1 /* 2 * CPU frequency scaling for Broadcom SoCs with AVS firmware that 3 * supports DVS or DVFS 4 * 5 * Copyright (c) 2016 Broadcom 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License as 9 * published by the Free Software Foundation version 2. 10 * 11 * This program is distributed "as is" WITHOUT ANY WARRANTY of any 12 * kind, whether express or implied; without even the implied warranty 13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 */ 16 17 /* 18 * "AVS" is the name of a firmware developed at Broadcom. It derives 19 * its name from the technique called "Adaptive Voltage Scaling". 20 * Adaptive voltage scaling was the original purpose of this firmware. 21 * The AVS firmware still supports "AVS mode", where all it does is 22 * adaptive voltage scaling. However, on some newer Broadcom SoCs, the 23 * AVS Firmware, despite its unchanged name, also supports DFS mode and 24 * DVFS mode. 25 * 26 * In the context of this document and the related driver, "AVS" by 27 * itself always means the Broadcom firmware and never refers to the 28 * technique called "Adaptive Voltage Scaling". 29 * 30 * The Broadcom STB AVS CPUfreq driver provides voltage and frequency 31 * scaling on Broadcom SoCs using AVS firmware with support for DFS and 32 * DVFS. The AVS firmware is running on its own co-processor. The 33 * driver supports both uniprocessor (UP) and symmetric multiprocessor 34 * (SMP) systems which share clock and voltage across all CPUs. 35 * 36 * Actual voltage and frequency scaling is done solely by the AVS 37 * firmware. This driver does not change frequency or voltage itself. 38 * It provides a standard CPUfreq interface to the rest of the kernel 39 * and to userland. It interfaces with the AVS firmware to effect the 40 * requested changes and to report back the current system status in a 41 * way that is expected by existing tools. 42 */ 43 44 #include <linux/cpufreq.h> 45 #include <linux/delay.h> 46 #include <linux/interrupt.h> 47 #include <linux/io.h> 48 #include <linux/module.h> 49 #include <linux/of_address.h> 50 #include <linux/platform_device.h> 51 #include <linux/semaphore.h> 52 53 /* Max number of arguments AVS calls take */ 54 #define AVS_MAX_CMD_ARGS 4 55 /* 56 * This macro is used to generate AVS parameter register offsets. For 57 * x >= AVS_MAX_CMD_ARGS, it returns 0 to protect against accidental memory 58 * access outside of the parameter range. (Offset 0 is the first parameter.) 59 */ 60 #define AVS_PARAM_MULT(x) ((x) < AVS_MAX_CMD_ARGS ? (x) : 0) 61 62 /* AVS Mailbox Register offsets */ 63 #define AVS_MBOX_COMMAND 0x00 64 #define AVS_MBOX_STATUS 0x04 65 #define AVS_MBOX_VOLTAGE0 0x08 66 #define AVS_MBOX_TEMP0 0x0c 67 #define AVS_MBOX_PV0 0x10 68 #define AVS_MBOX_MV0 0x14 69 #define AVS_MBOX_PARAM(x) (0x18 + AVS_PARAM_MULT(x) * sizeof(u32)) 70 #define AVS_MBOX_REVISION 0x28 71 #define AVS_MBOX_PSTATE 0x2c 72 #define AVS_MBOX_HEARTBEAT 0x30 73 #define AVS_MBOX_MAGIC 0x34 74 #define AVS_MBOX_SIGMA_HVT 0x38 75 #define AVS_MBOX_SIGMA_SVT 0x3c 76 #define AVS_MBOX_VOLTAGE1 0x40 77 #define AVS_MBOX_TEMP1 0x44 78 #define AVS_MBOX_PV1 0x48 79 #define AVS_MBOX_MV1 0x4c 80 #define AVS_MBOX_FREQUENCY 0x50 81 82 /* AVS Commands */ 83 #define AVS_CMD_AVAILABLE 0x00 84 #define AVS_CMD_DISABLE 