1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Intel Quadrature Encoder Peripheral driver
4 *
5 * Copyright (C) 2019-2021 Intel Corporation
6 *
7 * Author: Felipe Balbi (Intel)
8 * Author: Jarkko Nikula <jarkko.nikula@linux.intel.com>
9 * Author: Raymond Tan <raymond.tan@intel.com>
10 */
11 #include <linux/counter.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/pci.h>
16 #include <linux/pm_runtime.h>
17
18 #define INTEL_QEPCON 0x00
19 #define INTEL_QEPFLT 0x04
20 #define INTEL_QEPCOUNT 0x08
21 #define INTEL_QEPMAX 0x0c
22 #define INTEL_QEPWDT 0x10
23 #define INTEL_QEPCAPDIV 0x14
24 #define INTEL_QEPCNTR 0x18
25 #define INTEL_QEPCAPBUF 0x1c
26 #define INTEL_QEPINT_STAT 0x20
27 #define INTEL_QEPINT_MASK 0x24
28
29 /* QEPCON */
30 #define INTEL_QEPCON_EN BIT(0)
31 #define INTEL_QEPCON_FLT_EN BIT(1)
32 #define INTEL_QEPCON_EDGE_A BIT(2)
33 #define INTEL_QEPCON_EDGE_B BIT(3)
34 #define INTEL_QEPCON_EDGE_INDX BIT(4)
35 #define INTEL_QEPCON_SWPAB BIT(5)
36 #define INTEL_QEPCON_OP_MODE BIT(6)
37 #define INTEL_QEPCON_PH_ERR BIT(7)
38 #define INTEL_QEPCON_COUNT_RST_MODE BIT(8)
39 #define INTEL_QEPCON_INDX_GATING_MASK GENMASK(10, 9)
40 #define INTEL_QEPCON_INDX_GATING(n) (((n) & 3) << 9)
41 #define INTEL_QEPCON_INDX_PAL_PBL INTEL_QEPCON_INDX_GATING(0)
42 #define INTEL_QEPCON_INDX_PAL_PBH INTEL_QEPCON_INDX_GATING(1)
43 #define INTEL_QEPCON_INDX_PAH_PBL INTEL_QEPCON_INDX_GATING(2)
44 #define INTEL_QEPCON_INDX_PAH_PBH INTEL_QEPCON_INDX_GATING(3)
45 #define INTEL_QEPCON_CAP_MODE BIT(11)
46 #define INTEL_QEPCON_FIFO_THRE_MASK GENMASK(14, 12)
47 #define INTEL_QEPCON_FIFO_THRE(n) ((((n) - 1) & 7) << 12)
48 #define INTEL_QEPCON_FIFO_EMPTY BIT(15)
49
50 /* QEPFLT */
51 #define INTEL_QEPFLT_MAX_COUNT(n) ((n) & 0x1fffff)
52
53 /* QEPINT */
54 #define INTEL_QEPINT_FIFOCRIT BIT(5)
55 #define INTEL_QEPINT_FIFOENTRY BIT(4)
56 #define INTEL_QEPINT_QEPDIR BIT(3)
57 #define INTEL_QEPINT_QEPRST_UP BIT(2)
58 #define INTEL_QEPINT_QEPRST_DOWN BIT(1)
59 #define INTEL_QEPINT_WDT BIT(0)
60
61 #define INTEL_QEPINT_MASK_ALL GENMASK(5, 0)
62
63 #define INTEL_QEP_CLK_PERIOD_NS 10
64
65 struct intel_qep {
66 struct mutex lock;
67 struct device *dev;
68 void __iomem *regs;
69 bool enabled;
70 /* Context save registers */
71 u32 qepcon;
72 u32 qepflt;
73 u32 qepmax;
74 };
75
intel_qep_readl(struct intel_qep * qep,u32 offset)76 static inline u32 intel_qep_readl(struct intel_qep *qep, u32 offset)
77 {
78 return readl(qep->regs + offset);
79 }
80
intel_qep_writel(struct intel_qep * qep,u32 offset,u32 value)81 static inline void intel_qep_writel(struct intel_qep *qep,
82 u32 offset, u32 value)
83 {
84 writel(value, qep->regs + offset);
85 }
86
intel_qep_init(struct intel_qep * qep)87 static void intel_qep_init(struct intel_qep *qep)
88 {
89 u32 reg;
90
91 reg = intel_qep_readl(qep, INTEL_QEPCON);
92 reg &= ~INTEL_QEPCON_EN;
93 intel_qep_writel(qep, INTEL_QEPCON, reg);
94 qep->enabled = false;
95 /*
96 * Make sure peripheral is disabled by flushing the write with
97 * a dummy read
98 */
99 reg = intel_qep_readl(qep, INTEL_QEPCON);
