xref: /linux/drivers/counter/stm32-lptimer-cnt.c (revision ee88f4ebe57523889fc437bc42f95d9ab89bdd9f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * STM32 Low-Power Timer Encoder and Counter driver
4  *
5  * Copyright (C) STMicroelectronics 2017
6  *
7  * Author: Fabrice Gasnier <fabrice.gasnier@st.com>
8  *
9  * Inspired by 104-quad-8 and stm32-timer-trigger drivers.
10  *
11  */
12 
13 #include <linux/bitfield.h>
14 #include <linux/counter.h>
15 #include <linux/iio/iio.h>
16 #include <linux/mfd/stm32-lptimer.h>
17 #include <linux/module.h>
18 #include <linux/pinctrl/consumer.h>
19 #include <linux/platform_device.h>
20 
21 struct stm32_lptim_cnt {
22 	struct counter_device counter;
23 	struct device *dev;
24 	struct regmap *regmap;
25 	struct clk *clk;
26 	u32 ceiling;
27 	u32 polarity;
28 	u32 quadrature_mode;
29 	bool enabled;
30 };
31 
32 static int stm32_lptim_is_enabled(struct stm32_lptim_cnt *priv)
33 {
34 	u32 val;
35 	int ret;
36 
37 	ret = regmap_read(priv->regmap, STM32_LPTIM_CR, &val);
38 	if (ret)
39 		return ret;
40 
41 	return FIELD_GET(STM32_LPTIM_ENABLE, val);
42 }
43 
44 static int stm32_lptim_set_enable_state(struct stm32_lptim_cnt *priv,
45 					int enable)
46 {
47 	int ret;
48 	u32 val;
49 
50 	val = FIELD_PREP(STM32_LPTIM_ENABLE, enable);
51 	ret = regmap_write(priv->regmap, STM32_LPTIM_CR, val);
52 	if (ret)
53 		return ret;
54 
55 	if (!enable) {
56 		clk_disable(priv->clk);
57 		priv->enabled = false;
58 		return 0;
59 	}
60 
61 	/* LP timer must be enabled before writing CMP & ARR */
62 	ret = regmap_write(priv->regmap, STM32_LPTIM_ARR, priv->ceiling);
63 	if (ret)
64 		return ret;
65 
66 	ret = regmap_write(priv->regmap, STM32_LPTIM_CMP, 0);
67 	if (ret)
68 		return ret;
69 
70 	/* ensure CMP & ARR registers are properly written */
71 	ret = regmap_read_poll_timeout(priv->regmap, STM32_LPTIM_ISR, val,
72 				       (val & STM32_LPTIM_CMPOK_ARROK),
73 				       100, 1000);
74 	if (ret)
75 		return ret;
76 
77 	ret = regmap_write(priv->regmap, STM32_LPTIM_ICR,
78 			   STM32_LPTIM_CMPOKCF_ARROKCF);
79 	if (ret)
80 		return ret;
81 
82 	ret = clk_enable(priv->clk);
83 	if (ret) {
84 		regmap_write(priv->regmap, STM32_LPTIM_CR, 0);
85 		return ret;
86 	}
87 	priv->enabled = true;
88 
89 	/* Start LP timer in continuous mode */
90 	return regmap_update_bits(priv->regmap, STM32_LPTIM_CR,
91 				  STM32_LPTIM_CNTSTRT, STM32_LPTIM_CNTSTRT);
92 }
93 
94 static int stm32_lptim_setup(struct stm32_lptim_cnt *priv, int enable)
95 {
96 	u32 mask = STM32_LPTIM_ENC | STM32_LPTIM_COUNTMODE |
97 		   STM32_LPTIM_CKPOL | STM32_LPTIM_PRESC;
98 	u32 val;
99 
100 	/* Setup LP timer encoder/counter and polarity, without prescaler */
101 	if (priv->quadrature_mode)
102 		val = enable ? STM32_LPTIM_ENC : 0;
103 	else
104 		val = enable ? STM32_LPTIM_COUNTMODE : 0;
105 	val |= FIELD_PREP(STM32_LPTIM_CKPOL, enable ? priv->polarity : 0);
106 
107 	return regmap_update_bits(priv->regmap, STM32_LPTIM_CFGR, mask, val);
108 }
109 
110 static int stm32_lptim_write_raw(struct iio_dev *indio_dev,
111 				 struct iio_chan_spec const *chan,
112 				 int val, int val2, long mask)
