xref: /linux/drivers/clocksource/timer-rtl-otto.c (revision d53b8e36925256097a08d7cb749198d85cbf9b2b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 
3 #define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
4 
5 #include <linux/clk.h>
6 #include <linux/clockchips.h>
7 #include <linux/cpu.h>
8 #include <linux/cpuhotplug.h>
9 #include <linux/cpumask.h>
10 #include <linux/interrupt.h>
11 #include <linux/io.h>
12 #include <linux/jiffies.h>
13 #include <linux/printk.h>
14 #include <linux/sched_clock.h>
15 #include "timer-of.h"
16 
17 #define RTTM_DATA		0x0
18 #define RTTM_CNT		0x4
19 #define RTTM_CTRL		0x8
20 #define RTTM_INT		0xc
21 
22 #define RTTM_CTRL_ENABLE	BIT(28)
23 #define RTTM_INT_PENDING	BIT(16)
24 #define RTTM_INT_ENABLE		BIT(20)
25 
26 /*
27  * The Otto platform provides multiple 28 bit timers/counters with the following
28  * operating logic. If enabled the timer counts up. Per timer one can set a
29  * maximum counter value as an end marker. If end marker is reached the timer
30  * fires an interrupt. If the timer "overflows" by reaching the end marker or
31  * by adding 1 to 0x0fffffff the counter is reset to 0. When this happens and
32  * the timer is in operating mode COUNTER it stops. In mode TIMER it will
33  * continue to count up.
34  */
35 #define RTTM_CTRL_COUNTER	0
36 #define RTTM_CTRL_TIMER		BIT(24)
37 
38 #define RTTM_BIT_COUNT		28
39 #define RTTM_MIN_DELTA		8
40 #define RTTM_MAX_DELTA		CLOCKSOURCE_MASK(28)
41 
42 /*
43  * Timers are derived from the LXB clock frequency. Usually this is a fixed
44  * multiple of the 25 MHz oscillator. The 930X SOC is an exception from that.
45  * Its LXB clock has only dividers and uses the switch PLL of 2.45 GHz as its
46  * base. The only meaningful frequencies we can achieve from that are 175.000
47  * MHz and 153.125 MHz. The greatest common divisor of all explained possible
48  * speeds is 3125000. Pin the timers to this 3.125 MHz reference frequency.
49  */
50 #define RTTM_TICKS_PER_SEC	3125000
51 
52 struct rttm_cs {
53 	struct timer_of		to;
54 	struct clocksource	cs;
55 };
56 
57 /* Simple internal register functions */
58 static inline void rttm_set_counter(void __iomem *base, unsigned int counter)
59 {
60 	iowrite32(counter, base + RTTM_CNT);
61 }
62 
63 static inline unsigned int rttm_get_counter(void __iomem *base)
64 {
65 	return ioread32(base + RTTM_CNT);
66 }
67 
68 static inline void rttm_set_period(void __iomem *base, unsigned int period)
69 {
70 	iowrite32(period, base + RTTM_DATA);
71 }
72 
73 static inline void rttm_disable_timer(void __iomem *base)
74 {
75 	iowrite32(0, base + RTTM_CTRL);
76 }
77 
78 static inline void rttm_enable_timer(void __iomem *base, u32 mode, u32 divisor)
79 {
80 	iowrite32(RTTM_CTRL_ENABLE | mode | divisor, base + RTTM_CTRL);
81 }
82 
83 static inline void rttm_ack_irq(void __iomem *base)
84 {
85 	iowrite32(ioread32(base + RTTM_INT) | RTTM_INT_PENDING, base + RTTM_INT);
86 }
87 
88 static inline void rttm_enable_irq(void __iomem *base)
