1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * STM32 Low-Power Timer Encoder and Counter driver
4 *
5 * Copyright (C) STMicroelectronics 2017
6 *
7 * Author: Fabrice Gasnier <fabrice.gasnier@st.com>
8 *
9 * Inspired by 104-quad-8 and stm32-timer-trigger drivers.
10 *
11 */
12
13 #include <linux/bitfield.h>
14 #include <linux/counter.h>
15 #include <linux/mfd/stm32-lptimer.h>
16 #include <linux/mod_devicetable.h>
17 #include <linux/module.h>
18 #include <linux/pinctrl/consumer.h>
19 #include <linux/platform_device.h>
20 #include <linux/types.h>
21
22 struct stm32_lptim_cnt {
23 struct device *dev;
24 struct regmap *regmap;
25 struct clk *clk;
26 u32 ceiling;
27 u32 polarity;
28 u32 quadrature_mode;
29 bool enabled;
30 };
31
stm32_lptim_is_enabled(struct stm32_lptim_cnt * priv)32 static int stm32_lptim_is_enabled(struct stm32_lptim_cnt *priv)
33 {
34 u32 val;
35 int ret;
36
37 ret = regmap_read(priv->regmap, STM32_LPTIM_CR, &val);
38 if (ret)
39 return ret;
40
41 return FIELD_GET(STM32_LPTIM_ENABLE, val);
42 }
43
stm32_lptim_set_enable_state(struct stm32_lptim_cnt * priv,int enable)44 static int stm32_lptim_set_enable_state(struct stm32_lptim_cnt *priv,
45 int enable)
46 {
47 int ret;
48 u32 val;
49
50 val = FIELD_PREP(STM32_LPTIM_ENABLE, enable);
51 ret = regmap_write(priv->regmap, STM32_LPTIM_CR, val);
52 if (ret)
53 return ret;
54
55 if (!enable) {
56 clk_disable(priv->clk);
57 priv->enabled = false;
58 return 0;
59 }
60
61 /* LP timer must be enabled before writing CMP & ARR */
62 ret = regmap_write(priv->regmap, STM32_LPTIM_ARR, priv->ceiling);
63 if (ret)
64 return ret;
65
66 ret = regmap_write(priv->regmap, STM32_LPTIM_CMP, 0);
67 if (ret)
68 return ret;
69
70 /* ensure CMP & ARR registers are properly written */
71 ret = regmap_read_poll_timeout(priv->regmap, STM32_LPTIM_ISR, val,
72 (val & STM32_LPTIM_CMPOK_ARROK) == STM32_LPTIM_CMPOK_ARROK,
73 100, 1000);
74 if (ret)
75 return ret;
76
77 ret = regmap_write(priv->regmap, STM32_LPTIM_ICR,
78 STM32_LPTIM_CMPOKCF_ARROKCF);
79 if (ret)
80 return ret;
81
82 ret = clk_enable(priv->clk);
83 if (ret) {
84 regmap_write(priv->regmap, STM32_LPTIM_CR, 0);
85 return ret;
86 }
87 priv->enabled = true;
88
89 /* Start LP timer in continuous mode */
90 return regmap_update_bits(priv->regmap, STM32_LPTIM_CR,
91 STM32_LPTIM_CNTSTRT, STM32_LPTIM_CNTSTRT);
92 }
93
stm32_lptim_setup(struct stm32_lptim_cnt * priv,int enable)94 static int stm32_lptim_setup(struct stm32_lptim_cnt *priv, int enable)
95 {
96 u32 mask = STM32_LPTIM_ENC | STM32_LPTIM_COUNTMODE |
97 STM32_LPTIM_CKPOL | STM32_LPTIM_PRESC;
98 u32 val;
99
100 /* Setup LP timer encoder/counter and polarity, without prescaler */
101 if (priv->quadrature_mode)
102 val = enable ? STM32_LPTIM_ENC : 0;
103 else
104 val = enable ? STM32_LPTIM_COUNTMODE : 0;
105 val |= FIELD_PREP(STM32_LPTIM_CKPOL, enable ? priv->polarity : 0);
106
107 return regmap_update_bits(priv->regmap, STM32_LPTIM_CFGR, mask, val);
108 }
109
110 /*
111 * In non-quadrature mode, device counts up on active edge.
