xref: /linux/drivers/counter/intel-qep.c (revision bdd1a21b52557ea8f61d0a5dc2f77151b576eb70)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Intel Quadrature Encoder Peripheral driver
4  *
5  * Copyright (C) 2019-2021 Intel Corporation
6  *
7  * Author: Felipe Balbi (Intel)
8  * Author: Jarkko Nikula <jarkko.nikula@linux.intel.com>
9  * Author: Raymond Tan <raymond.tan@intel.com>
10  */
11 #include <linux/bitops.h>
12 #include <linux/counter.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/mutex.h>
16 #include <linux/pci.h>
17 #include <linux/pm_runtime.h>
18 
19 #define INTEL_QEPCON			0x00
20 #define INTEL_QEPFLT			0x04
21 #define INTEL_QEPCOUNT			0x08
22 #define INTEL_QEPMAX			0x0c
23 #define INTEL_QEPWDT			0x10
24 #define INTEL_QEPCAPDIV			0x14
25 #define INTEL_QEPCNTR			0x18
26 #define INTEL_QEPCAPBUF			0x1c
27 #define INTEL_QEPINT_STAT		0x20
28 #define INTEL_QEPINT_MASK		0x24
29 
30 /* QEPCON */
31 #define INTEL_QEPCON_EN			BIT(0)
32 #define INTEL_QEPCON_FLT_EN		BIT(1)
33 #define INTEL_QEPCON_EDGE_A		BIT(2)
34 #define INTEL_QEPCON_EDGE_B		BIT(3)
35 #define INTEL_QEPCON_EDGE_INDX		BIT(4)
36 #define INTEL_QEPCON_SWPAB		BIT(5)
37 #define INTEL_QEPCON_OP_MODE		BIT(6)
38 #define INTEL_QEPCON_PH_ERR		BIT(7)
39 #define INTEL_QEPCON_COUNT_RST_MODE	BIT(8)
40 #define INTEL_QEPCON_INDX_GATING_MASK	GENMASK(10, 9)
41 #define INTEL_QEPCON_INDX_GATING(n)	(((n) & 3) << 9)
42 #define INTEL_QEPCON_INDX_PAL_PBL	INTEL_QEPCON_INDX_GATING(0)
43 #define INTEL_QEPCON_INDX_PAL_PBH	INTEL_QEPCON_INDX_GATING(1)
44 #define INTEL_QEPCON_INDX_PAH_PBL	INTEL_QEPCON_INDX_GATING(2)
45 #define INTEL_QEPCON_INDX_PAH_PBH	INTEL_QEPCON_INDX_GATING(3)
46 #define INTEL_QEPCON_CAP_MODE		BIT(11)
47 #define INTEL_QEPCON_FIFO_THRE_MASK	GENMASK(14, 12)
48 #define INTEL_QEPCON_FIFO_THRE(n)	((((n) - 1) & 7) << 12)
49 #define INTEL_QEPCON_FIFO_EMPTY		BIT(15)
50 
51 /* QEPFLT */
52 #define INTEL_QEPFLT_MAX_COUNT(n)	((n) & 0x1fffff)
53 
54 /* QEPINT */
55 #define INTEL_QEPINT_FIFOCRIT		BIT(5)
56 #define INTEL_QEPINT_FIFOENTRY		BIT(4)
57 #define INTEL_QEPINT_QEPDIR		BIT(3)
58 #define INTEL_QEPINT_QEPRST_UP		BIT(2)
59 #define INTEL_QEPINT_QEPRST_DOWN	BIT(1)
60 #define INTEL_QEPINT_WDT		BIT(0)
61 
62 #define INTEL_QEPINT_MASK_ALL		GENMASK(5, 0)
63 
64 #define INTEL_QEP_CLK_PERIOD_NS		10
65 
66 #define INTEL_QEP_COUNTER_EXT_RW(_name)				\
67 {								\
68 	.name = #_name,						\
69 	.read = _name##_read,					\
70 	.write = _name##_write,					\
71 }
72 
73 struct intel_qep {
74 	struct counter_device counter;
75 	struct mutex lock;
76 	struct device *dev;
77 	void __iomem *regs;
78 	bool enabled;
79 	/* Context save registers */
80 	u32 qepcon;
81 	u32 qepflt;
82 	u32 qepmax;
83 };
84 
85 static inline u32 intel_qep_readl(struct intel_qep *qep, u32 offset)
86 {
87 	return readl(qep->regs + offset);
88 }
89 
90 static inline void intel_qep_writel(struct intel_qep *qep,
91 				    u32 offset, u32 value)
92 {
93 	writel(value, qep->regs + offset);
94 }
95 
