xref: /linux/drivers/cpufreq/cppc_cpufreq.c (revision 7f4f3b14e8079ecde096bd734af10e30d40c27b7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * CPPC (Collaborative Processor Performance Control) driver for
4  * interfacing with the CPUfreq layer and governors. See
5  * cppc_acpi.c for CPPC specific methods.
6  *
7  * (C) Copyright 2014, 2015 Linaro Ltd.
8  * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
9  */
10 
11 #define pr_fmt(fmt)	"CPPC Cpufreq:"	fmt
12 
13 #include <linux/arch_topology.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/delay.h>
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/irq_work.h>
20 #include <linux/kthread.h>
21 #include <linux/time.h>
22 #include <linux/vmalloc.h>
23 #include <uapi/linux/sched/types.h>
24 
25 #include <linux/unaligned.h>
26 
27 #include <acpi/cppc_acpi.h>
28 
29 /*
30  * This list contains information parsed from per CPU ACPI _CPC and _PSD
31  * structures: e.g. the highest and lowest supported performance, capabilities,
32  * desired performance, level requested etc. Depending on the share_type, not
33  * all CPUs will have an entry in the list.
34  */
35 static LIST_HEAD(cpu_data_list);
36 
37 static bool boost_supported;
38 
39 static struct cpufreq_driver cppc_cpufreq_driver;
40 
41 #ifdef CONFIG_ACPI_CPPC_CPUFREQ_FIE
42 static enum {
43 	FIE_UNSET = -1,
44 	FIE_ENABLED,
45 	FIE_DISABLED
46 } fie_disabled = FIE_UNSET;
47 
48 module_param(fie_disabled, int, 0444);
49 MODULE_PARM_DESC(fie_disabled, "Disable Frequency Invariance Engine (FIE)");
50 
51 /* Frequency invariance support */
52 struct cppc_freq_invariance {
53 	int cpu;
54 	struct irq_work irq_work;
55 	struct kthread_work work;
56 	struct cppc_perf_fb_ctrs prev_perf_fb_ctrs;
57 	struct cppc_cpudata *cpu_data;
58 };
59 
60 static DEFINE_PER_CPU(struct cppc_freq_invariance, cppc_freq_inv);
61 static struct kthread_worker *kworker_fie;
62 
63 static int cppc_perf_from_fbctrs(struct cppc_cpudata *cpu_data,
64 				 struct cppc_perf_fb_ctrs *fb_ctrs_t0,
65 				 struct cppc_perf_fb_ctrs *fb_ctrs_t1);
66 
67 /**
68  * cppc_scale_freq_workfn - CPPC arch_freq_scale updater for frequency invariance
69  * @work: The work item.
70  *
71  * The CPPC driver register itself with the topology core to provide its own
72  * implementation (cppc_scale_freq_tick()) of topology_scale_freq_tick() which
73  * gets called by the scheduler on every tick.
74  *
75  * Note that the arch specific counters have higher priority than CPPC counters,
76  * if available, though the CPPC driver doesn't need to have any special
77  * handling for that.
78  *
79  * On an invocation of cppc_scale_freq_tick(), we schedule an irq work (since we
80  * reach here from hard-irq context), which then schedules a normal work item
81  * and cppc_scale_freq_workfn() updates the per_cpu arch_freq_scale variable
82  * based on the counter updates since the last tick.
