1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * CPPC (Collaborative Processor Performance Control) driver for 4 * interfacing with the CPUfreq layer and governors. See 5 * cppc_acpi.c for CPPC specific methods. 6 * 7 * (C) Copyright 2014, 2015 Linaro Ltd. 8 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org> 9 */ 10 11 #define pr_fmt(fmt) "CPPC Cpufreq:" fmt 12 13 #include <linux/arch_topology.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/delay.h> 17 #include <linux/cpu.h> 18 #include <linux/cpufreq.h> 19 #include <linux/irq_work.h> 20 #include <linux/kthread.h> 21 #include <linux/time.h> 22 #include <linux/vmalloc.h> 23 #include <uapi/linux/sched/types.h> 24 25 #include <linux/unaligned.h> 26 27 #include <acpi/cppc_acpi.h> 28 29 /* 30 * This list contains information parsed from per CPU ACPI _CPC and _PSD 31 * structures: e.g. the highest and lowest supported performance, capabilities, 32 * desired performance, level requested etc. Depending on the share_type, not 33 * all CPUs will have an entry in the list. 34 */ 35 static LIST_HEAD(cpu_data_list); 36 37 static bool boost_supported; 38 39 struct cppc_workaround_oem_info { 40 char oem_id[ACPI_OEM_ID_SIZE + 1]; 41 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1]; 42 u32 oem_revision; 43 }; 44 45 static struct cppc_workaround_oem_info wa_info[] = { 46 { 47 .oem_id = "HISI ", 48 .oem_table_id = "HIP07 ", 49 .oem_revision = 0, 50 }, { 51 .oem_id = "HISI ", 52 .oem_table_id = "HIP08 ", 53 .oem_revision = 0, 54 } 55 }; 56 57 static struct cpufreq_driver cppc_cpufreq_driver; 58 59 static enum { 60 FIE_UNSET = -1, 61 FIE_ENABLED, 62 FIE_DISABLED 63 } fie_disabled = FIE_UNSET; 64 65 #ifdef CONFIG_ACPI_CPPC_CPUFREQ_FIE 66 module_param(fie_disabled, int, 0444); 67 MODULE_PARM_DESC(fie_disabled, "Disable Frequency Invariance Engine (FIE)"); 68 69 /* Frequency invariance support */ 70 struct cppc_freq_invariance { 71 int cpu; 72 struct irq_work irq_work; 73 struct kthread_work work; 74 struct cppc_perf_fb_ctrs prev_perf_fb_ctrs; 75 struct cppc_cpudata *cpu_data; 76 }; 77 78 static DEFINE_PER_CPU(struct cppc_freq_invariance, cppc_freq_inv); 79 static struct kthread_worker *kworker_fie; 80 81 static unsigned int hisi_cppc_cpufreq_get_rate(unsigned int cpu); 82 static int cppc_perf_from_fbctrs(struct cppc_cpudata *cpu_data, 83 struct cppc_perf_fb_ctrs *fb_ctrs_t0, 84 struct cppc_perf_fb_ctrs *fb_ctrs_t1); 85 86 /** 87 * cppc_scale_freq_workfn - CPPC arch_freq_scale updater for frequency invariance 88 * @work: The work item. 89 * 90 * The CPPC driver register itself with the topology core to provide its own 91 * implementation (cppc_scale_freq_tick()) of topology_scale_freq_tick() which 92 * gets called by the scheduler on every tick. 93 * 94 * Note that the arch specific counters have higher priority than CPPC counters, 95 * if available, though the CPPC driver doesn't need to have any special 96 * handling for that. 97 * 98 * On an invocation of cppc_scale_freq_tick(), we schedule an irq work (since we 99 * reach here from hard-irq context), which then schedules a normal work item 100 * and cppc_scale_freq_workfn() updates the per_cpu arch_freq_scale variable 101 * based on the counter updates since the last tick. 102 */ 103 static void cppc_scale_freq_workfn(struct kthread_work *work) 104 { 105 struct