xref: /linux/drivers/counter/stm32-timer-cnt.c (revision 2eff01ee2881becc9daaa0d53477ec202136b1f4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * STM32 Timer Encoder and Counter driver
4  *
5  * Copyright (C) STMicroelectronics 2018
6  *
7  * Author: Benjamin Gaignard <benjamin.gaignard@st.com>
8  *
9  */
10 #include <linux/counter.h>
11 #include <linux/interrupt.h>
12 #include <linux/mfd/stm32-timers.h>
13 #include <linux/mod_devicetable.h>
14 #include <linux/module.h>
15 #include <linux/of.h>
16 #include <linux/pinctrl/consumer.h>
17 #include <linux/platform_device.h>
18 #include <linux/types.h>
19 
20 #define TIM_CCMR_CCXS	(BIT(8) | BIT(0))
21 #define TIM_CCMR_MASK	(TIM_CCMR_CC1S | TIM_CCMR_CC2S | \
22 			 TIM_CCMR_IC1F | TIM_CCMR_IC2F)
23 #define TIM_CCER_MASK	(TIM_CCER_CC1P | TIM_CCER_CC1NP | \
24 			 TIM_CCER_CC2P | TIM_CCER_CC2NP)
25 
26 #define STM32_CH1_SIG		0
27 #define STM32_CH2_SIG		1
28 #define STM32_CLOCK_SIG		2
29 #define STM32_CH3_SIG		3
30 #define STM32_CH4_SIG		4
31 
32 struct stm32_timer_regs {
33 	u32 cr1;
34 	u32 cnt;
35 	u32 smcr;
36 	u32 arr;
37 };
38 
39 struct stm32_timer_cnt {
40 	struct regmap *regmap;
41 	struct clk *clk;
42 	u32 max_arr;
43 	bool enabled;
44 	struct stm32_timer_regs bak;
45 	bool has_encoder;
46 	unsigned int nchannels;
47 	unsigned int nr_irqs;
48 	spinlock_t lock; /* protects nb_ovf */
49 	u64 nb_ovf;
50 };
51 
52 static const enum counter_function stm32_count_functions[] = {
53 	COUNTER_FUNCTION_INCREASE,
54 	COUNTER_FUNCTION_QUADRATURE_X2_A,
55 	COUNTER_FUNCTION_QUADRATURE_X2_B,
56 	COUNTER_FUNCTION_QUADRATURE_X4,
57 };
58 
59 static int stm32_count_read(struct counter_device *counter,
60 			    struct counter_count *count, u64 *val)
61 {
62 	struct stm32_timer_cnt *const priv = counter_priv(counter);
63 	u32 cnt;
64 
65 	regmap_read(priv->regmap, TIM_CNT, &cnt);
66 	*val = cnt;
67 
68 	return 0;
69 }
70 
71 static int stm32_count_write(struct counter_device *counter,
72 			     struct counter_count *count, const u64 val)
73 {
74 	struct stm32_timer_cnt *const priv = counter_priv(counter);
75 	u32 ceiling;
76 
77 	regmap_read(priv->regmap, TIM_ARR, &ceiling);
78 	if (val > ceiling)
79 		return -EINVAL;
80 
81 	return regmap_write(priv->regmap, TIM_CNT, val);
82 }
83 
84 static int stm32_count_function_read(struct counter_device *counter,
85 				     struct counter_count *count,
86 				     enum counter_function *function)
87 {
88 	struct stm32_timer_cnt *const priv = counter_priv(counter);
89 	u32 smcr;
90 
91 	regmap_read(priv->regmap, TIM_SMCR, &smcr);
92 
93 	switch (smcr & TIM_SMCR_SMS) {
94 	case TIM_SMCR_SMS_SLAVE_MODE_DISABLED:
95 		*function = COUNTER_FUNCTION_INCREASE;
96 		return 0;
97 	case TIM_SMCR_SMS_ENCODER_MODE_1:
98 		*function = COUNTER_FUNCTION_QUADRATURE_X2_A;
99 		return 0;
100 	case TIM_SMCR_SMS_ENCODER_MODE_2:
101 		*function = COUNTER_FUNCTION_QUADRATURE_X2_B;
102 		return 0;
103 	case TIM_SMCR_SMS_ENCODER_MODE_3:
104 		*function = COUNTER_FUNCTION_QUADRATURE_X4;
105 		return 0;
106 	default:
107 		return -EINVAL;
108 	}
109 }
110 
111 static int stm32_count_function_write(struct counter_device *counter,
112 				      struct counter_count *count,
113 				      enum counter_function function)
114 {