113 {
114 	struct stm32_lptim_cnt *priv = iio_priv(indio_dev);
115 	int ret;
116 
117 	switch (mask) {
118 	case IIO_CHAN_INFO_ENABLE:
119 		if (val < 0 || val > 1)
120 			return -EINVAL;
121 
122 		/* Check nobody uses the timer, or already disabled/enabled */
123 		ret = stm32_lptim_is_enabled(priv);
124 		if ((ret < 0) || (!ret && !val))
125 			return ret;
126 		if (val && ret)
127 			return -EBUSY;
128 
129 		ret = stm32_lptim_setup(priv, val);
130 		if (ret)
131 			return ret;
132 		return stm32_lptim_set_enable_state(priv, val);
133 
134 	default:
135 		return -EINVAL;
136 	}
137 }
138 
139 static int stm32_lptim_read_raw(struct iio_dev *indio_dev,
140 				struct iio_chan_spec const *chan,
141 				int *val, int *val2, long mask)
142 {
143 	struct stm32_lptim_cnt *priv = iio_priv(indio_dev);
144 	u32 dat;
145 	int ret;
146 
147 	switch (mask) {
148 	case IIO_CHAN_INFO_RAW:
149 		ret = regmap_read(priv->regmap, STM32_LPTIM_CNT, &dat);
150 		if (ret)
151 			return ret;
152 		*val = dat;
153 		return IIO_VAL_INT;
154 
155 	case IIO_CHAN_INFO_ENABLE:
156 		ret = stm32_lptim_is_enabled(priv);
157 		if (ret < 0)
158 			return ret;
159 		*val = ret;
160 		return IIO_VAL_INT;
161 
162 	case IIO_CHAN_INFO_SCALE:
163 		/* Non-quadrature mode: scale = 1 */
164 		*val = 1;
165 		*val2 = 0;
166 		if (priv->quadrature_mode) {
167 			/*
168 			 * Quadrature encoder mode:
169 			 * - both edges, quarter cycle, scale is 0.25
170 			 * - either rising/falling edge scale is 0.5
171 			 */
172 			if (priv->polarity > 1)
173 				*val2 = 2;
174 			else
175 				*val2 = 1;
176 		}
177 		return IIO_VAL_FRACTIONAL_LOG2;
178 
179 	default:
180 		return -EINVAL;
181 	}
182 }
183 
184 static const struct iio_info stm32_lptim_cnt_iio_info = {
185 	.read_raw = stm32_lptim_read_raw,
186 	.write_raw = stm32_lptim_write_raw,
187 };
188 
189 static const char *const stm32_lptim_quadrature_modes[] = {
190 	"non-quadrature",
191 	"quadrature",
192 };
193 
194 static int stm32_lptim_get_quadrature_mode(struct iio_dev *indio_dev,
195 					   const struct iio_chan_spec *chan)
196 {
197 	struct stm32_lptim_cnt *priv = iio_priv(indio_dev);
198 
199 	return priv->quadrature_mode;
200 }
201 
202 static int stm32_lptim_set_quadrature_mode(struct iio_dev *indio_dev,
203 					   const struct iio_chan_spec *chan,
204 					   unsigned int type)
205 {
206 	struct stm32_lptim_cnt *priv = iio_priv(indio_dev);
207 
208 	if (stm32_lptim_is_enabled(priv))
209 		return -EBUSY;
210 
211 	priv->quadrature_mode = type;
212 
213 	return 0;
214 }
215 
216 static const struct iio_enum stm32_lptim_quadrature_mode_en = {
217 	.items = stm32_lptim_quadrature_modes,
218 	.num_items = ARRAY_SIZE(stm32_lptim_quadrature_modes),
219 	.get = stm32_lptim_get_quadrature_mode,
220 	.set = stm32_lptim_set_quadrature_mode,
221 };
222 
223 static const char * const stm32_lptim_cnt_polarity[] = {
224 	"rising-edge", "falling-edge", "both-edges",
225 };
226 
227 static int stm32_lptim_cnt_get_polarity(struct iio_dev *indio_dev,
228 					const struct iio_chan_spec *chan)
229 {
230 	struct stm32_lptim_cnt *priv = iio_priv(indio_dev);
231 
