1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * CPPC (Collaborative Processor Performance Control) driver for 4 * interfacing with the CPUfreq layer and governors. See 5 * cppc_acpi.c for CPPC specific methods. 6 * 7 * (C) Copyright 2014, 2015 Linaro Ltd. 8 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org> 9 */ 10 11 #define pr_fmt(fmt) "CPPC Cpufreq:" fmt 12 13 #include <linux/arch_topology.h> 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/delay.h> 17 #include <linux/cpu.h> 18 #include <linux/cpufreq.h> 19 #include <linux/irq_work.h> 20 #include <linux/kthread.h> 21 #include <linux/time.h> 22 #include <linux/vmalloc.h> 23 #include <uapi/linux/sched/types.h> 24 25 #include <linux/unaligned.h> 26 27 #include <acpi/cppc_acpi.h> 28 29 static struct cpufreq_driver cppc_cpufreq_driver; 30 31 #ifdef CONFIG_ACPI_CPPC_CPUFREQ_FIE 32 static enum { 33 FIE_UNSET = -1, 34 FIE_ENABLED, 35 FIE_DISABLED 36 } fie_disabled = FIE_UNSET; 37 38 module_param(fie_disabled, int, 0444); 39 MODULE_PARM_DESC(fie_disabled, "Disable Frequency Invariance Engine (FIE)"); 40 41 /* Frequency invariance support */ 42 struct cppc_freq_invariance { 43 int cpu; 44 struct irq_work irq_work; 45 struct kthread_work work; 46 struct cppc_perf_fb_ctrs prev_perf_fb_ctrs; 47 struct cppc_cpudata *cpu_data; 48 }; 49 50 static DEFINE_PER_CPU(struct cppc_freq_invariance, cppc_freq_inv); 51 static struct kthread_worker *kworker_fie; 52 53 static int cppc_perf_from_fbctrs(struct cppc_perf_fb_ctrs *fb_ctrs_t0, 54 struct cppc_perf_fb_ctrs *fb_ctrs_t1); 55 56 /** 57 * cppc_scale_freq_workfn - CPPC arch_freq_scale updater for frequency invariance 58 * @work: The work item. 59 * 60 * The CPPC driver register itself with the topology core to provide its own 61 * implementation (cppc_scale_freq_tick()) of topology_scale_freq_tick() which 62 * gets called by the scheduler on every tick. 63 * 64 * Note that the arch specific counters have higher priority than CPPC counters, 65 * if available, though the CPPC driver doesn't need to have any special 66 * handling for that. 67 * 68 * On an invocation of cppc_scale_freq_tick(), we schedule an irq work (since we 69 * reach here from hard-irq context), which then schedules a normal work item 70 * and cppc_scale_freq_workfn() updates the per_cpu arch_freq_scale variable 71 * based on the counter updates since the last tick. 72 */ 73 static void cppc_scale_freq_workfn(struct kthread_work *work) 74 { 75 struct cppc_freq_invariance *cppc_fi; 76 struct cppc_perf_fb_ctrs fb_ctrs = {0}; 77 struct cppc_cpudata *cpu_data; 78 unsigned long local_freq_scale; 79 u64 perf; 80 81 cppc_fi = container_of(work, struct cppc_freq_invariance, work); 82 cpu_data = cppc_fi->cpu_data; 83 84 if (cppc_get_perf_ctrs(cppc_fi->cpu, &fb_ctrs)) { 85 pr_warn("%s: failed to read perf counters\n", __func__); 86 return; 87 } 88 89 perf = cppc_perf_from_fbctrs(&cppc_fi->prev_perf_fb_ctrs, &fb_ctrs); 90 if (!perf) 91 return; 92 93 cppc_fi->prev_perf_fb_ctrs = fb_ctrs; 94 95 perf <<= SCHED_CAPACITY_SHIFT; 96 local_freq_scale = div64_u64(perf, cpu_data->perf_caps.highest_perf); 97 98 /* This can happen due to counter's overflow */ 99 if (unlikely(local_freq_scale > 1024)) 100 local_freq_scale = 1024; 101 102 per_cpu(arch_freq_scale, cppc_fi->cpu) = local_freq_scale; 103 } 104 105 static void cppc_irq_work(struct irq_work *irq_work) 106 { 107 struct cppc_freq_invariance *cppc_fi; 108 109 cppc_fi = container_of(irq_work, struct cppc_freq_invariance, irq_work); 110 kthread_queue_work(kworker_fie, &cppc_fi->work); 111 } 112 113 static void cppc_scale_freq_tick(void) 114 { 115 struct cppc_freq_invariance *cppc_fi = &per_cpu(cppc_freq_inv, smp_processor_id()); 116 117 /* 118 * cppc_get_perf_ctrs() can potentially sleep, call that from the right 119 * context. 