100
101 reg &= ~(INTEL_QEPCON_OP_MODE | INTEL_QEPCON_FLT_EN);
102 reg |= INTEL_QEPCON_EDGE_A | INTEL_QEPCON_EDGE_B |
103 INTEL_QEPCON_EDGE_INDX | INTEL_QEPCON_COUNT_RST_MODE;
104 intel_qep_writel(qep, INTEL_QEPCON, reg);
105 intel_qep_writel(qep, INTEL_QEPINT_MASK, INTEL_QEPINT_MASK_ALL);
106 }
107
intel_qep_count_read(struct counter_device * counter,struct counter_count * count,u64 * val)108 static int intel_qep_count_read(struct counter_device *counter,
109 struct counter_count *count, u64 *val)
110 {
111 struct intel_qep *const qep = counter_priv(counter);
112
113 pm_runtime_get_sync(qep->dev);
114 *val = intel_qep_readl(qep, INTEL_QEPCOUNT);
115 pm_runtime_put(qep->dev);
116
117 return 0;
118 }
119
120 static const enum counter_function intel_qep_count_functions[] = {
121 COUNTER_FUNCTION_QUADRATURE_X4,
122 };
123
intel_qep_function_read(struct counter_device * counter,struct counter_count * count,enum counter_function * function)124 static int intel_qep_function_read(struct counter_device *counter,
125 struct counter_count *count,
126 enum counter_function *function)
127 {
128 *function = COUNTER_FUNCTION_QUADRATURE_X4;
129
130 return 0;
131 }
132
133 static const enum counter_synapse_action intel_qep_synapse_actions[] = {
134 COUNTER_SYNAPSE_ACTION_BOTH_EDGES,
135 };
136
intel_qep_action_read(struct counter_device * counter,struct counter_count * count,struct counter_synapse * synapse,enum counter_synapse_action * action)137 static int intel_qep_action_read(struct counter_device *counter,
138 struct counter_count *count,
139 struct counter_synapse *synapse,
140 enum counter_synapse_action *action)
141 {
142 *action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES;
143 return 0;
144 }
145
146 static const struct counter_ops intel_qep_counter_ops = {
147 .count_read = intel_qep_count_read,
148 .function_read = intel_qep_function_read,
149 .action_read = intel_qep_action_read,
150 };
151
152 #define INTEL_QEP_SIGNAL(_id, _name) { \
153 .id = (_id), \
154 .name = (_name), \
155 }
156
157 static struct counter_signal intel_qep_signals[] = {
158 INTEL_QEP_SIGNAL(0, "Phase A"),
159 INTEL_QEP_SIGNAL(1, "Phase B"),
160 INTEL_QEP_SIGNAL(2, "Index"),
161 };
162
163 #define INTEL_QEP_SYNAPSE(_signal_id) { \
164 .actions_list = intel_qep_synapse_actions, \
165 .num_actions = ARRAY_SIZE(intel_qep_synapse_actions), \
166 .signal = &intel_qep_signals[(_signal_id)], \
167 }
168
169 static struct counter_synapse intel_qep_count_synapses[] = {
170 INTEL_QEP_SYNAPSE(0),
171 INTEL_QEP_SYNAPSE(1),
172 INTEL_QEP_SYNAPSE(2),
173 };
174
intel_qep_ceiling_read(struct counter_device * counter,struct counter_count * count,u64 * ceiling)175 static int intel_qep_ceiling_read(struct counter_device *counter,
176 struct counter_count *count, u64 *ceiling)
177 {
178 struct intel_qep *qep = counter_priv(counter);
179
180 pm_runtime_get_sync(qep->dev);
181 *ceiling = intel_qep_readl(qep, INTEL_QEPMAX);
182 pm_runtime_put(qep->dev);
183
184 return 0;
185 }
186
