq_khz_to_perf(cpu_data, KHz); 592 perf_step = CPPC_EM_CAP_STEP * perf_caps->highest_perf / max_cap; 593 step = perf_prev / perf_step; 594 595 *cost = compute_cost(cpu_dev->id, step); 596 597 return 0; 598 } 599 600 static int populate_efficiency_class(void) 601 { 602 struct acpi_madt_generic_interrupt *gicc; 603 DECLARE_BITMAP(used_classes, 256) = {}; 604 int class, cpu, index; 605 606 for_each_possible_cpu(cpu) { 607 gicc = acpi_cpu_get_madt_gicc(cpu); 608 class = gicc->efficiency_class; 609 bitmap_set(used_classes, class, 1); 610 } 611 612 if (bitmap_weight(used_classes, 256) <= 1) { 613 pr_debug("Efficiency classes are all equal (=%d). " 614 "No EM registered", class); 615 return -EINVAL; 616 } 617 618 /* 619 * Squeeze efficiency class values on [0:#efficiency_class-1]. 620 * Values are per spec in [0:255]. 621 */ 622 index = 0; 623 for_each_set_bit(class, used_classes, 256) { 624 for_each_possible_cpu(cpu) { 625 gicc = acpi_cpu_get_madt_gicc(cpu); 626 if (gicc->efficiency_class == class) 627 per_cpu(efficiency_class, cpu) = index; 628 } 629 index++; 630 } 631 cppc_cpufreq_driver.register_em = cppc_cpufreq_register_em; 632 633 return 0; 634 } 635 636 static void cppc_cpufreq_register_em(struct cpufreq_policy *policy) 637 { 638 struct cppc_cpudata *cpu_data; 639 struct em_data_callback em_cb = 640 EM_ADV_DATA_CB(cppc_get_cpu_power, cppc_get_cpu_cost); 641 642 cpu_data = policy->driver_data; 643 em_dev_register_perf_domain(get_cpu_device(policy->cpu), 644 get_perf_level_count(policy), &em_cb, 645 cpu_data->shared_cpu_map, 0); 646 } 647 648 #else 649 static int populate_efficiency_class(void) 650 { 651 return 0; 652 } 653 #endif 654 655 static struct cppc_cpudata *cppc_cpufreq_get_cpu_data(unsigned int cpu) 656 { 657 struct cppc_cpudata *cpu_data; 658 int ret; 659 660 cpu_data = kzalloc(sizeof(struct cppc_cpudata), GFP_KERNEL); 661 if (!cpu_data) 662 goto out; 663 664 if (!zalloc_cpumask_var(&cpu_data->shared_cpu_map, GFP_KERNEL)) 665 goto free_cpu; 666 667 ret = acpi_get_psd_map(cpu, cpu_data); 668 if (ret) { 669 pr_debug("Err parsing CPU%d PSD data: ret:%d\n", cpu, ret); 670 goto free_mask; 671 } 672 673 ret = cppc_get_perf_caps(cpu, &cpu_data->perf_caps); 674 if (ret) { 675 pr_debug("Err reading CPU%d perf caps: ret:%d\n", cpu, ret); 676 goto free_mask; 677 } 678 679 /* Convert the lowest and nominal freq from MHz to KHz */ 680 cpu_data->perf_caps.lowest_freq *= 1000; 681 cpu_data->perf_caps.nominal_freq *= 1000; 682 683 list_add(&cpu_data->node, &cpu_data_list); 684 685 return cpu_data; 686 687 free_mask: 688 free_cpumask_var(cpu_data->shared_cpu_map); 689 free_cpu: 690 kfree(cpu_data); 691 out: 692 return NULL; 693 } 694 695 static void cppc_cpufreq_put_cpu_data(struct cpufreq_policy *policy) 696 { 697 struct cppc_cpudata *cpu_data = policy->driver_data; 698 699 list_del(&cpu_data->node); 700 free_cpumask_var(cpu_data->shared_cpu_map); 701 kfree(cpu_data); 702 policy->driver_data = NULL; 703 } 704 705 static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy) 706 { 707 unsigned int cpu = policy->cpu; 708 struct cppc_cpudata *cpu_data; 709 struct cppc_perf_caps *caps; 710 int ret; 711 712 cpu_data = cppc_cpufreq_get_cpu_data(cpu); 713 if (!cpu_data) { 714 pr_err("Error in acquiring _CPC/_PSD data for CPU%d.