xref: /linux/drivers/clocksource/timer-mediatek.c (revision 9f2c9170934eace462499ba0bfe042cc72900173)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Mediatek SoCs General-Purpose Timer handling.
4  *
5  * Copyright (C) 2014 Matthias Brugger
6  *
7  * Matthias Brugger <matthias.bgg@gmail.com>
8  */
9 
10 #define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
11 
12 #include <linux/clockchips.h>
13 #include <linux/clocksource.h>
14 #include <linux/interrupt.h>
15 #include <linux/irqreturn.h>
16 #include <linux/sched_clock.h>
17 #include <linux/slab.h>
18 #include "timer-of.h"
19 
20 #define TIMER_CLK_EVT           (1)
21 #define TIMER_CLK_SRC           (2)
22 
23 #define TIMER_SYNC_TICKS        (3)
24 
25 /* cpux mcusys wrapper */
26 #define CPUX_CON_REG		0x0
27 #define CPUX_IDX_REG		0x4
28 
29 /* cpux */
30 #define CPUX_IDX_GLOBAL_CTRL	0x0
31  #define CPUX_ENABLE		BIT(0)
32  #define CPUX_CLK_DIV_MASK	GENMASK(10, 8)
33  #define CPUX_CLK_DIV1		BIT(8)
34  #define CPUX_CLK_DIV2		BIT(9)
35  #define CPUX_CLK_DIV4		BIT(10)
36 #define CPUX_IDX_GLOBAL_IRQ	0x30
37 
38 /* gpt */
39 #define GPT_IRQ_EN_REG          0x00
40 #define GPT_IRQ_ENABLE(val)     BIT((val) - 1)
41 #define GPT_IRQ_ACK_REG	        0x08
42 #define GPT_IRQ_ACK(val)        BIT((val) - 1)
43 
44 #define GPT_CTRL_REG(val)       (0x10 * (val))
45 #define GPT_CTRL_OP(val)        (((val) & 0x3) << 4)
46 #define GPT_CTRL_OP_ONESHOT     (0)
47 #define GPT_CTRL_OP_REPEAT      (1)
48 #define GPT_CTRL_OP_FREERUN     (3)
49 #define GPT_CTRL_CLEAR          (2)
50 #define GPT_CTRL_ENABLE         (1)
51 #define GPT_CTRL_DISABLE        (0)
52 
53 #define GPT_CLK_REG(val)        (0x04 + (0x10 * (val)))
54 #define GPT_CLK_SRC(val)        (((val) & 0x1) << 4)
55 #define GPT_CLK_SRC_SYS13M      (0)
56 #define GPT_CLK_SRC_RTC32K      (1)
57 #define GPT_CLK_DIV1            (0x0)
58 #define GPT_CLK_DIV2            (0x1)
59 
60 #define GPT_CNT_REG(val)        (0x08 + (0x10 * (val)))
61 #define GPT_CMP_REG(val)        (0x0C + (0x10 * (val)))
62 
63 /* system timer */
64 #define SYST_BASE               (0x40)
65 
66 #define SYST_CON                (SYST_BASE + 0x0)
67 #define SYST_VAL                (SYST_BASE + 0x4)
68 
69 #define SYST_CON_REG(to)        (timer_of_base(to) + SYST_CON)
70 #define SYST_VAL_REG(to)        (timer_of_base(to) + SYST_VAL)
71 
72 /*
73  * SYST_CON_EN: Clock enable. Shall be set to
74  *   - Start timer countdown.
75  *   - Allow timeout ticks being updated.
76  *   - Allow changing interrupt status,like clear irq pending.
77  *
78  * SYST_CON_IRQ_EN: Set to enable interrupt.
79  *
80  * SYST_CON_IRQ_CLR: Set to clear interrupt.