cppc_freq_invariance *cppc_fi; 106 struct cppc_perf_fb_ctrs fb_ctrs = {0}; 107 struct cppc_cpudata *cpu_data; 108 unsigned long local_freq_scale; 109 u64 perf; 110 111 cppc_fi = container_of(work, struct cppc_freq_invariance, work); 112 cpu_data = cppc_fi->cpu_data; 113 114 if (cppc_get_perf_ctrs(cppc_fi->cpu, &fb_ctrs)) { 115 pr_warn("%s: failed to read perf counters\n", __func__); 116 return; 117 } 118 119 perf = cppc_perf_from_fbctrs(cpu_data, &cppc_fi->prev_perf_fb_ctrs, 120 &fb_ctrs); 121 cppc_fi->prev_perf_fb_ctrs = fb_ctrs; 122 123 perf <<= SCHED_CAPACITY_SHIFT; 124 local_freq_scale = div64_u64(perf, cpu_data->perf_caps.highest_perf); 125 126 /* This can happen due to counter's overflow */ 127 if (unlikely(local_freq_scale > 1024)) 128 local_freq_scale = 1024; 129 130 per_cpu(arch_freq_scale, cppc_fi->cpu) = local_freq_scale; 131 } 132 133 static void cppc_irq_work(struct irq_work *irq_work) 134 { 135 struct cppc_freq_invariance *cppc_fi; 136 137 cppc_fi = container_of(irq_work, struct cppc_freq_invariance, irq_work); 138 kthread_queue_work(kworker_fie, &cppc_fi->work); 139 } 140 141 static void cppc_scale_freq_tick(void) 142 { 143 struct cppc_freq_invariance *cppc_fi = &per_cpu(cppc_freq_inv, smp_processor_id()); 144 145 /* 146 * cppc_get_perf_ctrs() can potentially sleep, call that from the right 147 * context. 148 */ 149 irq_work_queue(&cppc_fi->irq_work); 150 } 151 152 static struct scale_freq_data cppc_sftd = { 153 .source = SCALE_FREQ_SOURCE_CPPC, 154 .set_freq_scale = cppc_scale_freq_tick, 155 }; 156 157 static void cppc_cpufreq_cpu_fie_init(struct cpufreq_policy *policy) 158 { 159 struct cppc_freq_invariance *cppc_fi; 160 int cpu, ret; 161 162 if (fie_disabled) 163 return; 164 165 for_each_cpu(cpu, policy->cpus) { 166 cppc_fi = &per_cpu(cppc_freq_inv, cpu); 167 cppc_fi->cpu = cpu; 168 cppc_fi->cpu_data = policy->driver_data; 169 kthread_init_work(&cppc_fi->work, cppc_scale_freq_workfn); 170 init_irq_work(&cppc_fi->irq_work, cppc_irq_work); 171 172 ret = cppc_get_perf_ctrs(cpu, &cppc_fi->prev_perf_fb_ctrs); 173 if (ret) { 174 pr_warn("%s: failed to read perf counters for cpu:%d: %d\n", 175 __func__, cpu, ret); 176 177 /* 178 * Don't abort if the CPU was offline while the driver 179 * was getting registered. 180 */ 181 if (cpu_online(cpu)) 182 return; 183 } 184 } 185 186 /* Register for freq-invariance */ 187 topology_set_scale_freq_source(&cppc_sftd, policy->cpus); 188 } 189 190 /* 191 * We free all the resources on policy's removal and not on CPU removal as the 192 * irq-work are per-cpu and the hotplug core takes care of flushing the pending 193 * irq-works (hint: smpcfd_dying_cpu()) on CPU hotplug. Even if the kthread-work 194 * fires on another CPU after the concerned CPU is removed, it won't harm. 195 * 196 * We just need to make sure to remove them all on policy->exit(). 197 */ 198 static void cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy *policy) 199 { 200 struct cppc_freq_invariance *cppc_fi; 201 int cpu; 202 203 if (fie_disabled) 204 return; 205 206 /* policy->cpus will be empty here, use related_cpus instead */ 207 topology_clear_scale_freq_source(SCALE_FREQ_SOURCE_CPPC, policy->related_cpus); 208 209 for_each_cpu(cpu, policy->related_cpus) { 210 cppc_fi = &per_cpu(cppc_freq_inv, cpu); 211 irq_work_sync(&cppc_fi->irq_work); 212 kthread_cancel_work_sync(&cppc_fi->work); 213 } 214 } 215 216 static void __init cppc_freq_invariance_init(void) 217 { 218 struct sched_attr attr = { 219 .size = sizeof(struct sched_attr), 220 .sched_policy = SCHED_DEADLINE, 221 .sched_nice = 0, 222 .sched_priority = 0, 223 /* 224 * Fake (unused) bandwidth; workaround to "fix" 225 * priority inheritance. 