1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2010 Google, Inc. 4 * 5 * Author: 6 * Colin Cross <ccross@google.com> 7 */ 8 9 #define pr_fmt(fmt) "tegra-timer: " fmt 10 11 #include <linux/clk.h> 12 #include <linux/clockchips.h> 13 #include <linux/cpu.h> 14 #include <linux/cpumask.h> 15 #include <linux/delay.h> 16 #include <linux/err.h> 17 #include <linux/interrupt.h> 18 #include <linux/of_address.h> 19 #include <linux/of_irq.h> 20 #include <linux/percpu.h> 21 #include <linux/sched_clock.h> 22 #include <linux/time.h> 23 24 #include "timer-of.h" 25 26 #define RTC_SECONDS 0x08 27 #define RTC_SHADOW_SECONDS 0x0c 28 #define RTC_MILLISECONDS 0x10 29 30 #define TIMERUS_CNTR_1US 0x10 31 #define TIMERUS_USEC_CFG 0x14 32 #define TIMERUS_CNTR_FREEZE 0x4c 33 34 #define TIMER_PTV 0x0 35 #define TIMER_PTV_EN BIT(31) 36 #define TIMER_PTV_PER BIT(30) 37 #define TIMER_PCR 0x4 38 #define TIMER_PCR_INTR_CLR BIT(30) 39 40 #define TIMER1_BASE 0x00 41 #define TIMER2_BASE 0x08 42 #define TIMER3_BASE 0x50 43 #define TIMER4_BASE 0x58 44 #define TIMER10_BASE 0x90 45 46 #define TIMER1_IRQ_IDX 0 47 #define TIMER10_IRQ_IDX 10 48 49 #define TIMER_1MHz 1000000 50 51 static u32 usec_config; 52 static void __iomem *timer_reg_base; 53 54 static int tegra_timer_set_next_event(unsigned long cycles, 55 struct clock_event_device *evt) 56 { 57 void __iomem *reg_base = timer_of_base(to_timer_of(evt)); 58 59 /* 60 * Tegra's timer uses n+1 scheme for the counter, i.e. timer will 61 * fire after one tick if 0 is loaded. 62 * 63 * The minimum and maximum numbers of oneshot ticks are defined 64 * by clockevents_config_and_register(1, 0x1fffffff + 1) invocation 65 * below in the code. Hence the cycles (ticks) can't be outside of 66 * a range supportable by hardware. 67 */ 68 writel_relaxed(TIMER_PTV_EN | (cycles - 1), reg_base + TIMER_PTV); 69 70 return 0; 71 } 72 73 static int tegra_timer_shutdown(struct clock_event_device *evt) 74 { 75 void __iomem *reg_base = timer_of_base(to_timer_of(evt)); 76 77 writel_relaxed(0, reg_base + TIMER_PTV); 78 79 return 0; 80 } 81 82 static int tegra_timer_set_periodic(struct clock_event_device *evt) 83 { 84 void __iomem *reg_base = timer_of_base(to_timer_of(evt)); 85 unsigned long period = timer_of_period(to_timer_of(evt)); 86 87 writel_relaxed(TIMER_PTV_EN | TIMER_PTV_PER | (period - 1), 88 reg_base + TIMER_PTV); 89 90 return 0; 91 } 92 93 static irqreturn_t tegra_timer_isr(int irq, void *dev_id) 94 { 95 struct clock_event_device *evt = dev_id; 96 void __iomem *reg_base = timer_of_base(to_timer_of(evt)); 97 98 writel_relaxed(TIMER_PCR_INTR_CLR, reg_base + TIMER_PCR); 99 evt->event_handler(evt); 100 101 return IRQ_HANDLED; 102 } 103 104 static void tegra_timer_suspend(struct clock_event_device *evt) 105 { 106 void __iomem *reg_base = timer_of_base(to_timer_of(evt)); 107 108 writel_relaxed(TIMER_PCR_INTR_CLR, reg_base + TIMER_PCR); 