83  */
84 static void cppc_scale_freq_workfn(struct kthread_work *work)
85 {
86 	struct cppc_freq_invariance *cppc_fi;
87 	struct cppc_perf_fb_ctrs fb_ctrs = {0};
88 	struct cppc_cpudata *cpu_data;
89 	unsigned long local_freq_scale;
90 	u64 perf;
91 
92 	cppc_fi = container_of(work, struct cppc_freq_invariance, work);
93 	cpu_data = cppc_fi->cpu_data;
94 
95 	if (cppc_get_perf_ctrs(cppc_fi->cpu, &fb_ctrs)) {
96 		pr_warn("%s: failed to read perf counters\n", __func__);
97 		return;
98 	}
99 
100 	perf = cppc_perf_from_fbctrs(cpu_data, &cppc_fi->prev_perf_fb_ctrs,
101 				     &fb_ctrs);
102 	if (!perf)
103 		return;
104 
105 	cppc_fi->prev_perf_fb_ctrs = fb_ctrs;
106 
107 	perf <<= SCHED_CAPACITY_SHIFT;
108 	local_freq_scale = div64_u64(perf, cpu_data->perf_caps.highest_perf);
109 
110 	/* This can happen due to counter's overflow */
111 	if (unlikely(local_freq_scale > 1024))
112 		local_freq_scale = 1024;
113 
114 	per_cpu(arch_freq_scale, cppc_fi->cpu) = local_freq_scale;
115 }
116 
117 static void cppc_irq_work(struct irq_work *irq_work)
118 {
119 	struct cppc_freq_invariance *cppc_fi;
120 
121 	cppc_fi = container_of(irq_work, struct cppc_freq_invariance, irq_work);
122 	kthread_queue_work(kworker_fie, &cppc_fi->work);
123 }
124 
125 static void cppc_scale_freq_tick(void)
126 {
127 	struct cppc_freq_invariance *cppc_fi = &per_cpu(cppc_freq_inv, smp_processor_id());
128 
129 	/*
130 	 * cppc_get_perf_ctrs() can potentially sleep, call that from the right
131 	 * context.
132 	 */
133 	irq_work_queue(&cppc_fi->irq_work);
134 }
135 
136 static struct scale_freq_data cppc_sftd = {
137 	.source = SCALE_FREQ_SOURCE_CPPC,
138 	.set_freq_scale = cppc_scale_freq_tick,
139 };
140 
141 static void cppc_cpufreq_cpu_fie_init(struct cpufreq_policy *policy)
142 {
143 	struct cppc_freq_invariance *cppc_fi;
144 	int cpu, ret;
145 
146 	if (fie_disabled)
147 		return;
148 
149 	for_each_cpu(cpu, policy->cpus) {
150 		cppc_fi = &per_cpu(cppc_freq_inv, cpu);
151 		cppc_fi->cpu = cpu;
152 		cppc_fi->cpu_data = policy->driver_data;
153 		kthread_init_work(&cppc_fi->work, cppc_scale_freq_workfn);
154 		init_irq_work(&cppc_fi->irq_work, cppc_irq_work);
155 
156 		ret = cppc_get_perf_ctrs(cpu, &cppc_fi->prev_perf_fb_ctrs);
157 		if (ret) {
158 			pr_warn("%s: failed to read perf counters for cpu:%d: %d\n",
159 				__func__, cpu, ret);
160 
161 			/*
162 			 * Don't abort if the CPU was offline while the driver
163 			 * was getting registered.
164 			 */
165 			if (cpu_online(cpu))
166 				return;
167 		}
168 	}
169 
170 	/* Register for freq-invariance */
171 	topology_set_scale_freq_source(&cppc_sftd, policy->cpus);
172 }
173 
174 /*
175  * We free all the resources on policy's removal and not on CPU removal as the
176  * irq-work are per-cpu and the hotplug core takes care of flushing the pending
177  * irq-works (hint: smpcfd_dying_cpu()) on CPU hotplug. Even if the kthread-work
178  * fires on another CPU after the concerned CPU is removed, it won't harm.
179  *
180  * We just need to make sure to remove them all on policy->exit().
181  */
182 static void cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy *policy)
183 {
184 	struct cppc_freq_invariance *cppc_fi;
185 	int cpu;
186 
187 	if (fie_disabled)
188 		return;
189 
190 	/* policy->cpus will be empty here, use related_cpus instead */
191 	topology_clear_scale_freq_source(SCALE_FREQ_SOURCE_CPPC, policy->related_cpus);
192 
193 	for_each_cpu(cpu, policy->related_cpus) {
194 		cppc_fi = &per_cpu(cppc_freq_inv, cpu);
195 		irq_work_sync(&cppc_fi->irq_work);
196 		kthread_cancel_work_sync(&cppc_fi->work);
197 	}
198 }
199 
200 static void __init cppc_freq_invariance_init(void)
201 {
202 	struct sched_attr attr = {
203 		.size		= sizeof(struct sched_attr),
204 		.sched_policy	= SCHED_DEADLINE,
205 		.sched_nice	= 0,
206 		.sched_priority	= 0,
207 		/*
208 		 * Fake (unused) bandwidth; workaround to "fix"
209 		 * priority inheritance.