226 */ 227 .sched_runtime = NSEC_PER_MSEC, 228 .sched_deadline = 10 * NSEC_PER_MSEC, 229 .sched_period = 10 * NSEC_PER_MSEC, 230 }; 231 int ret; 232 233 if (fie_disabled != FIE_ENABLED && fie_disabled != FIE_DISABLED) { 234 fie_disabled = FIE_ENABLED; 235 if (cppc_perf_ctrs_in_pcc()) { 236 pr_info("FIE not enabled on systems with registers in PCC\n"); 237 fie_disabled = FIE_DISABLED; 238 } 239 } 240 241 if (fie_disabled) 242 return; 243 244 kworker_fie = kthread_create_worker(0, "cppc_fie"); 245 if (IS_ERR(kworker_fie)) { 246 pr_warn("%s: failed to create kworker_fie: %ld\n", __func__, 247 PTR_ERR(kworker_fie)); 248 fie_disabled = FIE_DISABLED; 249 return; 250 } 251 252 ret = sched_setattr_nocheck(kworker_fie->task, &attr); 253 if (ret) { 254 pr_warn("%s: failed to set SCHED_DEADLINE: %d\n", __func__, 255 ret); 256 kthread_destroy_worker(kworker_fie); 257 fie_disabled = FIE_DISABLED; 258 } 259 } 260 261 static void cppc_freq_invariance_exit(void) 262 { 263 if (fie_disabled) 264 return; 265 266 kthread_destroy_worker(kworker_fie); 267 } 268 269 #else 270 static inline void cppc_cpufreq_cpu_fie_init(struct cpufreq_policy *policy) 271 { 272 } 273 274 static inline void cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy *policy) 275 { 276 } 277 278 static inline void cppc_freq_invariance_init(void) 279 { 280 } 281 282 static inline void cppc_freq_invariance_exit(void) 283 { 284 } 285 #endif /* CONFIG_ACPI_CPPC_CPUFREQ_FIE */ 286 287 static int cppc_cpufreq_set_target(struct cpufreq_policy *policy, 288 unsigned int target_freq, 289 unsigned int relation) 290 { 291 struct cppc_cpudata *cpu_data = policy->driver_data; 292 unsigned int cpu = policy->cpu; 293 struct cpufreq_freqs freqs; 294 int ret = 0; 295 296 cpu_data->perf_ctrls.desired_perf = 297 cppc_khz_to_perf(&cpu_data->perf_caps, target_freq); 298 freqs.old = policy->cur; 299 freqs.new = target_freq; 300 301 cpufreq_freq_transition_begin(policy, &freqs); 302 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls); 303 cpufreq_freq_transition_end(policy, &freqs, ret != 0); 304 305 if (ret) 306 pr_debug("Failed to set target on CPU:%d. ret:%d\n", 307 cpu, ret); 308 309 return ret; 310 } 311 312 static unsigned int cppc_cpufreq_fast_switch(struct cpufreq_policy *policy, 313 unsigned int target_freq) 314 { 315 struct cppc_cpudata *cpu_data = policy->driver_data; 316 unsigned int cpu = policy->cpu; 317 u32 desired_perf; 318 int ret; 319 320 desired_perf = cppc_khz_to_perf(&cpu_data->perf_caps, target_freq); 321 cpu_data->perf_ctrls.desired_perf = desired_perf; 322 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls); 323 324 if (ret) { 325 pr_debug("Failed to set target on CPU:%d. ret:%d\n", 326 cpu, ret); 327 return 0; 328 } 329 330 return target_freq; 331 } 332 333 static int cppc_verify_policy(struct cpufreq_policy_data *policy) 334 { 335 cpufreq_verify_within_cpu_limits(policy); 336 return 0; 337 } 338 339 /* 340 * The PCC subspace describes the rate at which