109 } 110 111 static void tegra_timer_resume(struct clock_event_device *evt) 112 { 113 writel_relaxed(usec_config, timer_reg_base + TIMERUS_USEC_CFG); 114 } 115 116 static DEFINE_PER_CPU(struct timer_of, tegra_to) = { 117 .flags = TIMER_OF_CLOCK | TIMER_OF_BASE, 118 119 .clkevt = { 120 .name = "tegra_timer", 121 .features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC, 122 .set_next_event = tegra_timer_set_next_event, 123 .set_state_shutdown = tegra_timer_shutdown, 124 .set_state_periodic = tegra_timer_set_periodic, 125 .set_state_oneshot = tegra_timer_shutdown, 126 .tick_resume = tegra_timer_shutdown, 127 .suspend = tegra_timer_suspend, 128 .resume = tegra_timer_resume, 129 }, 130 }; 131 132 static int tegra_timer_setup(unsigned int cpu) 133 { 134 struct timer_of *to = per_cpu_ptr(&tegra_to, cpu); 135 136 writel_relaxed(0, timer_of_base(to) + TIMER_PTV); 137 writel_relaxed(TIMER_PCR_INTR_CLR, timer_of_base(to) + TIMER_PCR); 138 139 irq_force_affinity(to->clkevt.irq, cpumask_of(cpu)); 140 enable_irq(to->clkevt.irq); 141 142 /* 143 * Tegra's timer uses n+1 scheme for the counter, i.e. timer will 144 * fire after one tick if 0 is loaded and thus minimum number of 145 * ticks is 1. In result both of the clocksource's tick limits are 146 * higher than a minimum and maximum that hardware register can 147 * take by 1, this is then taken into account by set_next_event 148 * callback. 149 */ 150 clockevents_config_and_register(&to->clkevt, timer_of_rate(to), 151 1, /* min */ 152 0x1fffffff + 1); /* max 29 bits + 1 */ 153 154 return 0; 155 } 156 157 static int tegra_timer_stop(unsigned int cpu) 158 { 159 struct timer_of *to = per_cpu_ptr(&tegra_to, cpu); 160 161 disable_irq_nosync(to->clkevt.irq); 162 163 return 0; 164 } 165 166 static u64 notrace tegra_read_sched_clock(void) 167 { 168 return readl_relaxed(timer_reg_base + TIMERUS_CNTR_1US); 169 } 170 171 #ifdef CONFIG_ARM 172 static unsigned long tegra_delay_timer_read_counter_long(void) 173 { 174 return readl_relaxed(timer_reg_base + TIMERUS_CNTR_1US); 175 } 176 177 static struct delay_timer tegra_delay_timer = { 178 .read_current_timer = tegra_delay_timer_read_counter_long, 179 .freq = TIMER_1MHz, 180 }; 181 #endif 182 183 static struct timer_of suspend_rtc_to = { 184 .flags = TIMER_OF_BASE | TIMER_OF_CLOCK, 185 }; 186 187 /* 188 * tegra_rtc_read - Reads the Tegra RTC registers 189 * Care must be taken that this function is not called while the 190 * tegra_rtc driver could be executing to avoid race conditions 191 * on the RTC shadow register 192 */ 193 static u64 tegra_rtc_read_ms(struct clocksource *cs) 194 { 195 void __iomem *reg_base = timer_of_base(&suspend_rtc_to); 196 197 u32 ms = readl_relaxed(reg_base + RTC_MILLISECONDS); 198 u32 s = readl_relaxed(reg_base + RTC_SHADOW_SECONDS); 199 200 return (u64)s * MSEC_PER_SEC + ms; 201 } 202 203 static struct clocksource