210 		 */
211 		.sched_runtime	= NSEC_PER_MSEC,
212 		.sched_deadline = 10 * NSEC_PER_MSEC,
213 		.sched_period	= 10 * NSEC_PER_MSEC,
214 	};
215 	int ret;
216 
217 	if (fie_disabled != FIE_ENABLED && fie_disabled != FIE_DISABLED) {
218 		fie_disabled = FIE_ENABLED;
219 		if (cppc_perf_ctrs_in_pcc()) {
220 			pr_info("FIE not enabled on systems with registers in PCC\n");
221 			fie_disabled = FIE_DISABLED;
222 		}
223 	}
224 
225 	if (fie_disabled)
226 		return;
227 
228 	kworker_fie = kthread_create_worker(0, "cppc_fie");
229 	if (IS_ERR(kworker_fie)) {
230 		pr_warn("%s: failed to create kworker_fie: %ld\n", __func__,
231 			PTR_ERR(kworker_fie));
232 		fie_disabled = FIE_DISABLED;
233 		return;
234 	}
235 
236 	ret = sched_setattr_nocheck(kworker_fie->task, &attr);
237 	if (ret) {
238 		pr_warn("%s: failed to set SCHED_DEADLINE: %d\n", __func__,
239 			ret);
240 		kthread_destroy_worker(kworker_fie);
241 		fie_disabled = FIE_DISABLED;
242 	}
243 }
244 
245 static void cppc_freq_invariance_exit(void)
246 {
247 	if (fie_disabled)
248 		return;
249 
250 	kthread_destroy_worker(kworker_fie);
251 }
252 
253 #else
254 static inline void cppc_cpufreq_cpu_fie_init(struct cpufreq_policy *policy)
255 {
256 }
257 
258 static inline void cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy *policy)
259 {
260 }
261 
262 static inline void cppc_freq_invariance_init(void)
263 {
264 }
265 
266 static inline void cppc_freq_invariance_exit(void)
267 {
268 }
269 #endif /* CONFIG_ACPI_CPPC_CPUFREQ_FIE */
270 
271 static int cppc_cpufreq_set_target(struct cpufreq_policy *policy,
272 				   unsigned int target_freq,
273 				   unsigned int relation)
274 {
275 	struct cppc_cpudata *cpu_data = policy->driver_data;
276 	unsigned int cpu = policy->cpu;
277 	struct cpufreq_freqs freqs;
278 	int ret = 0;
279 
280 	cpu_data->perf_ctrls.desired_perf =
281 			cppc_khz_to_perf(&cpu_data->perf_caps, target_freq);
282 	freqs.old = policy->cur;
283 	freqs.new = target_freq;
284 
285 	cpufreq_freq_transition_begin(policy, &freqs);
286 	ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
287 	cpufreq_freq_transition_end(policy, &freqs, ret != 0);
288 
289 	if (ret)
290 		pr_debug("Failed to set target on CPU:%d. ret:%d\n",
291 			 cpu, ret);
292 
293 	return ret;
294 }
295 
296 static unsigned int cppc_cpufreq_fast_switch(struct cpufreq_policy *policy,
297 					      unsigned int target_freq)
298 {
299 	struct cppc_cpudata *cpu_data = policy->driver_data;
300 	unsigned int cpu = policy->cpu;
301 	u32 desired_perf;
302 	int ret;
303 
304 	desired_perf = cppc_khz_to_perf(&cpu_data->perf_caps, target_freq);
305 	cpu_data->perf_ctrls.desired_perf = desired_perf;
306 	ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
307 
308 	if (ret) {
309 		pr_debug("Failed to set target on CPU:%d. ret:%d\n",
310 			 cpu, ret);
311 		return 0;
312 	}
313 
314 	return target_freq;
315 }
316 
317 static int cppc_verify_policy(struct cpufreq_policy_data *policy)
318 {
319 	cpufreq_verify_within_cpu_limits(policy);
320 	return 0;
321 }
322 
323 /*
324  * The PCC subspace describes the rate at which platform can accept commands
325  * on the shared PCC channel (including READs which do not count towards freq
326  * transition requests), so ideally we need to use the PCC values as a fallback
327  * if we don't have a platform specific transition_delay_us
328  */
329 #ifdef CONFIG_ARM64
330 #include <asm/cputype.h>
331 
332 static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu)
333 {
334 	unsigned long implementor = read_cpuid_implementor();
335 	unsigned long part_num = read_cpuid_part_number();
336 