89 {
90 	iowrite32(RTTM_INT_ENABLE, base + RTTM_INT);
91 }
92 
93 static inline void rttm_disable_irq(void __iomem *base)
94 {
95 	iowrite32(0, base + RTTM_INT);
96 }
97 
98 /* Aggregated control functions for kernel clock framework */
99 #define RTTM_DEBUG(base)			\
100 	pr_debug("------------- %d %p\n",	\
101 		 smp_processor_id(), base)
102 
103 static irqreturn_t rttm_timer_interrupt(int irq, void *dev_id)
104 {
105 	struct clock_event_device *clkevt = dev_id;
106 	struct timer_of *to = to_timer_of(clkevt);
107 
108 	rttm_ack_irq(to->of_base.base);
109 	RTTM_DEBUG(to->of_base.base);
110 	clkevt->event_handler(clkevt);
111 
112 	return IRQ_HANDLED;
113 }
114 
115 static void rttm_stop_timer(void __iomem *base)
116 {
117 	rttm_disable_timer(base);
118 	rttm_ack_irq(base);
119 }
120 
121 static void rttm_start_timer(struct timer_of *to, u32 mode)
122 {
123 	rttm_set_counter(to->of_base.base, 0);
124 	rttm_enable_timer(to->of_base.base, mode, to->of_clk.rate / RTTM_TICKS_PER_SEC);
125 }
126 
127 static int rttm_next_event(unsigned long delta, struct clock_event_device *clkevt)
128 {
129 	struct timer_of *to = to_timer_of(clkevt);
130 
131 	RTTM_DEBUG(to->of_base.base);
132 	rttm_stop_timer(to->of_base.base);
133 	rttm_set_period(to->of_base.base, delta);
134 	rttm_start_timer(to, RTTM_CTRL_COUNTER);
135 
136 	return 0;
137 }
138 
139 static int rttm_state_oneshot(struct clock_event_device *clkevt)
140 {
141 	struct timer_of *to = to_timer_of(clkevt);
142 
143 	RTTM_DEBUG(to->of_base.base);
144 	rttm_stop_timer(to->of_base.base);
145 	rttm_set_period(to->of_base.base, RTTM_TICKS_PER_SEC / HZ);
146 	rttm_start_timer(to, RTTM_CTRL_COUNTER);
147 
148 	return 0;
149 }
150 
151 static int rttm_state_periodic(struct clock_event_device *clkevt)
152 {
153 	struct timer_of *to = to_timer_of(clkevt);
154 
155 	RTTM_DEBUG(to->of_base.base);
156 	rttm_stop_timer(to->of_base.base);
157 	rttm_set_period(to->of_base.base, RTTM_TICKS_PER_SEC / HZ);
158 	rttm_start_timer(to, RTTM_CTRL_TIMER);
159 
160 	return 0;
161 }
162 
163 static int rttm_state_shutdown(struct clock_event_device *clkevt)
164 {
165 	struct timer_of *to = to_timer_of(clkevt);
166 
167 	RTTM_DEBUG(to->of_base.base);
168 	rttm_stop_timer(to->of_base.base);
169 
170 	return 0;
171 }
172 
173 static void rttm_setup_timer(void __iomem *base)
174 {
175 	RTTM_DEBUG(base);
176 	rttm_stop_timer(base);
177 	rttm_set_period(base, 0);
178 }
179 
180 static u64 rttm_read_clocksource(struct clocksource *cs)
181 {
182 	struct rttm_cs *rcs = container_of(cs, struct rttm_cs, cs);
183 
184 	return rttm_get_counter(rcs->to.of_base.base);
185 }
186 
187 /* Module initialization part. */
188 static DEFINE_PER_CPU(struct timer_of, rttm_to) = {
189 	.flags				= TIMER_OF_BASE | TIMER_OF_CLOCK | TIMER_OF_IRQ,
190 	.of_irq = {
191 		.flags			= IRQF_PERCPU | IRQF_TIMER,
192 		.handler		= rttm_timer_interrupt,
193 	},
194 	.clkevt = {
195 		.rating			= 400,
196 		.features		= CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