81  */
82 #define SYST_CON_EN              BIT(0)
83 #define SYST_CON_IRQ_EN          BIT(1)
84 #define SYST_CON_IRQ_CLR         BIT(4)
85 
86 static void __iomem *gpt_sched_reg __read_mostly;
87 
88 static u32 mtk_cpux_readl(u32 reg_idx, struct timer_of *to)
89 {
90 	writel(reg_idx, timer_of_base(to) + CPUX_IDX_REG);
91 	return readl(timer_of_base(to) + CPUX_CON_REG);
92 }
93 
94 static void mtk_cpux_writel(u32 val, u32 reg_idx, struct timer_of *to)
95 {
96 	writel(reg_idx, timer_of_base(to) + CPUX_IDX_REG);
97 	writel(val, timer_of_base(to) + CPUX_CON_REG);
98 }
99 
100 static void mtk_cpux_set_irq(struct timer_of *to, bool enable)
101 {
102 	const unsigned long *irq_mask = cpumask_bits(cpu_possible_mask);
103 	u32 val;
104 
105 	val = mtk_cpux_readl(CPUX_IDX_GLOBAL_IRQ, to);
106 
107 	if (enable)
108 		val |= *irq_mask;
109 	else
110 		val &= ~(*irq_mask);
111 
112 	mtk_cpux_writel(val, CPUX_IDX_GLOBAL_IRQ, to);
113 }
114 
115 static int mtk_cpux_clkevt_shutdown(struct clock_event_device *clkevt)
116 {
117 	/* Clear any irq */
118 	mtk_cpux_set_irq(to_timer_of(clkevt), false);
119 
120 	/*
121 	 * Disabling CPUXGPT timer will crash the platform, especially
122 	 * if Trusted Firmware is using it (usually, for sleep states),
123 	 * so we only mask the IRQ and call it a day.
124 	 */
125 	return 0;
126 }
127 
128 static int mtk_cpux_clkevt_resume(struct clock_event_device *clkevt)
129 {
130 	mtk_cpux_set_irq(to_timer_of(clkevt), true);
131 	return 0;
132 }
133 
134 static void mtk_syst_ack_irq(struct timer_of *to)
135 {
136 	/* Clear and disable interrupt */
137 	writel(SYST_CON_EN, SYST_CON_REG(to));
138 	writel(SYST_CON_IRQ_CLR | SYST_CON_EN, SYST_CON_REG(to));
139 }
140 
141 static irqreturn_t mtk_syst_handler(int irq, void *dev_id)
142 {
143 	struct clock_event_device *clkevt = dev_id;
144 	struct timer_of *to = to_timer_of(clkevt);
145 
146 	mtk_syst_ack_irq(to);
147 	clkevt->event_handler(clkevt);
148 
149 	return IRQ_HANDLED;
150 }
151 
152 static int mtk_syst_clkevt_next_event(unsigned long ticks,
153 				      struct clock_event_device *clkevt)
154 {
155 	struct timer_of *to = to_timer_of(clkevt);
156 
157 	/* Enable clock to allow timeout tick update later */
158 	writel(SYST_CON_EN, SYST_CON_REG(to));
159 
160 	/*
161 	 * Write new timeout ticks. Timer shall start countdown
162 	 * after timeout ticks are updated.