337 	switch (implementor) {
338 	case ARM_CPU_IMP_QCOM:
339 		switch (part_num) {
340 		case QCOM_CPU_PART_FALKOR_V1:
341 		case QCOM_CPU_PART_FALKOR:
342 			return 10000;
343 		}
344 	}
345 	return cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
346 }
347 #else
348 static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu)
349 {
350 	return cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
351 }
352 #endif
353 
354 #if defined(CONFIG_ARM64) && defined(CONFIG_ENERGY_MODEL)
355 
356 static DEFINE_PER_CPU(unsigned int, efficiency_class);
357 static void cppc_cpufreq_register_em(struct cpufreq_policy *policy);
358 
359 /* Create an artificial performance state every CPPC_EM_CAP_STEP capacity unit. */
360 #define CPPC_EM_CAP_STEP	(20)
361 /* Increase the cost value by CPPC_EM_COST_STEP every performance state. */
362 #define CPPC_EM_COST_STEP	(1)
363 /* Add a cost gap correspnding to the energy of 4 CPUs. */
364 #define CPPC_EM_COST_GAP	(4 * SCHED_CAPACITY_SCALE * CPPC_EM_COST_STEP \
365 				/ CPPC_EM_CAP_STEP)
366 
367 static unsigned int get_perf_level_count(struct cpufreq_policy *policy)
368 {
369 	struct cppc_perf_caps *perf_caps;
370 	unsigned int min_cap, max_cap;
371 	struct cppc_cpudata *cpu_data;
372 	int cpu = policy->cpu;
373 
374 	cpu_data = policy->driver_data;
375 	perf_caps = &cpu_data->perf_caps;
376 	max_cap = arch_scale_cpu_capacity(cpu);
377 	min_cap = div_u64((u64)max_cap * perf_caps->lowest_perf,
378 			  perf_caps->highest_perf);
379 	if ((min_cap == 0) || (max_cap < min_cap))
380 		return 0;
381 	return 1 + max_cap / CPPC_EM_CAP_STEP - min_cap / CPPC_EM_CAP_STEP;
382 }
383 
384 /*
385  * The cost is defined as:
386  *   cost = power * max_frequency / frequency
387  */
388 static inline unsigned long compute_cost(int cpu, int step)
389 {
390 	return CPPC_EM_COST_GAP * per_cpu(efficiency_class, cpu) +
391 			step * CPPC_EM_COST_STEP;
392 }
393 
394 static int cppc_get_cpu_power(struct device *cpu_dev,
395 		unsigned long *power, unsigned long *KHz)
396 {
397 	unsigned long perf_step, perf_prev, perf, perf_check;
398 	unsigned int min_step, max_step, step, step_check;
399 	unsigned long prev_freq = *KHz;
400 	unsigned int min_cap, max_cap;
401 	struct cpufreq_policy *policy;
402 
403 	struct cppc_perf_caps *perf_caps;
404 	struct cppc_cpudata *cpu_data;
405 
406 	policy = cpufreq_cpu_get_raw(cpu_dev->id);
407 	if (!policy)
408 		return -EINVAL;
409 
410 	cpu_data = policy->driver_data;
411 	perf_caps = &cpu_data->perf_caps;
412 	max_cap = arch_scale_cpu_capacity(cpu_dev->id);
413 	min_cap = div_u64((u64)max_cap * perf_caps->lowest_perf,
414 			  perf_caps->highest_perf);
415 	perf_step = div_u64((u64)CPPC_EM_CAP_STEP * perf_caps->highest_perf,
416 			    max_cap);
417 	min_step = min_cap / CPPC_EM_CAP_STEP;
418 	max_step = max_cap / CPPC_EM_CAP_STEP;
419 
420 	perf_prev = cppc_khz_to_perf(perf_caps, *KHz);
421 	step = perf_prev / perf_step;
422 
423 	if (step > max_step)
424 		return -EINVAL;
425 
426 	if (min_step == max_step) {
427 		step = max_step;
428 		perf = perf_caps->highest_perf;
429 	} else if (step < min_step) {
430 		step = min_step;
431 		perf = perf_caps->lowest_perf;
432 	} else {
433 		step++;
434 		if (step == max_step)
435 			perf = perf_caps->highest_perf;
436 		else
437 			perf = step * perf_step;
438 	}
439 
440 	*KHz = cppc_perf_to_khz(perf_caps, perf);
441 	perf_check = cppc_khz_to_perf(perf_caps, *KHz);
442 	step_check = perf_check / perf_step;
443 
444 	/*
445 	 * To avoid bad integer approximation, check that new frequency value
446 	 * increased and that the new frequency will be converted to the
447 	 * desired step value.
