xref: /linux/drivers/cpufreq/brcmstb-avs-cpufreq.c (revision 364eeb79a213fcf9164208b53764223ad522d6b3)
1 /*
2  * CPU frequency scaling for Broadcom SoCs with AVS firmware that
3  * supports DVS or DVFS
4  *
5  * Copyright (c) 2016 Broadcom
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License as
9  * published by the Free Software Foundation version 2.
10  *
11  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
12  * kind, whether express or implied; without even the implied warranty
13  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  */
16 
17 /*
18  * "AVS" is the name of a firmware developed at Broadcom. It derives
19  * its name from the technique called "Adaptive Voltage Scaling".
20  * Adaptive voltage scaling was the original purpose of this firmware.
21  * The AVS firmware still supports "AVS mode", where all it does is
22  * adaptive voltage scaling. However, on some newer Broadcom SoCs, the
23  * AVS Firmware, despite its unchanged name, also supports DFS mode and
24  * DVFS mode.
25  *
26  * In the context of this document and the related driver, "AVS" by
27  * itself always means the Broadcom firmware and never refers to the
28  * technique called "Adaptive Voltage Scaling".
29  *
30  * The Broadcom STB AVS CPUfreq driver provides voltage and frequency
31  * scaling on Broadcom SoCs using AVS firmware with support for DFS and
32  * DVFS. The AVS firmware is running on its own co-processor. The
33  * driver supports both uniprocessor (UP) and symmetric multiprocessor
34  * (SMP) systems which share clock and voltage across all CPUs.
35  *
36  * Actual voltage and frequency scaling is done solely by the AVS
37  * firmware. This driver does not change frequency or voltage itself.
38  * It provides a standard CPUfreq interface to the rest of the kernel
39  * and to userland. It interfaces with the AVS firmware to effect the
40  * requested changes and to report back the current system status in a
41  * way that is expected by existing tools.
42  */
43 
44 #include <linux/cpufreq.h>
45 #include <linux/delay.h>
46 #include <linux/interrupt.h>
47 #include <linux/io.h>
48 #include <linux/module.h>
49 #include <linux/of_address.h>
50 #include <linux/platform_device.h>
51 #include <linux/semaphore.h>
52 
53 /* Max number of arguments AVS calls take */
54 #define AVS_MAX_CMD_ARGS	4
55 /*
56  * This macro is used to generate AVS parameter register offsets. For
57  * x >= AVS_MAX_CMD_ARGS, it returns 0 to protect against accidental memory
58  * access outside of the parameter range. (Offset 0 is the first parameter.)
59  */
60 #define AVS_PARAM_MULT(x)	((x) < AVS_MAX_CMD_ARGS ? (x) : 0)
61 
62 /* AVS Mailbox Register offsets */
63 #define AVS_MBOX_COMMAND	0x00
64 #define AVS_MBOX_STATUS		0x04
65 #define AVS_MBOX_VOLTAGE0	0x08
66 #define AVS_MBOX_TEMP0		0x0c
67 #define AVS_MBOX_PV0		0x10
68 #define AVS_MBOX_MV0		0x14
69 #define AVS_MBOX_PARAM(x)	(0x18 + AVS_PARAM_MULT(x) * sizeof(u32))
70 #define AVS_MBOX_REVISION	0x28
71 #define AVS_MBOX_PSTATE		0x2c
72 #define AVS_MBOX_HEARTBEAT	0x30