232 	return priv->polarity;
233 }
234 
235 static int stm32_lptim_cnt_set_polarity(struct iio_dev *indio_dev,
236 					const struct iio_chan_spec *chan,
237 					unsigned int type)
238 {
239 	struct stm32_lptim_cnt *priv = iio_priv(indio_dev);
240 
241 	if (stm32_lptim_is_enabled(priv))
242 		return -EBUSY;
243 
244 	priv->polarity = type;
245 
246 	return 0;
247 }
248 
249 static const struct iio_enum stm32_lptim_cnt_polarity_en = {
250 	.items = stm32_lptim_cnt_polarity,
251 	.num_items = ARRAY_SIZE(stm32_lptim_cnt_polarity),
252 	.get = stm32_lptim_cnt_get_polarity,
253 	.set = stm32_lptim_cnt_set_polarity,
254 };
255 
256 static ssize_t stm32_lptim_cnt_get_ceiling(struct stm32_lptim_cnt *priv,
257 					   char *buf)
258 {
259 	return snprintf(buf, PAGE_SIZE, "%u\n", priv->ceiling);
260 }
261 
262 static ssize_t stm32_lptim_cnt_set_ceiling(struct stm32_lptim_cnt *priv,
263 					   const char *buf, size_t len)
264 {
265 	int ret;
266 
267 	if (stm32_lptim_is_enabled(priv))
268 		return -EBUSY;
269 
270 	ret = kstrtouint(buf, 0, &priv->ceiling);
271 	if (ret)
272 		return ret;
273 
274 	if (priv->ceiling > STM32_LPTIM_MAX_ARR)
275 		return -EINVAL;
276 
277 	return len;
278 }
279 
280 static ssize_t stm32_lptim_cnt_get_preset_iio(struct iio_dev *indio_dev,
281 					      uintptr_t private,
282 					      const struct iio_chan_spec *chan,
283 					      char *buf)
284 {
285 	struct stm32_lptim_cnt *priv = iio_priv(indio_dev);
286 
287 	return stm32_lptim_cnt_get_ceiling(priv, buf);
288 }
289 
290 static ssize_t stm32_lptim_cnt_set_preset_iio(struct iio_dev *indio_dev,
291 					      uintptr_t private,
292 					      const struct iio_chan_spec *chan,
293 					      const char *buf, size_t len)
294 {
295 	struct stm32_lptim_cnt *priv = iio_priv(indio_dev);
296 
297 	return stm32_lptim_cnt_set_ceiling(priv, buf, len);
298 }
299 
300 /* LP timer with encoder */
301 static const struct iio_chan_spec_ext_info stm32_lptim_enc_ext_info[] = {
302 	{
303 		.name = "preset",
304 		.shared = IIO_SEPARATE,
305 		.read = stm32_lptim_cnt_get_preset_iio,
306 		.write = stm32_lptim_cnt_set_preset_iio,
307 	},
308 	IIO_ENUM("polarity", IIO_SEPARATE, &stm32_lptim_cnt_polarity_en),
309 	IIO_ENUM_AVAILABLE("polarity", &stm32_lptim_cnt_polarity_en),
310 	IIO_ENUM("quadrature_mode", IIO_SEPARATE,
311 		 &stm32_lptim_quadrature_mode_en),
312 	IIO_ENUM_AVAILABLE("quadrature_mode", &stm32_lptim_quadrature_mode_en),
313 	{}
314 };
315 
316 static const struct iio_chan_spec stm32_lptim_enc_channels = {
317 	.type = IIO_COUNT,
318 	.channel = 0,
319 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
320 			      BIT(IIO_CHAN_INFO_ENABLE) |
321 			      BIT(IIO_CHAN_INFO_SCALE),
322 	.ext_info = stm32_lptim_enc_ext_info,
323 	.indexed = 1,
324 };
325 
326 /* LP timer without encoder (counter only) */
327 static const struct iio_chan_spec_ext_info stm32_lptim_cnt_ext_info[] = {
328 	{
329 		.name = "preset",
330 		.shared = IIO_SEPARATE,
331 		.read = stm32_lptim_cnt_get_preset_iio,
332 		.write = stm32_lptim_cnt_set_preset_iio,
333 	},
334 	IIO_ENUM("polarity", IIO_SEPARATE, &stm32_lptim_cnt_polarity_en),
