xref: /linux/drivers/cpufreq/cppc_cpufreq.c (revision 7a4ffec9fd54ea27395e24dff726dbf58e2fe06b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * CPPC (Collaborative Processor Performance Control) driver for
4  * interfacing with the CPUfreq layer and governors. See
5  * cppc_acpi.c for CPPC specific methods.
6  *
7  * (C) Copyright 2014, 2015 Linaro Ltd.
8  * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
9  */
10 
11 #define pr_fmt(fmt)	"CPPC Cpufreq:"	fmt
12 
13 #include <linux/arch_topology.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/delay.h>
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/irq_work.h>
20 #include <linux/kthread.h>
21 #include <linux/time.h>
22 #include <linux/vmalloc.h>
23 #include <uapi/linux/sched/types.h>
24 
25 #include <linux/unaligned.h>
26 
27 #include <acpi/cppc_acpi.h>
28 
29 /*
30  * This list contains information parsed from per CPU ACPI _CPC and _PSD
31  * structures: e.g. the highest and lowest supported performance, capabilities,
32  * desired performance, level requested etc. Depending on the share_type, not
33  * all CPUs will have an entry in the list.
34  */
35 static LIST_HEAD(cpu_data_list);
36 
37 static bool boost_supported;
38 
39 struct cppc_workaround_oem_info {
40 	char oem_id[ACPI_OEM_ID_SIZE + 1];
41 	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
42 	u32 oem_revision;
43 };
44 
45 static struct cppc_workaround_oem_info wa_info[] = {
46 	{
47 		.oem_id		= "HISI  ",
48 		.oem_table_id	= "HIP07   ",
49 		.oem_revision	= 0,
50 	}, {
51 		.oem_id		= "HISI  ",
52 		.oem_table_id	= "HIP08   ",
53 		.oem_revision	= 0,
54 	}
55 };
56 
57 static struct cpufreq_driver cppc_cpufreq_driver;
58 
59 static enum {
60 	FIE_UNSET = -1,
61 	FIE_ENABLED,
62 	FIE_DISABLED
63 } fie_disabled = FIE_UNSET;
64 
65 #ifdef CONFIG_ACPI_CPPC_CPUFREQ_FIE
66 module_param(fie_disabled, int, 0444);
67 MODULE_PARM_DESC(fie_disabled, "Disable Frequency Invariance Engine (FIE)");
68 
69 /* Frequency invariance support */
70 struct cppc_freq_invariance {
71 	int cpu;
72 	struct irq_work irq_work;
73 	struct kthread_work work;
74 	struct cppc_perf_fb_ctrs prev_perf_fb_ctrs;
75 	struct cppc_cpudata *cpu_data;
76 };
77 
78 static DEFINE_PER_CPU(struct cppc_freq_invariance, cppc_freq_inv);
79 static struct kthread_worker *kworker_fie;
80 
81 static unsigned int hisi_cppc_cpufreq_get_rate(unsigned int cpu);
82 static int cppc_perf_from_fbctrs(struct cppc_cpudata *cpu_data,
83 				 struct cppc_perf_fb_ctrs *fb_ctrs_t0,
84 				 struct cppc_perf_fb_ctrs *fb_ctrs_t1);
85 
86 /**
87  * cppc_scale_freq_workfn - CPPC arch_freq_scale updater for frequency invariance
88  * @work: The work item.
89  *
90  * The CPPC driver register itself with the topology core to provide its own
91  * implementation (cppc_scale_freq_tick()) of topology_scale_freq_tick() which
92  * gets called by the scheduler on every tick.
93  *
94  * Note that the arch specific counters have higher priority than CPPC counters,
95  * if available, though the CPPC driver doesn't need to have any special
96  * handling for that.
97  *
98  * On an invocation of cppc_scale_freq_tick(), we schedule an irq work (since we
99  * reach here from hard-irq context), which then schedules a normal work item
100  * and cppc_scale_freq_workfn() updates the per_cpu arch_freq_scale variable
101  * based on the counter updates since the last tick.