120 */ 121 irq_work_queue(&cppc_fi->irq_work); 122 } 123 124 static struct scale_freq_data cppc_sftd = { 125 .source = SCALE_FREQ_SOURCE_CPPC, 126 .set_freq_scale = cppc_scale_freq_tick, 127 }; 128 129 static void cppc_cpufreq_cpu_fie_init(struct cpufreq_policy *policy) 130 { 131 struct cppc_freq_invariance *cppc_fi; 132 int cpu, ret; 133 134 if (fie_disabled) 135 return; 136 137 for_each_cpu(cpu, policy->cpus) { 138 cppc_fi = &per_cpu(cppc_freq_inv, cpu); 139 cppc_fi->cpu = cpu; 140 cppc_fi->cpu_data = policy->driver_data; 141 kthread_init_work(&cppc_fi->work, cppc_scale_freq_workfn); 142 init_irq_work(&cppc_fi->irq_work, cppc_irq_work); 143 144 ret = cppc_get_perf_ctrs(cpu, &cppc_fi->prev_perf_fb_ctrs); 145 if (ret) { 146 pr_warn("%s: failed to read perf counters for cpu:%d: %d\n", 147 __func__, cpu, ret); 148 149 /* 150 * Don't abort if the CPU was offline while the driver 151 * was getting registered. 152 */ 153 if (cpu_online(cpu)) 154 return; 155 } 156 } 157 158 /* Register for freq-invariance */ 159 topology_set_scale_freq_source(&cppc_sftd, policy->cpus); 160 } 161 162 /* 163 * We free all the resources on policy's removal and not on CPU removal as the 164 * irq-work are per-cpu and the hotplug core takes care of flushing the pending 165 * irq-works (hint: smpcfd_dying_cpu()) on CPU hotplug. Even if the kthread-work 166 * fires on another CPU after the concerned CPU is removed, it won't harm. 167 * 168 * We just need to make sure to remove them all on policy->exit(). 169 */ 170 static void cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy *policy) 171 { 172 struct cppc_freq_invariance *cppc_fi; 173 int cpu; 174 175 if (fie_disabled) 176 return; 177 178 /* policy->cpus will be empty here, use related_cpus instead */ 179 topology_clear_scale_freq_source(SCALE_FREQ_SOURCE_CPPC, policy->related_cpus); 180 181 for_each_cpu(cpu, policy->related_cpus) { 182 cppc_fi = &per_cpu(cppc_freq_inv, cpu); 183 irq_work_sync(&cppc_fi->irq_work); 184 kthread_cancel_work_sync(&cppc_fi->work); 185 } 186 } 187 188 static void __init cppc_freq_invariance_init(void) 189 { 190 struct sched_attr attr = { 191 .size = sizeof(struct sched_attr), 192 .sched_policy = SCHED_DEADLINE, 193 .sched_nice = 0, 194 .sched_priority = 0, 195 /* 196 * Fake (unused) bandwidth; workaround to "fix" 197 * priority inheritance. 198 */ 199 .sched_runtime = NSEC_PER_MSEC, 200 .sched_deadline = 10 * NSEC_PER_MSEC, 201 .sched_period = 10 * NSEC_PER_MSEC, 202 }; 203 int ret; 204 205 if (fie_disabled != FIE_ENABLED && fie_disabled != FIE_DISABLED) { 206 fie_disabled = FIE_ENABLED; 207 if (cppc_perf_ctrs_in_pcc()) { 208 pr_info("FIE not enabled on systems with registers in PCC\n"); 209 fie_disabled = FIE_DISABLED; 210 } 211 } 212 213 if (fie_disabled) 214 return; 215 216 kworker_fie = kthread_run_worker(0, "cppc_fie"); 217 if (IS_ERR(kworker_fie)) { 218 pr_warn("%s: failed to create kworker_fie: %ld\n", __func__, 219 PTR_ERR(kworker_fie)); 220 fie_disabled = FIE_DISABLED; 