0x10 85 #define AVS_CMD_ENABLE 0x11 86 #define AVS_CMD_S2_ENTER 0x12 87 #define AVS_CMD_S2_EXIT 0x13 88 #define AVS_CMD_BBM_ENTER 0x14 89 #define AVS_CMD_BBM_EXIT 0x15 90 #define AVS_CMD_S3_ENTER 0x16 91 #define AVS_CMD_S3_EXIT 0x17 92 #define AVS_CMD_BALANCE 0x18 93 /* PMAP and P-STATE commands */ 94 #define AVS_CMD_GET_PMAP 0x30 95 #define AVS_CMD_SET_PMAP 0x31 96 #define AVS_CMD_GET_PSTATE 0x40 97 #define AVS_CMD_SET_PSTATE 0x41 98 99 /* Different modes AVS supports (for GET_PMAP/SET_PMAP) */ 100 #define AVS_MODE_AVS 0x0 101 #define AVS_MODE_DFS 0x1 102 #define AVS_MODE_DVS 0x2 103 #define AVS_MODE_DVFS 0x3 104 105 /* 106 * PMAP parameter p1 107 * unused:31-24, mdiv_p0:23-16, unused:15-14, pdiv:13-10 , ndiv_int:9-0 108 */ 109 #define NDIV_INT_SHIFT 0 110 #define NDIV_INT_MASK 0x3ff 111 #define PDIV_SHIFT 10 112 #define PDIV_MASK 0xf 113 #define MDIV_P0_SHIFT 16 114 #define MDIV_P0_MASK 0xff 115 /* 116 * PMAP parameter p2 117 * mdiv_p4:31-24, mdiv_p3:23-16, mdiv_p2:15:8, mdiv_p1:7:0 118 */ 119 #define MDIV_P1_SHIFT 0 120 #define MDIV_P1_MASK 0xff 121 #define MDIV_P2_SHIFT 8 122 #define MDIV_P2_MASK 0xff 123 #define MDIV_P3_SHIFT 16 124 #define MDIV_P3_MASK 0xff 125 #define MDIV_P4_SHIFT 24 126 #define MDIV_P4_MASK 0xff 127 128 /* Different P-STATES AVS supports (for GET_PSTATE/SET_PSTATE) */ 129 #define AVS_PSTATE_P0 0x0 130 #define AVS_PSTATE_P1 0x1 131 #define AVS_PSTATE_P2 0x2 132 #define AVS_PSTATE_P3 0x3 133 #define AVS_PSTATE_P4 0x4 134 #define AVS_PSTATE_MAX AVS_PSTATE_P4 135 136 /* CPU L2 Interrupt Controller Registers */ 137 #define AVS_CPU_L2_SET0 0x04 138 #define AVS_CPU_L2_INT_MASK BIT(31) 139 140 /* AVS Command Status Values */ 141 #define AVS_STATUS_CLEAR 0x00 142 /* Command/notification accepted */ 143 #define AVS_STATUS_SUCCESS 0xf0 144 /* Command/notification rejected */ 145 #define AVS_STATUS_FAILURE 0xff 146 /* Invalid command/notification (unknown) */ 147 #define AVS_STATUS_INVALID 0xf1 148 /* Non-AVS modes are not supported */ 149 #define AVS_STATUS_NO_SUPP 0xf2 150 /* Cannot set P-State until P-Map supplied */ 151 #define AVS_STATUS_NO_MAP 0xf3 152 /* Cannot change P-Map after initial P-Map set */ 153 #define AVS_STATUS_MAP_SET 0xf4 154 /* Max AVS status; higher numbers are used for debugging */ 155 #define AVS_STATUS_MAX 0xff 156 157 /* Other AVS related constants */ 158 #define AVS_LOOP_LIMIT 10000 159 #define AVS_TIMEOUT 300 /* in ms; expected completion is < 10ms */ 160 #define AVS_FIRMWARE_MAGIC 0xa11600d1 161 162 #define BRCM_AVS_CPUFREQ_PREFIX "brcmstb-avs" 163 #define BRCM_AVS_CPUFREQ_NAME BRCM_AVS_CPUFREQ_PREFIX "-cpufreq" 164 #define BRCM_AVS_CPU_DATA "brcm,avs-cpu-data-mem" 165 #define BRCM_AVS_CPU_INTR "brcm,avs-cpu-l2-intr" 166 #define BRCM_AVS_HOST_INTR "sw_intr" 167 168 struct pmap { 169 unsigned int mode; 170 unsigned int p1; 171 unsigned int p2; 172 unsigned int state; 173 }; 174 175 struct private_data { 176 void __iomem *base; 177 void __iomem *avs_intr_base; 178 struct device *dev; 179 struct completion done; 180 struct semaphore sem; 181 struct pmap pmap; 182 int host_irq; 183 }; 184 185 static void __iomem *__map_region(const char *name) 186 { 187 struct device_node *np; 188 void __iomem *ptr; 189 190 np = of_find_compatible_node(NULL, NULL, name); 191 