448 	 */
449 	while ((*KHz == prev_freq) || (step_check != step)) {
450 		perf++;
451 		*KHz = cppc_perf_to_khz(perf_caps, perf);
452 		perf_check = cppc_khz_to_perf(perf_caps, *KHz);
453 		step_check = perf_check / perf_step;
454 	}
455 
456 	/*
457 	 * With an artificial EM, only the cost value is used. Still the power
458 	 * is populated such as 0 < power < EM_MAX_POWER. This allows to add
459 	 * more sense to the artificial performance states.
460 	 */
461 	*power = compute_cost(cpu_dev->id, step);
462 
463 	return 0;
464 }
465 
466 static int cppc_get_cpu_cost(struct device *cpu_dev, unsigned long KHz,
467 		unsigned long *cost)
468 {
469 	unsigned long perf_step, perf_prev;
470 	struct cppc_perf_caps *perf_caps;
471 	struct cpufreq_policy *policy;
472 	struct cppc_cpudata *cpu_data;
473 	unsigned int max_cap;
474 	int step;
475 
476 	policy = cpufreq_cpu_get_raw(cpu_dev->id);
477 	if (!policy)
478 		return -EINVAL;
479 
480 	cpu_data = policy->driver_data;
481 	perf_caps = &cpu_data->perf_caps;
482 	max_cap = arch_scale_cpu_capacity(cpu_dev->id);
483 
484 	perf_prev = cppc_khz_to_perf(perf_caps, KHz);
485 	perf_step = CPPC_EM_CAP_STEP * perf_caps->highest_perf / max_cap;
486 	step = perf_prev / perf_step;
487 
488 	*cost = compute_cost(cpu_dev->id, step);
489 
490 	return 0;
491 }
492 
493 static int populate_efficiency_class(void)
494 {
495 	struct acpi_madt_generic_interrupt *gicc;
496 	DECLARE_BITMAP(used_classes, 256) = {};
497 	int class, cpu, index;
498 
499 	for_each_possible_cpu(cpu) {
500 		gicc = acpi_cpu_get_madt_gicc(cpu);
501 		class = gicc->efficiency_class;
502 		bitmap_set(used_classes, class, 1);
503 	}
504 
505 	if (bitmap_weight(used_classes, 256) <= 1) {
506 		pr_debug("Efficiency classes are all equal (=%d). "
507 			"No EM registered", class);
508 		return -EINVAL;
509 	}
510 
511 	/*
512 	 * Squeeze efficiency class values on [0:#efficiency_class-1].
513 	 * Values are per spec in [0:255].
514 	 */
515 	index = 0;
516 	for_each_set_bit(class, used_classes, 256) {
517 		for_each_possible_cpu(cpu) {
518 			gicc = acpi_cpu_get_madt_gicc(cpu);
519 			if (gicc->efficiency_class == class)
520 				per_cpu(efficiency_class, cpu) = index;
521 		}
522 		index++;
523 	}
524 	cppc_cpufreq_driver.register_em = cppc_cpufreq_register_em;
525 
526 	return 0;
527 }
528 
529 static void cppc_cpufreq_register_em(struct cpufreq_policy *policy)
530 {
531 	struct cppc_cpudata *cpu_data;
532 	struct em_data_callback em_cb =
533 		EM_ADV_DATA_CB(cppc_get_cpu_power, cppc_get_cpu_cost);
534 
535 	cpu_data = policy->driver_data;
536 	em_dev_register_perf_domain(get_cpu_device(policy->cpu),
537 			get_perf_level_count(policy), &em_cb,
538 			cpu_data->shared_cpu_map, 0);
539 }
540 
541 #else
542 static int populate_efficiency_class(void)
543 {
544 	return 0;
545 }
546 #endif
547 
548 static struct cppc_cpudata *cppc_cpufreq_get_cpu_data(unsigned int cpu)
549 {
550 	struct cppc_cpudata *cpu_data;
551 	int ret;
552 
553 	cpu_data = kzalloc(sizeof(struct cppc_cpudata), GFP_KERNEL);