96 static void intel_qep_init(struct intel_qep *qep)
97 {
98 	u32 reg;
99 
100 	reg = intel_qep_readl(qep, INTEL_QEPCON);
101 	reg &= ~INTEL_QEPCON_EN;
102 	intel_qep_writel(qep, INTEL_QEPCON, reg);
103 	qep->enabled = false;
104 	/*
105 	 * Make sure peripheral is disabled by flushing the write with
106 	 * a dummy read
107 	 */
108 	reg = intel_qep_readl(qep, INTEL_QEPCON);
109 
110 	reg &= ~(INTEL_QEPCON_OP_MODE | INTEL_QEPCON_FLT_EN);
111 	reg |= INTEL_QEPCON_EDGE_A | INTEL_QEPCON_EDGE_B |
112 	       INTEL_QEPCON_EDGE_INDX | INTEL_QEPCON_COUNT_RST_MODE;
113 	intel_qep_writel(qep, INTEL_QEPCON, reg);
114 	intel_qep_writel(qep, INTEL_QEPINT_MASK, INTEL_QEPINT_MASK_ALL);
115 }
116 
117 static int intel_qep_count_read(struct counter_device *counter,
118 				struct counter_count *count,
119 				unsigned long *val)
120 {
121 	struct intel_qep *const qep = counter->priv;
122 
123 	pm_runtime_get_sync(qep->dev);
124 	*val = intel_qep_readl(qep, INTEL_QEPCOUNT);
125 	pm_runtime_put(qep->dev);
126 
127 	return 0;
128 }
129 
130 static const enum counter_count_function intel_qep_count_functions[] = {
131 	COUNTER_COUNT_FUNCTION_QUADRATURE_X4,
132 };
133 
134 static int intel_qep_function_get(struct counter_device *counter,
135 				  struct counter_count *count,
136 				  size_t *function)
137 {
138 	*function = 0;
139 
140 	return 0;
141 }
142 
143 static const enum counter_synapse_action intel_qep_synapse_actions[] = {
144 	COUNTER_SYNAPSE_ACTION_BOTH_EDGES,
145 };
146 
147 static int intel_qep_action_get(struct counter_device *counter,
148 				struct counter_count *count,
149 				struct counter_synapse *synapse,
150 				size_t *action)
151 {
152 	*action = 0;
153 	return 0;
154 }
155 
156 static const struct counter_ops intel_qep_counter_ops = {
157 	.count_read = intel_qep_count_read,
158 	.function_get = intel_qep_function_get,
159 	.action_get = intel_qep_action_get,
160 };
161 
162 #define INTEL_QEP_SIGNAL(_id, _name) {				\
163 	.id = (_id),						\
164 	.name = (_name),					\
165 }
166 
167 static struct counter_signal intel_qep_signals[] = {
168 	INTEL_QEP_SIGNAL(0, "Phase A"),
169 	INTEL_QEP_SIGNAL(1, "Phase B"),
170 	INTEL_QEP_SIGNAL(2, "Index"),
171 };
172 
173 #define INTEL_QEP_SYNAPSE(_signal_id) {				\
174 	.actions_list = intel_qep_synapse_actions,		\
175 	.num_actions = ARRAY_SIZE(intel_qep_synapse_actions),	\
176 	.signal = &intel_qep_signals[(_signal_id)],		\
177 }
178 
179 static struct counter_synapse intel_qep_count_synapses[] = {
180 	INTEL_QEP_SYNAPSE(0),
181 	INTEL_QEP_SYNAPSE(1),
182 	INTEL_QEP_SYNAPSE(2),
183 };
184 
185 static ssize_t ceiling_read(struct counter_device *counter,
186 			    struct counter_count *count,
187 			    void *priv, char *buf)
188 {
189 	struct intel_qep *qep = counter->priv;
190 	u32 reg;
191 
192 	pm_runtime_get_sync(qep->dev);
193 	reg = intel_qep_readl(qep, INTEL_QEPMAX);
194 	pm_runtime_put(qep->dev);
195 
196 	return sysfs_emit(buf, "%u\n", reg);
197 }
198 
199 static ssize_t ceiling_write(struct counter_device *counter,