suspend_rtc_clocksource = { 204 .name = "tegra_suspend_timer", 205 .rating = 200, 206 .read = tegra_rtc_read_ms, 207 .mask = CLOCKSOURCE_MASK(32), 208 .flags = CLOCK_SOURCE_IS_CONTINUOUS | CLOCK_SOURCE_SUSPEND_NONSTOP, 209 }; 210 211 static inline unsigned int tegra_base_for_cpu(int cpu, bool tegra20) 212 { 213 if (tegra20) { 214 switch (cpu) { 215 case 0: 216 return TIMER1_BASE; 217 case 1: 218 return TIMER2_BASE; 219 case 2: 220 return TIMER3_BASE; 221 default: 222 return TIMER4_BASE; 223 } 224 } 225 226 return TIMER10_BASE + cpu * 8; 227 } 228 229 static inline unsigned int tegra_irq_idx_for_cpu(int cpu, bool tegra20) 230 { 231 if (tegra20) 232 return TIMER1_IRQ_IDX + cpu; 233 234 return TIMER10_IRQ_IDX + cpu; 235 } 236 237 static inline unsigned long tegra_rate_for_timer(struct timer_of *to, 238 bool tegra20) 239 { 240 /* 241 * TIMER1-9 are fixed to 1MHz, TIMER10-13 are running off the 242 * parent clock. 243 */ 244 if (tegra20) 245 return TIMER_1MHz; 246 247 return timer_of_rate(to); 248 } 249 250 static int __init tegra_init_timer(struct device_node *np, bool tegra20, 251 int rating) 252 { 253 struct timer_of *to; 254 int cpu, ret; 255 256 to = this_cpu_ptr(&tegra_to); 257 ret = timer_of_init(np, to); 258 if (ret) 259 goto out; 260 261 timer_reg_base = timer_of_base(to); 262 263 /* 264 * Configure microsecond timers to have 1MHz clock 265 * Config register is 0xqqww, where qq is "dividend", ww is "divisor" 266 * Uses n+1 scheme 267 */ 268 switch (timer_of_rate(to)) { 269 case 12000000: 270 usec_config = 0x000b; /* (11+1)/(0+1) */ 271 break; 272 case 12800000: 273 usec_config = 0x043f; /* (63+1)/(4+1) */ 274 break; 275 case 13000000: 276 usec_config = 0x000c; /* (12+1)/(0+1) */ 277 break; 278 case 16800000: 279 usec_config = 0x0453; /* (83+1)/(4+1) */ 280 break; 281 case 19200000: 282 usec_config = 0x045f; /* (95+1)/(4+1) */ 283 break; 284 case 26000000: 285 usec_config = 0x0019; /* (25+1)/(0+1) */ 286 break; 287 case 38400000: 288 usec_config = 0x04bf; /* (191+1)/(4+1) */ 289 break; 290 case 48000000: 291 usec_config = 0x002f; /* (47+1)/(0+1) */ 292 break; 293 default: 294 ret = -EINVAL; 295 goto out; 296 } 297 298 writel_relaxed(usec_config, timer_reg_base + TIMERUS_USEC_CFG); 299 300 for_each_possible_cpu(cpu) { 301 struct timer_of *cpu_to = per_cpu_ptr(&tegra_to, cpu); 302 unsigned long flags = IRQF_TIMER | IRQF_NOBALANCING; 303 unsigned long rate = tegra_rate_for_timer(to, tegra20); 304 unsigned int base = tegra_base_for_cpu(cpu, tegra20); 305 unsigned int idx = tegra_irq_idx_for_cpu(cpu, tegra20); 306 unsigned int irq = irq_of_parse_and_map(np, idx); 307 308 if (!irq) { 309 pr_err("failed to map irq for cpu%d\n", cpu); 310 ret = -EINVAL; 311 goto out_irq; 312 } 313 314 cpu_to->clkevt.irq = irq; 315 cpu_to->clkevt.rating = rating; 316 cpu_to->clkevt.cpumask = cpumask_of(cpu); 317 cpu_to->of_base.base = timer_reg_base + base; 