163 	 */
164 	writel(ticks, SYST_VAL_REG(to));
165 
166 	/* Enable interrupt */
167 	writel(SYST_CON_EN | SYST_CON_IRQ_EN, SYST_CON_REG(to));
168 
169 	return 0;
170 }
171 
172 static int mtk_syst_clkevt_shutdown(struct clock_event_device *clkevt)
173 {
174 	/* Clear any irq */
175 	mtk_syst_ack_irq(to_timer_of(clkevt));
176 
177 	/* Disable timer */
178 	writel(0, SYST_CON_REG(to_timer_of(clkevt)));
179 
180 	return 0;
181 }
182 
183 static int mtk_syst_clkevt_resume(struct clock_event_device *clkevt)
184 {
185 	return mtk_syst_clkevt_shutdown(clkevt);
186 }
187 
188 static int mtk_syst_clkevt_oneshot(struct clock_event_device *clkevt)
189 {
190 	return 0;
191 }
192 
193 static u64 notrace mtk_gpt_read_sched_clock(void)
194 {
195 	return readl_relaxed(gpt_sched_reg);
196 }
197 
198 static void mtk_gpt_clkevt_time_stop(struct timer_of *to, u8 timer)
199 {
200 	u32 val;
201 
202 	val = readl(timer_of_base(to) + GPT_CTRL_REG(timer));
203 	writel(val & ~GPT_CTRL_ENABLE, timer_of_base(to) +
204 	       GPT_CTRL_REG(timer));
205 }
206 
207 static void mtk_gpt_clkevt_time_setup(struct timer_of *to,
208 				      unsigned long delay, u8 timer)
209 {
210 	writel(delay, timer_of_base(to) + GPT_CMP_REG(timer));
211 }
212 
213 static void mtk_gpt_clkevt_time_start(struct timer_of *to,
214 				      bool periodic, u8 timer)
215 {
216 	u32 val;
217 
218 	/* Acknowledge interrupt */
219 	writel(GPT_IRQ_ACK(timer), timer_of_base(to) + GPT_IRQ_ACK_REG);
220 
221 	val = readl(timer_of_base(to) + GPT_CTRL_REG(timer));
222 
223 	/* Clear 2 bit timer operation mode field */
224 	val &= ~GPT_CTRL_OP(0x3);
225 
226 	if (periodic)
227 		val |= GPT_CTRL_OP(GPT_CTRL_OP_REPEAT);
228 	else
229 		val |= GPT_CTRL_OP(GPT_CTRL_OP_ONESHOT);
230 
231 	writel(val | GPT_CTRL_ENABLE | GPT_CTRL_CLEAR,
232 	       timer_of_base(to) + GPT_CTRL_REG(timer));
233 }
234 
235 static int mtk_gpt_clkevt_shutdown(struct clock_event_device *clk)
236 {
237 	mtk_gpt_clkevt_time_stop(to_timer_of(clk), TIMER_CLK_EVT);
238 
239 	return 0;
240 }
241 
242 static int mtk_gpt_clkevt_set_periodic(struct clock_event_device *clk)
243 {
244 	struct timer_of *to = to_timer_of(clk);
245 
246 	mtk_gpt_clkevt_time_stop(to, TIMER_CLK_EVT);
247 	mtk_gpt_clkevt_time_setup(to, to->of_clk.period, TIMER_CLK_EVT);
248 	mtk_gpt_clkevt_time_start(to, true, TIMER_CLK_EVT);
249 
250 	return 0;
251 }
252 
253 static int mtk_gpt_clkevt_next_event(unsigned long event,
254 				     struct clock_event_device *clk)
255 {
256 	struct timer_of *to = to_timer_of(clk);
257 
258 	mtk_gpt_clkevt_time_stop(to, TIMER_CLK_EVT);
259 	mtk_gpt_clkevt_time_setup(to, event, TIMER_CLK_EVT);
260 	mtk_gpt_clkevt_time_start(to, false, TIMER_CLK_EVT);
261 
262 	return 0;
263 }
264 
265 static irqreturn_t mtk_gpt_interrupt(int irq, void *dev_id)
266 {
267 	struct clock_event_device *clkevt = (struct clock_event_device *)dev_id;
268 	struct timer_of *to = to_timer_of(clkevt);
269 
270 	/* Acknowledge timer0 irq */
271 	writel(GPT_IRQ_ACK(TIMER_CLK_EVT), timer_of_base(to) + GPT_IRQ_ACK_REG);
272 	clkevt->event_handler(clkevt);
273 
274 	return IRQ_HANDLED;
275 }
276 
277 static void
278 __init mtk_gpt_setup(struct timer_of *to, u8 timer, u8 option)