102  */
103 static void cppc_scale_freq_workfn(struct kthread_work *work)
104 {
105 	struct cppc_freq_invariance *cppc_fi;
106 	struct cppc_perf_fb_ctrs fb_ctrs = {0};
107 	struct cppc_cpudata *cpu_data;
108 	unsigned long local_freq_scale;
109 	u64 perf;
110 
111 	cppc_fi = container_of(work, struct cppc_freq_invariance, work);
112 	cpu_data = cppc_fi->cpu_data;
113 
114 	if (cppc_get_perf_ctrs(cppc_fi->cpu, &fb_ctrs)) {
115 		pr_warn("%s: failed to read perf counters\n", __func__);
116 		return;
117 	}
118 
119 	perf = cppc_perf_from_fbctrs(cpu_data, &cppc_fi->prev_perf_fb_ctrs,
120 				     &fb_ctrs);
121 	cppc_fi->prev_perf_fb_ctrs = fb_ctrs;
122 
123 	perf <<= SCHED_CAPACITY_SHIFT;
124 	local_freq_scale = div64_u64(perf, cpu_data->perf_caps.highest_perf);
125 
126 	/* This can happen due to counter's overflow */
127 	if (unlikely(local_freq_scale > 1024))
128 		local_freq_scale = 1024;
129 
130 	per_cpu(arch_freq_scale, cppc_fi->cpu) = local_freq_scale;
131 }
132 
133 static void cppc_irq_work(struct irq_work *irq_work)
134 {
135 	struct cppc_freq_invariance *cppc_fi;
136 
137 	cppc_fi = container_of(irq_work, struct cppc_freq_invariance, irq_work);
138 	kthread_queue_work(kworker_fie, &cppc_fi->work);
139 }
140 
141 static void cppc_scale_freq_tick(void)
142 {
143 	struct cppc_freq_invariance *cppc_fi = &per_cpu(cppc_freq_inv, smp_processor_id());
144 
145 	/*
146 	 * cppc_get_perf_ctrs() can potentially sleep, call that from the right
147 	 * context.
148 	 */
149 	irq_work_queue(&cppc_fi->irq_work);
150 }
151 
152 static struct scale_freq_data cppc_sftd = {
153 	.source = SCALE_FREQ_SOURCE_CPPC,
154 	.set_freq_scale = cppc_scale_freq_tick,
155 };
156 
157 static void cppc_cpufreq_cpu_fie_init(struct cpufreq_policy *policy)
158 {
159 	struct cppc_freq_invariance *cppc_fi;
160 	int cpu, ret;
161 
162 	if (fie_disabled)
163 		return;
164 
165 	for_each_cpu(cpu, policy->cpus) {
166 		cppc_fi = &per_cpu(cppc_freq_inv, cpu);
167 		cppc_fi->cpu = cpu;
168 		cppc_fi->cpu_data = policy->driver_data;
169 		kthread_init_work(&cppc_fi->work, cppc_scale_freq_workfn);
170 		init_irq_work(&cppc_fi->irq_work, cppc_irq_work);
171 
172 		ret = cppc_get_perf_ctrs(cpu, &cppc_fi->prev_perf_fb_ctrs);
173 		if (ret) {
174 			pr_warn("%s: failed to read perf counters for cpu:%d: %d\n",
175 				__func__, cpu, ret);
176 
177 			/*
178 			 * Don't abort if the CPU was offline while the driver
179 			 * was getting registered.
180 			 */
181 			if (cpu_online(cpu))
182 				return;
183 		}
184 	}
185 
186 	/* Register for freq-invariance */
187 	topology_set_scale_freq_source(&cppc_sftd, policy->cpus);
188 }
189 
190 /*
191  * We free all the resources on policy's removal and not on CPU removal as the
192  * irq-work are per-cpu and the hotplug core takes care of flushing the pending
193  * irq-works (hint: smpcfd_dying_cpu()) on CPU hotplug. Even if the kthread-work
194  * fires on another CPU after the concerned CPU is removed, it won't harm.
195  *
196  * We just need to make sure to remove them all on policy->exit().
197  */
198 static void cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy *policy)
199 {
200 	struct cppc_freq_invariance *cppc_fi;
201 	int cpu;
202 
203 	if (fie_disabled)
204 		return;
205 
206 	/* policy->cpus will be empty here, use related_cpus instead */
207 	topology_clear_scale_freq_source(SCALE_FREQ_SOURCE_CPPC, policy->related_cpus);
208 
209 	for_each_cpu(cpu, policy->related_cpus) {
210 		cppc_fi = &per_cpu(cppc_freq_inv, cpu);
211 		irq_work_sync(&cppc_fi->irq_work);
212 		kthread_cancel_work_sync(&cppc_fi->work);
213 	}
214 }
215 
216 static void __init cppc_freq_invariance_init(void)
217 {
218 	struct sched_attr attr = {
219 		.size		= sizeof(struct sched_attr),
220 		.sched_policy	= SCHED_DEADLINE,
221 		.sched_nice	= 0,
222 		.sched_priority	= 0,
223 		/*
224 		 * Fake (unused) bandwidth; workaround to "fix"
225 		 * priority inheritance.