112 * In quadrature mode, encoder counting scenarios are as follows:
113 * +---------+----------+--------------------+--------------------+
114 * | Active | Level on | IN1 signal | IN2 signal |
115 * | edge | opposite +----------+---------+----------+---------+
116 * | | signal | Rising | Falling | Rising | Falling |
117 * +---------+----------+----------+---------+----------+---------+
118 * | Rising | High -> | Down | - | Up | - |
119 * | edge | Low -> | Up | - | Down | - |
120 * +---------+----------+----------+---------+----------+---------+
121 * | Falling | High -> | - | Up | - | Down |
122 * | edge | Low -> | - | Down | - | Up |
123 * +---------+----------+----------+---------+----------+---------+
124 * | Both | High -> | Down | Up | Up | Down |
125 * | edges | Low -> | Up | Down | Down | Up |
126 * +---------+----------+----------+---------+----------+---------+
127 */
128 static const enum counter_function stm32_lptim_cnt_functions[] = {
129 COUNTER_FUNCTION_INCREASE,
130 COUNTER_FUNCTION_QUADRATURE_X4,
131 };
132
133 static const enum counter_synapse_action stm32_lptim_cnt_synapse_actions[] = {
134 COUNTER_SYNAPSE_ACTION_RISING_EDGE,
135 COUNTER_SYNAPSE_ACTION_FALLING_EDGE,
136 COUNTER_SYNAPSE_ACTION_BOTH_EDGES,
137 COUNTER_SYNAPSE_ACTION_NONE,
138 };
139
stm32_lptim_cnt_read(struct counter_device * counter,struct counter_count * count,u64 * val)140 static int stm32_lptim_cnt_read(struct counter_device *counter,
141 struct counter_count *count, u64 *val)
142 {
143 struct stm32_lptim_cnt *const priv = counter_priv(counter);
144 u32 cnt;
145 int ret;
146
147 ret = regmap_read(priv->regmap, STM32_LPTIM_CNT, &cnt);
148 if (ret)
149 return ret;
150
151 *val = cnt;
152
153 return 0;
154 }
155
stm32_lptim_cnt_function_read(struct counter_device * counter,struct counter_count * count,enum counter_function * function)156 static int stm32_lptim_cnt_function_read(struct counter_device *counter,
157 struct counter_count *count,
158 enum counter_function *function)
159 {
160 struct stm32_lptim_cnt *const priv = counter_priv(counter);
161
162 if (!priv->quadrature_mode) {
163 *function = COUNTER_FUNCTION_INCREASE;
164 return 0;
165 }
166
167 if (priv->polarity == STM32_LPTIM_CKPOL_BOTH_EDGES) {
168 *function = COUNTER_FUNCTION_QUADRATURE_X4;
169 return 0;
170 }
171
172 return -EINVAL;
173 }
174
stm32_lptim_cnt_function_write(struct counter_device * counter,struct counter_count * count,enum counter_function function)175 static int stm32_lptim_cnt_function_write(struct counter_device *counter,
176 struct counter_count *count,
177 enum counter_function function)
178 {
179 struct stm32_lptim_cnt *const priv = counter_priv(counter);
180
181 if (stm32_lptim_is_enabled(priv))
182 return -EBUSY;
183
184 switch (function) {
185 case COUNTER_FUNCTION_INCREASE:
186 priv->quadrature_mode = 0;
187 return 0;
188 case COUNTER_FUNCTION_QUADRATURE_X4:
189 priv->quadrature_mode = 1;
190 priv->polarity = STM32_LPTIM_CKPOL_BOTH_EDGES;
191 return 0;
192 default:
193 /* should never reach this path */
194 return -EINVAL;
195 }
196 }
197
stm32_lptim_cnt_enable_read(struct counter_device * counter,struct counter_count * count,u8 * enable)198 static int stm32_lptim_cnt_enable_read(struct counter_device *counter,
