xref: /linux/drivers/clocksource/timer-qcom.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *
4  * Copyright (C) 2007 Google, Inc.
5  * Copyright (c) 2009-2012,2014, The Linux Foundation. All rights reserved.
6  */
7 
8 #include <linux/clocksource.h>
9 #include <linux/clockchips.h>
10 #include <linux/cpu.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/irq.h>
14 #include <linux/io.h>
15 #include <linux/of.h>
16 #include <linux/of_address.h>
17 #include <linux/of_irq.h>
18 #include <linux/sched_clock.h>
19 
20 #include <asm/delay.h>
21 
22 #define TIMER_MATCH_VAL			0x0000
23 #define TIMER_COUNT_VAL			0x0004
24 #define TIMER_ENABLE			0x0008
25 #define TIMER_ENABLE_CLR_ON_MATCH_EN	BIT(1)
26 #define TIMER_ENABLE_EN			BIT(0)
27 #define TIMER_CLEAR			0x000C
28 #define DGT_CLK_CTL			0x10
29 #define DGT_CLK_CTL_DIV_4		0x3
30 #define TIMER_STS_GPT0_CLR_PEND		BIT(10)
31 
32 #define GPT_HZ 32768
33 
34 static void __iomem *event_base;
35 static void __iomem *sts_base;
36 
37 static irqreturn_t msm_timer_interrupt(int irq, void *dev_id)
38 {
39 	struct clock_event_device *evt = dev_id;
40 	/* Stop the timer tick */
41 	if (clockevent_state_oneshot(evt)) {
42 		u32 ctrl = readl_relaxed(event_base + TIMER_ENABLE);
43 		ctrl &= ~TIMER_ENABLE_EN;
44 		writel_relaxed(ctrl, event_base + TIMER_ENABLE);
45 	}
46 	evt->event_handler(evt);
47 	return IRQ_HANDLED;
48 }
49 
50 static int msm_timer_set_next_event(unsigned long cycles,
51 				    struct clock_event_device *evt)
52 {
53 	u32 ctrl = readl_relaxed(event_base + TIMER_ENABLE);
54 
55 	ctrl &= ~TIMER_ENABLE_EN;
56 	writel_relaxed(ctrl, event_base + TIMER_ENABLE);
57 
58 	writel_relaxed(ctrl, event_base + TIMER_CLEAR);
59 	writel_relaxed(cycles, event_base + TIMER_MATCH_VAL);
60 
61 	if (sts_base)
62 		while (readl_relaxed(sts_base) & TIMER_STS_GPT0_CLR_PEND)
63 			cpu_relax();
64 
65 	writel_relaxed(ctrl | TIMER_ENABLE_EN, event_base + TIMER_ENABLE);
66 	return 0;
67 }
68 
69 static int msm_timer_shutdown(struct clock_event_device *evt)
70 {
71 	u32 ctrl;
72 
73 	ctrl = readl_relaxed(event_base + TIMER_ENABLE);
74 	ctrl &= ~(TIMER_ENABLE_EN | TIMER_ENABLE_CLR_ON_MATCH_EN);
75 	writel_relaxed(ctrl, event_base + TIMER_ENABLE);
76 	return 0;
77 }
78 
79 static struct clock_event_device __percpu *msm_evt;
80 
81 static void __iomem *source_base;
82 
83 static notrace u64 msm_read_timer_count(struct clocksource *cs)
84 {
85 	return readl_relaxed(source_base + TIMER_COUNT_VAL);
86 }
87 
88 static struct clocksource msm_clocksource = {
89 	.name	= "dg_timer",
90 	.rating	= 300,
91 	.read	= msm_read_timer_count,
92 	.mask	= CLOCKSOURCE_MASK(32),
93 	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
94 };
95 
96 static int msm_timer_irq;
97 static int msm_timer_has_ppi;
98 
99 static int msm_local_timer_starting_cpu(unsigned int cpu)
100 {
101 	struct clock_event_device *evt = per_cpu_ptr(msm_evt, cpu);
102 	int err;
103 
104 	evt->irq = msm_timer_irq;
105 	evt->name = "msm_timer";
106 	evt->features = CLOCK_EVT_FEAT_ONESHOT;
107 	evt->rating = 200;
108 	evt->set_state_shutdown = msm_timer_shutdown;
109 	evt->set_state_oneshot = msm_timer_shutdown;
110 	evt->tick_resume = msm_timer_shutdown;
111 	evt->set_next_event = msm_timer_set_next_event;
112 	evt->cpumask = cpumask_of(cpu);
113 
114 	clockevents_config_and_register(evt, GPT_HZ, 4, 0xffffffff);
115 
116 	if (msm_timer_has_ppi) {
117 		enable_percpu_irq(evt->irq, IRQ_TYPE_EDGE_RISING);
118 	} else {
119 		err = request_irq(evt->irq, msm_timer_interrupt,
120 				IRQF_TIMER | IRQF_NOBALANCING |