335 	IIO_ENUM_AVAILABLE("polarity", &stm32_lptim_cnt_polarity_en),
336 	{}
337 };
338 
339 static const struct iio_chan_spec stm32_lptim_cnt_channels = {
340 	.type = IIO_COUNT,
341 	.channel = 0,
342 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
343 			      BIT(IIO_CHAN_INFO_ENABLE) |
344 			      BIT(IIO_CHAN_INFO_SCALE),
345 	.ext_info = stm32_lptim_cnt_ext_info,
346 	.indexed = 1,
347 };
348 
349 /**
350  * enum stm32_lptim_cnt_function - enumerates LPTimer counter & encoder modes
351  * @STM32_LPTIM_COUNTER_INCREASE: up count on IN1 rising, falling or both edges
352  * @STM32_LPTIM_ENCODER_BOTH_EDGE: count on both edges (IN1 & IN2 quadrature)
353  */
354 enum stm32_lptim_cnt_function {
355 	STM32_LPTIM_COUNTER_INCREASE,
356 	STM32_LPTIM_ENCODER_BOTH_EDGE,
357 };
358 
359 static enum counter_count_function stm32_lptim_cnt_functions[] = {
360 	[STM32_LPTIM_COUNTER_INCREASE] = COUNTER_COUNT_FUNCTION_INCREASE,
361 	[STM32_LPTIM_ENCODER_BOTH_EDGE] = COUNTER_COUNT_FUNCTION_QUADRATURE_X4,
362 };
363 
364 enum stm32_lptim_synapse_action {
365 	STM32_LPTIM_SYNAPSE_ACTION_RISING_EDGE,
366 	STM32_LPTIM_SYNAPSE_ACTION_FALLING_EDGE,
367 	STM32_LPTIM_SYNAPSE_ACTION_BOTH_EDGES,
368 	STM32_LPTIM_SYNAPSE_ACTION_NONE,
369 };
370 
371 static enum counter_synapse_action stm32_lptim_cnt_synapse_actions[] = {
372 	/* Index must match with stm32_lptim_cnt_polarity[] (priv->polarity) */
373 	[STM32_LPTIM_SYNAPSE_ACTION_RISING_EDGE] = COUNTER_SYNAPSE_ACTION_RISING_EDGE,
374 	[STM32_LPTIM_SYNAPSE_ACTION_FALLING_EDGE] = COUNTER_SYNAPSE_ACTION_FALLING_EDGE,
375 	[STM32_LPTIM_SYNAPSE_ACTION_BOTH_EDGES] = COUNTER_SYNAPSE_ACTION_BOTH_EDGES,
376 	[STM32_LPTIM_SYNAPSE_ACTION_NONE] = COUNTER_SYNAPSE_ACTION_NONE,
377 };
378 
379 static int stm32_lptim_cnt_read(struct counter_device *counter,
380 				struct counter_count *count, unsigned long *val)
381 {
382 	struct stm32_lptim_cnt *const priv = counter->priv;
383 	u32 cnt;
384 	int ret;
385 
386 	ret = regmap_read(priv->regmap, STM32_LPTIM_CNT, &cnt);
387 	if (ret)
388 		return ret;
389 
390 	*val = cnt;
391 
392 	return 0;
393 }
394 
395 static int stm32_lptim_cnt_function_get(struct counter_device *counter,
396 					struct counter_count *count,
397 					size_t *function)
398 {
399 	struct stm32_lptim_cnt *const priv = counter->priv;
400 
401 	if (!priv->quadrature_mode) {
402 		*function = STM32_LPTIM_COUNTER_INCREASE;
403 		return 0;
404 	}
405 
406 	if (priv->polarity == STM32_LPTIM_SYNAPSE_ACTION_BOTH_EDGES) {
407 		*function = STM32_LPTIM_ENCODER_BOTH_EDGE;
408 		return 0;
409 	}
410 
411 	return -EINVAL;
412 }
413 
414 static int stm32_lptim_cnt_function_set(struct counter_device *counter,
415 					struct counter_count *count,
416 					size_t function)
417 {
418 	struct stm32_lptim_cnt *const priv = counter->priv;
419 
420 	if (stm32_lptim_is_enabled(priv))
421 		return -EBUSY;
422 
423 	switch (function) {
424 	case STM32_LPTIM_COUNTER_INCREASE:
425 		priv->quadrature_mode = 0;
426 		return 0;
427 	case STM32_LPTIM_ENCODER_BOTH_EDGE:
428 		priv->quadrature_mode = 1;
429 		priv->polarity = STM32_LPTIM_SYNAPSE_ACTION_BOTH_EDGES;
430 		return 0;
431 	}