226 		 */
227 		.sched_runtime	= NSEC_PER_MSEC,
228 		.sched_deadline = 10 * NSEC_PER_MSEC,
229 		.sched_period	= 10 * NSEC_PER_MSEC,
230 	};
231 	int ret;
232 
233 	if (fie_disabled != FIE_ENABLED && fie_disabled != FIE_DISABLED) {
234 		fie_disabled = FIE_ENABLED;
235 		if (cppc_perf_ctrs_in_pcc()) {
236 			pr_info("FIE not enabled on systems with registers in PCC\n");
237 			fie_disabled = FIE_DISABLED;
238 		}
239 	}
240 
241 	if (fie_disabled)
242 		return;
243 
244 	kworker_fie = kthread_create_worker(0, "cppc_fie");
245 	if (IS_ERR(kworker_fie)) {
246 		pr_warn("%s: failed to create kworker_fie: %ld\n", __func__,
247 			PTR_ERR(kworker_fie));
248 		fie_disabled = FIE_DISABLED;
249 		return;
250 	}
251 
252 	ret = sched_setattr_nocheck(kworker_fie->task, &attr);
253 	if (ret) {
254 		pr_warn("%s: failed to set SCHED_DEADLINE: %d\n", __func__,
255 			ret);
256 		kthread_destroy_worker(kworker_fie);
257 		fie_disabled = FIE_DISABLED;
258 	}
259 }
260 
261 static void cppc_freq_invariance_exit(void)
262 {
263 	if (fie_disabled)
264 		return;
265 
266 	kthread_destroy_worker(kworker_fie);
267 }
268 
269 #else
270 static inline void cppc_cpufreq_cpu_fie_init(struct cpufreq_policy *policy)
271 {
272 }
273 
274 static inline void cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy *policy)
275 {
276 }
277 
278 static inline void cppc_freq_invariance_init(void)
279 {
280 }
281 
282 static inline void cppc_freq_invariance_exit(void)
283 {
284 }
285 #endif /* CONFIG_ACPI_CPPC_CPUFREQ_FIE */
286 
287 static int cppc_cpufreq_set_target(struct cpufreq_policy *policy,
288 				   unsigned int target_freq,
289 				   unsigned int relation)
290 {
291 	struct cppc_cpudata *cpu_data = policy->driver_data;
292 	unsigned int cpu = policy->cpu;
293 	struct cpufreq_freqs freqs;
294 	int ret = 0;
295 
296 	cpu_data->perf_ctrls.desired_perf =
297 			cppc_khz_to_perf(&cpu_data->perf_caps, target_freq);
298 	freqs.old = policy->cur;
299 	freqs.new = target_freq;
300 
301 	cpufreq_freq_transition_begin(policy, &freqs);
302 	ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
303 	cpufreq_freq_transition_end(policy, &freqs, ret != 0);
304 
305 	if (ret)
306 		pr_debug("Failed to set target on CPU:%d. ret:%d\n",
307 			 cpu, ret);
308 
309 	return ret;
310 }
311 
312 static unsigned int cppc_cpufreq_fast_switch(struct cpufreq_policy *policy,
313 					      unsigned int target_freq)
314 {
315 	struct cppc_cpudata *cpu_data = policy->driver_data;
316 	unsigned int cpu = policy->cpu;
317 	u32 desired_perf;
318 	int ret;
319 
320 	desired_perf = cppc_khz_to_perf(&cpu_data->perf_caps, target_freq);
321 	cpu_data->perf_ctrls.desired_perf = desired_perf;
322 	ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
323 
324 	if (ret) {
325 		pr_debug("Failed to set target on CPU:%d. ret:%d\n",
326 			 cpu, ret);
327 		return 0;
328 	}
329 
330 	return target_freq;
331 }
332 
333 static int cppc_verify_policy(struct cpufreq_policy_data *policy)
334 {
335 	cpufreq_verify_within_cpu_limits(policy);
336 	return 0;
337 }
338 
339 /*
340  * The PCC subspace describes the rate at which platform can accept commands
341  * on the shared PCC channel (including READs which do not count towards freq
342  * transition requests), so ideally we need to use the PCC values as a fallback
343  * if we don't have a platform specific transition_delay_us
344  */
345 #ifdef CONFIG_ARM64
346 #include <asm/cputype.h>
347 
348 static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu)
349 {
350 	unsigned long implementor = read_cpuid_implementor();
351 	unsigned long part_num = read_cpuid_part_number();