115 	struct stm32_timer_cnt *const priv = counter_priv(counter);
116 	u32 cr1, sms;
117 
118 	switch (function) {
119 	case COUNTER_FUNCTION_INCREASE:
120 		sms = TIM_SMCR_SMS_SLAVE_MODE_DISABLED;
121 		break;
122 	case COUNTER_FUNCTION_QUADRATURE_X2_A:
123 		if (!priv->has_encoder)
124 			return -EOPNOTSUPP;
125 		sms = TIM_SMCR_SMS_ENCODER_MODE_1;
126 		break;
127 	case COUNTER_FUNCTION_QUADRATURE_X2_B:
128 		if (!priv->has_encoder)
129 			return -EOPNOTSUPP;
130 		sms = TIM_SMCR_SMS_ENCODER_MODE_2;
131 		break;
132 	case COUNTER_FUNCTION_QUADRATURE_X4:
133 		if (!priv->has_encoder)
134 			return -EOPNOTSUPP;
135 		sms = TIM_SMCR_SMS_ENCODER_MODE_3;
136 		break;
137 	default:
138 		return -EINVAL;
139 	}
140 
141 	/* Store enable status */
142 	regmap_read(priv->regmap, TIM_CR1, &cr1);
143 
144 	regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
145 
146 	regmap_update_bits(priv->regmap, TIM_SMCR, TIM_SMCR_SMS, sms);
147 
148 	/* Make sure that registers are updated */
149 	regmap_update_bits(priv->regmap, TIM_EGR, TIM_EGR_UG, TIM_EGR_UG);
150 
151 	/* Restore the enable status */
152 	regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, cr1);
153 
154 	return 0;
155 }
156 
157 static int stm32_count_direction_read(struct counter_device *counter,
158 				      struct counter_count *count,
159 				      enum counter_count_direction *direction)
160 {
161 	struct stm32_timer_cnt *const priv = counter_priv(counter);
162 	u32 cr1;
163 
164 	regmap_read(priv->regmap, TIM_CR1, &cr1);
165 	*direction = (cr1 & TIM_CR1_DIR) ? COUNTER_COUNT_DIRECTION_BACKWARD :
166 		COUNTER_COUNT_DIRECTION_FORWARD;
167 
168 	return 0;
169 }
170 
171 static int stm32_count_ceiling_read(struct counter_device *counter,
172 				    struct counter_count *count, u64 *ceiling)
173 {
174 	struct stm32_timer_cnt *const priv = counter_priv(counter);
175 	u32 arr;
176 
177 	regmap_read(priv->regmap, TIM_ARR, &arr);
178 
179 	*ceiling = arr;
180 
181 	return 0;
182 }
183 
184 static int stm32_count_ceiling_write(struct counter_device *counter,
185 				     struct counter_count *count, u64 ceiling)
186 {
187 	struct stm32_timer_cnt *const priv = counter_priv(counter);
188 
189 	if (ceiling > priv->max_arr)
190 		return -ERANGE;
191 
192 	/* TIMx_ARR register shouldn't be buffered (ARPE=0) */
193 	regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE, 0);
194 	regmap_write(priv->regmap, TIM_ARR, ceiling);
195 
196 	return 0;
197 }
198 
199 static int stm32_count_enable_read(struct counter_device *counter,
200 				   struct counter_count *count, u8 *enable)
201 {
202 	struct stm32_timer_cnt *const priv = counter_priv(counter);
203 	u32 cr1;
204 
205 	regmap_read(priv->regmap, TIM_CR1, &cr1);
206 
207 	*enable = cr1 & TIM_CR1_CEN;
208 
209 	return 0;
210 }
211 
212 static int stm32_count_enable_write(struct counter_device *counter,
213 				    struct counter_count *count, u8 enable)
214 {
215 	struct stm32_timer_cnt *const priv = counter_priv(counter);
216 	u32 cr1;
217 	int ret;
218 
219 	if (enable) {
220 		regmap_read(priv->regmap, TIM_CR1, &cr1);
221 		if (!(cr1 & TIM_CR1_CEN)) {
222 			ret = clk_enable(priv->clk);
223 			if (ret) {
224 				dev_err(counter->parent, "Cannot enable clock %d\n", ret);
225 				return ret;
226 			}
227 		}