221 return; 222 } 223 224 ret = sched_setattr_nocheck(kworker_fie->task, &attr); 225 if (ret) { 226 pr_warn("%s: failed to set SCHED_DEADLINE: %d\n", __func__, 227 ret); 228 kthread_destroy_worker(kworker_fie); 229 fie_disabled = FIE_DISABLED; 230 } 231 } 232 233 static void cppc_freq_invariance_exit(void) 234 { 235 if (fie_disabled) 236 return; 237 238 kthread_destroy_worker(kworker_fie); 239 } 240 241 #else 242 static inline void cppc_cpufreq_cpu_fie_init(struct cpufreq_policy *policy) 243 { 244 } 245 246 static inline void cppc_cpufreq_cpu_fie_exit(struct cpufreq_policy *policy) 247 { 248 } 249 250 static inline void cppc_freq_invariance_init(void) 251 { 252 } 253 254 static inline void cppc_freq_invariance_exit(void) 255 { 256 } 257 #endif /* CONFIG_ACPI_CPPC_CPUFREQ_FIE */ 258 259 static int cppc_cpufreq_set_target(struct cpufreq_policy *policy, 260 unsigned int target_freq, 261 unsigned int relation) 262 { 263 struct cppc_cpudata *cpu_data = policy->driver_data; 264 unsigned int cpu = policy->cpu; 265 struct cpufreq_freqs freqs; 266 int ret = 0; 267 268 cpu_data->perf_ctrls.desired_perf = 269 cppc_khz_to_perf(&cpu_data->perf_caps, target_freq); 270 freqs.old = policy->cur; 271 freqs.new = target_freq; 272 273 cpufreq_freq_transition_begin(policy, &freqs); 274 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls); 275 cpufreq_freq_transition_end(policy, &freqs, ret != 0); 276 277 if (ret) 278 pr_debug("Failed to set target on CPU:%d. ret:%d\n", 279 cpu, ret); 280 281 return ret; 282 } 283 284 static unsigned int cppc_cpufreq_fast_switch(struct cpufreq_policy *policy, 285 unsigned int target_freq) 286 { 287 struct cppc_cpudata *cpu_data = policy->driver_data; 288 unsigned int cpu = policy->cpu; 289 u32 desired_perf; 290 int ret; 291 292 desired_perf = cppc_khz_to_perf(&cpu_data->perf_caps, target_freq); 293 cpu_data->perf_ctrls.desired_perf = desired_perf; 294 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls); 295 296 if (ret) { 297 pr_debug("Failed to set target on CPU:%d. ret:%d\n", 298 cpu, ret); 299 return 0; 300 } 301 302 return target_freq; 303 } 304 305 static int cppc_verify_policy(struct cpufreq_policy_data *policy) 306 { 307 cpufreq_verify_within_cpu_limits(policy); 308 return 0; 309 } 310 311 /* 312 * The PCC subspace describes the rate at which platform can accept commands 313 * on the shared PCC channel (including READs which do not count towards freq 314 * transition requests), so ideally we need to use the PCC values as a fallback 315 * if we don't have a platform specific transition_delay_us 316 */ 317 #ifdef CONFIG_ARM64 318 #include <asm/cputype.h> 319 320 static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu) 321 { 322 unsigned long implementor = read_cpuid_implementor(); 323 unsigned long part_num = read_cpuid_part_number(); 324 325 switch (implementor) { 326 case ARM_CPU_IMP_QCOM: 327 switch (part_num) { 328 case QCOM_CPU_PART_FALKOR_V1: 329 case QCOM_CPU_PART_FALKOR: 330 return 10000; 331 } 332 } 333 return cppc_get_transition_latency(cpu) / NSEC_PER_USEC; 334 } 335 #else 336 static unsigned int cppc_cpufreq_get_transition_delay_us(unsigned int cpu) 337 { 338 return cppc_get_transition_latency(cpu) / NSEC_PER_USEC; 339 } 340 #endif 341 342 #if defined(CONFIG_ARM64) && defined(CONFIG_ENERGY_MODEL) 343 344 static DEFINE_PER_CPU(unsigned int, efficiency_class); 345 346 /* Create an artificial