200 			     struct counter_count *count,
201 			     void *priv, const char *buf, size_t len)
202 {
203 	struct intel_qep *qep = counter->priv;
204 	u32 max;
205 	int ret;
206 
207 	ret = kstrtou32(buf, 0, &max);
208 	if (ret < 0)
209 		return ret;
210 
211 	mutex_lock(&qep->lock);
212 	if (qep->enabled) {
213 		ret = -EBUSY;
214 		goto out;
215 	}
216 
217 	pm_runtime_get_sync(qep->dev);
218 	intel_qep_writel(qep, INTEL_QEPMAX, max);
219 	pm_runtime_put(qep->dev);
220 	ret = len;
221 
222 out:
223 	mutex_unlock(&qep->lock);
224 	return ret;
225 }
226 
227 static ssize_t enable_read(struct counter_device *counter,
228 			   struct counter_count *count,
229 			   void *priv, char *buf)
230 {
231 	struct intel_qep *qep = counter->priv;
232 
233 	return sysfs_emit(buf, "%u\n", qep->enabled);
234 }
235 
236 static ssize_t enable_write(struct counter_device *counter,
237 			    struct counter_count *count,
238 			    void *priv, const char *buf, size_t len)
239 {
240 	struct intel_qep *qep = counter->priv;
241 	u32 reg;
242 	bool val, changed;
243 	int ret;
244 
245 	ret = kstrtobool(buf, &val);
246 	if (ret)
247 		return ret;
248 
249 	mutex_lock(&qep->lock);
250 	changed = val ^ qep->enabled;
251 	if (!changed)
252 		goto out;
253 
254 	pm_runtime_get_sync(qep->dev);
255 	reg = intel_qep_readl(qep, INTEL_QEPCON);
256 	if (val) {
257 		/* Enable peripheral and keep runtime PM always on */
258 		reg |= INTEL_QEPCON_EN;
259 		pm_runtime_get_noresume(qep->dev);
260 	} else {
261 		/* Let runtime PM be idle and disable peripheral */
262 		pm_runtime_put_noidle(qep->dev);
263 		reg &= ~INTEL_QEPCON_EN;
264 	}
265 	intel_qep_writel(qep, INTEL_QEPCON, reg);
266 	pm_runtime_put(qep->dev);
267 	qep->enabled = val;
268 
269 out:
270 	mutex_unlock(&qep->lock);
271 	return len;
272 }
273 
274 static ssize_t spike_filter_ns_read(struct counter_device *counter,
275 				    struct counter_count *count,
276 				    void *priv, char *buf)
277 {
278 	struct intel_qep *qep = counter->priv;
279 	u32 reg;
280 
281 	pm_runtime_get_sync(qep->dev);
282 	reg = intel_qep_readl(qep, INTEL_QEPCON);
283 	if (!(reg & INTEL_QEPCON_FLT_EN)) {
284 		pm_runtime_put(qep->dev);
285 		return sysfs_emit(buf, "0\n");
286 	}
287 	reg = INTEL_QEPFLT_MAX_COUNT(intel_qep_readl(qep, INTEL_QEPFLT));
288 	pm_runtime_put(qep->dev);
289 
290 	return sysfs_emit(buf, "%u\n", (reg + 2) * INTEL_QEP_CLK_PERIOD_NS);
291 }
292 
293 static ssize_t spike_filter_ns_write(struct counter_device *counter,
294 				     struct counter_count *count,
295 				     void *priv, const char *buf, size_t len)
296 {
297 	struct intel_qep *qep = counter->priv;
298 	u32 reg, length;
299 	bool enable;
300 	int ret;
301 
302 	ret = kstrtou32(buf, 0, &length);
303 	if (ret < 0)
304 		return ret;
305 
306 	/*
307 	 * Spike filter length is (MAX_COUNT + 2) clock periods.
308 	 * Disable filter when userspace writes 0, enable for valid
309 	 * nanoseconds values and error out otherwise.