228 
229 		regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN,
230 				   TIM_CR1_CEN);
231 	} else {
232 		regmap_read(priv->regmap, TIM_CR1, &cr1);
233 		regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
234 		if (cr1 & TIM_CR1_CEN)
235 			clk_disable(priv->clk);
236 	}
237 
238 	/* Keep enabled state to properly handle low power states */
239 	priv->enabled = enable;
240 
241 	return 0;
242 }
243 
244 static int stm32_count_prescaler_read(struct counter_device *counter,
245 				      struct counter_count *count, u64 *prescaler)
246 {
247 	struct stm32_timer_cnt *const priv = counter_priv(counter);
248 	u32 psc;
249 
250 	regmap_read(priv->regmap, TIM_PSC, &psc);
251 
252 	*prescaler = psc + 1;
253 
254 	return 0;
255 }
256 
257 static int stm32_count_prescaler_write(struct counter_device *counter,
258 				       struct counter_count *count, u64 prescaler)
259 {
260 	struct stm32_timer_cnt *const priv = counter_priv(counter);
261 	u32 psc;
262 
263 	if (!prescaler || prescaler > MAX_TIM_PSC + 1)
264 		return -ERANGE;
265 
266 	psc = prescaler - 1;
267 
268 	return regmap_write(priv->regmap, TIM_PSC, psc);
269 }
270 
271 static int stm32_count_cap_read(struct counter_device *counter,
272 				struct counter_count *count,
273 				size_t ch, u64 *cap)
274 {
275 	struct stm32_timer_cnt *const priv = counter_priv(counter);
276 	u32 ccrx;
277 
278 	if (ch >= priv->nchannels)
279 		return -EOPNOTSUPP;
280 
281 	switch (ch) {
282 	case 0:
283 		regmap_read(priv->regmap, TIM_CCR1, &ccrx);
284 		break;
285 	case 1:
286 		regmap_read(priv->regmap, TIM_CCR2, &ccrx);
287 		break;
288 	case 2:
289 		regmap_read(priv->regmap, TIM_CCR3, &ccrx);
290 		break;
291 	case 3:
292 		regmap_read(priv->regmap, TIM_CCR4, &ccrx);
293 		break;
294 	default:
295 		return -EINVAL;
296 	}
297 
298 	dev_dbg(counter->parent, "CCR%zu: 0x%08x\n", ch + 1, ccrx);
299 
300 	*cap = ccrx;
301 
302 	return 0;
303 }
304 
305 static int stm32_count_nb_ovf_read(struct counter_device *counter,
306 				   struct counter_count *count, u64 *val)
307 {
308 	struct stm32_timer_cnt *const priv = counter_priv(counter);
309 	unsigned long irqflags;
310 
311 	spin_lock_irqsave(&priv->lock, irqflags);
312 	*val = priv->nb_ovf;
313 	spin_unlock_irqrestore(&priv->lock, irqflags);
314 
315 	return 0;
316 }
317 
318 static int stm32_count_nb_ovf_write(struct counter_device *counter,
319 				    struct counter_count *count, u64 val)
320 {
321 	struct stm32_timer_cnt *const priv = counter_priv(counter);
322 	unsigned long irqflags;
323 
324 	spin_lock_irqsave(&priv->lock, irqflags);
325 	priv->nb_ovf = val;
326 	spin_unlock_irqrestore(&priv->lock, irqflags);
327 
328 	return 0;
329 }
330 
331 static DEFINE_COUNTER_ARRAY_CAPTURE(stm32_count_cap_array, 4);
332 
333 static struct counter_comp stm32_count_ext[] = {
334 	COUNTER_COMP_DIRECTION(stm32_count_direction_read),
335 	COUNTER_COMP_ENABLE(stm32_count_enable_read, stm32_count_enable_write),
336 	COUNTER_COMP_CEILING(stm32_count_ceiling_read,
337 			     stm32_count_ceiling_write),
338 	COUNTER_COMP_COUNT_U64("prescaler", stm32_count_prescaler_read,
339 			       stm32_count_prescaler_write),
340 	COUNTER_COMP_ARRAY_CAPTURE(stm32_count_cap_read, NULL, stm32_count_cap_array),