352 
353 	switch (implementor) {
354 	case ARM_CPU_IMP_QCOM:
355 		switch (part_num) {
356 		case QCOM_CPU_PART_FALKOR_V1:
357 		case QCOM_CPU_PART_FALKOR:
358 			return 10000;
359 		}
360 	}
361 	return cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
362 }
363 #else
364 static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu)
365 {
366 	return cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
367 }
368 #endif
369 
370 #if defined(CONFIG_ARM64) && defined(CONFIG_ENERGY_MODEL)
371 
372 static DEFINE_PER_CPU(unsigned int, efficiency_class);
373 static void cppc_cpufreq_register_em(struct cpufreq_policy *policy);
374 
375 /* Create an artificial performance state every CPPC_EM_CAP_STEP capacity unit. */
376 #define CPPC_EM_CAP_STEP	(20)
377 /* Increase the cost value by CPPC_EM_COST_STEP every performance state. */
378 #define CPPC_EM_COST_STEP	(1)
379 /* Add a cost gap correspnding to the energy of 4 CPUs. */
380 #define CPPC_EM_COST_GAP	(4 * SCHED_CAPACITY_SCALE * CPPC_EM_COST_STEP \
381 				/ CPPC_EM_CAP_STEP)
382 
383 static unsigned int get_perf_level_count(struct cpufreq_policy *policy)
384 {
385 	struct cppc_perf_caps *perf_caps;
386 	unsigned int min_cap, max_cap;
387 	struct cppc_cpudata *cpu_data;
388 	int cpu = policy->cpu;
389 
390 	cpu_data = policy->driver_data;
391 	perf_caps = &cpu_data->perf_caps;
392 	max_cap = arch_scale_cpu_capacity(cpu);
393 	min_cap = div_u64((u64)max_cap * perf_caps->lowest_perf,
394 			  perf_caps->highest_perf);
395 	if ((min_cap == 0) || (max_cap < min_cap))
396 		return 0;
397 	return 1 + max_cap / CPPC_EM_CAP_STEP - min_cap / CPPC_EM_CAP_STEP;
398 }
399 
400 /*
401  * The cost is defined as:
402  *   cost = power * max_frequency / frequency
403  */
404 static inline unsigned long compute_cost(int cpu, int step)
405 {
406 	return CPPC_EM_COST_GAP * per_cpu(efficiency_class, cpu) +
407 			step * CPPC_EM_COST_STEP;
408 }
409 
410 static int cppc_get_cpu_power(struct device *cpu_dev,
411 		unsigned long *power, unsigned long *KHz)
412 {
413 	unsigned long perf_step, perf_prev, perf, perf_check;
414 	unsigned int min_step, max_step, step, step_check;
415 	unsigned long prev_freq = *KHz;
416 	unsigned int min_cap, max_cap;
417 	struct cpufreq_policy *policy;
418 
419 	struct cppc_perf_caps *perf_caps;
420 	struct cppc_cpudata *cpu_data;
421 
422 	policy = cpufreq_cpu_get_raw(cpu_dev->id);
423 	cpu_data = policy->driver_data;
424 	perf_caps = &cpu_data->perf_caps;
425 	max_cap = arch_scale_cpu_capacity(cpu_dev->id);
426 	min_cap = div_u64((u64)max_cap * perf_caps->lowest_perf,
427 			  perf_caps->highest_perf);
428 	perf_step = div_u64((u64)CPPC_EM_CAP_STEP * perf_caps->highest_perf,
429 			    max_cap);
430 	min_step = min_cap / CPPC_EM_CAP_STEP;
431 	max_step = max_cap / CPPC_EM_CAP_STEP;
432 
433 	perf_prev = cppc_khz_to_perf(perf_caps, *KHz);
434 	step = perf_prev / perf_step;
435 
436 	if (step > max_step)
437 		return -EINVAL;
438 
439 	if (min_step == max_step) {
440 		step = max_step;
441 		perf = perf_caps->highest_perf;
442 	} else if (step < min_step) {
443 		step = min_step;
444 		perf = perf_caps->lowest_perf;
445 	} else {
446 		step++;
447 		if (step == max_step)
448 			perf = perf_caps->highest_perf;
449 		else
450 			perf = step * perf_step;
451 	}
452 
453 	*KHz = cppc_perf_to_khz(perf_caps, perf);
454 	perf_check = cppc_khz_to_perf(perf_caps, *KHz);
455 	step_check = perf_check / perf_step;
456 
457 	/*
458 	 * To avoid bad integer approximation, check that new frequency value
459 	 * increased and that the new frequency will be converted to the
460 	 * desired step value.