554 	if (!cpu_data)
555 		goto out;
556 
557 	if (!zalloc_cpumask_var(&cpu_data->shared_cpu_map, GFP_KERNEL))
558 		goto free_cpu;
559 
560 	ret = acpi_get_psd_map(cpu, cpu_data);
561 	if (ret) {
562 		pr_debug("Err parsing CPU%d PSD data: ret:%d\n", cpu, ret);
563 		goto free_mask;
564 	}
565 
566 	ret = cppc_get_perf_caps(cpu, &cpu_data->perf_caps);
567 	if (ret) {
568 		pr_debug("Err reading CPU%d perf caps: ret:%d\n", cpu, ret);
569 		goto free_mask;
570 	}
571 
572 	list_add(&cpu_data->node, &cpu_data_list);
573 
574 	return cpu_data;
575 
576 free_mask:
577 	free_cpumask_var(cpu_data->shared_cpu_map);
578 free_cpu:
579 	kfree(cpu_data);
580 out:
581 	return NULL;
582 }
583 
584 static void cppc_cpufreq_put_cpu_data(struct cpufreq_policy *policy)
585 {
586 	struct cppc_cpudata *cpu_data = policy->driver_data;
587 
588 	list_del(&cpu_data->node);
589 	free_cpumask_var(cpu_data->shared_cpu_map);
590 	kfree(cpu_data);
591 	policy->driver_data = NULL;
592 }
593 
594 static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy)
595 {
596 	unsigned int cpu = policy->cpu;
597 	struct cppc_cpudata *cpu_data;
598 	struct cppc_perf_caps *caps;
599 	int ret;
600 
601 	cpu_data = cppc_cpufreq_get_cpu_data(cpu);
602 	if (!cpu_data) {
603 		pr_err("Error in acquiring _CPC/_PSD data for CPU%d.\n", cpu);
604 		return -ENODEV;
605 	}
606 	caps = &cpu_data->perf_caps;
607 	policy->driver_data = cpu_data;
608 
609 	/*
610 	 * Set min to lowest nonlinear perf to avoid any efficiency penalty (see
611 	 * Section 8.4.7.1.1.5 of ACPI 6.1 spec)
612 	 */
613 	policy->min = cppc_perf_to_khz(caps, caps->lowest_nonlinear_perf);
614 	policy->max = cppc_perf_to_khz(caps, caps->nominal_perf);
615 
616 	/*
617 	 * Set cpuinfo.min_freq to Lowest to make the full range of performance
618 	 * available if userspace wants to use any perf between lowest & lowest
619 	 * nonlinear perf
620 	 */
621 	policy->cpuinfo.min_freq = cppc_perf_to_khz(caps, caps->lowest_perf);
622 	policy->cpuinfo.max_freq = cppc_perf_to_khz(caps, caps->nominal_perf);
623 
624 	policy->transition_delay_us = cppc_cpufreq_get_transition_delay_us(cpu);
625 	policy->shared_type = cpu_data->shared_type;
626 
627 	switch (policy->shared_type) {
628 	case CPUFREQ_SHARED_TYPE_HW:
629 	case CPUFREQ_SHARED_TYPE_NONE:
630 		/* Nothing to be done - we'll have a policy for each CPU */
631 		break;
632 	case CPUFREQ_SHARED_TYPE_ANY:
633 		/*
634 		 * All CPUs in the domain will share a policy and all cpufreq
635 		 * operations will use a single cppc_cpudata structure stored
636 		 * in policy->driver_data.
637 		 */
638 		cpumask_copy(policy->cpus, cpu_data->shared_cpu_map);
639 		break;
640 	default:
641 		pr_debug("Unsupported CPU co-ord type: %d\n",
642 			 policy->shared_type);
643 		ret = -EFAULT;
644 		goto out;
645 	}
646 
647 	policy->fast_switch_possible = cppc_allow_fast_switch();
648 	policy->dvfs_possible_from_any_cpu = true;
649 
650 	/*
651 	 * If 'highest_perf' is greater than 'nominal_perf', we assume CPU Boost
652 	 * is supported.