341 	COUNTER_COMP_COUNT_U64("num_overflows", stm32_count_nb_ovf_read, stm32_count_nb_ovf_write),
342 };
343 
344 static const enum counter_synapse_action stm32_clock_synapse_actions[] = {
345 	COUNTER_SYNAPSE_ACTION_RISING_EDGE,
346 };
347 
348 static const enum counter_synapse_action stm32_synapse_actions[] = {
349 	COUNTER_SYNAPSE_ACTION_NONE,
350 	COUNTER_SYNAPSE_ACTION_BOTH_EDGES
351 };
352 
353 static int stm32_action_read(struct counter_device *counter,
354 			     struct counter_count *count,
355 			     struct counter_synapse *synapse,
356 			     enum counter_synapse_action *action)
357 {
358 	enum counter_function function;
359 	int err;
360 
361 	err = stm32_count_function_read(counter, count, &function);
362 	if (err)
363 		return err;
364 
365 	switch (function) {
366 	case COUNTER_FUNCTION_INCREASE:
367 		/* counts on internal clock when CEN=1 */
368 		if (synapse->signal->id == STM32_CLOCK_SIG)
369 			*action = COUNTER_SYNAPSE_ACTION_RISING_EDGE;
370 		else
371 			*action = COUNTER_SYNAPSE_ACTION_NONE;
372 		return 0;
373 	case COUNTER_FUNCTION_QUADRATURE_X2_A:
374 		/* counts up/down on TI1FP1 edge depending on TI2FP2 level */
375 		if (synapse->signal->id == STM32_CH1_SIG)
376 			*action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES;
377 		else
378 			*action = COUNTER_SYNAPSE_ACTION_NONE;
379 		return 0;
380 	case COUNTER_FUNCTION_QUADRATURE_X2_B:
381 		/* counts up/down on TI2FP2 edge depending on TI1FP1 level */
382 		if (synapse->signal->id == STM32_CH2_SIG)
383 			*action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES;
384 		else
385 			*action = COUNTER_SYNAPSE_ACTION_NONE;
386 		return 0;
387 	case COUNTER_FUNCTION_QUADRATURE_X4:
388 		/* counts up/down on both TI1FP1 and TI2FP2 edges */
389 		if (synapse->signal->id == STM32_CH1_SIG || synapse->signal->id == STM32_CH2_SIG)
390 			*action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES;
391 		else
392 			*action = COUNTER_SYNAPSE_ACTION_NONE;
393 		return 0;
394 	default:
395 		return -EINVAL;
396 	}
397 }
398 
399 struct stm32_count_cc_regs {
400 	u32 ccmr_reg;
401 	u32 ccmr_mask;
402 	u32 ccmr_bits;
403 	u32 ccer_bits;
404 };
405 
406 static const struct stm32_count_cc_regs stm32_cc[] = {
407 	{ TIM_CCMR1, TIM_CCMR_CC1S, TIM_CCMR_CC1S_TI1,
408 		TIM_CCER_CC1E | TIM_CCER_CC1P | TIM_CCER_CC1NP },
409 	{ TIM_CCMR1, TIM_CCMR_CC2S, TIM_CCMR_CC2S_TI2,
410 		TIM_CCER_CC2E | TIM_CCER_CC2P | TIM_CCER_CC2NP },
411 	{ TIM_CCMR2, TIM_CCMR_CC3S, TIM_CCMR_CC3S_TI3,
412 		TIM_CCER_CC3E | TIM_CCER_CC3P | TIM_CCER_CC3NP },
413 	{ TIM_CCMR2, TIM_CCMR_CC4S, TIM_CCMR_CC4S_TI4,
414 		TIM_CCER_CC4E | TIM_CCER_CC4P | TIM_CCER_CC4NP },
415 };
416 
417 static int stm32_count_capture_configure(struct counter_device *counter, unsigned int ch,
418 					 bool enable)
419 {
420 	struct stm32_timer_cnt *const priv = counter_priv(counter);
421 	const struct stm32_count_cc_regs *cc;
422 	u32 ccmr, ccer;
423 
424 	if (ch >= ARRAY_SIZE(stm32_cc) || ch >= priv->nchannels) {
425 		dev_err(counter->parent, "invalid ch: %d\n", ch);
426 		return -EINVAL;
427 	}
428 
429 	cc = &stm32_cc[ch];
430 
431 	/*
432 	 * configure channel in input capture mode, map channel 1 on TI1, channel2 on TI2...
433 	 * Select both edges / non-inverted to trigger a capture.