performance state every CPPC_EM_CAP_STEP capacity unit. */ 347 #define CPPC_EM_CAP_STEP (20) 348 /* Increase the cost value by CPPC_EM_COST_STEP every performance state. */ 349 #define CPPC_EM_COST_STEP (1) 350 /* Add a cost gap correspnding to the energy of 4 CPUs. */ 351 #define CPPC_EM_COST_GAP (4 * SCHED_CAPACITY_SCALE * CPPC_EM_COST_STEP \ 352 / CPPC_EM_CAP_STEP) 353 354 static unsigned int get_perf_level_count(struct cpufreq_policy *policy) 355 { 356 struct cppc_perf_caps *perf_caps; 357 unsigned int min_cap, max_cap; 358 struct cppc_cpudata *cpu_data; 359 int cpu = policy->cpu; 360 361 cpu_data = policy->driver_data; 362 perf_caps = &cpu_data->perf_caps; 363 max_cap = arch_scale_cpu_capacity(cpu); 364 min_cap = div_u64((u64)max_cap * perf_caps->lowest_perf, 365 perf_caps->highest_perf); 366 if ((min_cap == 0) || (max_cap < min_cap)) 367 return 0; 368 return 1 + max_cap / CPPC_EM_CAP_STEP - min_cap / CPPC_EM_CAP_STEP; 369 } 370 371 /* 372 * The cost is defined as: 373 * cost = power * max_frequency / frequency 374 */ 375 static inline unsigned long compute_cost(int cpu, int step) 376 { 377 return CPPC_EM_COST_GAP * per_cpu(efficiency_class, cpu) + 378 step * CPPC_EM_COST_STEP; 379 } 380 381 static int cppc_get_cpu_power(struct device *cpu_dev, 382 unsigned long *power, unsigned long *KHz) 383 { 384 unsigned long perf_step, perf_prev, perf, perf_check; 385 unsigned int min_step, max_step, step, step_check; 386 unsigned long prev_freq = *KHz; 387 unsigned int min_cap, max_cap; 388 struct cpufreq_policy *policy; 389 390 struct cppc_perf_caps *perf_caps; 391 struct cppc_cpudata *cpu_data; 392 393 policy = cpufreq_cpu_get_raw(cpu_dev->id); 394 if (!policy) 395 return -EINVAL; 396 397 cpu_data = policy->driver_data; 398 perf_caps = &cpu_data->perf_caps; 399 max_cap = arch_scale_cpu_capacity(cpu_dev->id); 400 min_cap = div_u64((u64)max_cap * perf_caps->lowest_perf, 401 perf_caps->highest_perf); 402 perf_step = div_u64((u64)CPPC_EM_CAP_STEP * perf_caps->highest_perf, 403 max_cap); 404 min_step = min_cap / CPPC_EM_CAP_STEP; 405 max_step = max_cap / CPPC_EM_CAP_STEP; 406 407 perf_prev = cppc_khz_to_perf(perf_caps, *KHz); 408 step = perf_prev / perf_step; 409 410 if (step > max_step) 411 return -EINVAL; 412 413 if (min_step == max_step) { 414 step = max_step; 415 perf = perf_caps->highest_perf; 416 } else if (step < min_step) { 417 step = min_step; 418 perf = perf_caps->lowest_perf; 419 } else { 420 step++; 421 if (step == max_step) 422 perf = perf_caps->highest_perf; 423 else 424 perf = step * perf_step; 425 } 426 427 *KHz = cppc_perf_to_khz(perf_caps, perf); 428 perf_check = cppc_khz_to_perf(perf_caps, *KHz); 429 step_check = perf_check / perf_step; 430 431 /* 432 * To avoid bad integer approximation, check that new frequency value 433 * increased and that the new frequency will be converted to the 434 * desired step value. 435 */ 436 while ((*KHz == prev_freq) || (step_check != step)) { 437 perf++; 438 *KHz = cppc_perf_to_khz(perf_caps, perf); 439 perf_check = cppc_khz_to_perf(perf_caps, *KHz); 440 step_check = perf_check / perf_step; 441 } 442 443 /* 444 * With an artificial EM, only the cost value is used. Still the power 445 * is populated such as 0 < power < EM_MAX_POWER. This allows to add 446 * more sense to the artificial performance states. 