461 	 */
462 	while ((*KHz == prev_freq) || (step_check != step)) {
463 		perf++;
464 		*KHz = cppc_perf_to_khz(perf_caps, perf);
465 		perf_check = cppc_khz_to_perf(perf_caps, *KHz);
466 		step_check = perf_check / perf_step;
467 	}
468 
469 	/*
470 	 * With an artificial EM, only the cost value is used. Still the power
471 	 * is populated such as 0 < power < EM_MAX_POWER. This allows to add
472 	 * more sense to the artificial performance states.
473 	 */
474 	*power = compute_cost(cpu_dev->id, step);
475 
476 	return 0;
477 }
478 
479 static int cppc_get_cpu_cost(struct device *cpu_dev, unsigned long KHz,
480 		unsigned long *cost)
481 {
482 	unsigned long perf_step, perf_prev;
483 	struct cppc_perf_caps *perf_caps;
484 	struct cpufreq_policy *policy;
485 	struct cppc_cpudata *cpu_data;
486 	unsigned int max_cap;
487 	int step;
488 
489 	policy = cpufreq_cpu_get_raw(cpu_dev->id);
490 	cpu_data = policy->driver_data;
491 	perf_caps = &cpu_data->perf_caps;
492 	max_cap = arch_scale_cpu_capacity(cpu_dev->id);
493 
494 	perf_prev = cppc_khz_to_perf(perf_caps, KHz);
495 	perf_step = CPPC_EM_CAP_STEP * perf_caps->highest_perf / max_cap;
496 	step = perf_prev / perf_step;
497 
498 	*cost = compute_cost(cpu_dev->id, step);
499 
500 	return 0;
501 }
502 
503 static int populate_efficiency_class(void)
504 {
505 	struct acpi_madt_generic_interrupt *gicc;
506 	DECLARE_BITMAP(used_classes, 256) = {};
507 	int class, cpu, index;
508 
509 	for_each_possible_cpu(cpu) {
510 		gicc = acpi_cpu_get_madt_gicc(cpu);
511 		class = gicc->efficiency_class;
512 		bitmap_set(used_classes, class, 1);
513 	}
514 
515 	if (bitmap_weight(used_classes, 256) <= 1) {
516 		pr_debug("Efficiency classes are all equal (=%d). "
517 			"No EM registered", class);
518 		return -EINVAL;
519 	}
520 
521 	/*
522 	 * Squeeze efficiency class values on [0:#efficiency_class-1].
523 	 * Values are per spec in [0:255].
524 	 */
525 	index = 0;
526 	for_each_set_bit(class, used_classes, 256) {
527 		for_each_possible_cpu(cpu) {
528 			gicc = acpi_cpu_get_madt_gicc(cpu);
529 			if (gicc->efficiency_class == class)
530 				per_cpu(efficiency_class, cpu) = index;
531 		}
532 		index++;
533 	}
534 	cppc_cpufreq_driver.register_em = cppc_cpufreq_register_em;
535 
536 	return 0;
537 }
538 
539 static void cppc_cpufreq_register_em(struct cpufreq_policy *policy)
540 {
541 	struct cppc_cpudata *cpu_data;
542 	struct em_data_callback em_cb =
543 		EM_ADV_DATA_CB(cppc_get_cpu_power, cppc_get_cpu_cost);
544 
545 	cpu_data = policy->driver_data;
546 	em_dev_register_perf_domain(get_cpu_device(policy->cpu),
547 			get_perf_level_count(policy), &em_cb,
548 			cpu_data->shared_cpu_map, 0);
549 }
550 
551 #else
552 static int populate_efficiency_class(void)
553 {
554 	return 0;
555 }
556 #endif
557 
558 static struct cppc_cpudata *cppc_cpufreq_get_cpu_data(unsigned int cpu)
559 {
560 	struct cppc_cpudata *cpu_data;
561 	int ret;
562 
563 	cpu_data = kzalloc(sizeof(struct cppc_cpudata), GFP_KERNEL);
564 	if (!cpu_data)