432 
433 	return -EINVAL;
434 }
435 
436 static ssize_t stm32_lptim_cnt_enable_read(struct counter_device *counter,
437 					   struct counter_count *count,
438 					   void *private, char *buf)
439 {
440 	struct stm32_lptim_cnt *const priv = counter->priv;
441 	int ret;
442 
443 	ret = stm32_lptim_is_enabled(priv);
444 	if (ret < 0)
445 		return ret;
446 
447 	return scnprintf(buf, PAGE_SIZE, "%u\n", ret);
448 }
449 
450 static ssize_t stm32_lptim_cnt_enable_write(struct counter_device *counter,
451 					    struct counter_count *count,
452 					    void *private,
453 					    const char *buf, size_t len)
454 {
455 	struct stm32_lptim_cnt *const priv = counter->priv;
456 	bool enable;
457 	int ret;
458 
459 	ret = kstrtobool(buf, &enable);
460 	if (ret)
461 		return ret;
462 
463 	/* Check nobody uses the timer, or already disabled/enabled */
464 	ret = stm32_lptim_is_enabled(priv);
465 	if ((ret < 0) || (!ret && !enable))
466 		return ret;
467 	if (enable && ret)
468 		return -EBUSY;
469 
470 	ret = stm32_lptim_setup(priv, enable);
471 	if (ret)
472 		return ret;
473 
474 	ret = stm32_lptim_set_enable_state(priv, enable);
475 	if (ret)
476 		return ret;
477 
478 	return len;
479 }
480 
481 static ssize_t stm32_lptim_cnt_ceiling_read(struct counter_device *counter,
482 					    struct counter_count *count,
483 					    void *private, char *buf)
484 {
485 	struct stm32_lptim_cnt *const priv = counter->priv;
486 
487 	return stm32_lptim_cnt_get_ceiling(priv, buf);
488 }
489 
490 static ssize_t stm32_lptim_cnt_ceiling_write(struct counter_device *counter,
491 					     struct counter_count *count,
492 					     void *private,
493 					     const char *buf, size_t len)
494 {
495 	struct stm32_lptim_cnt *const priv = counter->priv;
496 
497 	return stm32_lptim_cnt_set_ceiling(priv, buf, len);
498 }
499 
500 static const struct counter_count_ext stm32_lptim_cnt_ext[] = {
501 	{
502 		.name = "enable",
503 		.read = stm32_lptim_cnt_enable_read,
504 		.write = stm32_lptim_cnt_enable_write
505 	},
506 	{
507 		.name = "ceiling",
508 		.read = stm32_lptim_cnt_ceiling_read,
509 		.write = stm32_lptim_cnt_ceiling_write
510 	},
511 };
512 
513 static int stm32_lptim_cnt_action_get(struct counter_device *counter,
514 				      struct counter_count *count,
515 				      struct counter_synapse *synapse,
516 				      size_t *action)
517 {
518 	struct stm32_lptim_cnt *const priv = counter->priv;
519 	size_t function;
520 	int err;
521 
522 	err = stm32_lptim_cnt_function_get(counter, count, &function);
523 	if (err)
524 		return err;
525 
526 	switch (function) {
527 	case STM32_LPTIM_COUNTER_INCREASE:
528 		/* LP Timer acts as up-counter on input 1 */
529 		if (synapse->signal->id == count->synapses[0].signal->id)
530 			*action = priv->polarity;
531 		else
532 			*action = STM32_LPTIM_SYNAPSE_ACTION_NONE;
533 		return 0;
534 	case STM32_LPTIM_ENCODER_BOTH_EDGE:
535 		*action = priv->polarity;
536 		return 0;
537 	}
538 
539 	return -EINVAL;
540 }
541 
542 static int stm32_lptim_cnt_action_set(struct counter_device *counter,
543 				      struct counter_count *count,