121 				IRQF_TRIGGER_RISING, "gp_timer", evt);
122 		if (err)
123 			pr_err("request_irq failed\n");
124 	}
125 
126 	return 0;
127 }
128 
129 static int msm_local_timer_dying_cpu(unsigned int cpu)
130 {
131 	struct clock_event_device *evt = per_cpu_ptr(msm_evt, cpu);
132 
133 	disable_percpu_irq(evt->irq);
134 	return 0;
135 }
136 
137 static u64 notrace msm_sched_clock_read(void)
138 {
139 	return msm_clocksource.read(&msm_clocksource);
140 }
141 
142 static unsigned long msm_read_current_timer(void)
143 {
144 	return msm_clocksource.read(&msm_clocksource);
145 }
146 
147 static struct delay_timer msm_delay_timer = {
148 	.read_current_timer = msm_read_current_timer,
149 };
150 
151 static int __init msm_timer_init(u32 dgt_hz, int sched_bits, int irq,
152 				  bool percpu)
153 {
154 	struct clocksource *cs = &msm_clocksource;
155 	int res = 0;
156 
157 	msm_timer_irq = irq;
158 	msm_timer_has_ppi = percpu;
159 
160 	msm_evt = alloc_percpu(struct clock_event_device);
161 	if (!msm_evt) {
162 		pr_err("memory allocation failed for clockevents\n");
163 		goto err;
164 	}
165 
166 	if (percpu)
167 		res = request_percpu_irq(irq, msm_timer_interrupt,
168 					 "gp_timer", msm_evt);
169 
170 	if (res) {
171 		pr_err("request_percpu_irq failed\n");
172 	} else {
173 		/* Install and invoke hotplug callbacks */
174 		res = cpuhp_setup_state(CPUHP_AP_QCOM_TIMER_STARTING,
175 					"clockevents/qcom/timer:starting",
176 					msm_local_timer_starting_cpu,
177 					msm_local_timer_dying_cpu);
178 		if (res) {
179 			free_percpu_irq(irq, msm_evt);
180 			goto err;
181 		}
182 	}
183 
184 err:
185 	writel_relaxed(TIMER_ENABLE_EN, source_base + TIMER_ENABLE);
186 	res = clocksource_register_hz(cs, dgt_hz);
187 	if (res)
188 		pr_err("clocksource_register failed\n");
189 	sched_clock_register(msm_sched_clock_read, sched_bits, dgt_hz);
190 	msm_delay_timer.freq = dgt_hz;
191 	register_current_timer_delay(&msm_delay_timer);
192 
193 	return res;
194 }
195 
196 static int __init msm_dt_timer_init(struct device_node *np)
197 {
198 	u32 freq;
199 	int irq, ret;
200 	struct resource res;
201 	u32 percpu_offset;
202 	void __iomem *base;
203 	void __iomem *cpu0_base;
204 
205 	base = of_iomap(np, 0);
206 	if (!base) {
207 		pr_err("Failed to map event base\n");
208 		return -ENXIO;
209 	}
210 
211 	/* We use GPT0 for the clockevent */
212 	irq = irq_of_parse_and_map(np, 1);
213 	if (irq <= 0) {
214 		pr_err("Can't get irq\n");
215 		return -EINVAL;
216 	}
217 
218 	/* We use CPU0's DGT for the clocksource */
219 	if (of_property_read_u32(np, "cpu-offset", &percpu_offset))
220 		percpu_offset = 0;
221 
222 	ret = of_address_to_resource(np, 0, &res);
223 	if (ret) {
224 		pr_err("Failed to parse DGT resource\n");
225 		return ret;
226 	}
227 
228 	cpu0_base = ioremap(res.start + percpu_offset, resource_size(&res));
229 	if (!cpu0_base) {
230 		pr_err("Failed to map source base\n");
231 		return -EINVAL;
232 	}
233 
234 	if (of_property_read_u32(np, "clock-frequency", &freq)) {
235 		iounmap(cpu0_base);
236 		pr_err("Unknown frequency\n");
237 		return -EINVAL;
238 	}
239 
240 	event_base = base + 0x4;
241 	sts_base = base + 0x88;
242 	source_base = cpu0_base + 0x24;
243 	freq /= 4;
244 	writel_relaxed(DGT_CLK_CTL_DIV_4, source_base + DGT_CLK_CTL);
245 
246 	ret = msm_timer_init(freq, 32, irq, !!percpu_offset);
247 	if (ret)
248 		iounmap(cpu0_base);
249 
250 	return ret;
251 }
252 TIMER_OF_DECLARE(kpss_timer, "qcom,kpss-timer", msm_dt_timer_init);
253 TIMER_OF_DECLARE(scss_timer, "qcom,scss-timer", msm_dt_timer_init);
254