73 #define AVS_MBOX_MAGIC		0x34
74 #define AVS_MBOX_SIGMA_HVT	0x38
75 #define AVS_MBOX_SIGMA_SVT	0x3c
76 #define AVS_MBOX_VOLTAGE1	0x40
77 #define AVS_MBOX_TEMP1		0x44
78 #define AVS_MBOX_PV1		0x48
79 #define AVS_MBOX_MV1		0x4c
80 #define AVS_MBOX_FREQUENCY	0x50
81 
82 /* AVS Commands */
83 #define AVS_CMD_AVAILABLE	0x00
84 #define AVS_CMD_DISABLE		0x10
85 #define AVS_CMD_ENABLE		0x11
86 #define AVS_CMD_S2_ENTER	0x12
87 #define AVS_CMD_S2_EXIT		0x13
88 #define AVS_CMD_BBM_ENTER	0x14
89 #define AVS_CMD_BBM_EXIT	0x15
90 #define AVS_CMD_S3_ENTER	0x16
91 #define AVS_CMD_S3_EXIT		0x17
92 #define AVS_CMD_BALANCE		0x18
93 /* PMAP and P-STATE commands */
94 #define AVS_CMD_GET_PMAP	0x30
95 #define AVS_CMD_SET_PMAP	0x31
96 #define AVS_CMD_GET_PSTATE	0x40
97 #define AVS_CMD_SET_PSTATE	0x41
98 
99 /* Different modes AVS supports (for GET_PMAP/SET_PMAP) */
100 #define AVS_MODE_AVS		0x0
101 #define AVS_MODE_DFS		0x1
102 #define AVS_MODE_DVS		0x2
103 #define AVS_MODE_DVFS		0x3
104 
105 /*
106  * PMAP parameter p1
107  * unused:31-24, mdiv_p0:23-16, unused:15-14, pdiv:13-10 , ndiv_int:9-0
108  */
109 #define NDIV_INT_SHIFT		0
110 #define NDIV_INT_MASK		0x3ff
111 #define PDIV_SHIFT		10
112 #define PDIV_MASK		0xf
113 #define MDIV_P0_SHIFT		16
114 #define MDIV_P0_MASK		0xff
115 /*
116  * PMAP parameter p2
117  * mdiv_p4:31-24, mdiv_p3:23-16, mdiv_p2:15:8, mdiv_p1:7:0
118  */
119 #define MDIV_P1_SHIFT		0
120 #define MDIV_P1_MASK		0xff
121 #define MDIV_P2_SHIFT		8
122 #define MDIV_P2_MASK		0xff
123 #define MDIV_P3_SHIFT		16
124 #define MDIV_P3_MASK		0xff
125 #define MDIV_P4_SHIFT		24
126 #define MDIV_P4_MASK		0xff
127 
128 /* Different P-STATES AVS supports (for GET_PSTATE/SET_PSTATE) */
129 #define AVS_PSTATE_P0		0x0
130 #define AVS_PSTATE_P1		0x1
131 #define AVS_PSTATE_P2		0x2
132 #define AVS_PSTATE_P3		0x3
133 #define AVS_PSTATE_P4		0x4
134 #define AVS_PSTATE_MAX		AVS_PSTATE_P4
135 
136 /* CPU L2 Interrupt Controller Registers */
137 #define AVS_CPU_L2_SET0		0x04
138 #define AVS_CPU_L2_INT_MASK	BIT(31)
139 
140 /* AVS Command Status Values */
141 #define AVS_STATUS_CLEAR	0x00
142 /* Command/notification accepted */
143 #define AVS_STATUS_SUCCESS	0xf0
144 /* Command/notification rejected */
145 #define AVS_STATUS_FAILURE	0xff
146 /* Invalid command/notification (unknown) */
147 #define AVS_STATUS_INVALID	0xf1
148 /* Non-AVS modes are not supported */
149 #define AVS_STATUS_NO_SUPP	0xf2
150 /* Cannot set P-State until P-Map supplied */
151 #define AVS_STATUS_NO_MAP	0xf3
152 /* Cannot change P-Map after initial P-Map set */
153 #define AVS_STATUS_MAP_SET	0xf4
154 /* Max AVS status; higher numbers are used for debugging */
155 #define AVS_STATUS_MAX		0xff
156 
157 /* Other AVS related constants */
158 #define AVS_LOOP_LIMIT		10000
159 #define AVS_TIMEOUT		300 /* in ms; expected completion is < 10ms */
160 #define AVS_FIRMWARE_MAGIC	0xa11600d1
161 
162 #define BRCM_AVS_CPUFREQ_PREFIX	"brcmstb-avs"
163 #define BRCM_AVS_CPUFREQ_NAME	BRCM_AVS_CPUFREQ_PREFIX "-cpufreq"
164 #define BRCM_AVS_CPU_DATA	"brcm,avs-cpu-data-mem"