544 				      struct counter_synapse *synapse,
545 				      size_t action)
546 {
547 	struct stm32_lptim_cnt *const priv = counter->priv;
548 	size_t function;
549 	int err;
550 
551 	if (stm32_lptim_is_enabled(priv))
552 		return -EBUSY;
553 
554 	err = stm32_lptim_cnt_function_get(counter, count, &function);
555 	if (err)
556 		return err;
557 
558 	/* only set polarity when in counter mode (on input 1) */
559 	if (function == STM32_LPTIM_COUNTER_INCREASE
560 	    && synapse->signal->id == count->synapses[0].signal->id) {
561 		switch (action) {
562 		case STM32_LPTIM_SYNAPSE_ACTION_RISING_EDGE:
563 		case STM32_LPTIM_SYNAPSE_ACTION_FALLING_EDGE:
564 		case STM32_LPTIM_SYNAPSE_ACTION_BOTH_EDGES:
565 			priv->polarity = action;
566 			return 0;
567 		}
568 	}
569 
570 	return -EINVAL;
571 }
572 
573 static const struct counter_ops stm32_lptim_cnt_ops = {
574 	.count_read = stm32_lptim_cnt_read,
575 	.function_get = stm32_lptim_cnt_function_get,
576 	.function_set = stm32_lptim_cnt_function_set,
577 	.action_get = stm32_lptim_cnt_action_get,
578 	.action_set = stm32_lptim_cnt_action_set,
579 };
580 
581 static struct counter_signal stm32_lptim_cnt_signals[] = {
582 	{
583 		.id = 0,
584 		.name = "Channel 1 Quadrature A"
585 	},
586 	{
587 		.id = 1,
588 		.name = "Channel 1 Quadrature B"
589 	}
590 };
591 
592 static struct counter_synapse stm32_lptim_cnt_synapses[] = {
593 	{
594 		.actions_list = stm32_lptim_cnt_synapse_actions,
595 		.num_actions = ARRAY_SIZE(stm32_lptim_cnt_synapse_actions),
596 		.signal = &stm32_lptim_cnt_signals[0]
597 	},
598 	{
599 		.actions_list = stm32_lptim_cnt_synapse_actions,
600 		.num_actions = ARRAY_SIZE(stm32_lptim_cnt_synapse_actions),
601 		.signal = &stm32_lptim_cnt_signals[1]
602 	}
603 };
604 
605 /* LP timer with encoder */
606 static struct counter_count stm32_lptim_enc_counts = {
607 	.id = 0,
608 	.name = "LPTimer Count",
609 	.functions_list = stm32_lptim_cnt_functions,
610 	.num_functions = ARRAY_SIZE(stm32_lptim_cnt_functions),
611 	.synapses = stm32_lptim_cnt_synapses,
612 	.num_synapses = ARRAY_SIZE(stm32_lptim_cnt_synapses),
613 	.ext = stm32_lptim_cnt_ext,
614 	.num_ext = ARRAY_SIZE(stm32_lptim_cnt_ext)
615 };
616 
617 /* LP timer without encoder (counter only) */
618 static struct counter_count stm32_lptim_in1_counts = {
619 	.id = 0,
620 	.name = "LPTimer Count",
621 	.functions_list = stm32_lptim_cnt_functions,
622 	.num_functions = 1,
623 	.synapses = stm32_lptim_cnt_synapses,
624 	.num_synapses = 1,
625 	.ext = stm32_lptim_cnt_ext,
626 	.num_ext = ARRAY_SIZE(stm32_lptim_cnt_ext)
627 };
628 
629 static int stm32_lptim_cnt_probe(struct platform_device *pdev)
630 {
631 	struct stm32_lptimer *ddata = dev_get_drvdata(pdev->dev.parent);
632 	struct stm32_lptim_cnt *priv;
633 	struct iio_dev *indio_dev;
634 	int ret;
635 
636 	if (IS_ERR_OR_NULL(ddata))
637 		return -EINVAL;
638 
639 	indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*priv));
640 	if (!indio_dev)
641 		return -ENOMEM;
642 
643 	priv = iio_priv(indio_dev);
644 	priv->dev = &pdev->dev;
645 	priv->regmap = ddata->regmap;
646 	priv->clk = ddata->clk;
647 	priv->ceiling = STM32_LPTIM_MAX_ARR;