447 */ 448 *power = compute_cost(cpu_dev->id, step); 449 450 return 0; 451 } 452 453 static int cppc_get_cpu_cost(struct device *cpu_dev, unsigned long KHz, 454 unsigned long *cost) 455 { 456 unsigned long perf_step, perf_prev; 457 struct cppc_perf_caps *perf_caps; 458 struct cpufreq_policy *policy; 459 struct cppc_cpudata *cpu_data; 460 unsigned int max_cap; 461 int step; 462 463 policy = cpufreq_cpu_get_raw(cpu_dev->id); 464 if (!policy) 465 return -EINVAL; 466 467 cpu_data = policy->driver_data; 468 perf_caps = &cpu_data->perf_caps; 469 max_cap = arch_scale_cpu_capacity(cpu_dev->id); 470 471 perf_prev = cppc_khz_to_perf(perf_caps, KHz); 472 perf_step = CPPC_EM_CAP_STEP * perf_caps->highest_perf / max_cap; 473 step = perf_prev / perf_step; 474 475 *cost = compute_cost(cpu_dev->id, step); 476 477 return 0; 478 } 479 480 static void cppc_cpufreq_register_em(struct cpufreq_policy *policy) 481 { 482 struct cppc_cpudata *cpu_data; 483 struct em_data_callback em_cb = 484 EM_ADV_DATA_CB(cppc_get_cpu_power, cppc_get_cpu_cost); 485 486 cpu_data = policy->driver_data; 487 em_dev_register_perf_domain(get_cpu_device(policy->cpu), 488 get_perf_level_count(policy), &em_cb, 489 cpu_data->shared_cpu_map, 0); 490 } 491 492 static void populate_efficiency_class(void) 493 { 494 struct acpi_madt_generic_interrupt *gicc; 495 DECLARE_BITMAP(used_classes, 256) = {}; 496 int class, cpu, index; 497 498 for_each_possible_cpu(cpu) { 499 gicc = acpi_cpu_get_madt_gicc(cpu); 500 class = gicc->efficiency_class; 501 bitmap_set(used_classes, class, 1); 502 } 503 504 if (bitmap_weight(used_classes, 256) <= 1) { 505 pr_debug("Efficiency classes are all equal (=%d). " 506 "No EM registered", class); 507 return; 508 } 509 510 /* 511 * Squeeze efficiency class values on [0:#efficiency_class-1]. 512 * Values are per spec in [0:255]. 513 */ 514 index = 0; 515 for_each_set_bit(class, used_classes, 256) { 516 for_each_possible_cpu(cpu) { 517 gicc = acpi_cpu_get_madt_gicc(cpu); 518 if (gicc->efficiency_class == class) 519 per_cpu(efficiency_class, cpu) = index; 520 } 521 index++; 522 } 523 cppc_cpufreq_driver.register_em = cppc_cpufreq_register_em; 524 } 525 526 #else 527 static void populate_efficiency_class(void) 528 { 529 } 530 #endif 531 532 static struct cppc_cpudata *cppc_cpufreq_get_cpu_data(unsigned int cpu) 533 { 534 struct cppc_cpudata *cpu_data; 535 int ret; 536 537 cpu_data = kzalloc(sizeof(struct cppc_cpudata), GFP_KERNEL); 538 if (!cpu_data) 539 goto out; 540 541 if (!zalloc_cpumask_var(&cpu_data->shared_cpu_map, GFP_KERNEL)) 542 goto free_cpu; 543 544 ret = acpi_get_psd_map(cpu, cpu_data); 545 if (ret) { 546 pr_debug("Err parsing CPU%d PSD data: ret:%d\n", cpu, ret); 547 goto free_mask; 548 } 549 550 ret = cppc_get_perf_caps(cpu, &cpu_data->perf_caps); 551 if (ret) { 552 pr_debug("Err reading CPU%d perf caps: ret:%d\n", cpu, ret); 553 goto free_mask; 554 } 555 556 return cpu_data; 557 558 free_mask: 559 free_cpumask_var(cpu_data->shared_cpu_map); 560 free_cpu: 561 kfree(cpu_data); 562 out: 563 return NULL; 564 } 565 566 static void cppc_cpufreq_put_cpu_data(struct cpufreq_policy *policy) 567 { 568 struct cppc_cpudata *cpu_data = policy->driver_data; 569 570 free_cpumask_var(cpu_data->shared_cpu_map); 571 kfree(cpu_data); 572 policy->driver_data = NULL; 573 } 574 575 static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy) 576 { 577 unsigned int cpu = policy->cpu; 578 struct cppc_cpudata *cpu_data; 579 struct cppc_perf_caps *caps; 580 int ret; 581 582 cpu_data = cppc_cpufreq_get_cpu_data(cpu); 583 if (!cpu_data) { 584 pr_err("Error in acquiring _CPC/_PSD data for CPU%d.