165 #define BRCM_AVS_CPU_INTR	"brcm,avs-cpu-l2-intr"
166 #define BRCM_AVS_HOST_INTR	"sw_intr"
167 
168 struct pmap {
169 	unsigned int mode;
170 	unsigned int p1;
171 	unsigned int p2;
172 	unsigned int state;
173 };
174 
175 struct private_data {
176 	void __iomem *base;
177 	void __iomem *avs_intr_base;
178 	struct device *dev;
179 	struct completion done;
180 	struct semaphore sem;
181 	struct pmap pmap;
182 	int host_irq;
183 };
184 
185 static void __iomem *__map_region(const char *name)
186 {
187 	struct device_node *np;
188 	void __iomem *ptr;
189 
190 	np = of_find_compatible_node(NULL, NULL, name);
191 	if (!np)
192 		return NULL;
193 
194 	ptr = of_iomap(np, 0);
195 	of_node_put(np);
196 
197 	return ptr;
198 }
199 
200 static unsigned long wait_for_avs_command(struct private_data *priv,
201 					  unsigned long timeout)
202 {
203 	unsigned long time_left = 0;
204 	u32 val;
205 
206 	/* Event driven, wait for the command interrupt */
207 	if (priv->host_irq >= 0)
208 		return wait_for_completion_timeout(&priv->done,
209 						   msecs_to_jiffies(timeout));
210 
211 	/* Polling for command completion */
212 	do {
213 		time_left = timeout;
214 		val = readl(priv->base + AVS_MBOX_STATUS);
215 		if (val)
216 			break;
217 
218 		usleep_range(1000, 2000);
219 	} while (--timeout);
220 
221 	return time_left;
222 }
223 
224 static int __issue_avs_command(struct private_data *priv, unsigned int cmd,
225 			       unsigned int num_in, unsigned int num_out,
226 			       u32 args[])
227 {
228 	void __iomem *base = priv->base;
229 	unsigned long time_left;
230 	unsigned int i;
231 	int ret;
232 	u32 val;
233 
234 	ret = down_interruptible(&priv->sem);
235 	if (ret)
236 		return ret;
237 
238 	/*
239 	 * Make sure no other command is currently running: cmd is 0 if AVS
240 	 * co-processor is idle. Due to the guard above, we should almost never
241 	 * have to wait here.
242 	 */
243 	for (i = 0, val = 1; val != 0 && i < AVS_LOOP_LIMIT; i++)
244 		val = readl(base + AVS_MBOX_COMMAND);
245 
246 	/* Give the caller a chance to retry if AVS is busy. */
247 	if (i == AVS_LOOP_LIMIT) {
248 		ret = -EAGAIN;
249 		goto out;
250 	}
251 
252 	/* Clear status before we begin. */
253 	writel(AVS_STATUS_CLEAR, base + AVS_MBOX_STATUS);
254 
255 	/* Provide input parameters */
256 	for (i = 0; i < num_in; i++)
257 		writel(args[i], base + AVS_MBOX_PARAM(i));
258 
259 	/* Protect from spurious interrupts. */
260 	reinit_completion(&priv->done);
261 
262 	/* Now issue the command & tell firmware to wake up to process it. */
263 	writel(cmd, base + AVS_MBOX_COMMAND);
264 	writel(AVS_CPU_L2_INT_MASK, priv->avs_intr_base + AVS_CPU_L2_SET0);
265 
266 	/* Wait for AVS co-processor to finish processing the command. */
267 	time_left = wait_for_avs_command(priv, AVS_TIMEOUT);
268 
269 	/*
270 	 * If the AVS status is not in the expected range, it means AVS didn't
271 	 * complete our command in time, and we return an error. Also, if there
272 	 * is no "time left", we timed out waiting for the interrupt.