434 	 */
435 	if (enable) {
436 		/* first clear possibly latched capture flag upon enabling */
437 		if (!regmap_test_bits(priv->regmap, TIM_CCER, cc->ccer_bits))
438 			regmap_write(priv->regmap, TIM_SR, ~TIM_SR_CC_IF(ch));
439 		regmap_update_bits(priv->regmap, cc->ccmr_reg, cc->ccmr_mask,
440 				   cc->ccmr_bits);
441 		regmap_set_bits(priv->regmap, TIM_CCER, cc->ccer_bits);
442 	} else {
443 		regmap_clear_bits(priv->regmap, TIM_CCER, cc->ccer_bits);
444 		regmap_clear_bits(priv->regmap, cc->ccmr_reg, cc->ccmr_mask);
445 	}
446 
447 	regmap_read(priv->regmap, cc->ccmr_reg, &ccmr);
448 	regmap_read(priv->regmap, TIM_CCER, &ccer);
449 	dev_dbg(counter->parent, "%s(%s) ch%d 0x%08x 0x%08x\n", __func__, enable ? "ena" : "dis",
450 		ch, ccmr, ccer);
451 
452 	return 0;
453 }
454 
455 static int stm32_count_events_configure(struct counter_device *counter)
456 {
457 	struct stm32_timer_cnt *const priv = counter_priv(counter);
458 	struct counter_event_node *event_node;
459 	u32 dier = 0;
460 	int i, ret;
461 
462 	list_for_each_entry(event_node, &counter->events_list, l) {
463 		switch (event_node->event) {
464 		case COUNTER_EVENT_OVERFLOW_UNDERFLOW:
465 			/* first clear possibly latched UIF before enabling */
466 			if (!regmap_test_bits(priv->regmap, TIM_DIER, TIM_DIER_UIE))
467 				regmap_write(priv->regmap, TIM_SR, (u32)~TIM_SR_UIF);
468 			dier |= TIM_DIER_UIE;
469 			break;
470 		case COUNTER_EVENT_CAPTURE:
471 			ret = stm32_count_capture_configure(counter, event_node->channel, true);
472 			if (ret)
473 				return ret;
474 			dier |= TIM_DIER_CCxIE(event_node->channel + 1);
475 			break;
476 		default:
477 			/* should never reach this path */
478 			return -EINVAL;
479 		}
480 	}
481 
482 	/* Enable / disable all events at once, from events_list, so write all DIER bits */
483 	regmap_write(priv->regmap, TIM_DIER, dier);
484 
485 	/* check for disabled capture events */
486 	for (i = 0 ; i < priv->nchannels; i++) {
487 		if (!(dier & TIM_DIER_CCxIE(i + 1))) {
488 			ret = stm32_count_capture_configure(counter, i, false);
489 			if (ret)
490 				return ret;
491 		}
492 	}
493 
494 	return 0;
495 }
496 
497 static int stm32_count_watch_validate(struct counter_device *counter,
498 				      const struct counter_watch *watch)
499 {
500 	struct stm32_timer_cnt *const priv = counter_priv(counter);
501 
502 	/* Interrupts are optional */
503 	if (!priv->nr_irqs)
504 		return -EOPNOTSUPP;
505 
506 	switch (watch->event) {
507 	case COUNTER_EVENT_CAPTURE:
508 		if (watch->channel >= priv->nchannels) {
509 			dev_err(counter->parent, "Invalid channel %d\n", watch->channel);
510 			return -EINVAL;
511 		}
512 		return 0;
513 	case COUNTER_EVENT_OVERFLOW_UNDERFLOW:
514 		return 0;
515 	default:
516 		return -EINVAL;
517 	}
518 }
519 
520 static const struct counter_ops stm32_timer_cnt_ops = {
521 	.count_read = stm32_count_read,
522 	.count_write = stm32_count_write,
523 	.function_read = stm32_count_function_read,
524 	.function_write = stm32_count_function_write,
525 	.action_read = stm32_action_read,
526 	.events_configure = stm32_count_events_configure,
527 	.watch_validate = stm32_count_watch_validate,
528 };
529 
530 static int stm32_count_clk_get_freq(struct counter_device *counter,
531 				    struct counter_signal *signal, u64 *freq)
532 {
533 	struct stm32_timer_cnt *const priv = counter_priv(counter);
534 
535 	*freq = clk_get_rate(priv->clk);
536 
537 	return 0;
538 }
539 
540 static struct counter_comp stm32_count_clock_ext[] = {
541 	COUNTER_COMP_FREQUENCY(stm32_count_clk_get_freq),
542 };
543 
544 static struct counter_signal stm32_signals[] = {
545 	/*
546 	 * Need to declare all the signals as a static array, and keep the signals order here,
547 	 * even if they're unused or unexisting on some timer instances. It's an abstraction,
548 	 * e.g. high level view of the counter features.
549 	 *
550 	 * Userspace programs may rely on signal0 to be "Channel 1", signal1 to be "Channel 2",
551 	 * and so on. When a signal is unexisting, the COUNTER_SYNAPSE_ACTION_NONE can be used,
552 	 * to indicate that a signal doesn't affect the counter.