intel_qep_ceiling_write(struct counter_device * counter,struct counter_count * count,u64 max)187 static int intel_qep_ceiling_write(struct counter_device *counter,
188 struct counter_count *count, u64 max)
189 {
190 struct intel_qep *qep = counter_priv(counter);
191 int ret = 0;
192
193 /* Intel QEP ceiling configuration only supports 32-bit values */
194 if (max != (u32)max)
195 return -ERANGE;
196
197 mutex_lock(&qep->lock);
198 if (qep->enabled) {
199 ret = -EBUSY;
200 goto out;
201 }
202
203 pm_runtime_get_sync(qep->dev);
204 intel_qep_writel(qep, INTEL_QEPMAX, max);
205 pm_runtime_put(qep->dev);
206
207 out:
208 mutex_unlock(&qep->lock);
209 return ret;
210 }
211
intel_qep_enable_read(struct counter_device * counter,struct counter_count * count,u8 * enable)212 static int intel_qep_enable_read(struct counter_device *counter,
213 struct counter_count *count, u8 *enable)
214 {
215 struct intel_qep *qep = counter_priv(counter);
216
217 *enable = qep->enabled;
218
219 return 0;
220 }
221
intel_qep_enable_write(struct counter_device * counter,struct counter_count * count,u8 val)222 static int intel_qep_enable_write(struct counter_device *counter,
223 struct counter_count *count, u8 val)
224 {
225 struct intel_qep *qep = counter_priv(counter);
226 u32 reg;
227 bool changed;
228
229 mutex_lock(&qep->lock);
230 changed = val ^ qep->enabled;
231 if (!changed)
232 goto out;
233
234 pm_runtime_get_sync(qep->dev);
235 reg = intel_qep_readl(qep, INTEL_QEPCON);
236 if (val) {
237 /* Enable peripheral and keep runtime PM always on */
238 reg |= INTEL_QEPCON_EN;
239 pm_runtime_get_noresume(qep->dev);
240 } else {
241 /* Let runtime PM be idle and disable peripheral */
242 pm_runtime_put_noidle(qep->dev);
243 reg &= ~INTEL_QEPCON_EN;
244 }
245 intel_qep_writel(qep, INTEL_QEPCON, reg);
246 pm_runtime_put(qep->dev);
247 qep->enabled = val;
248
249 out:
250 mutex_unlock(&qep->lock);
251 return 0;
252 }
253
intel_qep_spike_filter_ns_read(struct counter_device * counter,struct counter_count * count,u64 * length)254 static int intel_qep_spike_filter_ns_read(struct counter_device *counter,
255 struct counter_count *count,
256 u64 *length)
257 {
258 struct intel_qep *qep = counter_priv(counter);
259 u32 reg;
260
261 pm_runtime_get_sync(qep->dev);
262 reg = intel_qep_readl(qep, INTEL_QEPCON);
263 if (!(reg & INTEL_QEPCON_FLT_EN)) {
264 pm_runtime_put(qep->dev);
265 return 0;
266 }
267 reg = INTEL_QEPFLT_MAX_COUNT(intel_qep_readl(qep, INTEL_QEPFLT));
268 pm_runtime_put(qep->dev);
269
270 *length = (reg + 2) * INTEL_QEP_CLK_PERIOD_NS;
271
272 return 0;
273 }
274
intel_qep_spike_filter_ns_write(struct counter_device * counter,struct counter_count * count,u64 length)275 static int intel_qep_spike_filter_ns_write(struct counter_device *counter,
276 struct counter_count *count,
277 u64 length)
278 {
279 struct intel_qep *qep = counter_priv(counter);
280 u32 reg;
281 bool enable;
282 int ret = 0;
283
284 /*
285 * Spike filter length is (MAX_COUNT + 2) clock periods.
286 * Disable filter when userspace writes 0, enable for valid
287 * nanoseconds values and error out otherwise.