273 	 */
274 	val = readl(base + AVS_MBOX_STATUS);
275 	if (time_left == 0 || val == 0 || val > AVS_STATUS_MAX) {
276 		dev_err(priv->dev, "AVS command %#x didn't complete in time\n",
277 			cmd);
278 		dev_err(priv->dev, "    Time left: %u ms, AVS status: %#x\n",
279 			jiffies_to_msecs(time_left), val);
280 		ret = -ETIMEDOUT;
281 		goto out;
282 	}
283 
284 	/* Process returned values */
285 	for (i = 0; i < num_out; i++)
286 		args[i] = readl(base + AVS_MBOX_PARAM(i));
287 
288 	/* Clear status to tell AVS co-processor we are done. */
289 	writel(AVS_STATUS_CLEAR, base + AVS_MBOX_STATUS);
290 
291 	/* Convert firmware errors to errno's as much as possible. */
292 	switch (val) {
293 	case AVS_STATUS_INVALID:
294 		ret = -EINVAL;
295 		break;
296 	case AVS_STATUS_NO_SUPP:
297 		ret = -ENOTSUPP;
298 		break;
299 	case AVS_STATUS_NO_MAP:
300 		ret = -ENOENT;
301 		break;
302 	case AVS_STATUS_MAP_SET:
303 		ret = -EEXIST;
304 		break;
305 	case AVS_STATUS_FAILURE:
306 		ret = -EIO;
307 		break;
308 	}
309 
310 out:
311 	up(&priv->sem);
312 
313 	return ret;
314 }
315 
316 static irqreturn_t irq_handler(int irq, void *data)
317 {
318 	struct private_data *priv = data;
319 
320 	/* AVS command completed execution. Wake up __issue_avs_command(). */
321 	complete(&priv->done);
322 
323 	return IRQ_HANDLED;
324 }
325 
326 static char *brcm_avs_mode_to_string(unsigned int mode)
327 {
328 	switch (mode) {
329 	case AVS_MODE_AVS:
330 		return "AVS";
331 	case AVS_MODE_DFS:
332 		return "DFS";
333 	case AVS_MODE_DVS:
334 		return "DVS";
335 	case AVS_MODE_DVFS:
336 		return "DVFS";
337 	}
338 	return NULL;
339 }
340 
341 static void brcm_avs_parse_p1(u32 p1, unsigned int *mdiv_p0, unsigned int *pdiv,
342 			      unsigned int *ndiv)
343 {
344 	*mdiv_p0 = (p1 >> MDIV_P0_SHIFT) & MDIV_P0_MASK;
345 	*pdiv = (p1 >> PDIV_SHIFT) & PDIV_MASK;
346 	*ndiv = (p1 >> NDIV_INT_SHIFT) & NDIV_INT_MASK;
347 }
348 
349 static void brcm_avs_parse_p2(u32 p2, unsigned int *mdiv_p1,
350 			      unsigned int *mdiv_p2, unsigned int *mdiv_p3,
351 			      unsigned int *mdiv_p4)
352 {
353 	*mdiv_p4 = (p2 >> MDIV_P4_SHIFT) & MDIV_P4_MASK;
354 	*mdiv_p3 = (p2 >> MDIV_P3_SHIFT) & MDIV_P3_MASK;
355 	*mdiv_p2 = (p2 >> MDIV_P2_SHIFT) & MDIV_P2_MASK;
356 	*mdiv_p1 = (p2 >> MDIV_P1_SHIFT) & MDIV_P1_MASK;
357 }
358 
359 static int brcm_avs_get_pmap(struct private_data *priv, struct pmap *pmap)
360 {
361 	u32 args[AVS_MAX_CMD_ARGS];
362 	int ret;
363 
364 	ret = __issue_avs_command(priv, AVS_CMD_GET_PMAP, 0, 4, args);
365 	if (ret || !pmap)
366 		return ret;
367 
368 	pmap->mode = args[0];
369 	pmap->p1 = args[1];
370 	pmap->p2 = args[2];
371 	pmap->state = args[3];