553 	 */
554 	{
555 		.id = STM32_CH1_SIG,
556 		.name = "Channel 1"
557 	},
558 	{
559 		.id = STM32_CH2_SIG,
560 		.name = "Channel 2"
561 	},
562 	{
563 		.id = STM32_CLOCK_SIG,
564 		.name = "Clock",
565 		.ext = stm32_count_clock_ext,
566 		.num_ext = ARRAY_SIZE(stm32_count_clock_ext),
567 	},
568 	{
569 		.id = STM32_CH3_SIG,
570 		.name = "Channel 3"
571 	},
572 	{
573 		.id = STM32_CH4_SIG,
574 		.name = "Channel 4"
575 	},
576 };
577 
578 static struct counter_synapse stm32_count_synapses[] = {
579 	{
580 		.actions_list = stm32_synapse_actions,
581 		.num_actions = ARRAY_SIZE(stm32_synapse_actions),
582 		.signal = &stm32_signals[STM32_CH1_SIG]
583 	},
584 	{
585 		.actions_list = stm32_synapse_actions,
586 		.num_actions = ARRAY_SIZE(stm32_synapse_actions),
587 		.signal = &stm32_signals[STM32_CH2_SIG]
588 	},
589 	{
590 		.actions_list = stm32_clock_synapse_actions,
591 		.num_actions = ARRAY_SIZE(stm32_clock_synapse_actions),
592 		.signal = &stm32_signals[STM32_CLOCK_SIG]
593 	},
594 	{
595 		.actions_list = stm32_synapse_actions,
596 		.num_actions = ARRAY_SIZE(stm32_synapse_actions),
597 		.signal = &stm32_signals[STM32_CH3_SIG]
598 	},
599 	{
600 		.actions_list = stm32_synapse_actions,
601 		.num_actions = ARRAY_SIZE(stm32_synapse_actions),
602 		.signal = &stm32_signals[STM32_CH4_SIG]
603 	},
604 };
605 
606 static struct counter_count stm32_counts = {
607 	.id = 0,
608 	.name = "STM32 Timer Counter",
609 	.functions_list = stm32_count_functions,
610 	.num_functions = ARRAY_SIZE(stm32_count_functions),
611 	.synapses = stm32_count_synapses,
612 	.num_synapses = ARRAY_SIZE(stm32_count_synapses),
613 	.ext = stm32_count_ext,
614 	.num_ext = ARRAY_SIZE(stm32_count_ext)
615 };
616 
617 static irqreturn_t stm32_timer_cnt_isr(int irq, void *ptr)
618 {
619 	struct counter_device *counter = ptr;
620 	struct stm32_timer_cnt *const priv = counter_priv(counter);
621 	u32 clr = GENMASK(31, 0); /* SR flags can be cleared by writing 0 (wr 1 has no effect) */
622 	u32 sr, dier;
623 	int i;
624 
625 	regmap_read(priv->regmap, TIM_SR, &sr);
626 	regmap_read(priv->regmap, TIM_DIER, &dier);
627 	/*
628 	 * Some status bits in SR don't match with the enable bits in DIER. Only take care of
629 	 * the possibly enabled bits in DIER (that matches in between SR and DIER).