565 		goto out;
566 
567 	if (!zalloc_cpumask_var(&cpu_data->shared_cpu_map, GFP_KERNEL))
568 		goto free_cpu;
569 
570 	ret = acpi_get_psd_map(cpu, cpu_data);
571 	if (ret) {
572 		pr_debug("Err parsing CPU%d PSD data: ret:%d\n", cpu, ret);
573 		goto free_mask;
574 	}
575 
576 	ret = cppc_get_perf_caps(cpu, &cpu_data->perf_caps);
577 	if (ret) {
578 		pr_debug("Err reading CPU%d perf caps: ret:%d\n", cpu, ret);
579 		goto free_mask;
580 	}
581 
582 	list_add(&cpu_data->node, &cpu_data_list);
583 
584 	return cpu_data;
585 
586 free_mask:
587 	free_cpumask_var(cpu_data->shared_cpu_map);
588 free_cpu:
589 	kfree(cpu_data);
590 out:
591 	return NULL;
592 }
593 
594 static void cppc_cpufreq_put_cpu_data(struct cpufreq_policy *policy)
595 {
596 	struct cppc_cpudata *cpu_data = policy->driver_data;
597 
598 	list_del(&cpu_data->node);
599 	free_cpumask_var(cpu_data->shared_cpu_map);
600 	kfree(cpu_data);
601 	policy->driver_data = NULL;
602 }
603 
604 static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy)
605 {
606 	unsigned int cpu = policy->cpu;
607 	struct cppc_cpudata *cpu_data;
608 	struct cppc_perf_caps *caps;
609 	int ret;
610 
611 	cpu_data = cppc_cpufreq_get_cpu_data(cpu);
612 	if (!cpu_data) {
613 		pr_err("Error in acquiring _CPC/_PSD data for CPU%d.\n", cpu);
614 		return -ENODEV;
615 	}
616 	caps = &cpu_data->perf_caps;
617 	policy->driver_data = cpu_data;
618 
619 	/*
620 	 * Set min to lowest nonlinear perf to avoid any efficiency penalty (see
621 	 * Section 8.4.7.1.1.5 of ACPI 6.1 spec)
622 	 */
623 	policy->min = cppc_perf_to_khz(caps, caps->lowest_nonlinear_perf);
624 	policy->max = cppc_perf_to_khz(caps, caps->nominal_perf);
625 
626 	/*
627 	 * Set cpuinfo.min_freq to Lowest to make the full range of performance
628 	 * available if userspace wants to use any perf between lowest & lowest
629 	 * nonlinear perf
630 	 */
631 	policy->cpuinfo.min_freq = cppc_perf_to_khz(caps, caps->lowest_perf);
632 	policy->cpuinfo.max_freq = cppc_perf_to_khz(caps, caps->nominal_perf);
633 
634 	policy->transition_delay_us = cppc_cpufreq_get_transition_delay_us(cpu);
635 	policy->shared_type = cpu_data->shared_type;
636 
637 	switch (policy->shared_type) {
638 	case CPUFREQ_SHARED_TYPE_HW:
639 	case CPUFREQ_SHARED_TYPE_NONE:
640 		/* Nothing to be done - we'll have a policy for each CPU */
641 		break;
642 	case CPUFREQ_SHARED_TYPE_ANY:
643 		/*
644 		 * All CPUs in the domain will share a policy and all cpufreq
645 		 * operations will use a single cppc_cpudata structure stored
646 		 * in policy->driver_data.
647 		 */
648 		cpumask_copy(policy->cpus, cpu_data->shared_cpu_map);
649 		break;
650 	default:
651 		pr_debug("Unsupported CPU co-ord type: %d\n",
652 			 policy->shared_type);
653 		ret = -EFAULT;
654 		goto out;
655 	}
656 
657 	policy->fast_switch_possible = cppc_allow_fast_switch();
658 	policy->dvfs_possible_from_any_cpu = true;
659 
660 	/*
661 	 * If 'highest_perf' is greater than 'nominal_perf', we assume CPU Boost
662 	 * is supported.