372 
373 	return 0;
374 }
375 
376 static int brcm_avs_set_pmap(struct private_data *priv, struct pmap *pmap)
377 {
378 	u32 args[AVS_MAX_CMD_ARGS];
379 
380 	args[0] = pmap->mode;
381 	args[1] = pmap->p1;
382 	args[2] = pmap->p2;
383 	args[3] = pmap->state;
384 
385 	return __issue_avs_command(priv, AVS_CMD_SET_PMAP, 4, 0, args);
386 }
387 
388 static int brcm_avs_get_pstate(struct private_data *priv, unsigned int *pstate)
389 {
390 	u32 args[AVS_MAX_CMD_ARGS];
391 	int ret;
392 
393 	ret = __issue_avs_command(priv, AVS_CMD_GET_PSTATE, 0, 1, args);
394 	if (ret)
395 		return ret;
396 	*pstate = args[0];
397 
398 	return 0;
399 }
400 
401 static int brcm_avs_set_pstate(struct private_data *priv, unsigned int pstate)
402 {
403 	u32 args[AVS_MAX_CMD_ARGS];
404 
405 	args[0] = pstate;
406 
407 	return __issue_avs_command(priv, AVS_CMD_SET_PSTATE, 1, 0, args);
408 
409 }
410 
411 static u32 brcm_avs_get_voltage(void __iomem *base)
412 {
413 	return readl(base + AVS_MBOX_VOLTAGE1);
414 }
415 
416 static u32 brcm_avs_get_frequency(void __iomem *base)
417 {
418 	return readl(base + AVS_MBOX_FREQUENCY) * 1000;	/* in kHz */
419 }
420 
421 /*
422  * We determine which frequencies are supported by cycling through all P-states
423  * and reading back what frequency we are running at for each P-state.
424  */
425 static struct cpufreq_frequency_table *
426 brcm_avs_get_freq_table(struct device *dev, struct private_data *priv)
427 {
428 	struct cpufreq_frequency_table *table;
429 	unsigned int pstate;
430 	int i, ret;
431 
432 	/* Remember P-state for later */
433 	ret = brcm_avs_get_pstate(priv, &pstate);
434 	if (ret)
435 		return ERR_PTR(ret);
436 
437 	/*
438 	 * We allocate space for the 5 different P-STATES AVS,
439 	 * plus extra space for a terminating element.
440 	 */
441 	table = devm_kcalloc(dev, AVS_PSTATE_MAX + 1 + 1, sizeof(*table),
442 			     GFP_KERNEL);
443 	if (!table)
444 		return ERR_PTR(-ENOMEM);
445 
446 	for (i = AVS_PSTATE_P0; i <= AVS_PSTATE_MAX; i++) {
447 		ret = brcm_avs_set_pstate(priv, i);
448 		if (ret)
449 			return ERR_PTR(ret);
450 		table[i].frequency = brcm_avs_get_frequency(priv->base);
451 		table[i].driver_data = i;
452 	}
453 	table[i].frequency = CPUFREQ_TABLE_END;
454 
455 	/* Restore P-state */
456 	ret = brcm_avs_set_pstate(priv, pstate);
457 	if (ret)
458 		return ERR_PTR(ret);
459 
460 	return table;
461 }
462 
463 /*
464  * To ensure the right firmware is running we need to
465  *    - check the MAGIC matches what we expect
466  *    - brcm_avs_get_pmap() doesn't return -ENOTSUPP or -EINVAL
467  * We need to set up our interrupt handling before calling brcm_avs_get_pmap()!