630 	 */
631 	dier &= (TIM_DIER_UIE | TIM_DIER_CC1IE | TIM_DIER_CC2IE | TIM_DIER_CC3IE | TIM_DIER_CC4IE);
632 	sr &= dier;
633 
634 	if (sr & TIM_SR_UIF) {
635 		spin_lock(&priv->lock);
636 		priv->nb_ovf++;
637 		spin_unlock(&priv->lock);
638 		counter_push_event(counter, COUNTER_EVENT_OVERFLOW_UNDERFLOW, 0);
639 		dev_dbg(counter->parent, "COUNTER_EVENT_OVERFLOW_UNDERFLOW\n");
640 		/* SR flags can be cleared by writing 0, only clear relevant flag */
641 		clr &= ~TIM_SR_UIF;
642 	}
643 
644 	/* Check capture events */
645 	for (i = 0 ; i < priv->nchannels; i++) {
646 		if (sr & TIM_SR_CC_IF(i)) {
647 			counter_push_event(counter, COUNTER_EVENT_CAPTURE, i);
648 			clr &= ~TIM_SR_CC_IF(i);
649 			dev_dbg(counter->parent, "COUNTER_EVENT_CAPTURE, %d\n", i);
650 		}
651 	}
652 
653 	regmap_write(priv->regmap, TIM_SR, clr);
654 
655 	return IRQ_HANDLED;
656 };
657 
658 static void stm32_timer_cnt_detect_channels(struct device *dev,
659 					    struct stm32_timer_cnt *priv)
660 {
661 	u32 ccer, ccer_backup;
662 
663 	regmap_read(priv->regmap, TIM_CCER, &ccer_backup);
664 	regmap_set_bits(priv->regmap, TIM_CCER, TIM_CCER_CCXE);
665 	regmap_read(priv->regmap, TIM_CCER, &ccer);
666 	regmap_write(priv->regmap, TIM_CCER, ccer_backup);
667 	priv->nchannels = hweight32(ccer & TIM_CCER_CCXE);
668 
669 	dev_dbg(dev, "has %d cc channels\n", priv->nchannels);
670 }
671 
672 /* encoder supported on TIM1 TIM2 TIM3 TIM4 TIM5 TIM8 */
673 #define STM32_TIM_ENCODER_SUPPORTED	(BIT(0) | BIT(1) | BIT(2) | BIT(3) | BIT(4) | BIT(7))
674 
675 static const char * const stm32_timer_trigger_compat[] = {
676 	"st,stm32-timer-trigger",
677 	"st,stm32h7-timer-trigger",
678 };
679 
680 static int stm32_timer_cnt_probe_encoder(struct device *dev,
681 					 struct stm32_timer_cnt *priv)
682 {
683 	struct device *parent = dev->parent;
684 	struct device_node *tnode = NULL, *pnode = parent->of_node;
685 	int i, ret;
686 	u32 idx;
687 
688 	/*
689 	 * Need to retrieve the trigger node index from DT, to be able
690 	 * to determine if the counter supports encoder mode. It also
691 	 * enforce backward compatibility, and allow to support other
692 	 * counter modes in this driver (when the timer doesn't support
693 	 * encoder).
694 	 */
695 	for (i = 0; i < ARRAY_SIZE(stm32_timer_trigger_compat) && !tnode; i++)
696 		tnode = of_get_compatible_child(pnode, stm32_timer_trigger_compat[i]);
697 	if (!tnode) {
698 		dev_err(dev, "Can't find trigger node\n");
699 		return -ENODATA;
700 	}
701 
702 	ret = of_property_read_u32(tnode, "reg", &idx);
703 	of_node_put(tnode);
704 	if (ret) {
705 		dev_err(dev, "Can't get index (%d)\n", ret);
706 		return ret;
707 	}
708 
709 	priv->has_encoder = !!(STM32_TIM_ENCODER_SUPPORTED & BIT(idx));
710 
711 	dev_dbg(dev, "encoder support: %s\n", priv->has_encoder ? "yes" : "no");
712 
713 	return 0;
714 }
715 
716 static int stm32_timer_cnt_probe(struct platform_device *pdev)
717 {
718 	struct stm32_timers *ddata = dev_get_drvdata(pdev->dev.parent);
719 	struct device *dev = &pdev->dev;
720 	struct stm32_timer_cnt *priv;
721 	struct counter_device *counter;
722 	int i, ret;
723 
724 	if (IS_ERR_OR_NULL(ddata))
725 		return -EINVAL;
726 
727 	counter = devm_counter_alloc(dev, sizeof(*priv));
728 	if (!counter)
729 		return -ENOMEM;
730 
731 	priv = counter_priv(counter);
732 
733 	priv->regmap = ddata->regmap;
734 	priv->clk = ddata->clk;
735 	priv->max_arr = ddata->max_arr;
736 	priv->nr_irqs = ddata->nr_irqs;
737 
738 	ret = stm32_timer_cnt_probe_encoder(dev, priv);
739 	if (ret)
740 		return ret;
741 
742 	stm32_timer_cnt_detect_channels(dev, priv);
743 
744 	counter->name = dev_name(dev);
745 	counter->parent = dev;
746 	counter->ops = &stm32_timer_cnt_ops;
747 	counter->counts = &stm32_counts;
748 	counter->num_counts = 1;
749 	counter->signals = stm32_signals;
750 	counter->num_signals = ARRAY_SIZE(stm32_signals);
751 
752 	spin_lock_init(&priv->lock);
753 
754 	platform_set_drvdata(pdev, priv);
755 
756 	/* STM32 Timers can have either 1 global, or 4 dedicated interrupts (optional) */
757 	if (priv->nr_irqs == 1) {
758 		/* All events reported through the global interrupt */
759 		ret = devm_request_irq(&pdev->dev, ddata->irq[0], stm32_timer_cnt_isr,
760 				       0, dev_name(dev), counter);
761 		if (ret) {
762 			dev_err(dev, "Failed to request irq %d (err %d)\n",
763 				ddata->irq[0], ret);
764 			return ret;
765 		}
766 	} else {
767 		for (i = 0; i < priv->nr_irqs; i++) {
768 			/*
769 			 * Only take care of update IRQ for overflow events, and cc for
770 			 * capture events.