653 	 */
654 	if (caps->highest_perf > caps->nominal_perf)
655 		boost_supported = true;
656 
657 	/* Set policy->cur to max now. The governors will adjust later. */
658 	policy->cur = cppc_perf_to_khz(caps, caps->highest_perf);
659 	cpu_data->perf_ctrls.desired_perf =  caps->highest_perf;
660 
661 	ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
662 	if (ret) {
663 		pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
664 			 caps->highest_perf, cpu, ret);
665 		goto out;
666 	}
667 
668 	cppc_cpufreq_cpu_fie_init(policy);
669 	return 0;
670 
671 out:
672 	cppc_cpufreq_put_cpu_data(policy);
673 	return ret;
674 }
675 
676 static void cppc_cpufreq_cpu_exit(struct cpufreq_policy *policy)
677 {
678 	struct cppc_cpudata *cpu_data = policy->driver_data;
679 	struct cppc_perf_caps *caps = &cpu_data->perf_caps;
680 	unsigned int cpu = policy->cpu;
681 	int ret;
682 
683 	cppc_cpufreq_cpu_fie_exit(policy);
684 
685 	cpu_data->perf_ctrls.desired_perf = caps->lowest_perf;
686 
687 	ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
688 	if (ret)
689 		pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
690 			 caps->lowest_perf, cpu, ret);
691 
692 	cppc_cpufreq_put_cpu_data(policy);
693 }
694 
695 static inline u64 get_delta(u64 t1, u64 t0)
696 {
697 	if (t1 > t0 || t0 > ~(u32)0)
698 		return t1 - t0;
699 
700 	return (u32)t1 - (u32)t0;
701 }
702 
703 static int cppc_perf_from_fbctrs(struct cppc_cpudata *cpu_data,
704 				 struct cppc_perf_fb_ctrs *fb_ctrs_t0,
705 				 struct cppc_perf_fb_ctrs *fb_ctrs_t1)
706 {
707 	u64 delta_reference, delta_delivered;
708 	u64 reference_perf;
709 
710 	reference_perf = fb_ctrs_t0->reference_perf;
711 
712 	delta_reference = get_delta(fb_ctrs_t1->reference,
713 				    fb_ctrs_t0->reference);
714 	delta_delivered = get_delta(fb_ctrs_t1->delivered,
715 				    fb_ctrs_t0->delivered);
716 
717 	/*
718 	 * Avoid divide-by zero and unchanged feedback counters.
719 	 * Leave it for callers to handle.
720 	 */
721 	if (!delta_reference || !delta_delivered)
722 		return 0;
723 
724 	return (reference_perf * delta_delivered) / delta_reference;
725 }
726 
727 static int cppc_get_perf_ctrs_sample(int cpu,
728 				     struct cppc_perf_fb_ctrs *fb_ctrs_t0,
729 				     struct cppc_perf_fb_ctrs *fb_ctrs_t1)
730 {
731 	int ret;
732 
733 	ret = cppc_get_perf_ctrs(cpu, fb_ctrs_t0);
734 	if (ret)
735 		return ret;
736 
737 	udelay(2); /* 2usec delay between sampling */
738 
739 	return cppc_get_perf_ctrs(cpu, fb_ctrs_t1);
740 }
741 
742 static unsigned int cppc_cpufreq_get_rate(unsigned int cpu)
743 {
744 	struct cppc_perf_fb_ctrs fb_ctrs_t0 = {0}, fb_ctrs_t1 = {0};
745 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
746 	struct cppc_cpudata *cpu_data;
747 	u64 delivered_perf;
748 	int ret;
749 
750 	if (!policy)
751 		return -ENODEV;
752 
753 	cpu_data = policy->driver_data;
754 
755 	cpufreq_cpu_put(policy);
756 
757 	ret = cppc_get_perf_ctrs_sample(cpu, &fb_ctrs_t0, &fb_ctrs_t1);
758 	if (ret) {
759 		if (ret == -EFAULT)
760 			/* Any of the associated CPPC regs is 0. */
761 			goto out_invalid_counters;
762 		else
763 			return 0;
764 	}
765 
766 	delivered_perf = cppc_perf_from_fbctrs(cpu_data, &fb_ctrs_t0,
767 					       &fb_ctrs_t1);
768 	if (!delivered_perf)
769 		goto out_invalid_counters;
770 
771 	return cppc_perf_to_khz(&cpu_data->perf_caps, delivered_perf);
772 
773 out_invalid_counters:
774 	/*
775 	 * Feedback counters could be unchanged or 0 when a cpu enters a
776 	 * low-power idle state, e.g. clock-gated or power-gated.