if (!np) 192 return NULL; 193 194 ptr = of_iomap(np, 0); 195 of_node_put(np); 196 197 return ptr; 198 } 199 200 static unsigned long wait_for_avs_command(struct private_data *priv, 201 unsigned long timeout) 202 { 203 unsigned long time_left = 0; 204 u32 val; 205 206 /* Event driven, wait for the command interrupt */ 207 if (priv->host_irq >= 0) 208 return wait_for_completion_timeout(&priv->done, 209 msecs_to_jiffies(timeout)); 210 211 /* Polling for command completion */ 212 do { 213 time_left = timeout; 214 val = readl(priv->base + AVS_MBOX_STATUS); 215 if (val) 216 break; 217 218 usleep_range(1000, 2000); 219 } while (--timeout); 220 221 return time_left; 222 } 223 224 static int __issue_avs_command(struct private_data *priv, unsigned int cmd, 225 unsigned int num_in, unsigned int num_out, 226 u32 args[]) 227 { 228 void __iomem *base = priv->base; 229 unsigned long time_left; 230 unsigned int i; 231 int ret; 232 u32 val; 233 234 ret = down_interruptible(&priv->sem); 235 if (ret) 236 return ret; 237 238 /* 239 * Make sure no other command is currently running: cmd is 0 if AVS 240 * co-processor is idle. Due to the guard above, we should almost never 241 * have to wait here. 242 */ 243 for (i = 0, val = 1; val != 0 && i < AVS_LOOP_LIMIT; i++) 244 val = readl(base + AVS_MBOX_COMMAND); 245 246 /* Give the caller a chance to retry if AVS is busy. */ 247 if (i == AVS_LOOP_LIMIT) { 248 ret = -EAGAIN; 249 goto out; 250 } 251 252 /* Clear status before we begin. */ 253 writel(AVS_STATUS_CLEAR, base + AVS_MBOX_STATUS); 254 255 /* Provide input parameters */ 256 for (i = 0; i < num_in; i++) 257 writel(args[i], base + AVS_MBOX_PARAM(i)); 258 259 /* Protect from spurious interrupts. */ 260 reinit_completion(&priv->done); 261 262 /* Now issue the command & tell firmware to wake up to process it. */ 263 writel(cmd, base + AVS_MBOX_COMMAND); 264 writel(AVS_CPU_L2_INT_MASK, priv->avs_intr_base + AVS_CPU_L2_SET0); 265 266 /* Wait for AVS co-processor to finish processing the command. */ 267 time_left = wait_for_avs_command(priv, AVS_TIMEOUT); 268 269 /* 270 * If the AVS status is not in the expected range, it means AVS didn't 271 * complete our command in time, and we return an error. Also, if there 272 * is no "time left", we timed out waiting for the interrupt. 273 */ 274 val = readl(base + AVS_MBOX_STATUS); 275 if (time_left == 0 || val == 0 || val > AVS_STATUS_MAX) { 276 dev_err(priv->dev, "AVS command %#x didn't complete in time\n", 277 cmd); 278 dev_err(priv->dev, " Time left: %u ms, AVS status: %#x\n", 279 jiffies_to_msecs(time_left), val); 280 ret = -ETIMEDOUT; 281 goto out; 282 } 283 284 /* Process returned values */ 285 for (i = 0; i < num_out; i++) 286 args[i] = readl(base + AVS_MBOX_PARAM(i)); 287 288 /* Clear status to tell AVS co-processor we are done. */ 289 writel(AVS_STATUS_CLEAR, base + AVS_MBOX_STATUS); 290 291 /* Convert firmware errors to errno's as much as possible. */ 292 switch (val) { 293 case AVS_STATUS_INVALID: 294 ret = -EINVAL; 295 break; 296 case AVS_STATUS_NO_SUPP: 297 ret = -ENOTSUPP; 298 break; 299 case AVS_STATUS_NO_MAP: 300 ret = -ENOENT; 301 break; 302 case AVS_STATUS_MAP_SET: 303 ret = -EEXIST; 304 break; 305 case AVS_STATUS_FAILURE: 306 ret = -EIO; 307 break; 308 } 309 310 out: 