771 			 */
772 			if (i != STM32_TIMERS_IRQ_UP && i != STM32_TIMERS_IRQ_CC)
773 				continue;
774 
775 			ret = devm_request_irq(&pdev->dev, ddata->irq[i], stm32_timer_cnt_isr,
776 					       0, dev_name(dev), counter);
777 			if (ret) {
778 				dev_err(dev, "Failed to request irq %d (err %d)\n",
779 					ddata->irq[i], ret);
780 				return ret;
781 			}
782 		}
783 	}
784 
785 	/* Reset input selector to its default input */
786 	regmap_write(priv->regmap, TIM_TISEL, 0x0);
787 
788 	/* Register Counter device */
789 	ret = devm_counter_add(dev, counter);
790 	if (ret < 0)
791 		dev_err_probe(dev, ret, "Failed to add counter\n");
792 
793 	return ret;
794 }
795 
796 static int __maybe_unused stm32_timer_cnt_suspend(struct device *dev)
797 {
798 	struct stm32_timer_cnt *priv = dev_get_drvdata(dev);
799 
800 	/* Only take care of enabled counter: don't disturb other MFD child */
801 	if (priv->enabled) {
802 		/* Backup registers that may get lost in low power mode */
803 		regmap_read(priv->regmap, TIM_SMCR, &priv->bak.smcr);
804 		regmap_read(priv->regmap, TIM_ARR, &priv->bak.arr);
805 		regmap_read(priv->regmap, TIM_CNT, &priv->bak.cnt);
806 		regmap_read(priv->regmap, TIM_CR1, &priv->bak.cr1);
807 
808 		/* Disable the counter */
809 		regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN, 0);
810 		clk_disable(priv->clk);
811 	}
812 
813 	return pinctrl_pm_select_sleep_state(dev);
814 }
815 
816 static int __maybe_unused stm32_timer_cnt_resume(struct device *dev)
817 {
818 	struct stm32_timer_cnt *priv = dev_get_drvdata(dev);
819 	int ret;
820 
821 	ret = pinctrl_pm_select_default_state(dev);
822 	if (ret)
823 		return ret;
824 
825 	if (priv->enabled) {
826 		ret = clk_enable(priv->clk);
827 		if (ret) {
828 			dev_err(dev, "Cannot enable clock %d\n", ret);
829 			return ret;
830 		}
831 
832 		/* Restore registers that may have been lost */
833 		regmap_write(priv->regmap, TIM_SMCR, priv->bak.smcr);
834 		regmap_write(priv->regmap, TIM_ARR, priv->bak.arr);
835 		regmap_write(priv->regmap, TIM_CNT, priv->bak.cnt);
836 
837 		/* Also re-enables the counter */
838 		regmap_write(priv->regmap, TIM_CR1, priv->bak.cr1);
839 	}
840 
841 	return 0;
842 }
843 
844 static SIMPLE_DEV_PM_OPS(stm32_timer_cnt_pm_ops, stm32_timer_cnt_suspend,
845 			 stm32_timer_cnt_resume);
846 
847 static const struct of_device_id stm32_timer_cnt_of_match[] = {
848 	{ .compatible = "st,stm32-timer-counter", },
849 	{},
850 };
851 MODULE_DEVICE_TABLE(of, stm32_timer_cnt_of_match);
852 
853 static struct platform_driver stm32_timer_cnt_driver = {
854 	.probe = stm32_timer_cnt_probe,
855 	.driver = {
856 		.name = "stm32-timer-counter",
857 		.of_match_table = stm32_timer_cnt_of_match,
858 		.pm = &stm32_timer_cnt_pm_ops,
859 	},
860 };
861 module_platform_driver(stm32_timer_cnt_driver);
862 
863 MODULE_AUTHOR("Benjamin Gaignard <benjamin.gaignard@st.com>");
864 MODULE_ALIAS("platform:stm32-timer-counter");
865 MODULE_DESCRIPTION("STMicroelectronics STM32 TIMER counter driver");
866 MODULE_LICENSE("GPL v2");
867 MODULE_IMPORT_NS(COUNTER);
868