platform can accept commands 341 * on the shared PCC channel (including READs which do not count towards freq 342 * transition requests), so ideally we need to use the PCC values as a fallback 343 * if we don't have a platform specific transition_delay_us 344 */ 345 #ifdef CONFIG_ARM64 346 #include <asm/cputype.h> 347 348 static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu) 349 { 350 unsigned long implementor = read_cpuid_implementor(); 351 unsigned long part_num = read_cpuid_part_number(); 352 353 switch (implementor) { 354 case ARM_CPU_IMP_QCOM: 355 switch (part_num) { 356 case QCOM_CPU_PART_FALKOR_V1: 357 case QCOM_CPU_PART_FALKOR: 358 return 10000; 359 } 360 } 361 return cppc_get_transition_latency(cpu) / NSEC_PER_USEC; 362 } 363 #else 364 static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu) 365 { 366 return cppc_get_transition_latency(cpu) / NSEC_PER_USEC; 367 } 368 #endif 369 370 #if defined(CONFIG_ARM64) && defined(CONFIG_ENERGY_MODEL) 371 372 static DEFINE_PER_CPU(unsigned int, efficiency_class); 373 static void cppc_cpufreq_register_em(struct cpufreq_policy *policy); 374 375 /* Create an artificial performance state every CPPC_EM_CAP_STEP capacity unit. */ 376 #define CPPC_EM_CAP_STEP (20) 377 /* Increase the cost value by CPPC_EM_COST_STEP every performance state. */ 378 #define CPPC_EM_COST_STEP (1) 379 /* Add a cost gap correspnding to the energy of 4 CPUs. */ 380 #define CPPC_EM_COST_GAP (4 * SCHED_CAPACITY_SCALE * CPPC_EM_COST_STEP \ 381 / CPPC_EM_CAP_STEP) 382 383 static unsigned int get_perf_level_count(struct cpufreq_policy *policy) 384 { 385 struct cppc_perf_caps *perf_caps; 386 unsigned int min_cap, max_cap; 387 struct cppc_cpudata *cpu_data; 388 int cpu = policy->cpu; 389 390 cpu_data = policy->driver_data; 391 perf_caps = &cpu_data->perf_caps; 392 max_cap = arch_scale_cpu_capacity(cpu); 393 min_cap = div_u64((u64)max_cap * perf_caps->lowest_perf, 394 perf_caps->highest_perf); 395 if ((min_cap == 0) || (max_cap < min_cap)) 396 return 0; 397 return 1 + max_cap / CPPC_EM_CAP_STEP - min_cap / CPPC_EM_CAP_STEP; 398 } 399 400 /* 401 * The cost is defined as: 402 * cost = power * max_frequency / frequency 403 */ 404 static inline unsigned long compute_cost(int cpu, int step) 405 { 406 return CPPC_EM_COST_GAP * per_cpu(efficiency_class, cpu) + 407 step * CPPC_EM_COST_STEP; 408 } 409 410 static int cppc_get_cpu_power(struct device *cpu_dev, 411 unsigned long *power, unsigned long *KHz) 412 { 413 unsigned long perf_step, perf_prev, perf, perf_check; 414 unsigned int min_step, max_step, step, step_check; 415 unsigned long prev_freq = *KHz; 416 unsigned int min_cap, max_cap; 417 struct cpufreq_policy *policy; 418 419 struct cppc_perf_caps *perf_caps; 420 struct cppc_cpudata *cpu_data; 421 422 policy = cpufreq_cpu_get_raw(cpu_dev->id); 423 cpu_data = policy->driver_data; 424 perf_caps = &cpu_data->perf_caps; 425 max_cap = arch_scale_cpu_capacity(cpu_dev->id); 426 min_cap = div_u64((u64)max_cap * perf_caps->lowest_perf, 427 perf_caps->highest_perf); 428 perf_step = div_u64((u64)CPPC_EM_CAP_STEP * perf_caps->highest_perf, 429 max_cap); 430 min_step = min_cap / CPPC_EM_CAP_STEP; 431 max_step = max_cap / CPPC_EM_CAP_STEP; 432 433 perf_prev = cppc_khz_to_perf(perf_caps, *KHz); 434 step = perf_prev / perf_step; 435 436 if (step > max_step) 437 return -EINVAL; 438 439 if (min_step == max_step) { 440 step = max_step; 441 perf = perf_caps->highest_perf; 442 } else if (step < min_step) { 443 step = min_step; 444 perf = perf_caps->lowest_perf; 445 } else { 446 step++; 447 if (step == max_step) 448 perf = perf_caps->highest_perf; 449 else 450 perf = step * perf_step; 451 } 452 453 *KHz = cppc_perf_to_khz(perf_caps, perf); 454 perf_check = cppc_khz_to_perf(perf_caps, *KHz); 455 step_check = perf_check / perf_step; 456 457 /* 458 * To avoid bad integer approximation, check that new frequency value 459 * increased and that the new frequency will be converted to the 460 * desired step value. 461 */ 462 while ((*KHz == prev_freq) || (step_check != step)) { 463 perf++; 464 *KHz = cppc_perf_to_khz(perf_caps, perf); 465 perf_check = cppc_khz_to_perf(perf_caps, *KHz); 466 step_check = perf_check / perf_step; 467 } 468 469 /* 470 * With an artificial EM, only the cost value is used. Still the power 471 * is populated such as 0 < power < EM_MAX_POWER. This allows to add 472 * more sense to the artificial performance states. 473 */ 474 *power = compute_cost(cpu_dev->id, step); 475 476 return 0; 477 } 478 479 static int cppc_get_cpu_cost(struct device *cpu_dev, unsigned long KHz, 480 unsigned long *cost) 481 { 482 unsigned long perf_step, perf_prev; 483 struct cppc_perf_caps *perf_caps; 484 struct cpufreq_policy *policy; 485 struct cppc_cpudata *cpu_data; 486 unsigned int max_cap; 487 int step; 488 489 policy = cpufreq_cpu_get_raw(cpu_dev->id); 490 cpu_data = policy->driver_data; 491 perf_caps = &cpu_data->perf_caps; 492 max_cap = arch_scale_cpu_capacity(cpu_dev->id); 493 494 perf_prev = cppc_khz_to_perf(perf_caps, KHz); 495 perf_step = CPPC_EM_CAP_STEP * perf_caps->highest_perf / max_cap; 496 step = perf_prev / perf_step; 497 498 *cost = compute_cost(cpu_dev->id, step); 499 500 return 0; 501 } 502 503 static int populate_efficiency_class(void) 504 { 505 struct acpi_madt_generic_interrupt *gicc; 506 DECLARE_BITMAP(used_classes, 256) = {}; 507 int class, cpu, index; 508 509 for_each_possible_cpu(cpu) { 510 gicc = acpi_cpu_get_madt_gicc(cpu); 511 class = gicc->efficiency_class; 512 bitmap_set(used_classes, class, 1); 513 } 514 515 if (bitmap_weight(used_classes, 256) <= 1) { 516 pr_debug("Efficiency classes are all equal (=%d). " 517 "No EM registered", class); 518 return -EINVAL; 519 } 520 521 /* 522 * Squeeze efficiency class values on [0:#efficiency_class-1]. 523 * Values are per spec in [0:255]. 524 */ 525 index = 0; 526 for_each_set_bit(class, used_classes, 256) { 527 for_each_possible_cpu(cpu) { 528 gicc = acpi_cpu_get_madt_gicc(cpu); 529 if (gicc->efficiency_class == class) 530 per_cpu(efficiency_class, cpu) = index; 531 } 532 index++; 533 } 534 cppc_cpufreq_driver.register_em = cppc_cpufreq_register_em; 535 536 return 0; 537 } 538 539 static void cppc_cpufreq_register_em(struct cpufreq_policy *policy) 540 { 541 struct cppc_cpudata *cpu_data; 542 struct em_data_callback em_cb = 543 EM_ADV_DATA_CB(cppc_get_cpu_power, cppc_get_cpu_cost); 544 545 cpu_data = policy->driver_data; 546 em_dev_register_perf_domain(get_cpu_device(policy->cpu), 547 get_perf_level_count(policy), &em_cb, 548 cpu_data->shared_cpu_map, 0); 549 } 550 551 #else 552 static int populate_efficiency_class(void) 553 { 554 return 0; 555 } 556 #endif 557 558 static