311 up(&priv->sem); 312 313 return ret; 314 } 315 316 static irqreturn_t irq_handler(int irq, void *data) 317 { 318 struct private_data *priv = data; 319 320 /* AVS command completed execution. Wake up __issue_avs_command(). */ 321 complete(&priv->done); 322 323 return IRQ_HANDLED; 324 } 325 326 static char *brcm_avs_mode_to_string(unsigned int mode) 327 { 328 switch (mode) { 329 case AVS_MODE_AVS: 330 return "AVS"; 331 case AVS_MODE_DFS: 332 return "DFS"; 333 case AVS_MODE_DVS: 334 return "DVS"; 335 case AVS_MODE_DVFS: 336 return "DVFS"; 337 } 338 return NULL; 339 } 340 341 static void brcm_avs_parse_p1(u32 p1, unsigned int *mdiv_p0, unsigned int *pdiv, 342 unsigned int *ndiv) 343 { 344 *mdiv_p0 = (p1 >> MDIV_P0_SHIFT) & MDIV_P0_MASK; 345 *pdiv = (p1 >> PDIV_SHIFT) & PDIV_MASK; 346 *ndiv = (p1 >> NDIV_INT_SHIFT) & NDIV_INT_MASK; 347 } 348 349 static void brcm_avs_parse_p2(u32 p2, unsigned int *mdiv_p1, 350 unsigned int *mdiv_p2, unsigned int *mdiv_p3, 351 unsigned int *mdiv_p4) 352 { 353 *mdiv_p4 = (p2 >> MDIV_P4_SHIFT) & MDIV_P4_MASK; 354 *mdiv_p3 = (p2 >> MDIV_P3_SHIFT) & MDIV_P3_MASK; 355 *mdiv_p2 = (p2 >> MDIV_P2_SHIFT) & MDIV_P2_MASK; 356 *mdiv_p1 = (p2 >> MDIV_P1_SHIFT) & MDIV_P1_MASK; 357 } 358 359 static int brcm_avs_get_pmap(struct private_data *priv, struct pmap *pmap) 360 { 361 u32 args[AVS_MAX_CMD_ARGS]; 362 int ret; 363 364 ret = __issue_avs_command(priv, AVS_CMD_GET_PMAP, 0, 4, args); 365 if (ret || !pmap) 366 return ret; 367 368 pmap->mode = args[0]; 369 pmap->p1 = args[1]; 370 pmap->p2 = args[2]; 371 pmap->state = args[3]; 372 373 return 0; 374 } 375 376 static int brcm_avs_set_pmap(struct private_data *priv, struct pmap *pmap) 377 { 378 u32 args[AVS_MAX_CMD_ARGS]; 379 380 args[0] = pmap->mode; 381 args[1] = pmap->p1; 382 args[2] = pmap->p2; 383 args[3] = pmap->state; 384 385 return __issue_avs_command(priv, AVS_CMD_SET_PMAP, 4, 0, args); 386 } 387 388 static int brcm_avs_get_pstate(struct private_data *priv, unsigned int *pstate) 389 { 390 u32 args[AVS_MAX_CMD_ARGS]; 391 int ret; 392 393 ret = __issue_avs_command(priv, AVS_CMD_GET_PSTATE, 0, 1, args); 394 if (ret) 395 return ret; 396 *pstate = args[0]; 397 398 return 0; 399 } 400 401 static int brcm_avs_set_pstate(struct private_data *priv, unsigned int pstate) 402 { 403 u32 args[AVS_MAX_CMD_ARGS]; 404 405 args[0] = pstate; 406 407 return __issue_avs_command(priv, AVS_CMD_SET_PSTATE, 1, 0, args); 408 409 } 410 411 static u32 brcm_avs_get_voltage(void __iomem *base) 412 { 413 return readl(base + AVS_MBOX_VOLTAGE1); 414 } 415 416 static u32 brcm_avs_get_frequency(void __iomem *base) 417 { 418 return readl(base + AVS_MBOX_FREQUENCY) * 1000; /* in kHz */ 419 } 420 421 /* 422 * We determine which frequencies are supported by cycling through all P-states 423 * and reading back what frequency we are running at for each P-state. 424 */ 425 static struct cpufreq_frequency_table * 426 brcm_avs_get_freq_table(struct device *dev, struct private_data *priv) 427 { 428 struct cpufreq_frequency_table *table; 429 unsigned int pstate; 430 int i, ret; 431 432 /* Remember P-state for later */ 433 ret = brcm_avs_get_pstate(priv, &pstate); 434 if (ret) 435 return ERR_PTR(ret); 436 437 /* 438 * We allocate space for the 5 different P-STATES AVS, 439 * plus extra space for a terminating element. 