279 {
280 	writel(GPT_CTRL_CLEAR | GPT_CTRL_DISABLE,
281 	       timer_of_base(to) + GPT_CTRL_REG(timer));
282 
283 	writel(GPT_CLK_SRC(GPT_CLK_SRC_SYS13M) | GPT_CLK_DIV1,
284 	       timer_of_base(to) + GPT_CLK_REG(timer));
285 
286 	writel(0x0, timer_of_base(to) + GPT_CMP_REG(timer));
287 
288 	writel(GPT_CTRL_OP(option) | GPT_CTRL_ENABLE,
289 	       timer_of_base(to) + GPT_CTRL_REG(timer));
290 }
291 
292 static void mtk_gpt_enable_irq(struct timer_of *to, u8 timer)
293 {
294 	u32 val;
295 
296 	/* Disable all interrupts */
297 	writel(0x0, timer_of_base(to) + GPT_IRQ_EN_REG);
298 
299 	/* Acknowledge all spurious pending interrupts */
300 	writel(0x3f, timer_of_base(to) + GPT_IRQ_ACK_REG);
301 
302 	val = readl(timer_of_base(to) + GPT_IRQ_EN_REG);
303 	writel(val | GPT_IRQ_ENABLE(timer),
304 	       timer_of_base(to) + GPT_IRQ_EN_REG);
305 }
306 
307 static void mtk_gpt_resume(struct clock_event_device *clk)
308 {
309 	struct timer_of *to = to_timer_of(clk);
310 
311 	mtk_gpt_enable_irq(to, TIMER_CLK_EVT);
312 }
313 
314 static void mtk_gpt_suspend(struct clock_event_device *clk)
315 {
316 	struct timer_of *to = to_timer_of(clk);
317 
318 	/* Disable all interrupts */
319 	writel(0x0, timer_of_base(to) + GPT_IRQ_EN_REG);
320 
321 	/*
322 	 * This is called with interrupts disabled,
323 	 * so we need to ack any interrupt that is pending
324 	 * or for example ATF will prevent a suspend from completing.
325 	 */
326 	writel(0x3f, timer_of_base(to) + GPT_IRQ_ACK_REG);
327 }
328 
329 static struct timer_of to = {
330 	.flags = TIMER_OF_IRQ | TIMER_OF_BASE | TIMER_OF_CLOCK,
331 
332 	.clkevt = {
333 		.name = "mtk-clkevt",
334 		.rating = 300,
335 		.cpumask = cpu_possible_mask,
336 	},
337 
338 	.of_irq = {
339 		.flags = IRQF_TIMER | IRQF_IRQPOLL,
340 	},
341 };
342 
343 static int __init mtk_cpux_init(struct device_node *node)
344 {
345 	static struct timer_of to_cpux;
346 	u32 freq, val;
347 	int ret;
348 
349 	/*
350 	 * There are per-cpu interrupts for the CPUX General Purpose Timer
351 	 * but since this timer feeds the AArch64 System Timer we can rely
352 	 * on the CPU timer PPIs as well, so we don't declare TIMER_OF_IRQ.
353 	 */
354 	to_cpux.flags = TIMER_OF_BASE | TIMER_OF_CLOCK;
355 	to_cpux.clkevt.name = "mtk-cpuxgpt";
356 	to_cpux.clkevt.rating = 10;
357 	to_cpux.clkevt.cpumask = cpu_possible_mask;
358 	to_cpux.clkevt.set_state_shutdown = mtk_cpux_clkevt_shutdown;
359 	to_cpux.clkevt.tick_resume = mtk_cpux_clkevt_resume;
360 
361 	/* If this fails, bad things are about to happen... */
362 	ret = timer_of_init(node, &to_cpux);
363 	if (ret) {
364 		WARN(1, "Cannot start CPUX timers.\n");
365 		return ret;
366 	}
367 
368 	/*
369 	 * Check if we're given a clock with the right frequency for this
370 	 * timer, otherwise warn but keep going with the setup anyway, as
371 	 * that makes it possible to still boot the kernel, even though
372 	 * it may not work correctly (random lockups, etc).
373 	 * The reason behind this is that having an early UART may not be
374 	 * possible for everyone and this gives a chance to retrieve kmsg
375 	 * for eventual debugging even on consumer devices.