struct cppc_cpudata *cppc_cpufreq_get_cpu_data(unsigned int cpu) 559 { 560 struct cppc_cpudata *cpu_data; 561 int ret; 562 563 cpu_data = kzalloc(sizeof(struct cppc_cpudata), GFP_KERNEL); 564 if (!cpu_data) 565 goto out; 566 567 if (!zalloc_cpumask_var(&cpu_data->shared_cpu_map, GFP_KERNEL)) 568 goto free_cpu; 569 570 ret = acpi_get_psd_map(cpu, cpu_data); 571 if (ret) { 572 pr_debug("Err parsing CPU%d PSD data: ret:%d\n", cpu, ret); 573 goto free_mask; 574 } 575 576 ret = cppc_get_perf_caps(cpu, &cpu_data->perf_caps); 577 if (ret) { 578 pr_debug("Err reading CPU%d perf caps: ret:%d\n", cpu, ret); 579 goto free_mask; 580 } 581 582 list_add(&cpu_data->node, &cpu_data_list); 583 584 return cpu_data; 585 586 free_mask: 587 free_cpumask_var(cpu_data->shared_cpu_map); 588 free_cpu: 589 kfree(cpu_data); 590 out: 591 return NULL; 592 } 593 594 static void cppc_cpufreq_put_cpu_data(struct cpufreq_policy *policy) 595 { 596 struct cppc_cpudata *cpu_data = policy->driver_data; 597 598 list_del(&cpu_data->node); 599 free_cpumask_var(cpu_data->shared_cpu_map); 600 kfree(cpu_data); 601 policy->driver_data = NULL; 602 } 603 604 static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy) 605 { 606 unsigned int cpu = policy->cpu; 607 struct cppc_cpudata *cpu_data; 608 struct cppc_perf_caps *caps; 609 int ret; 610 611 cpu_data = cppc_cpufreq_get_cpu_data(cpu); 612 if (!cpu_data) { 613 pr_err("Error in acquiring _CPC/_PSD data for CPU%d.\n", cpu); 614 return -ENODEV; 615 } 616 caps = &cpu_data->perf_caps; 617 policy->driver_data = cpu_data; 618 619 /* 620 * Set min to lowest nonlinear perf to avoid any efficiency penalty (see 621 * Section 8.4.7.1.1.5 of ACPI 6.1 spec) 622 */ 623 policy->min = cppc_perf_to_khz(caps, caps->lowest_nonlinear_perf); 624 policy->max = cppc_perf_to_khz(caps, caps->nominal_perf); 625 626 /* 627 * Set cpuinfo.min_freq to Lowest to make the full range of performance 628 * available if userspace wants to use any perf between lowest & lowest 629 * nonlinear perf 630 */ 631 policy->cpuinfo.min_freq = cppc_perf_to_khz(caps, caps->lowest_perf); 632 policy->cpuinfo.max_freq = cppc_perf_to_khz(caps, caps->nominal_perf); 633 634 policy->transition_delay_us = cppc_cpufreq_get_transition_delay_us(cpu); 635 policy->shared_type = cpu_data->shared_type; 636 637 switch (policy->shared_type) { 638 case CPUFREQ_SHARED_TYPE_HW: 639 case CPUFREQ_SHARED_TYPE_NONE: 640 /* Nothing to be done - we'll have a policy for each CPU */ 641 break; 642 case CPUFREQ_SHARED_TYPE_ANY: 643 /* 644 * All CPUs in the domain will share a policy and all cpufreq 645 * operations will use a single cppc_cpudata structure stored 646 * in policy->driver_data. 647 */ 648 cpumask_copy(policy->cpus, cpu_data->shared_cpu_map); 649 break; 650 default: 651 pr_debug("Unsupported CPU co-ord type: %d\n", 652 policy->shared_type); 653 ret = -EFAULT; 654 goto out; 655 } 656 657 policy->fast_switch_possible = cppc_allow_fast_switch(); 658 policy->dvfs_possible_from_any_cpu = true; 659 660 /* 661 * If 'highest_perf' is greater than 'nominal_perf', we assume CPU Boost 662 * is supported. 