199 struct counter_count *count,
200 u8 *enable)
201 {
202 struct stm32_lptim_cnt *const priv = counter_priv(counter);
203 int ret;
204
205 ret = stm32_lptim_is_enabled(priv);
206 if (ret < 0)
207 return ret;
208
209 *enable = ret;
210
211 return 0;
212 }
213
stm32_lptim_cnt_enable_write(struct counter_device * counter,struct counter_count * count,u8 enable)214 static int stm32_lptim_cnt_enable_write(struct counter_device *counter,
215 struct counter_count *count,
216 u8 enable)
217 {
218 struct stm32_lptim_cnt *const priv = counter_priv(counter);
219 int ret;
220
221 /* Check nobody uses the timer, or already disabled/enabled */
222 ret = stm32_lptim_is_enabled(priv);
223 if ((ret < 0) || (!ret && !enable))
224 return ret;
225 if (enable && ret)
226 return -EBUSY;
227
228 ret = stm32_lptim_setup(priv, enable);
229 if (ret)
230 return ret;
231
232 ret = stm32_lptim_set_enable_state(priv, enable);
233 if (ret)
234 return ret;
235
236 return 0;
237 }
238
stm32_lptim_cnt_ceiling_read(struct counter_device * counter,struct counter_count * count,u64 * ceiling)239 static int stm32_lptim_cnt_ceiling_read(struct counter_device *counter,
240 struct counter_count *count,
241 u64 *ceiling)
242 {
243 struct stm32_lptim_cnt *const priv = counter_priv(counter);
244
245 *ceiling = priv->ceiling;
246
247 return 0;
248 }
249
stm32_lptim_cnt_ceiling_write(struct counter_device * counter,struct counter_count * count,u64 ceiling)250 static int stm32_lptim_cnt_ceiling_write(struct counter_device *counter,
251 struct counter_count *count,
252 u64 ceiling)
253 {
254 struct stm32_lptim_cnt *const priv = counter_priv(counter);
255
256 if (stm32_lptim_is_enabled(priv))
257 return -EBUSY;
258
259 if (ceiling > STM32_LPTIM_MAX_ARR)
260 return -ERANGE;
261
262 priv->ceiling = ceiling;
263
264 return 0;
265 }
266
267 static struct counter_comp stm32_lptim_cnt_ext[] = {
268 COUNTER_COMP_ENABLE(stm32_lptim_cnt_enable_read,
269 stm32_lptim_cnt_enable_write),
270 COUNTER_COMP_CEILING(stm32_lptim_cnt_ceiling_read,
271 stm32_lptim_cnt_ceiling_write),
272 };
273
stm32_lptim_cnt_action_read(struct counter_device * counter,struct counter_count * count,struct counter_synapse * synapse,enum counter_synapse_action * action)274 static int stm32_lptim_cnt_action_read(struct counter_device *counter,
275 struct counter_count *count,
276 struct counter_synapse *synapse,
277 enum counter_synapse_action *action)
278 {
279 struct stm32_lptim_cnt *const priv = counter_priv(counter);
280 enum counter_function function;
281 int err;
282
283 err = stm32_lptim_cnt_function_read(counter, count, &function);
284 if (err)
285 return err;
286
287 switch (function) {
288 case COUNTER_FUNCTION_INCREASE:
289 /* LP Timer acts as up-counter on input 1 */
290 if (synapse->signal->id != count->synapses[0].signal->id) {
291 *action = COUNTER_SYNAPSE_ACTION_NONE;
292 return 0;
293 }
294
295 switch (priv->polarity) {
296 case STM32_LPTIM_CKPOL_RISING_EDGE:
297 *action = COUNTER_SYNAPSE_ACTION_RISING_EDGE;
298 return 0;
299 case STM32_LPTIM_CKPOL_FALLING_EDGE:
300 *action = COUNTER_SYNAPSE_ACTION_FALLING_EDGE;
301 return 0;
302 case STM32_LPTIM_CKPOL_BOTH_EDGES:
303 *action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES;
304 return 0;
305 default:
306 /* should never reach this path */
307 return -EINVAL;
308 }
309 case COUNTER_FUNCTION_QUADRATURE_X4:
310 *action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES;
311 return 0;
312 default:
313 /* should never reach this path */
314 return -EINVAL;
315 }
316 }
317
stm32_lptim_cnt_action_write(struct counter_device * counter,struct counter_count * count,struct counter_synapse * synapse,enum counter_synapse_action action)318 static int stm32_lptim_cnt_action_write(struct counter_device *counter,
319 struct counter_count *count,
320 struct counter_synapse *synapse,
321 enum counter_synapse_action action)
322 {
323 struct stm32_lptim_cnt *const priv = counter_priv(counter);
324 enum counter_function function;
325 int err;
326
327 if (stm32_lptim_is_enabled(priv))
328 return -EBUSY;
329
330 err = stm32_lptim_cnt_function_read(counter, count, &function);
331 if (err)
332 return err;
333
334 /* only set polarity when in counter mode (on input 1) */
335 if (function != COUNTER_FUNCTION_INCREASE
336 || synapse->signal->id != count->synapses[0].signal->id)
337 return -EINVAL;
338
339 switch (action) {
340 case COUNTER_SYNAPSE_ACTION_RISING_EDGE:
341 priv->polarity = STM32_LPTIM_CKPOL_RISING_EDGE;
342 return 0;
343 case COUNTER_SYNAPSE_ACTION_FALLING_EDGE:
344 priv->polarity = STM32_LPTIM_CKPOL_FALLING_EDGE;
345 return 0;
346 case COUNTER_SYNAPSE_ACTION_BOTH_EDGES:
347 priv->polarity = STM32_LPTIM_CKPOL_BOTH_EDGES;
348 return 0;
349 default:
350 return -EINVAL;
351 }
352 }
353
354 static const struct counter_ops stm32_lptim_cnt_ops = {
355 .count_read = stm32_lptim_cnt_read,
356 .function_read = stm32_lptim_cnt_function_read,
357 .function_write = stm32_lptim_cnt_function_write,
358 .action_read = stm32_lptim_cnt_action_read,
359 .action_write = stm32_lptim_cnt_action_write,
360 };
361
362 static struct counter_signal stm32_lptim_cnt_signals[] = {
363 {
364 .id = 0,
365 .name = "Channel 1 Quadrature A"
366 },
367 {
368 .id = 1,
369 .name = "Channel 1 Quadrature B"
370 }
371 };
372
373 static struct counter_synapse stm32_lptim_cnt_synapses[] = {
374 {
375 .actions_list = stm32_lptim_cnt_synapse_actions,
376 .num_actions = ARRAY_SIZE(stm32_lptim_cnt_synapse_actions),
377 .signal = &stm32_lptim_cnt_signals[0]
378 },
379 {
380 .actions_list = stm32_lptim_cnt_synapse_actions,
381 .num_actions = ARRAY_SIZE(stm32_lptim_cnt_synapse_actions),
382 .signal = &stm32_lptim_cnt_signals[1]
383 }
384 };
385
386 /* LP timer with encoder */
387 static struct counter_count stm32_lptim_enc_counts = {
388 .id = 0,
389 .name = "LPTimer Count",
390 .functions_list = stm32_lptim_cnt_functions,
391 .num_functions = ARRAY_SIZE(stm32_lptim_cnt_functions),
392 .synapses = stm32_lptim_cnt_synapses,
393 .num_synapses = ARRAY_SIZE(stm32_lptim_cnt_synapses),
394 .ext = stm32_lptim_cnt_ext,
395 .num_ext = ARRAY_SIZE(stm32_lptim_cnt_ext)
396 };
397
398 /* LP timer without encoder (counter only) */
399 static struct counter_count stm32_lptim_in1_counts = {
400 .id = 0,
401 .name = "LPTimer Count",
402 .functions_list = stm32_lptim_cnt_functions,
403 .num_functions = 1,
404 .synapses = stm32_lptim_cnt_synapses,
405 .num_synapses = 1,
406 .ext = stm32_lptim_cnt_ext,
407 .num_ext = ARRAY_SIZE(stm32_lptim_cnt_ext)
408 };
409