440 */ 441 table = devm_kcalloc(dev, AVS_PSTATE_MAX + 1 + 1, sizeof(*table), 442 GFP_KERNEL); 443 if (!table) 444 return ERR_PTR(-ENOMEM); 445 446 for (i = AVS_PSTATE_P0; i <= AVS_PSTATE_MAX; i++) { 447 ret = brcm_avs_set_pstate(priv, i); 448 if (ret) 449 return ERR_PTR(ret); 450 table[i].frequency = brcm_avs_get_frequency(priv->base); 451 table[i].driver_data = i; 452 } 453 table[i].frequency = CPUFREQ_TABLE_END; 454 455 /* Restore P-state */ 456 ret = brcm_avs_set_pstate(priv, pstate); 457 if (ret) 458 return ERR_PTR(ret); 459 460 return table; 461 } 462 463 /* 464 * To ensure the right firmware is running we need to 465 * - check the MAGIC matches what we expect 466 * - brcm_avs_get_pmap() doesn't return -ENOTSUPP or -EINVAL 467 * We need to set up our interrupt handling before calling brcm_avs_get_pmap()! 468 */ 469 static bool brcm_avs_is_firmware_loaded(struct private_data *priv) 470 { 471 u32 magic; 472 int rc; 473 474 rc = brcm_avs_get_pmap(priv, NULL); 475 magic = readl(priv->base + AVS_MBOX_MAGIC); 476 477 return (magic == AVS_FIRMWARE_MAGIC) && ((rc != -ENOTSUPP) || 478 (rc != -EINVAL)); 479 } 480 481 static unsigned int brcm_avs_cpufreq_get(unsigned int cpu) 482 { 483 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu); 484 struct private_data *priv; 485 486 if (!policy) 487 return 0; 488 489 priv = policy->driver_data; 490 491 cpufreq_cpu_put(policy); 492 493 return brcm_avs_get_frequency(priv->base); 494 } 495 496 static int brcm_avs_target_index(struct cpufreq_policy *policy, 497 unsigned int index) 498 { 499 return brcm_avs_set_pstate(policy->driver_data, 500 policy->freq_table[index].driver_data); 501 } 502 503 static int brcm_avs_suspend(struct cpufreq_policy *policy) 504 { 505 struct private_data *priv = policy->driver_data; 506 int ret; 507 508 ret = brcm_avs_get_pmap(priv, &priv->pmap); 509 if (ret) 510 return ret; 511 512 /* 513 * We can't use the P-state returned by brcm_avs_get_pmap(), since 514 * that's the initial P-state from when the P-map was downloaded to the 515 * AVS co-processor, not necessarily the P-state we are running at now. 516 * So, we get the current P-state explicitly. 517 */ 518 ret = brcm_avs_get_pstate(priv, &priv->pmap.state); 519 if (ret) 520 return ret; 521 522 /* This is best effort. Nothing to do if it fails. */ 523 (void)__issue_avs_command(priv, AVS_CMD_S2_ENTER, 0, 0, NULL); 524 525 return 0; 526 } 527 528 static int brcm_avs_resume(struct cpufreq_policy *policy) 529 { 530 struct private_data *priv = policy->driver_data; 531 int ret; 532 533 /* This is best effort. Nothing to do if it fails. */ 534 (void)__issue_avs_command(priv, AVS_CMD_S2_EXIT, 0, 0, NULL); 535 536 ret = brcm_avs_set_pmap(priv, &priv->pmap); 537 if (ret == -EEXIST) { 538 struct platform_device *pdev = cpufreq_get_driver_data(); 539 struct device *dev = &pdev->dev; 540 541 dev_warn(dev, "PMAP was already set\n"); 542 ret = 0; 543 } 544 545 return ret; 546 } 547 548 /* 549 * All initialization code that we only want to execute once goes here. Setup 550 * code that can be re-tried on every core (if it failed before) can go into 551 * brcm_avs_cpufreq_init(). 