197 		.set_state_periodic	= rttm_state_periodic,
198 		.set_state_shutdown	= rttm_state_shutdown,
199 		.set_state_oneshot	= rttm_state_oneshot,
200 		.set_next_event		= rttm_next_event
201 	},
202 };
203 
204 static int rttm_enable_clocksource(struct clocksource *cs)
205 {
206 	struct rttm_cs *rcs = container_of(cs, struct rttm_cs, cs);
207 
208 	rttm_disable_irq(rcs->to.of_base.base);
209 	rttm_setup_timer(rcs->to.of_base.base);
210 	rttm_enable_timer(rcs->to.of_base.base, RTTM_CTRL_TIMER,
211 			  rcs->to.of_clk.rate / RTTM_TICKS_PER_SEC);
212 
213 	return 0;
214 }
215 
216 struct rttm_cs rttm_cs = {
217 	.to = {
218 		.flags	= TIMER_OF_BASE | TIMER_OF_CLOCK,
219 	},
220 	.cs = {
221 		.name	= "realtek_otto_timer",
222 		.rating	= 400,
223 		.mask	= CLOCKSOURCE_MASK(RTTM_BIT_COUNT),
224 		.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
225 		.read	= rttm_read_clocksource,
226 	}
227 };
228 
229 static u64 notrace rttm_read_clock(void)
230 {
231 	return rttm_get_counter(rttm_cs.to.of_base.base);
232 }
233 
234 static int rttm_cpu_starting(unsigned int cpu)
235 {
236 	struct timer_of *to = per_cpu_ptr(&rttm_to, cpu);
237 
238 	RTTM_DEBUG(to->of_base.base);
239 	to->clkevt.cpumask = cpumask_of(cpu);
240 	irq_force_affinity(to->of_irq.irq, to->clkevt.cpumask);
241 	clockevents_config_and_register(&to->clkevt, RTTM_TICKS_PER_SEC,
242 					RTTM_MIN_DELTA, RTTM_MAX_DELTA);
243 	rttm_enable_irq(to->of_base.base);
244 
245 	return 0;
246 }
247 
248 static int __init rttm_probe(struct device_node *np)
249 {
250 	unsigned int cpu, cpu_rollback;
251 	struct timer_of *to;
252 	unsigned int clkidx = num_possible_cpus();
253 
254 	/* Use the first n timers as per CPU clock event generators */
255 	for_each_possible_cpu(cpu) {
256 		to = per_cpu_ptr(&rttm_to, cpu);
257 		to->of_irq.index = to->of_base.index = cpu;
258 		if (timer_of_init(np, to)) {
259 			pr_err("setup of timer %d failed\n", cpu);
260 			goto rollback;
261 		}
262 		rttm_setup_timer(to->of_base.base);
263 	}
264 
265 	/* Activate the n'th + 1 timer as a stable CPU clocksource. */
266 	to = &rttm_cs.to;
267 	to->of_base.index = clkidx;
268 	timer_of_init(np, to);
269 	if (rttm_cs.to.of_base.base && rttm_cs.to.of_clk.rate) {
270 		rttm_enable_clocksource(&rttm_cs.cs);
271 		clocksource_register_hz(&rttm_cs.cs, RTTM_TICKS_PER_SEC);
272 		sched_clock_register(rttm_read_clock, RTTM_BIT_COUNT, RTTM_TICKS_PER_SEC);
273 	} else
274 		pr_err(" setup of timer %d as clocksource failed", clkidx);
275 
276 	return cpuhp_setup_state(CPUHP_AP_REALTEK_TIMER_STARTING,
277 				"timer/realtek:online",
278 				rttm_cpu_starting, NULL);
279 rollback:
280 	pr_err("timer registration failed\n");
281 	for_each_possible_cpu(cpu_rollback) {
282 		if (cpu_rollback == cpu)
283 			break;
284 		to = per_cpu_ptr(&rttm_to, cpu_rollback);
285 		timer_of_cleanup(to);
286 	}
287 
288 	return -EINVAL;
289 }
290 
291 TIMER_OF_DECLARE(otto_timer, "realtek,otto-timer", rttm_probe);
292