\n", cpu); 715 return -ENODEV; 716 } 717 caps = &cpu_data->perf_caps; 718 policy->driver_data = cpu_data; 719 720 /* 721 * Set min to lowest nonlinear perf to avoid any efficiency penalty (see 722 * Section 8.4.7.1.1.5 of ACPI 6.1 spec) 723 */ 724 policy->min = cppc_cpufreq_perf_to_khz(cpu_data, 725 caps->lowest_nonlinear_perf); 726 policy->max = cppc_cpufreq_perf_to_khz(cpu_data, 727 caps->nominal_perf); 728 729 /* 730 * Set cpuinfo.min_freq to Lowest to make the full range of performance 731 * available if userspace wants to use any perf between lowest & lowest 732 * nonlinear perf 733 */ 734 policy->cpuinfo.min_freq = cppc_cpufreq_perf_to_khz(cpu_data, 735 caps->lowest_perf); 736 policy->cpuinfo.max_freq = cppc_cpufreq_perf_to_khz(cpu_data, 737 caps->nominal_perf); 738 739 policy->transition_delay_us = cppc_cpufreq_get_transition_delay_us(cpu); 740 policy->shared_type = cpu_data->shared_type; 741 742 switch (policy->shared_type) { 743 case CPUFREQ_SHARED_TYPE_HW: 744 case CPUFREQ_SHARED_TYPE_NONE: 745 /* Nothing to be done - we'll have a policy for each CPU */ 746 break; 747 case CPUFREQ_SHARED_TYPE_ANY: 748 /* 749 * All CPUs in the domain will share a policy and all cpufreq 750 * operations will use a single cppc_cpudata structure stored 751 * in policy->driver_data. 752 */ 753 cpumask_copy(policy->cpus, cpu_data->shared_cpu_map); 754 break; 755 default: 756 pr_debug("Unsupported CPU co-ord type: %d\n", 757 policy->shared_type); 758 ret = -EFAULT; 759 goto out; 760 } 761 762 policy->fast_switch_possible = cppc_allow_fast_switch(); 763 policy->dvfs_possible_from_any_cpu = true; 764 765 /* 766 * If 'highest_perf' is greater than 'nominal_perf', we assume CPU Boost 767 * is supported. 768 */ 769 if (caps->highest_perf > caps->nominal_perf) 770 boost_supported = true; 771 772 /* Set policy->cur to max now. The governors will adjust later. */ 773 policy->cur = cppc_cpufreq_perf_to_khz(cpu_data, caps->highest_perf); 774 cpu_data->perf_ctrls.desired_perf = caps->highest_perf; 775 776 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls); 777 if (ret) { 778 pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n", 779 caps->highest_perf, cpu, ret); 780 goto out; 781 } 782 783 cppc_cpufreq_cpu_fie_init(policy); 784 return 0; 785 786 out: 787 cppc_cpufreq_put_cpu_data(policy); 788 return ret; 789 } 790 791 static int cppc_cpufreq_cpu_exit(struct cpufreq_policy *policy) 792 { 793 struct cppc_cpudata *cpu_data = policy->driver_data; 794 struct cppc_perf_caps *caps = &cpu_data->perf_caps; 795 unsigned int cpu = policy->cpu; 796 int ret; 797 798 cppc_cpufreq_cpu_fie_exit(policy); 799 800 