648 
649 	/* Initialize IIO device */
650 	indio_dev->name = dev_name(&pdev->dev);
651 	indio_dev->dev.parent = &pdev->dev;
652 	indio_dev->dev.of_node = pdev->dev.of_node;
653 	indio_dev->info = &stm32_lptim_cnt_iio_info;
654 	if (ddata->has_encoder)
655 		indio_dev->channels = &stm32_lptim_enc_channels;
656 	else
657 		indio_dev->channels = &stm32_lptim_cnt_channels;
658 	indio_dev->num_channels = 1;
659 
660 	/* Initialize Counter device */
661 	priv->counter.name = dev_name(&pdev->dev);
662 	priv->counter.parent = &pdev->dev;
663 	priv->counter.ops = &stm32_lptim_cnt_ops;
664 	if (ddata->has_encoder) {
665 		priv->counter.counts = &stm32_lptim_enc_counts;
666 		priv->counter.num_signals = ARRAY_SIZE(stm32_lptim_cnt_signals);
667 	} else {
668 		priv->counter.counts = &stm32_lptim_in1_counts;
669 		priv->counter.num_signals = 1;
670 	}
671 	priv->counter.num_counts = 1;
672 	priv->counter.signals = stm32_lptim_cnt_signals;
673 	priv->counter.priv = priv;
674 
675 	platform_set_drvdata(pdev, priv);
676 
677 	ret = devm_iio_device_register(&pdev->dev, indio_dev);
678 	if (ret)
679 		return ret;
680 
681 	return devm_counter_register(&pdev->dev, &priv->counter);
682 }
683 
684 #ifdef CONFIG_PM_SLEEP
685 static int stm32_lptim_cnt_suspend(struct device *dev)
686 {
687 	struct stm32_lptim_cnt *priv = dev_get_drvdata(dev);
688 	int ret;
689 
690 	/* Only take care of enabled counter: don't disturb other MFD child */
691 	if (priv->enabled) {
692 		ret = stm32_lptim_setup(priv, 0);
693 		if (ret)
694 			return ret;
695 
696 		ret = stm32_lptim_set_enable_state(priv, 0);
697 		if (ret)
698 			return ret;
699 
700 		/* Force enable state for later resume */
701 		priv->enabled = true;
702 	}
703 
704 	return pinctrl_pm_select_sleep_state(dev);
705 }
706 
707 static int stm32_lptim_cnt_resume(struct device *dev)
708 {
709 	struct stm32_lptim_cnt *priv = dev_get_drvdata(dev);
710 	int ret;
711 
712 	ret = pinctrl_pm_select_default_state(dev);
713 	if (ret)
714 		return ret;
715 
716 	if (priv->enabled) {
717 		priv->enabled = false;
718 		ret = stm32_lptim_setup(priv, 1);
719 		if (ret)
720 			return ret;
721 
722 		ret = stm32_lptim_set_enable_state(priv, 1);
723 		if (ret)
724 			return ret;
725 	}
726 
727 	return 0;
728 }
729 #endif
730 
731 static SIMPLE_DEV_PM_OPS(stm32_lptim_cnt_pm_ops, stm32_lptim_cnt_suspend,
732 			 stm32_lptim_cnt_resume);
733 
734 static const struct of_device_id stm32_lptim_cnt_of_match[] = {
735 	{ .compatible = "st,stm32-lptimer-counter", },
736 	{},
737 };
738 MODULE_DEVICE_TABLE(of, stm32_lptim_cnt_of_match);
739 
740 static struct platform_driver stm32_lptim_cnt_driver = {
741 	.probe = stm32_lptim_cnt_probe,
742 	.driver = {
743 		.name = "stm32-lptimer-counter",
744 		.of_match_table = stm32_lptim_cnt_of_match,
745 		.pm = &stm32_lptim_cnt_pm_ops,
746 	},
747 };
748 module_platform_driver(stm32_lptim_cnt_driver);
749 
750 MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>");
751 MODULE_ALIAS("platform:stm32-lptimer-counter");
752 MODULE_DESCRIPTION("STMicroelectronics STM32 LPTIM counter driver");
753 MODULE_LICENSE("GPL v2");
754