\n", cpu); 585 return -ENODEV; 586 } 587 caps = &cpu_data->perf_caps; 588 policy->driver_data = cpu_data; 589 590 /* 591 * Set min to lowest nonlinear perf to avoid any efficiency penalty (see 592 * Section 8.4.7.1.1.5 of ACPI 6.1 spec) 593 */ 594 policy->min = cppc_perf_to_khz(caps, caps->lowest_nonlinear_perf); 595 policy->max = cppc_perf_to_khz(caps, policy->boost_enabled ? 596 caps->highest_perf : caps->nominal_perf); 597 598 /* 599 * Set cpuinfo.min_freq to Lowest to make the full range of performance 600 * available if userspace wants to use any perf between lowest & lowest 601 * nonlinear perf 602 */ 603 policy->cpuinfo.min_freq = cppc_perf_to_khz(caps, caps->lowest_perf); 604 policy->cpuinfo.max_freq = policy->max; 605 606 policy->transition_delay_us = cppc_cpufreq_get_transition_delay_us(cpu); 607 policy->shared_type = cpu_data->shared_type; 608 609 switch (policy->shared_type) { 610 case CPUFREQ_SHARED_TYPE_HW: 611 case CPUFREQ_SHARED_TYPE_NONE: 612 /* Nothing to be done - we'll have a policy for each CPU */ 613 break; 614 case CPUFREQ_SHARED_TYPE_ANY: 615 /* 616 * All CPUs in the domain will share a policy and all cpufreq 617 * operations will use a single cppc_cpudata structure stored 618 * in policy->driver_data. 619 */ 620 cpumask_copy(policy->cpus, cpu_data->shared_cpu_map); 621 break; 622 default: 623 pr_debug("Unsupported CPU co-ord type: %d\n", 624 policy->shared_type); 625 ret = -EFAULT; 626 goto out; 627 } 628 629 policy->fast_switch_possible = cppc_allow_fast_switch(); 630 policy->dvfs_possible_from_any_cpu = true; 631 632 /* 633 * If 'highest_perf' is greater than 'nominal_perf', we assume CPU Boost 634 * is supported. 635 */ 636 if (caps->highest_perf > caps->nominal_perf) 637 policy->boost_supported = true; 638 639 /* Set policy->cur to max now. The governors will adjust later. */ 640 policy->cur = cppc_perf_to_khz(caps, caps->highest_perf); 641 cpu_data->perf_ctrls.desired_perf = caps->highest_perf; 642 643 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls); 644 if (ret) { 645 pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n", 646 caps->highest_perf, cpu, ret); 647 goto out; 648 } 649 650 cppc_cpufreq_cpu_fie_init(policy); 651 return 0; 652 653 out: 654 cppc_cpufreq_put_cpu_data(policy); 655 return ret; 656 } 657 658 static void cppc_cpufreq_cpu_exit(struct cpufreq_policy *policy) 659 { 660 struct cppc_cpudata *cpu_data = policy->driver_data; 661 struct cppc_perf_caps *caps = &cpu_data->perf_caps; 662 unsigned int cpu = policy->cpu; 663 int ret; 664 665 cppc_cpufreq_cpu_fie_exit(policy); 666 667 cpu_data->perf_ctrls.desired_perf = caps->lowest_perf; 668 669 ret = cppc_set_perf(cpu, &cpu_data->perf_ctrls); 670 if (ret) 671 pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n", 672 caps->lowest_perf, cpu, ret); 673 674 cppc_cpufreq_put_cpu_data(policy); 675 } 676 677 static inline u64 get_delta(u64 t1, u64 t0) 678 { 679 if (t1 > t0 || t0 > ~(u32)0) 680 return t1 - t0; 681 682 return (u32)t1 - (u32)t0; 683 } 684 685 static int cppc_perf_from_fbctrs(struct cppc_perf_fb_ctrs *fb_ctrs_t0, 686 struct cppc_perf_fb_ctrs *fb_ctrs_t1) 687 { 688 u64 delta_reference, delta_delivered; 689 u64 reference_perf; 690 691 reference_perf = fb_ctrs_t0->reference_perf; 692 693 delta_reference = get_delta(fb_ctrs_t1->reference, 694 fb_ctrs_t0->reference); 695 delta_delivered = get_delta(fb_ctrs_t1->delivered, 696 fb_ctrs_t0->delivered); 697 698 /* 699 * Avoid divide-by zero and unchanged feedback counters. 