777 	 * Use desired perf for reflecting frequency.  Get the latest register
778 	 * value first as some platforms may update the actual delivered perf
779 	 * there; if failed, resort to the cached desired perf.
780 	 */
781 	if (cppc_get_desired_perf(cpu, &delivered_perf))
782 		delivered_perf = cpu_data->perf_ctrls.desired_perf;
783 
784 	return cppc_perf_to_khz(&cpu_data->perf_caps, delivered_perf);
785 }
786 
787 static int cppc_cpufreq_set_boost(struct cpufreq_policy *policy, int state)
788 {
789 	struct cppc_cpudata *cpu_data = policy->driver_data;
790 	struct cppc_perf_caps *caps = &cpu_data->perf_caps;
791 	int ret;
792 
793 	if (!boost_supported) {
794 		pr_err("BOOST not supported by CPU or firmware\n");
795 		return -EINVAL;
796 	}
797 
798 	if (state)
799 		policy->max = cppc_perf_to_khz(caps, caps->highest_perf);
800 	else
801 		policy->max = cppc_perf_to_khz(caps, caps->nominal_perf);
802 	policy->cpuinfo.max_freq = policy->max;
803 
804 	ret = freq_qos_update_request(policy->max_freq_req, policy->max);
805 	if (ret < 0)
806 		return ret;
807 
808 	return 0;
809 }
810 
811 static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
812 {
813 	struct cppc_cpudata *cpu_data = policy->driver_data;
814 
815 	return cpufreq_show_cpus(cpu_data->shared_cpu_map, buf);
816 }
817 cpufreq_freq_attr_ro(freqdomain_cpus);
818 
819 static struct freq_attr *cppc_cpufreq_attr[] = {
820 	&freqdomain_cpus,
821 	NULL,
822 };
823 
824 static struct cpufreq_driver cppc_cpufreq_driver = {
825 	.flags = CPUFREQ_CONST_LOOPS,
826 	.verify = cppc_verify_policy,
827 	.target = cppc_cpufreq_set_target,
828 	.get = cppc_cpufreq_get_rate,
829 	.fast_switch = cppc_cpufreq_fast_switch,
830 	.init = cppc_cpufreq_cpu_init,
831 	.exit = cppc_cpufreq_cpu_exit,
832 	.set_boost = cppc_cpufreq_set_boost,
833 	.attr = cppc_cpufreq_attr,
834 	.name = "cppc_cpufreq",
835 };
836 
837 static int __init cppc_cpufreq_init(void)
838 {
839 	int ret;
840 
841 	if (!acpi_cpc_valid())
842 		return -ENODEV;
843 
844 	cppc_freq_invariance_init();
845 	populate_efficiency_class();
846 
847 	ret = cpufreq_register_driver(&cppc_cpufreq_driver);
848 	if (ret)
849 		cppc_freq_invariance_exit();
850 
851 	return ret;
852 }
853 
854 static inline void free_cpu_data(void)
855 {
856 	struct cppc_cpudata *iter, *tmp;
857 
858 	list_for_each_entry_safe(iter, tmp, &cpu_data_list, node) {
859 		free_cpumask_var(iter->shared_cpu_map);
860 		list_del(&iter->node);
861 		kfree(iter);
862 	}
863 
864 }
865 
866 static void __exit cppc_cpufreq_exit(void)
867 {
868 	cpufreq_unregister_driver(&cppc_cpufreq_driver);
869 	cppc_freq_invariance_exit();
870 
871 	free_cpu_data();
872 }
873 
874 module_exit(cppc_cpufreq_exit);
875 MODULE_AUTHOR("Ashwin Chaugule");
876 MODULE_DESCRIPTION("CPUFreq driver based on the ACPI CPPC v5.0+ spec");
877 MODULE_LICENSE("GPL");
878 
879 late_initcall(cppc_cpufreq_init);
880 
881 static const struct acpi_device_id cppc_acpi_ids[] __used = {
882 	{ACPI_PROCESSOR_DEVICE_HID, },
883 	{}
884 };
885 
886 MODULE_DEVICE_TABLE(acpi, cppc_acpi_ids);
887