310 	 */
311 	length /= INTEL_QEP_CLK_PERIOD_NS;
312 	if (length == 0) {
313 		enable = false;
314 		length = 0;
315 	} else if (length >= 2) {
316 		enable = true;
317 		length -= 2;
318 	} else {
319 		return -EINVAL;
320 	}
321 
322 	if (length > INTEL_QEPFLT_MAX_COUNT(length))
323 		return -EINVAL;
324 
325 	mutex_lock(&qep->lock);
326 	if (qep->enabled) {
327 		ret = -EBUSY;
328 		goto out;
329 	}
330 
331 	pm_runtime_get_sync(qep->dev);
332 	reg = intel_qep_readl(qep, INTEL_QEPCON);
333 	if (enable)
334 		reg |= INTEL_QEPCON_FLT_EN;
335 	else
336 		reg &= ~INTEL_QEPCON_FLT_EN;
337 	intel_qep_writel(qep, INTEL_QEPFLT, length);
338 	intel_qep_writel(qep, INTEL_QEPCON, reg);
339 	pm_runtime_put(qep->dev);
340 	ret = len;
341 
342 out:
343 	mutex_unlock(&qep->lock);
344 	return ret;
345 }
346 
347 static ssize_t preset_enable_read(struct counter_device *counter,
348 				  struct counter_count *count,
349 				  void *priv, char *buf)
350 {
351 	struct intel_qep *qep = counter->priv;
352 	u32 reg;
353 
354 	pm_runtime_get_sync(qep->dev);
355 	reg = intel_qep_readl(qep, INTEL_QEPCON);
356 	pm_runtime_put(qep->dev);
357 	return sysfs_emit(buf, "%u\n", !(reg & INTEL_QEPCON_COUNT_RST_MODE));
358 }
359 
360 static ssize_t preset_enable_write(struct counter_device *counter,
361 				   struct counter_count *count,
362 				   void *priv, const char *buf, size_t len)
363 {
364 	struct intel_qep *qep = counter->priv;
365 	u32 reg;
366 	bool val;
367 	int ret;
368 
369 	ret = kstrtobool(buf, &val);
370 	if (ret)
371 		return ret;
372 
373 	mutex_lock(&qep->lock);
374 	if (qep->enabled) {
375 		ret = -EBUSY;
376 		goto out;
377 	}
378 
379 	pm_runtime_get_sync(qep->dev);
380 	reg = intel_qep_readl(qep, INTEL_QEPCON);
381 	if (val)
382 		reg &= ~INTEL_QEPCON_COUNT_RST_MODE;
383 	else
384 		reg |= INTEL_QEPCON_COUNT_RST_MODE;
385 
386 	intel_qep_writel(qep, INTEL_QEPCON, reg);
387 	pm_runtime_put(qep->dev);
388 	ret = len;
389 
390 out:
391 	mutex_unlock(&qep->lock);
392 
393 	return ret;
394 }
395 
396 static const struct counter_count_ext intel_qep_count_ext[] = {
397 	INTEL_QEP_COUNTER_EXT_RW(ceiling),
398 	INTEL_QEP_COUNTER_EXT_RW(enable),
399 	INTEL_QEP_COUNTER_EXT_RW(spike_filter_ns),
400 	INTEL_QEP_COUNTER_EXT_RW(preset_enable)
401 };
402 
403 static struct counter_count intel_qep_counter_count[] = {
404 	{
405 		.id = 0,
406 		.name = "Channel 1 Count",
407 		.functions_list = intel_qep_count_functions,
408 		.num_functions = ARRAY_SIZE(intel_qep_count_functions),
409 		.synapses = intel_qep_count_synapses,
410 		.num_synapses = ARRAY_SIZE(intel_qep_count_synapses),
411 		.ext = intel_qep_count_ext,
412 		.num_ext = ARRAY_SIZE(intel_qep_count_ext),
413 	},
414 };
415 
416 static int intel_qep_probe(struct pci_dev *pci, const struct pci_device_id *id)
417 {
418 	struct intel_qep *qep;
419 	struct device *dev = &pci->dev;
420 	void __iomem *regs;
421 	int ret;
422 
423 	qep = devm_kzalloc(dev, sizeof(*qep), GFP_KERNEL);
424 	if (!qep)
425 		return -ENOMEM;
426 
427 	ret = pcim_enable_device(pci);
428 	if (ret)
429 		return ret;
430 
431 	pci_set_master(pci);
432 
433 	ret = pcim_iomap_regions(pci, BIT(0), pci_name(pci));
434 	if (ret)
435 		return ret;
436 
437 	regs = pcim_iomap_table(pci)[0];
438 	if (!regs)
439 		return -ENOMEM;
440 