663 */ 664 if (caps->highest_perf > caps->nominal_perf) 665 boost_supported = true; 666 667 /* Set policy->cur to max now. The governors will adjust later. */ 668 policy->cur = cppc_perf_to_khz(caps, caps->highest_perf); 669 cpu_data->perf_ctrls.desired_perf = caps->highest_perf; 670 671 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls); 672 if (ret) { 673 pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n", 674 caps->highest_perf, cpu, ret); 675 goto out; 676 } 677 678 cppc_cpufreq_cpu_fie_init(policy); 679 return 0; 680 681 out: 682 cppc_cpufreq_put_cpu_data(policy); 683 return ret; 684 } 685 686 static void cppc_cpufreq_cpu_exit(struct cpufreq_policy *policy) 687 { 688 struct cppc_cpudata *cpu_data = policy->driver_data; 689 struct cppc_perf_caps *caps = &cpu_data->perf_caps; 690 unsigned int cpu = policy->cpu; 691 int ret; 692 693 cppc_cpufreq_cpu_fie_exit(policy); 694 695 cpu_data->perf_ctrls.desired_perf = caps->lowest_perf; 696 697 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls); 698 if (ret) 699 pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n", 700 caps->lowest_perf, cpu, ret); 701 702 cppc_cpufreq_put_cpu_data(policy); 703 } 704 705 static inline u64 get_delta(u64 t1, u64 t0) 706 { 707 if (t1 > t0 || t0 > ~(u32)0) 708 return t1 - t0; 709 710 return (u32)t1 - (u32)t0; 711 } 712 713 static int cppc_perf_from_fbctrs(struct cppc_cpudata *cpu_data, 714 struct cppc_perf_fb_ctrs *fb_ctrs_t0, 715 struct cppc_perf_fb_ctrs *fb_ctrs_t1) 716 { 717 u64 delta_reference, delta_delivered; 718 u64 reference_perf; 719 720 reference_perf = fb_ctrs_t0->reference_perf; 721 722 delta_reference = get_delta(fb_ctrs_t1->reference, 723 fb_ctrs_t0->reference); 724 delta_delivered = get_delta(fb_ctrs_t1->delivered, 725 fb_ctrs_t0->delivered); 726 727 /* Check to avoid divide-by zero and invalid delivered_perf */ 728 if (!delta_reference || !delta_delivered) 729 return cpu_data->perf_ctrls.desired_perf; 730 731 return (reference_perf * delta_delivered) / delta_reference; 732 } 733 734 static unsigned int cppc_cpufreq_get_rate(unsigned int cpu) 735 { 736 struct cppc_perf_fb_ctrs fb_ctrs_t0 = {0}, fb_ctrs_t1 = {0}; 737 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 738 struct cppc_cpudata *cpu_data; 739 u64 delivered_perf; 740 int ret; 741 742 if (!policy) 743 return -ENODEV; 744 745 cpu_data = policy->driver_data; 746 747 cpufreq_cpu_put(policy); 748 749 ret = cppc_get_perf_ctrs(cpu, &fb_ctrs_t0); 750 if (ret) 751 return 0; 752 753 udelay(2); /* 2usec delay between sampling */ 754 755 ret = cppc_get_perf_ctrs(cpu, &fb_ctrs_t1); 756 if (ret) 757 return 0; 758 759 delivered_perf = cppc_perf_from_fbctrs(cpu_data, &fb_ctrs_t0, 760 &fb_ctrs_t1); 761 762 return cppc_perf_to_khz(&cpu_data->perf_caps, delivered_perf); 763 } 764 765 static int cppc_cpufreq_set_boost(struct cpufreq_policy *policy, int state) 766 { 767 struct cppc_cpudata *cpu_data = policy->driver_data; 768 struct cppc_perf_caps *caps = &cpu_data->perf_caps; 769 int ret; 770 771 if (!boost_supported) { 772 pr_err("BOOST not supported by CPU or firmware\n"); 773 return -EINVAL; 774 } 775 776 if (state) 777 policy->max = cppc_perf_to_khz(caps, caps->highest_perf); 778 else 779 policy->max = cppc_perf_to_khz(caps, caps->nominal_perf); 780 policy->cpuinfo.max_freq = policy->max; 781 782 ret = freq_qos_update_request(policy->max_freq_req, policy->max); 783 if (ret < 0) 784 return ret; 785 786 return 0; 787 } 788 789 static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf) 790 { 791 struct cppc_cpudata *cpu_data = policy->driver_data; 