stm32_lptim_cnt_probe(struct platform_device * pdev)410 static int stm32_lptim_cnt_probe(struct platform_device *pdev)
411 {
412 struct stm32_lptimer *ddata = dev_get_drvdata(pdev->dev.parent);
413 struct counter_device *counter;
414 struct stm32_lptim_cnt *priv;
415 int ret;
416
417 if (IS_ERR_OR_NULL(ddata))
418 return -EINVAL;
419
420 counter = devm_counter_alloc(&pdev->dev, sizeof(*priv));
421 if (!counter)
422 return -ENOMEM;
423 priv = counter_priv(counter);
424
425 priv->dev = &pdev->dev;
426 priv->regmap = ddata->regmap;
427 priv->clk = ddata->clk;
428 priv->ceiling = STM32_LPTIM_MAX_ARR;
429
430 /* Initialize Counter device */
431 counter->name = dev_name(&pdev->dev);
432 counter->parent = &pdev->dev;
433 counter->ops = &stm32_lptim_cnt_ops;
434 if (ddata->has_encoder) {
435 counter->counts = &stm32_lptim_enc_counts;
436 counter->num_signals = ARRAY_SIZE(stm32_lptim_cnt_signals);
437 } else {
438 counter->counts = &stm32_lptim_in1_counts;
439 counter->num_signals = 1;
440 }
441 counter->num_counts = 1;
442 counter->signals = stm32_lptim_cnt_signals;
443
444 platform_set_drvdata(pdev, priv);
445
446 ret = devm_counter_add(&pdev->dev, counter);
447 if (ret < 0)
448 return dev_err_probe(&pdev->dev, ret, "Failed to add counter\n");
449
450 return 0;
451 }
452
453 #ifdef CONFIG_PM_SLEEP
stm32_lptim_cnt_suspend(struct device * dev)454 static int stm32_lptim_cnt_suspend(struct device *dev)
455 {
456 struct stm32_lptim_cnt *priv = dev_get_drvdata(dev);
457 int ret;
458
459 /* Only take care of enabled counter: don't disturb other MFD child */
460 if (priv->enabled) {
461 ret = stm32_lptim_setup(priv, 0);
462 if (ret)
463 return ret;
464
465 ret = stm32_lptim_set_enable_state(priv, 0);
466 if (ret)
467 return ret;
468
469 /* Force enable state for later resume */
470 priv->enabled = true;
471 }
472
473 return pinctrl_pm_select_sleep_state(dev);
474 }
475
stm32_lptim_cnt_resume(struct device * dev)476 static int stm32_lptim_cnt_resume(struct device *dev)
477 {
478 struct stm32_lptim_cnt *priv = dev_get_drvdata(dev);
479 int ret;
480
481 ret = pinctrl_pm_select_default_state(dev);
482 if (ret)
483 return ret;
484
485 if (priv->enabled) {
486 priv->enabled = false;
487 ret = stm32_lptim_setup(priv, 1);
488 if (ret)
489 return ret;
490
491 ret = stm32_lptim_set_enable_state(priv, 1);
492 if (ret)
493 return ret;
494 }
495
496 return 0;
497 }
498 #endif
499
500 static SIMPLE_DEV_PM_OPS(stm32_lptim_cnt_pm_ops, stm32_lptim_cnt_suspend,
501 stm32_lptim_cnt_resume);
502
503 static const struct of_device_id stm32_lptim_cnt_of_match[] = {
504 { .compatible = "st,stm32-lptimer-counter", },
505 {},
506 };
507 MODULE_DEVICE_TABLE(of, stm32_lptim_cnt_of_match);
508
509 static struct platform_driver stm32_lptim_cnt_driver = {
510 .probe = stm32_lptim_cnt_probe,
511 .driver = {
512 .name = "stm32-lptimer-counter",
513 .of_match_table = stm32_lptim_cnt_of_match,
514 .pm = &stm32_lptim_cnt_pm_ops,
515 },
516 };
517 module_platform_driver(stm32_lptim_cnt_driver);
518
519 MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>");
520 MODULE_ALIAS("platform:stm32-lptimer-counter");
521 MODULE_DESCRIPTION("STMicroelectronics STM32 LPTIM counter driver");
522 MODULE_LICENSE("GPL v2");
523 MODULE_IMPORT_NS("COUNTER");
524