288 */
289 do_div(length, INTEL_QEP_CLK_PERIOD_NS);
290 if (length == 0) {
291 enable = false;
292 length = 0;
293 } else if (length >= 2) {
294 enable = true;
295 length -= 2;
296 } else {
297 return -EINVAL;
298 }
299
300 if (length > INTEL_QEPFLT_MAX_COUNT(length))
301 return -ERANGE;
302
303 mutex_lock(&qep->lock);
304 if (qep->enabled) {
305 ret = -EBUSY;
306 goto out;
307 }
308
309 pm_runtime_get_sync(qep->dev);
310 reg = intel_qep_readl(qep, INTEL_QEPCON);
311 if (enable)
312 reg |= INTEL_QEPCON_FLT_EN;
313 else
314 reg &= ~INTEL_QEPCON_FLT_EN;
315 intel_qep_writel(qep, INTEL_QEPFLT, length);
316 intel_qep_writel(qep, INTEL_QEPCON, reg);
317 pm_runtime_put(qep->dev);
318
319 out:
320 mutex_unlock(&qep->lock);
321 return ret;
322 }
323
intel_qep_preset_enable_read(struct counter_device * counter,struct counter_count * count,u8 * preset_enable)324 static int intel_qep_preset_enable_read(struct counter_device *counter,
325 struct counter_count *count,
326 u8 *preset_enable)
327 {
328 struct intel_qep *qep = counter_priv(counter);
329 u32 reg;
330
331 pm_runtime_get_sync(qep->dev);
332 reg = intel_qep_readl(qep, INTEL_QEPCON);
333 pm_runtime_put(qep->dev);
334
335 *preset_enable = !(reg & INTEL_QEPCON_COUNT_RST_MODE);
336
337 return 0;
338 }
339
intel_qep_preset_enable_write(struct counter_device * counter,struct counter_count * count,u8 val)340 static int intel_qep_preset_enable_write(struct counter_device *counter,
341 struct counter_count *count, u8 val)
342 {
343 struct intel_qep *qep = counter_priv(counter);
344 u32 reg;
345 int ret = 0;
346
347 mutex_lock(&qep->lock);
348 if (qep->enabled) {
349 ret = -EBUSY;
350 goto out;
351 }
352
353 pm_runtime_get_sync(qep->dev);
354 reg = intel_qep_readl(qep, INTEL_QEPCON);
355 if (val)
356 reg &= ~INTEL_QEPCON_COUNT_RST_MODE;
357 else
358 reg |= INTEL_QEPCON_COUNT_RST_MODE;
359
360 intel_qep_writel(qep, INTEL_QEPCON, reg);
361 pm_runtime_put(qep->dev);
362
363 out:
364 mutex_unlock(&qep->lock);
365
366 return ret;
367 }
368
369 static struct counter_comp intel_qep_count_ext[] = {
370 COUNTER_COMP_ENABLE(intel_qep_enable_read, intel_qep_enable_write),
371 COUNTER_COMP_CEILING(intel_qep_ceiling_read, intel_qep_ceiling_write),
372 COUNTER_COMP_PRESET_ENABLE(intel_qep_preset_enable_read,
373 intel_qep_preset_enable_write),
374 COUNTER_COMP_COUNT_U64("spike_filter_ns",
375 intel_qep_spike_filter_ns_read,
376 intel_qep_spike_filter_ns_write),
377 };
378
379 static struct counter_count intel_qep_counter_count[] = {
380 {
381 .id = 0,
382 .name = "Channel 1 Count",
383 .functions_list = intel_qep_count_functions,
384 .num_functions = ARRAY_SIZE(intel_qep_count_functions),
385 .synapses = intel_qep_count_synapses,
386 .num_synapses = ARRAY_SIZE(intel_qep_count_synapses),
387 .ext = intel_qep_count_ext,
388 .num_ext = ARRAY_SIZE(intel_qep_count_ext),
389 },
390 };
391
intel_qep_probe(struct pci_dev * pci,const struct pci_device_id * id)392 static int intel_qep_probe(struct pci_dev *pci, const struct pci_device_id *id)
393 {
394 struct counter_device *counter;
395 struct intel_qep *qep;
396 struct device *dev = &pci->dev;
397 void __iomem *regs;
398 int ret;
399
400 counter = devm_counter_alloc(dev, sizeof(*qep));
401 if (!counter)
402 return -ENOMEM;
403 qep = counter_priv(counter);
404
405 ret = pcim_enable_device(pci);
406 if (ret)
407 return ret;
408
409 pci_set_master(pci);
410
411 regs = pcim_iomap_region(pci, 0, pci_name(pci));