468  */
469 static bool brcm_avs_is_firmware_loaded(struct private_data *priv)
470 {
471 	u32 magic;
472 	int rc;
473 
474 	rc = brcm_avs_get_pmap(priv, NULL);
475 	magic = readl(priv->base + AVS_MBOX_MAGIC);
476 
477 	return (magic == AVS_FIRMWARE_MAGIC) && ((rc != -ENOTSUPP) ||
478 		(rc != -EINVAL));
479 }
480 
481 static unsigned int brcm_avs_cpufreq_get(unsigned int cpu)
482 {
483 	struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
484 	struct private_data *priv;
485 
486 	if (!policy)
487 		return 0;
488 
489 	priv = policy->driver_data;
490 
491 	cpufreq_cpu_put(policy);
492 
493 	return brcm_avs_get_frequency(priv->base);
494 }
495 
496 static int brcm_avs_target_index(struct cpufreq_policy *policy,
497 				 unsigned int index)
498 {
499 	return brcm_avs_set_pstate(policy->driver_data,
500 				  policy->freq_table[index].driver_data);
501 }
502 
503 static int brcm_avs_suspend(struct cpufreq_policy *policy)
504 {
505 	struct private_data *priv = policy->driver_data;
506 	int ret;
507 
508 	ret = brcm_avs_get_pmap(priv, &priv->pmap);
509 	if (ret)
510 		return ret;
511 
512 	/*
513 	 * We can't use the P-state returned by brcm_avs_get_pmap(), since
514 	 * that's the initial P-state from when the P-map was downloaded to the
515 	 * AVS co-processor, not necessarily the P-state we are running at now.
516 	 * So, we get the current P-state explicitly.
517 	 */
518 	ret = brcm_avs_get_pstate(priv, &priv->pmap.state);
519 	if (ret)
520 		return ret;
521 
522 	/* This is best effort. Nothing to do if it fails. */
523 	(void)__issue_avs_command(priv, AVS_CMD_S2_ENTER, 0, 0, NULL);
524 
525 	return 0;
526 }
527 
528 static int brcm_avs_resume(struct cpufreq_policy *policy)
529 {
530 	struct private_data *priv = policy->driver_data;
531 	int ret;
532 
533 	/* This is best effort. Nothing to do if it fails. */
534 	(void)__issue_avs_command(priv, AVS_CMD_S2_EXIT, 0, 0, NULL);
535 
536 	ret = brcm_avs_set_pmap(priv, &priv->pmap);
537 	if (ret == -EEXIST) {
538 		struct platform_device *pdev  = cpufreq_get_driver_data();
539 		struct device *dev = &pdev->dev;
540 
541 		dev_warn(dev, "PMAP was already set\n");
542 		ret = 0;
543 	}
544 
545 	return ret;
546 }
547 
548 /*
549  * All initialization code that we only want to execute once goes here. Setup
550  * code that can be re-tried on every core (if it failed before) can go into
551  * brcm_avs_cpufreq_init().
552  */
553 static int brcm_avs_prepare_init(struct platform_device *pdev)
554 {
555 	struct private_data *priv;
556 	struct device *dev;
557 	int ret;
558 
559 	dev = &pdev->dev;
560 	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
561 	if (!priv)
562 		return -ENOMEM;
563 
564 	priv->dev = dev;
565 	sema_init(&priv->sem, 1);
566 	init_completion(&priv->done);
567 	platform_set_drvdata(pdev, priv);
568 
569 	priv->base = __map_region(BRCM_AVS_CPU_DATA);
570 	if (!priv->base) {
571 		dev_err(dev, "Couldn't find property %s in device tree.\n",
572 			BRCM_AVS_CPU_DATA);
573 		return -ENOENT;
574 	}
575 
576 	priv->avs_intr_base = __map_region(BRCM_AVS_CPU_INTR);