700 * Leave it for callers to handle. 701 */ 702 if (!delta_reference || !delta_delivered) 703 return 0; 704 705 return (reference_perf * delta_delivered) / delta_reference; 706 } 707 708 static int cppc_get_perf_ctrs_sample(int cpu, 709 struct cppc_perf_fb_ctrs *fb_ctrs_t0, 710 struct cppc_perf_fb_ctrs *fb_ctrs_t1) 711 { 712 int ret; 713 714 ret = cppc_get_perf_ctrs(cpu, fb_ctrs_t0); 715 if (ret) 716 return ret; 717 718 udelay(2); /* 2usec delay between sampling */ 719 720 return cppc_get_perf_ctrs(cpu, fb_ctrs_t1); 721 } 722 723 static unsigned int cppc_cpufreq_get_rate(unsigned int cpu) 724 { 725 struct cpufreq_policy *policy __free(put_cpufreq_policy) = cpufreq_cpu_get(cpu); 726 struct cppc_perf_fb_ctrs fb_ctrs_t0 = {0}, fb_ctrs_t1 = {0}; 727 struct cppc_cpudata *cpu_data; 728 u64 delivered_perf; 729 int ret; 730 731 if (!policy) 732 return 0; 733 734 cpu_data = policy->driver_data; 735 736 ret = cppc_get_perf_ctrs_sample(cpu, &fb_ctrs_t0, &fb_ctrs_t1); 737 if (ret) { 738 if (ret == -EFAULT) 739 /* Any of the associated CPPC regs is 0. */ 740 goto out_invalid_counters; 741 else 742 return 0; 743 } 744 745 delivered_perf = cppc_perf_from_fbctrs(&fb_ctrs_t0, &fb_ctrs_t1); 746 if (!delivered_perf) 747 goto out_invalid_counters; 748 749 return cppc_perf_to_khz(&cpu_data->perf_caps, delivered_perf); 750 751 out_invalid_counters: 752 /* 753 * Feedback counters could be unchanged or 0 when a cpu enters a 754 * low-power idle state, e.g. clock-gated or power-gated. 755 * Use desired perf for reflecting frequency. Get the latest register 756 * value first as some platforms may update the actual delivered perf 757 * there; if failed, resort to the cached desired perf. 758 */ 759 if (cppc_get_desired_perf(cpu, &delivered_perf)) 760 delivered_perf = cpu_data->perf_ctrls.desired_perf; 761 762 return cppc_perf_to_khz(&cpu_data->perf_caps, delivered_perf); 763 } 764 765 static int cppc_cpufreq_set_boost(struct cpufreq_policy *policy, int state) 766 { 767 struct cppc_cpudata *cpu_data = policy->driver_data; 768 struct cppc_perf_caps *caps = &cpu_data->perf_caps; 769 int ret; 770 771 if (state) 772 policy->max = cppc_perf_to_khz(caps, caps->highest_perf); 773 else 774 policy->max = cppc_perf_to_khz(caps, caps->nominal_perf); 775 policy->cpuinfo.max_freq = policy->max; 776 777 ret = freq_qos_update_request(policy->max_freq_req, policy->max); 778 if (ret < 0) 779 return ret; 780 781 return 0; 782 } 783 784 static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf) 785 { 786 struct cppc_cpudata *cpu_data = policy->driver_data; 787 788 return cpufreq_show_cpus(cpu_data->shared_cpu_map, buf); 789 } 790 791 static ssize_t show_auto_select(struct cpufreq_policy *policy, char *buf) 792 { 793 bool val; 794 int ret; 795 796 ret = cppc_get_auto_sel(policy->cpu, &val); 797 798 /* show "<unsupported>" when this register is not supported by cpc */ 799 if (ret == -EOPNOTSUPP) 800 return sysfs_emit(buf, "<unsupported>\n"); 801 802 if (ret) 803 return ret; 804 805 return sysfs_emit(buf, "%d\n", val); 806 } 807 808 static ssize_t store_auto_select(struct cpufreq_policy *policy, 809 const char *buf, size_t count) 810 { 