412 if (IS_ERR(regs))
413 return PTR_ERR(regs);
414
415 qep->dev = dev;
416 qep->regs = regs;
417 mutex_init(&qep->lock);
418
419 intel_qep_init(qep);
420 pci_set_drvdata(pci, qep);
421
422 counter->name = pci_name(pci);
423 counter->parent = dev;
424 counter->ops = &intel_qep_counter_ops;
425 counter->counts = intel_qep_counter_count;
426 counter->num_counts = ARRAY_SIZE(intel_qep_counter_count);
427 counter->signals = intel_qep_signals;
428 counter->num_signals = ARRAY_SIZE(intel_qep_signals);
429 qep->enabled = false;
430
431 pm_runtime_put(dev);
432 pm_runtime_allow(dev);
433
434 ret = devm_counter_add(&pci->dev, counter);
435 if (ret < 0)
436 return dev_err_probe(&pci->dev, ret, "Failed to add counter\n");
437
438 return 0;
439 }
440
intel_qep_remove(struct pci_dev * pci)441 static void intel_qep_remove(struct pci_dev *pci)
442 {
443 struct intel_qep *qep = pci_get_drvdata(pci);
444 struct device *dev = &pci->dev;
445
446 pm_runtime_forbid(dev);
447 if (!qep->enabled)
448 pm_runtime_get(dev);
449
450 intel_qep_writel(qep, INTEL_QEPCON, 0);
451 }
452
intel_qep_suspend(struct device * dev)453 static int __maybe_unused intel_qep_suspend(struct device *dev)
454 {
455 struct pci_dev *pdev = to_pci_dev(dev);
456 struct intel_qep *qep = pci_get_drvdata(pdev);
457
458 qep->qepcon = intel_qep_readl(qep, INTEL_QEPCON);
459 qep->qepflt = intel_qep_readl(qep, INTEL_QEPFLT);
460 qep->qepmax = intel_qep_readl(qep, INTEL_QEPMAX);
461
462 return 0;
463 }
464
intel_qep_resume(struct device * dev)465 static int __maybe_unused intel_qep_resume(struct device *dev)
466 {
467 struct pci_dev *pdev = to_pci_dev(dev);
468 struct intel_qep *qep = pci_get_drvdata(pdev);
469
470 /*
471 * Make sure peripheral is disabled when restoring registers and
472 * control register bits that are writable only when the peripheral
473 * is disabled
474 */
475 intel_qep_writel(qep, INTEL_QEPCON, 0);
476 intel_qep_readl(qep, INTEL_QEPCON);
477
478 intel_qep_writel(qep, INTEL_QEPFLT, qep->qepflt);
479 intel_qep_writel(qep, INTEL_QEPMAX, qep->qepmax);
480 intel_qep_writel(qep, INTEL_QEPINT_MASK, INTEL_QEPINT_MASK_ALL);
481
482 /* Restore all other control register bits except enable status */
483 intel_qep_writel(qep, INTEL_QEPCON, qep->qepcon & ~INTEL_QEPCON_EN);
484 intel_qep_readl(qep, INTEL_QEPCON);
485
486 /* Restore enable status */
487 intel_qep_writel(qep, INTEL_QEPCON, qep->qepcon);
488
489 return 0;
490 }
491
492 static UNIVERSAL_DEV_PM_OPS(intel_qep_pm_ops,
493 intel_qep_suspend, intel_qep_resume, NULL);
494
495 static const struct pci_device_id intel_qep_id_table[] = {
496 /* EHL */
497 { PCI_VDEVICE(INTEL, 0x4bc3), },
498 { PCI_VDEVICE(INTEL, 0x4b81), },
499 { PCI_VDEVICE(INTEL, 0x4b82), },
500 { PCI_VDEVICE(INTEL, 0x4b83), },
501 { } /* Terminating Entry */
502 };
503 MODULE_DEVICE_TABLE(pci, intel_qep_id_table);
504
505 static struct pci_driver intel_qep_driver = {
506 .name = "intel-qep",
507 .id_table = intel_qep_id_table,
508 .probe = intel_qep_probe,
509 .remove = intel_qep_remove,
510 .driver = {
511 .pm = &intel_qep_pm_ops,
512 }
513 };
514
515 module_pci_driver(intel_qep_driver);
516
517 MODULE_AUTHOR("Felipe Balbi (Intel)");
518 MODULE_AUTHOR("Jarkko Nikula <jarkko.nikula@linux.intel.com>");
519 MODULE_AUTHOR("Raymond Tan <raymond.tan@intel.com>");
520 MODULE_LICENSE("GPL");
521 MODULE_DESCRIPTION("Intel Quadrature Encoder Peripheral driver");
522 MODULE_IMPORT_NS("COUNTER");
523