792 793 return cpufreq_show_cpus(cpu_data->shared_cpu_map, buf); 794 } 795 cpufreq_freq_attr_ro(freqdomain_cpus); 796 797 static struct freq_attr *cppc_cpufreq_attr[] = { 798 &freqdomain_cpus, 799 NULL, 800 }; 801 802 static struct cpufreq_driver cppc_cpufreq_driver = { 803 .flags = CPUFREQ_CONST_LOOPS, 804 .verify = cppc_verify_policy, 805 .target = cppc_cpufreq_set_target, 806 .get = cppc_cpufreq_get_rate, 807 .fast_switch = cppc_cpufreq_fast_switch, 808 .init = cppc_cpufreq_cpu_init, 809 .exit = cppc_cpufreq_cpu_exit, 810 .set_boost = cppc_cpufreq_set_boost, 811 .attr = cppc_cpufreq_attr, 812 .name = "cppc_cpufreq", 813 }; 814 815 /* 816 * HISI platform does not support delivered performance counter and 817 * reference performance counter. It can calculate the performance using the 818 * platform specific mechanism. We reuse the desired performance register to 819 * store the real performance calculated by the platform. 820 */ 821 static unsigned int hisi_cppc_cpufreq_get_rate(unsigned int cpu) 822 { 823 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 824 struct cppc_cpudata *cpu_data; 825 u64 desired_perf; 826 int ret; 827 828 if (!policy) 829 return -ENODEV; 830 831 cpu_data = policy->driver_data; 832 833 cpufreq_cpu_put(policy); 834 835 ret = cppc_get_desired_perf(cpu, &desired_perf); 836 if (ret < 0) 837 return -EIO; 838 839 return cppc_perf_to_khz(&cpu_data->perf_caps, desired_perf); 840 } 841 842 static void cppc_check_hisi_workaround(void) 843 { 844 struct acpi_table_header *tbl; 845 acpi_status status = AE_OK; 846 int i; 847 848 status = acpi_get_table(ACPI_SIG_PCCT, 0, &tbl); 849 if (ACPI_FAILURE(status) || !tbl) 850 return; 851 852 for (i = 0; i < ARRAY_SIZE(wa_info); i++) { 853 if (!memcmp(wa_info[i].oem_id, tbl->oem_id, ACPI_OEM_ID_SIZE) && 854 !memcmp(wa_info[i].oem_table_id, tbl->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) && 855 wa_info[i].oem_revision == tbl->oem_revision) { 856 /* Overwrite the get() callback */ 857 cppc_cpufreq_driver.get = hisi_cppc_cpufreq_get_rate; 858 fie_disabled = FIE_DISABLED; 859 break; 860 } 861 } 862 863 acpi_put_table(tbl); 864 } 865 866 static int __init cppc_cpufreq_init(void) 867 { 868 int ret; 869 870 if (!acpi_cpc_valid()) 871 return -ENODEV; 872 873 cppc_check_hisi_workaround(); 874 cppc_freq_invariance_init(); 875 populate_efficiency_class(); 876 877 ret = cpufreq_register_driver(&cppc_cpufreq_driver); 878 if (ret) 879 cppc_freq_invariance_exit(); 880 881 return ret; 882 } 883 884 static inline void free_cpu_data(void) 885 { 886 struct cppc_cpudata *iter, *tmp; 887 888 list_for_each_entry_safe(iter, tmp, &cpu_data_list, node) { 889 free_cpumask_var(iter->shared_cpu_map); 890 list_del(&iter->node); 891 kfree(iter); 892 } 893 894 } 895 896 static void __exit cppc_cpufreq_exit(void) 897 { 898 cpufreq_unregister_driver(&cppc_cpufreq_driver); 899 cppc_freq_invariance_exit(); 900 901 free_cpu_data(); 902 } 903 904 module_exit(cppc_cpufreq_exit); 905 MODULE_AUTHOR("Ashwin Chaugule"); 906 MODULE_DESCRIPTION("CPUFreq driver based on the ACPI CPPC v5.0+ spec"); 907 MODULE_LICENSE("GPL"); 908 909 late_initcall(cppc_cpufreq_init); 910 911 static const struct acpi_device_id cppc_acpi_ids[] __used = { 912 {ACPI_PROCESSOR_DEVICE_HID, }, 913 {} 914 }; 915 916 MODULE_DEVICE_TABLE(acpi, cppc_acpi_ids); 917