552 */ 553 static int brcm_avs_prepare_init(struct platform_device *pdev) 554 { 555 struct private_data *priv; 556 struct device *dev; 557 int ret; 558 559 dev = &pdev->dev; 560 priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); 561 if (!priv) 562 return -ENOMEM; 563 564 priv->dev = dev; 565 sema_init(&priv->sem, 1); 566 init_completion(&priv->done); 567 platform_set_drvdata(pdev, priv); 568 569 priv->base = __map_region(BRCM_AVS_CPU_DATA); 570 if (!priv->base) { 571 dev_err(dev, "Couldn't find property %s in device tree.\n", 572 BRCM_AVS_CPU_DATA); 573 return -ENOENT; 574 } 575 576 priv->avs_intr_base = __map_region(BRCM_AVS_CPU_INTR); 577 if (!priv->avs_intr_base) { 578 dev_err(dev, "Couldn't find property %s in device tree.\n", 579 BRCM_AVS_CPU_INTR); 580 ret = -ENOENT; 581 goto unmap_base; 582 } 583 584 priv->host_irq = platform_get_irq_byname(pdev, BRCM_AVS_HOST_INTR); 585 586 ret = devm_request_irq(dev, priv->host_irq, irq_handler, 587 IRQF_TRIGGER_RISING, 588 BRCM_AVS_HOST_INTR, priv); 589 if (ret && priv->host_irq >= 0) { 590 dev_err(dev, "IRQ request failed: %s (%d) -- %d\n", 591 BRCM_AVS_HOST_INTR, priv->host_irq, ret); 592 goto unmap_intr_base; 593 } 594 595 if (brcm_avs_is_firmware_loaded(priv)) 596 return 0; 597 598 dev_err(dev, "AVS firmware is not loaded or doesn't support DVFS\n"); 599 ret = -ENODEV; 600 601 unmap_intr_base: 602 iounmap(priv->avs_intr_base); 603 unmap_base: 604 iounmap(priv->base); 605 606 return ret; 607 } 608 609 static void brcm_avs_prepare_uninit(struct platform_device *pdev) 610 { 611 struct private_data *priv; 612 613 priv = platform_get_drvdata(pdev); 614 615 iounmap(priv->avs_intr_base); 616 iounmap(priv->base); 617 } 618 619 static int brcm_avs_cpufreq_init(struct cpufreq_policy *policy) 620 { 621 struct cpufreq_frequency_table *freq_table; 622 struct platform_device *pdev; 623 struct private_data *priv; 624 struct device *dev; 625 int ret; 626 627 pdev = cpufreq_get_driver_data(); 628 priv = platform_get_drvdata(pdev); 629 policy->driver_data = priv; 630 dev = &pdev->dev; 631 632 freq_table = brcm_avs_get_freq_table(dev, priv); 633 if (IS_ERR(freq_table)) { 634 ret = PTR_ERR(freq_table); 635 dev_err(dev, "Couldn't determine frequency table (%d).\n", ret); 636 return ret; 637 } 638 639 policy->freq_table = freq_table; 640 641 /* All cores share the same clock and thus the same policy. */ 642 cpumask_setall(policy->cpus); 643 644 ret = __issue_avs_command(priv, AVS_CMD_ENABLE, 0, 0, NULL); 645 if (!ret) { 646 unsigned int pstate; 647 648 ret = brcm_avs_get_pstate(priv, &pstate); 649 if (!ret) { 650 policy->cur = freq_table[pstate].frequency; 651 dev_info(dev, "registered\n"); 652 return 0; 653 } 654 } 655 656 dev_err(dev, "couldn't initialize driver (%d)\n", ret); 657 658 return ret; 659 } 660 661 static ssize_t show_brcm_avs_pstate(struct cpufreq_policy *policy, char *buf) 662 { 663 struct private_data *priv = policy->driver_data; 664 unsigned int pstate; 665 666 if (brcm_avs_get_pstate(priv, &pstate)) 667 return sprintf(buf, "<unknown>\n"); 668 669 return sprintf(buf, "%u\n", pstate); 670 } 671 672 static ssize_t show_brcm_avs_mode(struct cpufreq_policy *policy, char *buf) 673 { 674 struct private_data *priv = policy->driver_data; 675 struct pmap pmap; 676 677 if (brcm_avs_get_pmap(priv, &pmap)) 678 return sprintf(buf, "<unknown>\n"); 