577 	if (!priv->avs_intr_base) {
578 		dev_err(dev, "Couldn't find property %s in device tree.\n",
579 			BRCM_AVS_CPU_INTR);
580 		ret = -ENOENT;
581 		goto unmap_base;
582 	}
583 
584 	priv->host_irq = platform_get_irq_byname(pdev, BRCM_AVS_HOST_INTR);
585 
586 	ret = devm_request_irq(dev, priv->host_irq, irq_handler,
587 			       IRQF_TRIGGER_RISING,
588 			       BRCM_AVS_HOST_INTR, priv);
589 	if (ret && priv->host_irq >= 0) {
590 		dev_err(dev, "IRQ request failed: %s (%d) -- %d\n",
591 			BRCM_AVS_HOST_INTR, priv->host_irq, ret);
592 		goto unmap_intr_base;
593 	}
594 
595 	if (brcm_avs_is_firmware_loaded(priv))
596 		return 0;
597 
598 	dev_err(dev, "AVS firmware is not loaded or doesn't support DVFS\n");
599 	ret = -ENODEV;
600 
601 unmap_intr_base:
602 	iounmap(priv->avs_intr_base);
603 unmap_base:
604 	iounmap(priv->base);
605 
606 	return ret;
607 }
608 
609 static void brcm_avs_prepare_uninit(struct platform_device *pdev)
610 {
611 	struct private_data *priv;
612 
613 	priv = platform_get_drvdata(pdev);
614 
615 	iounmap(priv->avs_intr_base);
616 	iounmap(priv->base);
617 }
618 
619 static int brcm_avs_cpufreq_init(struct cpufreq_policy *policy)
620 {
621 	struct cpufreq_frequency_table *freq_table;
622 	struct platform_device *pdev;
623 	struct private_data *priv;
624 	struct device *dev;
625 	int ret;
626 
627 	pdev = cpufreq_get_driver_data();
628 	priv = platform_get_drvdata(pdev);
629 	policy->driver_data = priv;
630 	dev = &pdev->dev;
631 
632 	freq_table = brcm_avs_get_freq_table(dev, priv);
633 	if (IS_ERR(freq_table)) {
634 		ret = PTR_ERR(freq_table);
635 		dev_err(dev, "Couldn't determine frequency table (%d).\n", ret);
636 		return ret;
637 	}
638 
639 	policy->freq_table = freq_table;
640 
641 	/* All cores share the same clock and thus the same policy. */
642 	cpumask_setall(policy->cpus);
643 
644 	ret = __issue_avs_command(priv, AVS_CMD_ENABLE, 0, 0, NULL);
645 	if (!ret) {
646 		unsigned int pstate;
647 
648 		ret = brcm_avs_get_pstate(priv, &pstate);
649 		if (!ret) {
650 			policy->cur = freq_table[pstate].frequency;
651 			dev_info(dev, "registered\n");
652 			return 0;
653 		}
654 	}
655 
656 	dev_err(dev, "couldn't initialize driver (%d)\n", ret);
657 
658 	return ret;
659 }
660 
661 static ssize_t show_brcm_avs_pstate(struct cpufreq_policy *policy, char *buf)
662 {
663 	struct private_data *priv = policy->driver_data;
664 	unsigned int pstate;
665 
666 	if (brcm_avs_get_pstate(priv, &pstate))
667 		return sprintf(buf, "<unknown>\n");
668 
669 	return sprintf(buf, "%u\n", pstate);
670 }
671 
672 static ssize_t show_brcm_avs_mode(struct cpufreq_policy *policy, char *buf)
673 {
674 	struct private_data *priv = policy->driver_data;
675 	struct pmap pmap;
676 
677 	if (brcm_avs_get_pmap(priv, &pmap))
678 		return sprintf(buf, "<unknown>\n");
679 
680 	return sprintf(buf, "%s %u\n", brcm_avs_mode_to_string(pmap.mode),
681 		pmap.mode);
682 }
683 
684 static ssize_t show_brcm_avs_pmap(struct cpufreq_policy *policy, char *buf)
685 {
686 	unsigned int mdiv_p0, mdiv_p1, mdiv_p2, mdiv_p3, mdiv_p4;