441 	qep->dev = dev;
442 	qep->regs = regs;
443 	mutex_init(&qep->lock);
444 
445 	intel_qep_init(qep);
446 	pci_set_drvdata(pci, qep);
447 
448 	qep->counter.name = pci_name(pci);
449 	qep->counter.parent = dev;
450 	qep->counter.ops = &intel_qep_counter_ops;
451 	qep->counter.counts = intel_qep_counter_count;
452 	qep->counter.num_counts = ARRAY_SIZE(intel_qep_counter_count);
453 	qep->counter.signals = intel_qep_signals;
454 	qep->counter.num_signals = ARRAY_SIZE(intel_qep_signals);
455 	qep->counter.priv = qep;
456 	qep->enabled = false;
457 
458 	pm_runtime_put(dev);
459 	pm_runtime_allow(dev);
460 
461 	return devm_counter_register(&pci->dev, &qep->counter);
462 }
463 
464 static void intel_qep_remove(struct pci_dev *pci)
465 {
466 	struct intel_qep *qep = pci_get_drvdata(pci);
467 	struct device *dev = &pci->dev;
468 
469 	pm_runtime_forbid(dev);
470 	if (!qep->enabled)
471 		pm_runtime_get(dev);
472 
473 	intel_qep_writel(qep, INTEL_QEPCON, 0);
474 }
475 
476 static int __maybe_unused intel_qep_suspend(struct device *dev)
477 {
478 	struct pci_dev *pdev = to_pci_dev(dev);
479 	struct intel_qep *qep = pci_get_drvdata(pdev);
480 
481 	qep->qepcon = intel_qep_readl(qep, INTEL_QEPCON);
482 	qep->qepflt = intel_qep_readl(qep, INTEL_QEPFLT);
483 	qep->qepmax = intel_qep_readl(qep, INTEL_QEPMAX);
484 
485 	return 0;
486 }
487 
488 static int __maybe_unused intel_qep_resume(struct device *dev)
489 {
490 	struct pci_dev *pdev = to_pci_dev(dev);
491 	struct intel_qep *qep = pci_get_drvdata(pdev);
492 
493 	/*
494 	 * Make sure peripheral is disabled when restoring registers and
495 	 * control register bits that are writable only when the peripheral
496 	 * is disabled
497 	 */
498 	intel_qep_writel(qep, INTEL_QEPCON, 0);
499 	intel_qep_readl(qep, INTEL_QEPCON);
500 
501 	intel_qep_writel(qep, INTEL_QEPFLT, qep->qepflt);
502 	intel_qep_writel(qep, INTEL_QEPMAX, qep->qepmax);
503 	intel_qep_writel(qep, INTEL_QEPINT_MASK, INTEL_QEPINT_MASK_ALL);
504 
505 	/* Restore all other control register bits except enable status */
506 	intel_qep_writel(qep, INTEL_QEPCON, qep->qepcon & ~INTEL_QEPCON_EN);
507 	intel_qep_readl(qep, INTEL_QEPCON);
508 
509 	/* Restore enable status */
510 	intel_qep_writel(qep, INTEL_QEPCON, qep->qepcon);
511 
512 	return 0;
513 }
514 
515 static UNIVERSAL_DEV_PM_OPS(intel_qep_pm_ops,
516 			    intel_qep_suspend, intel_qep_resume, NULL);
517 
518 static const struct pci_device_id intel_qep_id_table[] = {
519 	/* EHL */
520 	{ PCI_VDEVICE(INTEL, 0x4bc3), },
521 	{ PCI_VDEVICE(INTEL, 0x4b81), },
522 	{ PCI_VDEVICE(INTEL, 0x4b82), },
523 	{ PCI_VDEVICE(INTEL, 0x4b83), },
524 	{  } /* Terminating Entry */
525 };
526 MODULE_DEVICE_TABLE(pci, intel_qep_id_table);
527 
528 static struct pci_driver intel_qep_driver = {
529 	.name = "intel-qep",
530 	.id_table = intel_qep_id_table,
531 	.probe = intel_qep_probe,
532 	.remove = intel_qep_remove,
533 	.driver = {
534 		.pm = &intel_qep_pm_ops,
535 	}
536 };
537 
538 module_pci_driver(intel_qep_driver);
539 
540 MODULE_AUTHOR("Felipe Balbi (Intel)");
541 MODULE_AUTHOR("Jarkko Nikula <jarkko.nikula@linux.intel.com>");
542 MODULE_AUTHOR("Raymond Tan <raymond.tan@intel.com>");
543 MODULE_LICENSE("GPL");
544 MODULE_DESCRIPTION("Intel Quadrature Encoder Peripheral driver");
545