663 	 */
664 	if (caps->highest_perf > caps->nominal_perf)
665 		boost_supported = true;
666 
667 	/* Set policy->cur to max now. The governors will adjust later. */
668 	policy->cur = cppc_perf_to_khz(caps, caps->highest_perf);
669 	cpu_data->perf_ctrls.desired_perf =  caps->highest_perf;
670 
671 	ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
672 	if (ret) {
673 		pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
674 			 caps->highest_perf, cpu, ret);
675 		goto out;
676 	}
677 
678 	cppc_cpufreq_cpu_fie_init(policy);
679 	return 0;
680 
681 out:
682 	cppc_cpufreq_put_cpu_data(policy);
683 	return ret;
684 }
685 
686 static void cppc_cpufreq_cpu_exit(struct cpufreq_policy *policy)
687 {
688 	struct cppc_cpudata *cpu_data = policy->driver_data;
689 	struct cppc_perf_caps *caps = &cpu_data->perf_caps;
690 	unsigned int cpu = policy->cpu;
691 	int ret;
692 
693 	cppc_cpufreq_cpu_fie_exit(policy);
694 
695 	cpu_data->perf_ctrls.desired_perf = caps->lowest_perf;
696 
697 	ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls);
698 	if (ret)
699 		pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
700 			 caps->lowest_perf, cpu, ret);
701 
702 	cppc_cpufreq_put_cpu_data(policy);
703 }
704 
705 static inline u64 get_delta(u64 t1, u64 t0)
706 {
707 	if (t1 > t0 || t0 > ~(u32)0)
708 		return t1 - t0;
709 
710 	return (u32)t1 - (u32)t0;
711 }
712 
713 static int cppc_perf_from_fbctrs(struct cppc_cpudata *cpu_data,
714 				 struct cppc_perf_fb_ctrs *fb_ctrs_t0,
715 				 struct cppc_perf_fb_ctrs *fb_ctrs_t1)
716 {
717 	u64 delta_reference, delta_delivered;
718 	u64 reference_perf;
719 
720 	reference_perf = fb_ctrs_t0->reference_perf;
721 
722 	delta_reference = get_delta(fb_ctrs_t1->reference,
723 				    fb_ctrs_t0->reference);
724 	delta_delivered = get_delta(fb_ctrs_t1->delivered,
725 				    fb_ctrs_t0->delivered);
726 
727 	/* Check to avoid divide-by zero and invalid delivered_perf */
728 	if (!delta_reference || !delta_delivered)
729 		return cpu_data->perf_ctrls.desired_perf;
730 
731 	return (reference_perf * delta_delivered) / delta_reference;
732 }
733 
734 static unsigned int cppc_cpufreq_get_rate(unsigned int cpu)
735 {
736 	struct cppc_perf_fb_ctrs fb_ctrs_t0 = {0}, fb_ctrs_t1 = {0};
737 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
738 	struct cppc_cpudata *cpu_data;
739 	u64 delivered_perf;
740 	int ret;
741 
742 	if (!policy)
743 		return -ENODEV;
744 
745 	cpu_data = policy->driver_data;
746 
747 	cpufreq_cpu_put(policy);
748 
749 	ret = cppc_get_perf_ctrs(cpu, &fb_ctrs_t0);
750 	if (ret)
751 		return 0;
752 
753 	udelay(2); /* 2usec delay between sampling */
754 
755 	ret = cppc_get_perf_ctrs(cpu, &fb_ctrs_t1);
756 	if (ret)
757 		return 0;
758 
759 	delivered_perf = cppc_perf_from_fbctrs(cpu_data, &fb_ctrs_t0,
760 					       &fb_ctrs_t1);
761 
762 	return cppc_perf_to_khz(&cpu_data->perf_caps, delivered_perf);
763 }
764 
765 static int cppc_cpufreq_set_boost(struct cpufreq_policy *policy, int state)
766 {
767 	struct cppc_cpudata *cpu_data = policy->driver_data;
768 	struct cppc_perf_caps *caps = &cpu_data->perf_caps;
769 	int ret;
770 
771 	if (!boost_supported) {
772 		pr_err("BOOST not supported by CPU or firmware\n");
773 		return -EINVAL;
774 	}
775 
776 	if (state)
777 		policy->max = cppc_perf_to_khz(caps, caps->highest_perf);
778 	else
779 		policy->max = cppc_perf_to_khz(caps, caps->nominal_perf);
780 	policy->cpuinfo.max_freq = policy->max;
781 
782 	ret = freq_qos_update_request(policy->max_freq_req, policy->max);
783 	if (ret < 0)
784 		return ret;
785 
786 	return 0;
787 }
788 
789 static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
790 {
791 	struct cppc_cpudata *cpu_data = policy->driver_data;
792 
793 	return cpufreq_show_cpus(cpu_data->shared_cpu_map, buf);
794 }
795 cpufreq_freq_attr_ro(freqdomain_cpus);
796 
797 static struct freq_attr *cppc_cpufreq_attr[] = {
798 	&freqdomain_cpus,
799 	NULL,
800 };
801 
802 static struct cpufreq_driver cppc_cpufreq_driver = {
803 	.flags = CPUFREQ_CONST_LOOPS,
804 	.verify = cppc_verify_policy,
805 	.target = cppc_cpufreq_set_target,
806 	.get = cppc_cpufreq_get_rate,
807 	.fast_switch = cppc_cpufreq_fast_switch,
808 	.init = cppc_cpufreq_cpu_init,
809 	.exit = cppc_cpufreq_cpu_exit,
810 	.set_boost = cppc_cpufreq_set_boost,
811 	.attr = cppc_cpufreq_attr,
812 	.name = "cppc_cpufreq",
813 };
814 
815 /*
816  * HISI platform does not support delivered performance counter and
817  * reference performance counter. It can calculate the performance using the
818  * platform specific mechanism. We reuse the desired performance register to
819  * store the real performance calculated by the platform.