679 680 return sprintf(buf, "%s %u\n", brcm_avs_mode_to_string(pmap.mode), 681 pmap.mode); 682 } 683 684 static ssize_t show_brcm_avs_pmap(struct cpufreq_policy *policy, char *buf) 685 { 686 unsigned int mdiv_p0, mdiv_p1, mdiv_p2, mdiv_p3, mdiv_p4; 687 struct private_data *priv = policy->driver_data; 688 unsigned int ndiv, pdiv; 689 struct pmap pmap; 690 691 if (brcm_avs_get_pmap(priv, &pmap)) 692 return sprintf(buf, "<unknown>\n"); 693 694 brcm_avs_parse_p1(pmap.p1, &mdiv_p0, &pdiv, &ndiv); 695 brcm_avs_parse_p2(pmap.p2, &mdiv_p1, &mdiv_p2, &mdiv_p3, &mdiv_p4); 696 697 return sprintf(buf, "0x%08x 0x%08x %u %u %u %u %u %u %u %u %u\n", 698 pmap.p1, pmap.p2, ndiv, pdiv, mdiv_p0, mdiv_p1, mdiv_p2, 699 mdiv_p3, mdiv_p4, pmap.mode, pmap.state); 700 } 701 702 static ssize_t show_brcm_avs_voltage(struct cpufreq_policy *policy, char *buf) 703 { 704 struct private_data *priv = policy->driver_data; 705 706 return sprintf(buf, "0x%08x\n", brcm_avs_get_voltage(priv->base)); 707 } 708 709 static ssize_t show_brcm_avs_frequency(struct cpufreq_policy *policy, char *buf) 710 { 711 struct private_data *priv = policy->driver_data; 712 713 return sprintf(buf, "0x%08x\n", brcm_avs_get_frequency(priv->base)); 714 } 715 716 cpufreq_freq_attr_ro(brcm_avs_pstate); 717 cpufreq_freq_attr_ro(brcm_avs_mode); 718 cpufreq_freq_attr_ro(brcm_avs_pmap); 719 cpufreq_freq_attr_ro(brcm_avs_voltage); 720 cpufreq_freq_attr_ro(brcm_avs_frequency); 721 722 static struct freq_attr *brcm_avs_cpufreq_attr[] = { 723 &cpufreq_freq_attr_scaling_available_freqs, 724 &brcm_avs_pstate, 725 &brcm_avs_mode, 726 &brcm_avs_pmap, 727 &brcm_avs_voltage, 728 &brcm_avs_frequency, 729 NULL 730 }; 731 732 static struct cpufreq_driver brcm_avs_driver = { 733 .flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK, 734 .verify = cpufreq_generic_frequency_table_verify, 735 .target_index = brcm_avs_target_index, 736 .get = brcm_avs_cpufreq_get, 737 .suspend = brcm_avs_suspend, 738 .resume = brcm_avs_resume, 739 .init = brcm_avs_cpufreq_init, 740 .attr = brcm_avs_cpufreq_attr, 741 .name = BRCM_AVS_CPUFREQ_PREFIX, 742 }; 743 744 static int brcm_avs_cpufreq_probe(struct platform_device *pdev) 745 { 746 int ret; 747 748 ret = brcm_avs_prepare_init(pdev); 749 if (ret) 750 return ret; 751 752 brcm_avs_driver.driver_data = pdev; 753 754 ret = cpufreq_register_driver(&brcm_avs_driver); 755 if (ret) 756 brcm_avs_prepare_uninit(pdev); 757 758 return ret; 759 } 760 761 static void brcm_avs_cpufreq_remove(struct platform_device *pdev) 762 { 763 cpufreq_unregister_driver(&brcm_avs_driver); 764 765 brcm_avs_prepare_uninit(pdev); 766 } 767 768 static const struct of_device_id brcm_avs_cpufreq_match[] = { 769 { .compatible = BRCM_AVS_CPU_DATA }, 770 { } 771 }; 772 MODULE_DEVICE_TABLE(of, brcm_avs_cpufreq_match); 773 774 static struct platform_driver brcm_avs_cpufreq_platdrv = { 775 .driver = { 776 .name = BRCM_AVS_CPUFREQ_NAME, 777 .of_match_table = brcm_avs_cpufreq_match, 778 }, 779 .probe = brcm_avs_cpufreq_probe, 780 .remove_new = brcm_avs_cpufreq_remove, 781 }; 782 module_platform_driver(brcm_avs_cpufreq_platdrv); 783 784 MODULE_AUTHOR("Markus Mayer <mmayer@broadcom.com>"); 785 MODULE_DESCRIPTION("CPUfreq driver for Broadcom STB AVS"); 786 MODULE_LICENSE("GPL"); 787