811 bool val; 812 int ret; 813 814 ret = kstrtobool(buf, &val); 815 if (ret) 816 return ret; 817 818 ret = cppc_set_auto_sel(policy->cpu, val); 819 if (ret) 820 return ret; 821 822 return count; 823 } 824 825 static ssize_t show_auto_act_window(struct cpufreq_policy *policy, char *buf) 826 { 827 u64 val; 828 int ret; 829 830 ret = cppc_get_auto_act_window(policy->cpu, &val); 831 832 /* show "<unsupported>" when this register is not supported by cpc */ 833 if (ret == -EOPNOTSUPP) 834 return sysfs_emit(buf, "<unsupported>\n"); 835 836 if (ret) 837 return ret; 838 839 return sysfs_emit(buf, "%llu\n", val); 840 } 841 842 static ssize_t store_auto_act_window(struct cpufreq_policy *policy, 843 const char *buf, size_t count) 844 { 845 u64 usec; 846 int ret; 847 848 ret = kstrtou64(buf, 0, &usec); 849 if (ret) 850 return ret; 851 852 ret = cppc_set_auto_act_window(policy->cpu, usec); 853 if (ret) 854 return ret; 855 856 return count; 857 } 858 859 static ssize_t show_energy_performance_preference_val(struct cpufreq_policy *policy, char *buf) 860 { 861 u64 val; 862 int ret; 863 864 ret = cppc_get_epp_perf(policy->cpu, &val); 865 866 /* show "<unsupported>" when this register is not supported by cpc */ 867 if (ret == -EOPNOTSUPP) 868 return sysfs_emit(buf, "<unsupported>\n"); 869 870 if (ret) 871 return ret; 872 873 return sysfs_emit(buf, "%llu\n", val); 874 } 875 876 static ssize_t store_energy_performance_preference_val(struct cpufreq_policy *policy, 877 const char *buf, size_t count) 878 { 879 u64 val; 880 int ret; 881 882 ret = kstrtou64(buf, 0, &val); 883 if (ret) 884 return ret; 885 886 ret = cppc_set_epp(policy->cpu, val); 887 if (ret) 888 return ret; 889 890 return count; 891 } 892 893 cpufreq_freq_attr_ro(freqdomain_cpus); 894 cpufreq_freq_attr_rw(auto_select); 895 cpufreq_freq_attr_rw(auto_act_window); 896 cpufreq_freq_attr_rw(energy_performance_preference_val); 897 898 static struct freq_attr *cppc_cpufreq_attr[] = { 899 &freqdomain_cpus, 900 &auto_select, 901 &auto_act_window, 902 &energy_performance_preference_val, 903 NULL, 904 }; 905 906 static struct cpufreq_driver cppc_cpufreq_driver = { 907 .flags = CPUFREQ_CONST_LOOPS | CPUFREQ_NEED_UPDATE_LIMITS, 908 .verify = cppc_verify_policy, 909 .target = cppc_cpufreq_set_target, 910 .get = cppc_cpufreq_get_rate, 911 .fast_switch = cppc_cpufreq_fast_switch, 912 .init = cppc_cpufreq_cpu_init, 913 .exit = cppc_cpufreq_cpu_exit, 914 .set_boost = cppc_cpufreq_set_boost, 915 .attr = cppc_cpufreq_attr, 916 .name = "cppc_cpufreq", 917 }; 918 919 static int __init cppc_cpufreq_init(void) 920 { 921 int ret; 922 923 if (!acpi_cpc_valid()) 924 return -ENODEV; 925 926 cppc_freq_invariance_init(); 927 populate_efficiency_class(); 928 929 ret = cpufreq_register_driver(&cppc_cpufreq_driver); 930 if (ret) 931 cppc_freq_invariance_exit(); 932 933 return ret; 934 } 935 936 static void __exit cppc_cpufreq_exit(void) 937 { 938 cpufreq_unregister_driver(&cppc_cpufreq_driver); 939 cppc_freq_invariance_exit(); 940 } 941 942 module_exit(cppc_cpufreq_exit); 943 MODULE_AUTHOR("Ashwin Chaugule"); 944 MODULE_DESCRIPTION("CPUFreq driver based on the ACPI CPPC v5.0+ spec"); 945 MODULE_LICENSE("GPL"); 946 947 late_initcall(cppc_cpufreq_init); 948 949 static const struct acpi_device_id cppc_acpi_ids[] __used = { 950 {ACPI_PROCESSOR_DEVICE_HID, }, 951 {} 952 }; 953 954 MODULE_DEVICE_TABLE(acpi, cppc_acpi_ids); 955