687 	struct private_data *priv = policy->driver_data;
688 	unsigned int ndiv, pdiv;
689 	struct pmap pmap;
690 
691 	if (brcm_avs_get_pmap(priv, &pmap))
692 		return sprintf(buf, "<unknown>\n");
693 
694 	brcm_avs_parse_p1(pmap.p1, &mdiv_p0, &pdiv, &ndiv);
695 	brcm_avs_parse_p2(pmap.p2, &mdiv_p1, &mdiv_p2, &mdiv_p3, &mdiv_p4);
696 
697 	return sprintf(buf, "0x%08x 0x%08x %u %u %u %u %u %u %u %u %u\n",
698 		pmap.p1, pmap.p2, ndiv, pdiv, mdiv_p0, mdiv_p1, mdiv_p2,
699 		mdiv_p3, mdiv_p4, pmap.mode, pmap.state);
700 }
701 
702 static ssize_t show_brcm_avs_voltage(struct cpufreq_policy *policy, char *buf)
703 {
704 	struct private_data *priv = policy->driver_data;
705 
706 	return sprintf(buf, "0x%08x\n", brcm_avs_get_voltage(priv->base));
707 }
708 
709 static ssize_t show_brcm_avs_frequency(struct cpufreq_policy *policy, char *buf)
710 {
711 	struct private_data *priv = policy->driver_data;
712 
713 	return sprintf(buf, "0x%08x\n", brcm_avs_get_frequency(priv->base));
714 }
715 
716 cpufreq_freq_attr_ro(brcm_avs_pstate);
717 cpufreq_freq_attr_ro(brcm_avs_mode);
718 cpufreq_freq_attr_ro(brcm_avs_pmap);
719 cpufreq_freq_attr_ro(brcm_avs_voltage);
720 cpufreq_freq_attr_ro(brcm_avs_frequency);
721 
722 static struct freq_attr *brcm_avs_cpufreq_attr[] = {
723 	&cpufreq_freq_attr_scaling_available_freqs,
724 	&brcm_avs_pstate,
725 	&brcm_avs_mode,
726 	&brcm_avs_pmap,
727 	&brcm_avs_voltage,
728 	&brcm_avs_frequency,
729 	NULL
730 };
731 
732 static struct cpufreq_driver brcm_avs_driver = {
733 	.flags		= CPUFREQ_NEED_INITIAL_FREQ_CHECK,
734 	.verify		= cpufreq_generic_frequency_table_verify,
735 	.target_index	= brcm_avs_target_index,
736 	.get		= brcm_avs_cpufreq_get,
737 	.suspend	= brcm_avs_suspend,
738 	.resume		= brcm_avs_resume,
739 	.init		= brcm_avs_cpufreq_init,
740 	.attr		= brcm_avs_cpufreq_attr,
741 	.name		= BRCM_AVS_CPUFREQ_PREFIX,
742 };
743 
744 static int brcm_avs_cpufreq_probe(struct platform_device *pdev)
745 {
746 	int ret;
747 
748 	ret = brcm_avs_prepare_init(pdev);
749 	if (ret)
750 		return ret;
751 
752 	brcm_avs_driver.driver_data = pdev;
753 
754 	ret = cpufreq_register_driver(&brcm_avs_driver);
755 	if (ret)
756 		brcm_avs_prepare_uninit(pdev);
757 
758 	return ret;
759 }
760 
761 static void brcm_avs_cpufreq_remove(struct platform_device *pdev)
762 {
763 	cpufreq_unregister_driver(&brcm_avs_driver);
764 
765 	brcm_avs_prepare_uninit(pdev);
766 }
767 
768 static const struct of_device_id brcm_avs_cpufreq_match[] = {
769 	{ .compatible = BRCM_AVS_CPU_DATA },
770 	{ }
771 };
772 MODULE_DEVICE_TABLE(of, brcm_avs_cpufreq_match);
773 
774 static struct platform_driver brcm_avs_cpufreq_platdrv = {
775 	.driver = {
776 		.name	= BRCM_AVS_CPUFREQ_NAME,
777 		.of_match_table = brcm_avs_cpufreq_match,
778 	},
779 	.probe		= brcm_avs_cpufreq_probe,
780 	.remove		= brcm_avs_cpufreq_remove,
781 };
782 module_platform_driver(brcm_avs_cpufreq_platdrv);
783 
784 MODULE_AUTHOR("Markus Mayer <mmayer@broadcom.com>");
785 MODULE_DESCRIPTION("CPUfreq driver for Broadcom STB AVS");
786 MODULE_LICENSE("GPL");
787