cpu_data->perf_ctrls.desired_perf = caps->lowest_perf; 801 802 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls); 803 if (ret) 804 pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n", 805 caps->lowest_perf, cpu, ret); 806 807 cppc_cpufreq_put_cpu_data(policy); 808 return 0; 809 } 810 811 static inline u64 get_delta(u64 t1, u64 t0) 812 { 813 if (t1 > t0 || t0 > ~(u32)0) 814 return t1 - t0; 815 816 return (u32)t1 - (u32)t0; 817 } 818 819 static int cppc_perf_from_fbctrs(struct cppc_cpudata *cpu_data, 820 struct cppc_perf_fb_ctrs *fb_ctrs_t0, 821 struct cppc_perf_fb_ctrs *fb_ctrs_t1) 822 { 823 u64 delta_reference, delta_delivered; 824 u64 reference_perf; 825 826 reference_perf = fb_ctrs_t0->reference_perf; 827 828 delta_reference = get_delta(fb_ctrs_t1->reference, 829 fb_ctrs_t0->reference); 830 delta_delivered = get_delta(fb_ctrs_t1->delivered, 831 fb_ctrs_t0->delivered); 832 833 /* Check to avoid divide-by zero and invalid delivered_perf */ 834 if (!delta_reference || !delta_delivered) 835 return cpu_data->perf_ctrls.desired_perf; 836 837 return (reference_perf * delta_delivered) / delta_reference; 838 } 839 840 static unsigned int cppc_cpufreq_get_rate(unsigned int cpu) 841 { 842 struct cppc_perf_fb_ctrs fb_ctrs_t0 = {0}, fb_ctrs_t1 = {0}; 843 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 844 struct cppc_cpudata *cpu_data = policy->driver_data; 845 u64 delivered_perf; 846 int ret; 847 848 cpufreq_cpu_put(policy); 849 850 ret = cppc_get_perf_ctrs(cpu, &fb_ctrs_t0); 851 if (ret) 852 return ret; 853 854 udelay(2); /* 2usec delay between sampling */ 855 856 ret = cppc_get_perf_ctrs(cpu, &fb_ctrs_t1); 857 if (ret) 858 return ret; 859 860 delivered_perf = cppc_perf_from_fbctrs(cpu_data, &fb_ctrs_t0, 861 &fb_ctrs_t1); 862 863 return cppc_cpufreq_perf_to_khz(cpu_data, delivered_perf); 864 } 865 866 static int cppc_cpufreq_set_boost(struct cpufreq_policy *policy, int state) 867 { 868 struct cppc_cpudata *cpu_data = policy->driver_data; 869 struct cppc_perf_caps *caps = &cpu_data->perf_caps; 870 int ret; 871 872 if (!boost_supported) { 873 pr_err("BOOST not supported by CPU or firmware\n"); 874 return -EINVAL; 875 } 876 877 if (state) 878 policy->max = cppc_cpufreq_perf_to_khz(cpu_data, 879 caps->highest_perf); 880 else 881 policy->max = cppc_cpufreq_perf_to_khz(cpu_data, 882 caps->nominal_perf); 883 policy->cpuinfo.max_freq = policy->max; 884 885 ret = freq_qos_update_request(policy->max_freq_req, policy->max); 886 if (ret < 0) 887 return ret; 888 889 return 0; 890 } 891 892 static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf) 893 { 894 struct cppc_cpudata *cpu_data = policy->driver_data; 895 896 return cpufreq_show_cpus(cpu_data->shared_cpu_map, buf); 897 } 898 cpufreq_freq_attr_ro(freqdomain_cpus); 899 900 static struct freq_attr *cppc_cpufreq_attr[] = { 901 &freqdomain_cpus, 902 NULL, 903 }; 904 905 static struct cpufreq_driver cppc_cpufreq_driver = { 906 .flags = CPUFREQ_CONST_LOOPS, 907 .verify = cppc_verify_policy, 908 .target = cppc_cpufreq_set_target, 909 .get = cppc_cpufreq_get_rate, 910 .fast_switch = cppc_cpufreq_fast_switch, 911 .init = cppc_cpufreq_cpu_init, 912 .exit = cppc_cpufreq_cpu_exit, 913 .set_boost = cppc_cpufreq_set_boost, 914 .attr = cppc_cpufreq_attr, 915 .name = "cppc_cpufreq", 916 }; 917 918 /* 919 * HISI platform does not support delivered performance counter and 920 * reference performance counter. It can calculate the performance using the 921 * platform specific mechanism. We reuse the desired performance register to 922 * store the real performance calculated by the platform. 923 */ 924 static unsigned int hisi_cppc_cpufreq_get_rate(unsigned int cpu) 925 { 926 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 927 struct cppc_cpudata *cpu_data = policy->driver_data; 928 u64 desired_perf; 929 int ret; 930 931 cpufreq_cpu_put(policy); 932 933 ret = cppc_get_desired_perf(cpu, &desired_perf); 934 if (ret < 0) 935 return -EIO; 936 937 return cppc_cpufreq_perf_to_khz(cpu_data, desired_perf); 938 } 939 940 static void cppc_check_hisi_workaround(void) 941 { 942 struct acpi_table_header *tbl; 943 acpi_status status = AE_OK; 944 int i; 945 946 status = acpi_get_table(ACPI_SIG_PCCT, 0, &tbl); 947 if (ACPI_FAILURE(status) || !tbl) 948 return; 949 950 for (i = 0; i < ARRAY_SIZE(wa_info); i++) { 951 if (!memcmp(wa_info[i].oem_id, tbl->oem_id, ACPI_OEM_ID_SIZE) && 952 !memcmp(wa_info[i].oem_table_id, tbl->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) && 953 wa_info[i].oem_revision == tbl->oem_revision) { 954 /* Overwrite the get() callback */ 955 cppc_cpufreq_driver.get = hisi_cppc_cpufreq_get_rate; 956 fie_disabled = FIE_DISABLED; 957 break; 958 } 959 } 960 961 acpi_put_table(tbl); 962 } 963 964 static int __init cppc_cpufreq_init(void) 965 { 966 int ret; 967 968 if (!acpi_cpc_valid()) 969 return -ENODEV; 970 971 cppc_check_hisi_workaround(); 972 cppc_freq_invariance_init(); 973 populate_efficiency_class(); 974 975 ret = cpufreq_register_driver(&cppc_cpufreq_driver); 976 if (ret) 977 cppc_freq_invariance_exit(); 978 979 return ret; 980 } 981 982 static inline void free_cpu_data(void) 983 { 984 struct cppc_cpudata *iter, *tmp; 985 986 list_for_each_entry_safe(iter, tmp, &cpu_data_list, node) { 987 free_cpumask_var(iter->shared_cpu_map); 988 list_del(&iter->node); 989 kfree(iter); 990 } 991 992 } 993 994 static void __exit cppc_cpufreq_exit(void) 995 { 996 cpufreq_unregister_driver(&cppc_cpufreq_driver); 997 cppc_freq_invariance_exit(); 998 999 free_cpu_data(); 1000 } 1001 1002 module_exit(cppc_cpufreq_exit); 1003 MODULE_AUTHOR("Ashwin Chaugule"); 1004 MODULE_DESCRIPTION("CPUFreq driver based on the ACPI CPPC v5.0+ spec"); 1005 MODULE_LICENSE("GPL"); 1006 1007 late_initcall(cppc_cpufreq_init); 1008 1009 static const struct acpi_device_id cppc_acpi_ids[] __used = { 1010 {ACPI_PROCESSOR_DEVICE_HID, }, 1011 {} 1012 }; 1013 1014 MODULE_DEVICE_TABLE(acpi, cppc_acpi_ids); 1015