376 	 */
377 	freq = timer_of_rate(&to_cpux);
378 	if (freq > 13000000)
379 		WARN(1, "Requested unsupported timer frequency %u\n", freq);
380 
381 	/* Clock input is 26MHz, set DIV2 to achieve 13MHz clock */
382 	val = mtk_cpux_readl(CPUX_IDX_GLOBAL_CTRL, &to_cpux);
383 	val &= ~CPUX_CLK_DIV_MASK;
384 	val |= CPUX_CLK_DIV2;
385 	mtk_cpux_writel(val, CPUX_IDX_GLOBAL_CTRL, &to_cpux);
386 
387 	/* Enable all CPUXGPT timers */
388 	val = mtk_cpux_readl(CPUX_IDX_GLOBAL_CTRL, &to_cpux);
389 	mtk_cpux_writel(val | CPUX_ENABLE, CPUX_IDX_GLOBAL_CTRL, &to_cpux);
390 
391 	clockevents_config_and_register(&to_cpux.clkevt, timer_of_rate(&to_cpux),
392 					TIMER_SYNC_TICKS, 0xffffffff);
393 
394 	return 0;
395 }
396 
397 static int __init mtk_syst_init(struct device_node *node)
398 {
399 	int ret;
400 
401 	to.clkevt.features = CLOCK_EVT_FEAT_DYNIRQ | CLOCK_EVT_FEAT_ONESHOT;
402 	to.clkevt.set_state_shutdown = mtk_syst_clkevt_shutdown;
403 	to.clkevt.set_state_oneshot = mtk_syst_clkevt_oneshot;
404 	to.clkevt.tick_resume = mtk_syst_clkevt_resume;
405 	to.clkevt.set_next_event = mtk_syst_clkevt_next_event;
406 	to.of_irq.handler = mtk_syst_handler;
407 
408 	ret = timer_of_init(node, &to);
409 	if (ret)
410 		return ret;
411 
412 	clockevents_config_and_register(&to.clkevt, timer_of_rate(&to),
413 					TIMER_SYNC_TICKS, 0xffffffff);
414 
415 	return 0;
416 }
417 
418 static int __init mtk_gpt_init(struct device_node *node)
419 {
420 	int ret;
421 
422 	to.clkevt.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
423 	to.clkevt.set_state_shutdown = mtk_gpt_clkevt_shutdown;
424 	to.clkevt.set_state_periodic = mtk_gpt_clkevt_set_periodic;
425 	to.clkevt.set_state_oneshot = mtk_gpt_clkevt_shutdown;
426 	to.clkevt.tick_resume = mtk_gpt_clkevt_shutdown;
427 	to.clkevt.set_next_event = mtk_gpt_clkevt_next_event;
428 	to.clkevt.suspend = mtk_gpt_suspend;
429 	to.clkevt.resume = mtk_gpt_resume;
430 	to.of_irq.handler = mtk_gpt_interrupt;
431 
432 	ret = timer_of_init(node, &to);
433 	if (ret)
434 		return ret;
435 
436 	/* Configure clock source */
437 	mtk_gpt_setup(&to, TIMER_CLK_SRC, GPT_CTRL_OP_FREERUN);
438 	clocksource_mmio_init(timer_of_base(&to) + GPT_CNT_REG(TIMER_CLK_SRC),
439 			      node->name, timer_of_rate(&to), 300, 32,
440 			      clocksource_mmio_readl_up);
441 	gpt_sched_reg = timer_of_base(&to) + GPT_CNT_REG(TIMER_CLK_SRC);
442 	sched_clock_register(mtk_gpt_read_sched_clock, 32, timer_of_rate(&to));
443 
444 	/* Configure clock event */
445 	mtk_gpt_setup(&to, TIMER_CLK_EVT, GPT_CTRL_OP_REPEAT);
446 	clockevents_config_and_register(&to.clkevt, timer_of_rate(&to),
447 					TIMER_SYNC_TICKS, 0xffffffff);
448 
449 	mtk_gpt_enable_irq(&to, TIMER_CLK_EVT);
450 
451 	return 0;
452 }
453 TIMER_OF_DECLARE(mtk_mt6577, "mediatek,mt6577-timer", mtk_gpt_init);
454 TIMER_OF_DECLARE(mtk_mt6765, "mediatek,mt6765-timer", mtk_syst_init);
455 TIMER_OF_DECLARE(mtk_mt6795, "mediatek,mt6795-systimer", mtk_cpux_init);
456