318 cpu_to->of_clk.period = rate / HZ; 319 cpu_to->of_clk.rate = rate; 320 321 irq_set_status_flags(cpu_to->clkevt.irq, IRQ_NOAUTOEN); 322 323 ret = request_irq(cpu_to->clkevt.irq, tegra_timer_isr, flags, 324 cpu_to->clkevt.name, &cpu_to->clkevt); 325 if (ret) { 326 pr_err("failed to set up irq for cpu%d: %d\n", 327 cpu, ret); 328 irq_dispose_mapping(cpu_to->clkevt.irq); 329 cpu_to->clkevt.irq = 0; 330 goto out_irq; 331 } 332 } 333 334 sched_clock_register(tegra_read_sched_clock, 32, TIMER_1MHz); 335 336 ret = clocksource_mmio_init(timer_reg_base + TIMERUS_CNTR_1US, 337 "timer_us", TIMER_1MHz, 300, 32, 338 clocksource_mmio_readl_up); 339 if (ret) 340 pr_err("failed to register clocksource: %d\n", ret); 341 342 #ifdef CONFIG_ARM 343 register_current_timer_delay(&tegra_delay_timer); 344 #endif 345 346 ret = cpuhp_setup_state(CPUHP_AP_TEGRA_TIMER_STARTING, 347 "AP_TEGRA_TIMER_STARTING", tegra_timer_setup, 348 tegra_timer_stop); 349 if (ret) 350 pr_err("failed to set up cpu hp state: %d\n", ret); 351 352 return ret; 353 354 out_irq: 355 for_each_possible_cpu(cpu) { 356 struct timer_of *cpu_to; 357 358 cpu_to = per_cpu_ptr(&tegra_to, cpu); 359 if (cpu_to->clkevt.irq) { 360 free_irq(cpu_to->clkevt.irq, &cpu_to->clkevt); 361 irq_dispose_mapping(cpu_to->clkevt.irq); 362 } 363 } 364 365 to->of_base.base = timer_reg_base; 366 out: 367 timer_of_cleanup(to); 368 369 return ret; 370 } 371 372 static int __init tegra210_init_timer(struct device_node *np) 373 { 374 /* 375 * Arch-timer can't survive across power cycle of CPU core and 376 * after CPUPORESET signal due to a system design shortcoming, 377 * hence tegra-timer is more preferable on Tegra210. 378 */ 379 return tegra_init_timer(np, false, 460); 380 } 381 TIMER_OF_DECLARE(tegra210_timer, "nvidia,tegra210-timer", tegra210_init_timer); 382 383 static int __init tegra20_init_timer(struct device_node *np) 384 { 385 int rating; 386 387 /* 388 * Tegra20 and Tegra30 have Cortex A9 CPU that has a TWD timer, 389 * that timer runs off the CPU clock and hence is subjected to 390 * a jitter caused by DVFS clock rate changes. Tegra-timer is 391 * more preferable for older Tegra's, while later SoC generations 392 * have arch-timer as a main per-CPU timer and it is not affected 393 * by DVFS changes. 394 */ 395 if (of_machine_is_compatible("nvidia,tegra20") || 396 of_machine_is_compatible("nvidia,tegra30")) 397 rating = 460; 398 else 399 rating = 330; 400 401 return tegra_init_timer(np, true, rating); 402 } 403 TIMER_OF_DECLARE(tegra20_timer, "nvidia,tegra20-timer", tegra20_init_timer); 404 405 static int __init tegra20_init_rtc(struct device_node *np) 406 { 407 int ret; 408 409 ret = timer_of_init(np, &suspend_rtc_to); 410 if (ret) 411 return ret; 412 413 return clocksource_register_hz(&suspend_rtc_clocksource, 1000); 414 } 415 TIMER_OF_DECLARE(tegra20_rtc, "nvidia,tegra20-rtc", tegra20_init_rtc); 416