820  */
821 static unsigned int hisi_cppc_cpufreq_get_rate(unsigned int cpu)
822 {
823 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
824 	struct cppc_cpudata *cpu_data;
825 	u64 desired_perf;
826 	int ret;
827 
828 	if (!policy)
829 		return -ENODEV;
830 
831 	cpu_data = policy->driver_data;
832 
833 	cpufreq_cpu_put(policy);
834 
835 	ret = cppc_get_desired_perf(cpu, &desired_perf);
836 	if (ret < 0)
837 		return -EIO;
838 
839 	return cppc_perf_to_khz(&cpu_data->perf_caps, desired_perf);
840 }
841 
842 static void cppc_check_hisi_workaround(void)
843 {
844 	struct acpi_table_header *tbl;
845 	acpi_status status = AE_OK;
846 	int i;
847 
848 	status = acpi_get_table(ACPI_SIG_PCCT, 0, &tbl);
849 	if (ACPI_FAILURE(status) || !tbl)
850 		return;
851 
852 	for (i = 0; i < ARRAY_SIZE(wa_info); i++) {
853 		if (!memcmp(wa_info[i].oem_id, tbl->oem_id, ACPI_OEM_ID_SIZE) &&
854 		    !memcmp(wa_info[i].oem_table_id, tbl->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
855 		    wa_info[i].oem_revision == tbl->oem_revision) {
856 			/* Overwrite the get() callback */
857 			cppc_cpufreq_driver.get = hisi_cppc_cpufreq_get_rate;
858 			fie_disabled = FIE_DISABLED;
859 			break;
860 		}
861 	}
862 
863 	acpi_put_table(tbl);
864 }
865 
866 static int __init cppc_cpufreq_init(void)
867 {
868 	int ret;
869 
870 	if (!acpi_cpc_valid())
871 		return -ENODEV;
872 
873 	cppc_check_hisi_workaround();
874 	cppc_freq_invariance_init();
875 	populate_efficiency_class();
876 
877 	ret = cpufreq_register_driver(&cppc_cpufreq_driver);
878 	if (ret)
879 		cppc_freq_invariance_exit();
880 
881 	return ret;
882 }
883 
884 static inline void free_cpu_data(void)
885 {
886 	struct cppc_cpudata *iter, *tmp;
887 
888 	list_for_each_entry_safe(iter, tmp, &cpu_data_list, node) {
889 		free_cpumask_var(iter->shared_cpu_map);
890 		list_del(&iter->node);
891 		kfree(iter);
892 	}
893 
894 }
895 
896 static void __exit cppc_cpufreq_exit(void)
897 {
898 	cpufreq_unregister_driver(&cppc_cpufreq_driver);
899 	cppc_freq_invariance_exit();
900 
901 	free_cpu_data();
902 }
903 
904 module_exit(cppc_cpufreq_exit);
905 MODULE_AUTHOR("Ashwin Chaugule");
906 MODULE_DESCRIPTION("CPUFreq driver based on the ACPI CPPC v5.0+ spec");
907 MODULE_LICENSE("GPL");
908 
909 late_initcall(cppc_cpufreq_init);
910 
911 static const struct acpi_device_id cppc_acpi_ids[] __used = {
912 	{ACPI_PROCESSOR_DEVICE_HID, },
913 	{}
914 };
915 
916 MODULE_DEVICE_TABLE(acpi, cppc_acpi_ids);
917